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Abstract 11 

Existing treatments against drug addiction are often ineffective due to the complexity of the networks 12 
of protein-drug and protein-protein interactions (PPIs) that mediate the development of drug 13 
addiction and related neurobiological disorders. There is an urgent need for understanding the 14 
molecular mechanisms that underlie drug addiction toward designing novel preventive or therapeutic 15 
strategies. The rapidly accumulating data on addictive drugs and their targets as well as advances in 16 
machine learning methods and computing technology now present an opportunity to systematically 17 
mine existing data and draw inferences on potential new strategies. To this aim, we carried out a 18 
comprehensive analysis of cellular pathways implicated in a diverse set of 50 drugs of abuse using 19 
quantitative systems pharmacology methods. The analysis of the drug/ligand-target interactions 20 
compiled in DrugBank and STITCH databases revealed 142 known and 48 newly predicted targets, 21 
which have been further analyzed to identify the KEGG pathways enriched at different stages of drug 22 
addiction cycle, as well as those implicated in cell signaling and regulation events associated with 23 
drug abuse. Apart from synaptic neurotransmission pathways detected as a common upstream 24 
signaling module that ‘senses’ the early effects of drugs of abuse, pathways involved in 25 
neuroplasticity are distinguished as determinants of neuronal morphological changes. Notably, many 26 
signaling pathways converge on important targets such as mTORC1. The latter is proposed to act as a 27 
universal effector of the persistent restructuring of neurons in response to continued use of drugs of 28 
abuse.  29 

1 Introduction 30 

Drug addiction is a chronic relapsing disorder characterized by compulsive, excessive, and self-31 
damaging use of drugs of abuse. It is a debilitating condition that potentially leads to serious 32 
physiological injury, mental disorder and death, resulting in major health and social economic 33 
impacts worldwide (Nestler, 2013; Koob and Volkow, 2016). Substances with diverse chemical 34 
structures and mechanisms of action are known to cause addiction. Except for alcohol and tobacco, 35 
substances of abuse are commonly classified into six groups based on their primary targets or effects: 36 
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cannabinoids (e.g. cannabis), opioids (e.g. morphine, heroin, fentanyl), central nervous system (CNS) 37 
depressants (e.g. pentobarbital, diazepam), CNS stimulants (e.g. cocaine, amphetamine), 38 
hallucinogens (e.g. ketamine, lysergic acid diethylamide) and anabolic steroids (e.g. nandrolone, 39 
oxymetholone).  40 

The primary actions of drugs of abuse have been well studied. In spite of the pleiotropy and 41 
heterogeneity of drugs of abuse, they share similar phenotypes: from acute intoxication to chronic 42 
dependence (Taylor et al., 2013), the reinforcement shift from positive to negative through a three-43 
stage cycle involving binge/intoxication, withdrawal/negative effect, and preoccupation/anticipation 44 
(Koob and Volkow, 2016). Notably, virtually all drugs of abuse augment dopaminergic transmission 45 
in the reward system (Wise, 1996). However, the detailed cellular pathways of addiction processes 46 
are still far from known. For example, cocaine acts primarily as an inhibitor of dopamine (DA) 47 
transporter (DAT) and results in DA accumulation in the synapses of DA neurons (Shimada et al., 48 
1991; Volkow et al., 1997). However, it has been shown that DA accumulation per se is not 49 
sufficient to account for the rewarding process associated with cocaine addiction; serotonin (5-HT) 50 
and noradrenaline/norepinephrine (NE) also play important roles (Rocha et al., 1998; Sora et al., 51 
1998). Another example is ketamine, a nonselective antagonist for N-methyl-d-aspartate (NMDA) 52 
receptor (NMDAR), notably most effective in the amygdala and hippocampal regions of neurons 53 
(Collingridge et al., 1983). In addition to its primary action, ketamine affects a number of other 54 
neurotransmitter receptors, including sigma-1 (Mendelsohn et al., 1985), substance P (Okamoto et 55 
al., 2003), opioid (Hustveit et al., 1995), muscarinic acetylcholine (mACh) (Hirota et al., 2002), 56 
nicotinic acetylcholine (nACh) (Coates and Flood, 2001), serotonin (Kapur and Seeman, 2002), and 57 
γ-aminobutyric acid (GABA) receptors (Hevers et al., 2008). The promiscuity of drugs of abuse 58 
brings an additional layer of complexity, which prevents the development of efficient treatment 59 
against drug addiction.   60 

In recent years there has been significant progress in the characterization of drug/target/pathway 61 
relations driven by the accumulation of drug-target interactions and pathways data, as well as the 62 
development of machine learning, in silico genomics, chemogenomics and quantitative systems 63 
pharmacology (QSP) tools. Several innovative studies started to provide valuable information on 64 
substance abuse targets and pathways. For example, Li et al. curated 396 drug abuse related genes 65 
from the literature and identified five common pathways underlying the reward and addiction actions 66 
of cocaine, alcohol, opioids and nicotine (Li et al., 2008). Hu et al. analyzed the genes related to 67 
nicotine addiction via a pathway and network-based approach (Hu et al., 2018). Biernacka et al. 68 
performed genome-wide analysis on 1165 alcohol-dependence cases and identified two pathways 69 
associated with alcohol dependence (Biernacka et al., 2013). Xie et al. generated chemogenomics 70 
knowledgebases focused on G-protein coupled receptors (GPCRs) related to drugs of abuse in 71 
general (Xie et al., 2014), and cannabinoids in particular (Xie et al., 2016). Notably, these studies 72 
have shed light on selected categories or subgroups of drugs. There is a need to understand the 73 
intricate couplings between multiple pathways implicated in the cellular response to drugs of abuse, 74 
identify mechanisms common to various categories of drugs while distinguishing those unique to 75 
selected categories.  76 

We undertake here such a systems-level approach using a dataset composed of six different 77 
categories of drugs of abuse. Following a QSP approach proposed earlier (Stern et al., 2016), we 78 
provide a comprehensive, unbiased glimpse of the complex mechanisms implicated in addiction. 79 
Specifically, a set of 50 drugs of abuse with a diversity in chemical structures and pharmacological 80 
actions were collected as probes, and the known targets of these drugs as well as the targets predicted 81 
using our probabilistic matrix factorization (PMF) method (Cobanoglu et al., 2013) were analyzed to 82 
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infer biological pathways associated with drug addiction. Our analysis yielded 142 known and 48 83 
predicted targets and 173 pathways permitting us to identify both generic mechanisms regulating the 84 
responses to drug abuse as well as specific mechanisms associated with selected categories, which 85 
could both facilitate the development of auxiliary agents for treatment of addiction.  86 

A key step in our approach is to identify the targets for drugs of abuse. There exists various drug-87 
target interaction databases (DBs), web servers and computational models, as summarized recently 88 
(Chen et al., 2016). The drug-target interaction DBs utilized in this work are DrugBank (Wishart et 89 
al., 2018) and STITCH (Szklarczyk et al., 2016). DrugBank is a bioinformatics and cheminformatics 90 
resource that combines drug data with comprehensive target information. It is frequently updated, 91 
with the current version containing 10,562 drugs, 4,493 targets and corresponding 16,959 92 
interactions. Since most of drugs of abuse are approved or withdrawn drugs, DrugBank is a good 93 
source for obtaining information on their interactions. STITCH, on the other hand, is much more 94 
extensive. It integrates chemical-protein interactions from experiments, other DBs, literature and 95 
predictions, resulting in data on 430,000 chemicals and 9,643,763 proteins across 2,031 genomes. 96 
We have used the subset of human protein-chemicals data supported by experimental evidence. The 97 
method of approach adopted here is an important advance over our original PMF-based machine 98 
learning methodology for predicting drug-target interactions (Cobanoglu et al., 2013). First, the 99 
approach originally developed for mining DrugBank has been extended to analyzing the STITCH 100 
DB, the content of which is 2-3 orders of magnitude larger than DrugBank (based on the respective 101 
numbers of interactions). Second, the information on predicted drug-target associations is 102 
complemented by pathway data on humans inferred from the KEGG pathway DB (December 2017 103 
version) (Kanehisa et al., 2017) upon pathway enrichment analysis of known and predicted targets. 104 
Third, the outputs are subjected to extensive analyses to detect recurrent patterns and formulate new 105 
hypotheses for preventive or therapeutic strategies against drug abuse. 106 

2 Materials and Methods 107 

2.1 Selection of drugs of abuse and their known targets 108 

We selected as input 50 drugs commonly known as drugs of abuse using two basic criteria: (i) 109 
diversity in terms of structure and mode of action, and (ii) availability of information on at least one 110 
human target protein in DrugBank v5 (Wishart et al., 2018) or STITCH v5 (Szklarczyk et al., 2016). 111 
The selected drugs represent six different categories: CNS stimulants, CNS depressants, opioids, 112 
cannabinoids, anabolic steroids and hallucinogens (see Supplementary Table 1 and Supplementary 113 
Figure 1 for details).  114 

A dataset of 142 known targets, listed in Supplementary Table 2, were retrieved from DrugBank 115 
and STITCH DBs for these 50 drugs. The list includes all targets reported for these drugs in 116 
DrugBank, and those with high confidence score, based on experiments, reported in STITCH. Each 117 
chemical-target interaction is annotated with five confidence scores in STITCH: experimental, DB, 118 
text-mining, prediction, and a combination score of the previous four, each ranging from 0 to 1. We 119 
selected the human protein targets with experimental confidence scores of 0.4 or higher. 120 
Supplementary Table 2 summarizes the 142 targets we identified as well as the associated 445 121 
drug-target interactions.  122 

Structure-based and interaction-pattern-based similarities between pairs of drugs were evaluated 123 
using two different criteria. The former was based on structure-based distance calculated as the 124 
Tanimoto distance between their 2D structure fingerprints. The Tanimoto distances were evaluated 125 
using Python RDKit suite (RDKit: Open-Source Cheminformatics Software. https://www.rdkit.org/). 126 
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Similarities based on their interactions patterns with known targets were evaluated by evaluating 127 
target-based distances. To this aim, we represented each drug i by a 142-dimensional ‘target vector’ 128 
di, the entries of which represent the known targets and are assigned values of 0 or 1, depending on 129 
the existence/observation of an interaction between the corresponding target and drug i. Interaction-130 
pattern similarities between drug pairs i and j were evaluated by calculating the correlation cosine 131 
cos(di . dj) = (di . dj) / (|di| |dj|) between these vectors, and the corresponding cosine distance is [1 - 132 
cos(di . dj)]. Likewise, ligand-based distances between target pairs i and j were evaluated as the 133 
cosine distance between the 50-dimensional vectors ti and tj corresponding to the two targets, the 134 
entries of which are 0 or 1 depending on absence or existence of an interaction between the target and 135 
the corresponding drug of abuse. 136 

2.2 Probabilistic matrix factorization (PMF) based drug-target interaction prediction 137 

Novel targets for each drug were predicted using our probabilistic matrix factorization (PMF) based 138 
machine learning approach (Cobanoglu et al., 2013; Cobanoglu et al., 2015). Briefly, we start with a 139 
sparse matrix R representing the known interactions between N drugs and M targets. Using the PMF 140 
algorithm, we decomposed R into a drug matrix U and a target matrix V, by learning the optimal D 141 
latent variables to represent each drug and each target. The product of UT and V assigns values to the 142 
unknown (experimentally not characterized) entries of the reconstructed R, each value representing 143 
the confidence score for a novel drug-target interaction prediction 144 

���� �  ����
� ���� 

Using this method, we trained two PMF models, one based on 11,681 drug-target interactions 145 
between 6,640 drugs and 2,255 targets from DrugBank v5, and the other based on 8,579,843 146 
chemical-target interactions for 311,507 chemicals and 9,457 targets from STITCH v5 human 147 
experimentally confirmed subset, respectively. We evaluated the confidence scores in the range [0, 1] 148 
for each predicted drug-target interaction, in both cases. We selected the interactions with confidence 149 
scores higher than 0.7 within the top 10 predicted targets for each input drug. This led to 161 novel 150 
interactions identified between 27 out of the 50 input drugs and 89 targets (composed of 41 known 151 
and 48 novel targets) (Supplementary Table 3).  152 

2.3 Pathway enrichment analysis 153 

We mapped the 50 drugs with 142 known and 48 predicted targets to the KEGG pathways (version 154 
December 2017, homo sapiens) (Kanehisa et al., 2017). 114 and 173 pathways were mapped by 142 155 
known targets and all targets (both known and predicted) respectively (see Supplementary Table 4). 156 
In order to prioritize enriched pathways, we calculated the hypergeometric p-values based on the 157 
targets as the enrichment score as follows. Given a list of targets, the enrichment p-value for pathway 158 
A (PA) is the probability of randomly drawing k0 or more targets that belong to pathway A: 159 

�� � � ��
�

	��	�

	�

	
��



	
�����


  

where M is the total number of human proteins in the KEGG Pathway, m is the total number of 160 
proteins/targets we identified, and K is the number of proteins that belong to pathway A, while k0 is 161 
the number of targets we identified that belong to pathway A. 162 

3 Results 163 
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3.1 Functional similarity of drugs of abuse does not imply structural similarity, consistent 164 
with the multiplicity of their actions 165 

Figure 1 presents a quantitative analysis of the functional and structural diversity of the examined n 166 
= 50 drugs of abuse, as well as the similarities of their m = 142 targets. The n × n maps in panels A 167 
and B display the drug-drug pairwise distances/dissimilarities based on their 2D fingerprints (panel 168 
A), and their interaction patterns with their targets (panel B). Panels C and D display the 169 
corresponding dendrograms. The drugs are indexed and color-coded as in Supplementary Table 1 170 
and Supplementary Figure 1. As expected, drugs belonging to the same functional category (same 171 
color) exhibit more similar interaction patterns (panel D). However, we also note outliers, such as 172 
cocaine lying among opioids, as opposed to its categorization as a CNS stimulant, or promethazine, a 173 
CNS depressant, lying among hallucinogens (shown by arrows). The peculiar behavior of cocaine is 174 
consistent with its high promiscuity (see Figure 2A for the number of targets associated with each 175 
examined drug). This type of promiscuity becomes even more apparent when the drugs are organized 176 
based on their structure (or 2D fingerprints; see Materials and Methods) as may be seen in panel A. 177 
For example, opioids (clustered together in panels B and D based on their interactions) are now 178 
distributed in two or more branches of the dendrogram (cyan labels/arc; panel C); likewise, CNS 179 
depressants (blue) and cannabinoids (light brown), grouped each as a single cluster in panel D, are 180 
now distributed into two or more clusters in panel C.  181 

Overall these results suggest that the functional categorization of the drugs does not necessarily 182 
comply with their structural characteristics. The similar functionality presumably originates from 183 
targeting similar pathways, but the difference in the structure suggests that either their targets, or the 184 
binding sites on the same target, are different; or the binding is not selective enough such that 185 
multiple drugs can bind the same site. Consequently, a diversity of pathways or a multiplicity of 186 
cellular responses are triggered by the use and abuse of these drugs. 187 

3.2 The selected drugs and identified targets are highly diverse and promiscuous 188 

We evaluated the similarities between proteins targeted by drugs of abuse, based on their interaction 189 
patterns with the studied drugs of abuse. Figure 1 panels E and F display the respective target-target 190 
distances, and corresponding dendrogram. Supplementary Table 2 lists the full names of these 191 
targets, organized in the same order as the panel E axes. We discern several groups of targets 192 
clustered together in consistency with their biological functions. For example, practically all GABA 193 
receptor subtypes (brown) are clustered together. This large cluster also includes the riboflavin 194 
transporter 2A (SLC52A2), which may be required for GABA release (Tritsch et al., 2012). On the 195 
other hand, the different subtypes of serotonin (or 5-hydroxytryptamine, 5-HT) receptors (5HTRs) 196 
participate in distinct clusters pointing to the specificity of different subtypes vis-à-vis different drugs 197 
of abuse (labeled in Figure 1F).  198 

The large majority of neurotransmitter transporters, such as Na+/Cl--dependent GABA transporters 199 
(SLC6A1) and glycine transporter (SLC6A9) are in the same cluster (pink, labeled). Acetylcholine 200 
receptors also lie close to (or are even interspersed among) Na+/Cl--dependent neurotransmitter 201 
transporters, presumably due to shared drugs such as cocaine. However, the three transporters 202 
playing a crucial role in developing drug addiction, DAT, NE transporter (NET) and serotonin 203 
transporter (SERT) (labeled SLC6A2: NET, SLC6A3: DAT, SLC6A4: SERT) are distinguished by 204 
from all other neurotransmitter transporters as a completely disjoint group. The corresponding branch 205 
of the dendrogram (highlighted by the yellow circle) also includes vesicular amino acid transporters 206 
and trace amine-associated receptor 1 (TAAR1) known to interact with these transporters (Miller, 207 
2011). We also note in the same branch two seemingly unrelated targets: flavin monoamine oxidase 208 
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which draws attention to the role of oxidative events; and α2-adrenergic receptor subtypes A-C, 209 
which uses NE as a chemical messenger for mediating stimulant effects such as sensitization and 210 
reinstatement of drug seeking, and adenylate cyclase as another messenger to regulate cAMP levels 211 
(Sofuoglu and Sewell, 2009).  212 

Supplementary Table 2 summarizes the 445 known interactions between these 50 drugs and 142 213 
targets. We observe an average of 8.9 interactions per drug and 3.1 interactions per target. There are 214 
23 promiscuous drugs that target at least 10 proteins as shown in Figure 2 panel A. Cocaine, the 215 
most promiscuous psychostimulant, interacts with 45 known and 3 predicted targets. It is known that 216 
cocaine binds DAT to lock it in the outward-facing state (OFS) and block the reuptake of DA. It 217 
similarly antagonizes SERT and NET (Heikkila et al., 1975; Sora et al., 1998), and also affects 218 
muscarinic acetylcholine receptors (mAChRs) M1 and M2 (Williams and Adinoff, 2008). Our PMF 219 
model also predicted a potential interaction between cocaine and M5. While this interaction is not 220 
listed in current DBs, there is experimental evidence suggesting that M5 plays an important role in 221 
reinforcing the effects of cocaine (Fink-Jensen et al., 2003), in support of the PMF model prediction. 222 

The PMF model enables us to predict novel targets. For example, anabolic steroid nandrolone has 223 
only two known interactions, and cannabinoid cannabichromene has one. However, 10 new targets 224 
were predicted with high confidence scores for each of them (Supplementary Table 3 and 225 
Supplementary Figure 2A). This is due to the data available in STITCH DB, which offers a large 226 
training dataset that enhances the performance of our machine learning approach. Overall, 89 new 227 
interactions were predicted for known targets, and 42 novel targets were predicted with 72 228 
interactions. Figure 2 panel C displays the distribution of all targets among different protein families. 229 
As will be further elaborated below, among the newly identified drug-target pairs, nandrolone-230 
MAPK14 (mitogen-activated protein kinase 14, also known as p38α) and canabichromene-IKBKB 231 
(inhibitor of NFκ-B kinase subunit β) play a role in regulating mTORC1 signaling, which will be 232 
shown to be an effector of drug addiction.  233 

Turning to targets, three opioid receptors (OPRM1, OPRD1 and OPRL1) exhibit the highest level of 234 
promiscuity (Supplementary Figure 2B). The μ-type opioid receptor (OPRM1) interacts with 14 235 
known drugs including all opioids as well as ketamine and dextromethorphan. We also predicted a 236 
novel interaction between OPRM1 and the CNS stimulant methylphenidate. This is consistent with 237 
experimental observations that methylphenidate upregulates OPRM1’s activity in the reward 238 
circuitry in a mouse model (Zhu et al., 2011). Furthermore, tissue-based transcriptome analysis 239 
(Uhlén et al., 2015) shows that 69% of our 190 targets are expressed in the brain, and 49 of them 240 
show elevated expression levels in the brain compared to other tissue types (Supplementary Table 241 
5). Among all the targets, NMDA receptor 1 (GRIN1) shows the highest elevated expression. It is 242 
also one of the top 5 enriched genes overall in the brain (Uhlén et al., 2015). 243 

Taken together, the 50 selected drugs of abuse and the 142 known and 48 novel targets we identified 244 
cover a diversity of biological functions, are involved in many cellular pathways, and are generally 245 
promiscuous. In order to reveal the common mechanisms that underlie the development and 246 
escalation of drug addiction and also distinguish the effects specific to selected drugs, we proceed 247 
now to a detailed pathway analysis, presented next.  248 

3.3 Pathway enrichment analysis reveals the major pathways implicated in various stages of 249 
addiction development 250 
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Our QSP analysis yielded a total of 173 pathways, including 114 associated with the known targets 251 
of the examined dataset of drugs of abuse, and 59 associated with the predicted targets. The detailed 252 
pathway enrichment results can be found in Supplementary Table 4. These pathways can be 253 
grouped in five categories (Figure 3, Supplementary Figure 4, and Supplementary Table 4): 254 

Synaptic Neurotransmission (NT). Six significantly enriched (with p-value < 0.05) pathways are 255 
associated with synaptic neurotransmission: dopaminergic, serotonergic, glutamatergic, synaptic 256 
vesicle cycle, cholinergic, and GABAergic synapses pathways. 68 known targets and 7 predicted 257 
targets are involved in these pathways. This is consistent with the fact that neurotransmission plays a 258 
dominant role in the rewarding system and is key to drug addiction (Volkow and Morales, 2015). 259 

Signal Transduction (SG). 46 intracellular signaling pathways were mapped by 92 targets comprised 260 
of 66 known and 25 predicted targets. Notably, many of these pathways have been reported to play a 261 
role in mediating the effects of drugs of abuse. These include the top five (calcium signaling (Li et 262 
al., 2008), retrograde endocannabinoid signaling (Mechoulam and Parker, 2013), cGMP-PKG 263 
signaling (Shen et al., 2016), cAMP signaling (Philibin et al., 2011), and Rap1 signaling (Cahill et 264 
al., 2016)) as well as some pathways with relatively low enrichment score (i.e. 0.2 < p-value < 0.5), 265 
such as TNF signaling (Zhu et al., 2018), MAPK signaling (Sun et al., 2016), PI3K-Akt signaling 266 
(Neasta et al., 2011), NF-κB signaling (Nennig and Schank, 2017), and mTOR signaling (Neasta et 267 
al., 2014). We note that many receptors targeted by drugs of abuse take part in the KEGG 268 
neuroactive ligand-receptor interaction pathway. In the interest of focusing on intracellular signaling 269 
effects, we have not included these in the SG category; they are listed in the ‘Other Pathways’ in 270 
Supplementary Table 4.   271 

Autonomic nervous system (ANS)-innervation (ANS). We also identified 10 pathways regulating 272 
ANS-innervated systems such as endocrine secretion, taste transduction, and circadian entrainment. 273 
Recent evidences suggested drugs of abuse such as morphine (Al-Hasani and Bruchas, 2011) and 274 
cocaine (Moeller et al., 1997; Prosser et al., 2014) can influence ANS-innervated systems and may 275 
contribute to the withdrawn symptoms associated with drug addiction. 37 known and 9 predicted 276 
targets take part in these pathways. 277 

Neuroplasticity (NP). Eight enriched pathways with potential to alter the morphology of neurons, 278 
were found to be related to drug addiction. Among them, long-term potentiation (LTP) and long-term 279 
depression (LTD) are key to reward-related learning and addiction by modifying the fine tuning of 280 
dopaminergic firing (Jones and Bonci, 2005). Axon guidance pathway regulates the growth direction 281 
of neuron cells (Bahi and Dreyer, 2005). Regulation of actin cytoskeleton plays important role in 282 
morphological development and structural changes of neurons (Luo, 2002). Gap junctions connect 283 
neighboring neurons via intercellular channels that allow direct electrical communication (Belousov 284 
and Fontes, 2013) and regulate the efficiency of communication between electrical synapses 285 
(Belousov and Fontes, 2013). Insulin-like growth factor 1 receptor (IGF1R) is predicted as a target of 286 
drug triazolam (Supplementary Table 4). IGF1R is involved in LTP, adherens junction and focal 287 
adhesion pathways. It functions via canonical signaling pathways noted above in the SG category, 288 
such as the PI3K-Akt-mTOR and Ras-Raf-MAPK pathways (Lee et al., 2016) and it plays important 289 
role in neuroplasticity (Lee et al., 2016).  290 

Disease-associated pathways (DS). 50 enriched pathways are associated with diverse diseases in 291 
different organs such as brain, liver, and lung. They also cover various drug addiction mechanisms 292 
including: nicotine addiction, morphine addiction, cocaine addiction, amphetamine addiction, and 293 
alcoholism. Additionally, there are ‘other pathways’ such as those involved in cell migration, 294 
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differentiation, immune responses, and metabolic events, which can be seen in Supplementary 295 
Table 4. 296 

Taken together, the enrichment analysis reveals five major categories of pathways that regulate the 297 
three stages of drug addiction cycle: (1) binge and intoxication, (2) withdrawal and negative affect, 298 
and (3) preoccupation and anticipation (or craving) (Koob and Volkow, 2010). Drugs of abuse 299 
directly affect neurotransmission pathways: they increase the accumulation of DA and other 300 
neurotransmitters in the synaptic and extrasynaptic regions, which in turn results in the hedonic 301 
feeling (stage 1) and triggers the DA reward system. Dysregulation of ANS-innervation pathways 302 
may cause negative effects and feelings (stage 2) and feedback to the CNS. Addictive drugs impair 303 
executive processes by disrupting the reward system (neurotransmission pathways) and imparting 304 
morphological changes via neuroplasticity pathways (e.g. LTD and LTP), which then result in 305 
craving (stage 3). Below, we present an in-depth analysis of the role of these pathways or their shared 306 
targets in drug addiction. 307 

3.4 Selected targets shared by dominant pathways emerge as common mediators of drug 308 
addiction 309 

We next analyzed the overlapping targets between the pathways in different functional categories. 310 
We note in particular eight pleiotropic proteins involved in all five categories (at the intersection of 311 
the 5 Venn diagrams in Figure 3B: AMPA receptor (subtype GluA2; GRIA2), NMDA receptors 1 312 
and 2A-D (designated as GRIN1, GRIN2A, GRIN2B, GRIN2C and GRIN2D) and voltage-313 
dependent calcium channel Cav2.1 (or CACNA1A) as well as the predicted target 314 
phosphatidylinositol 3-kinase class 1A catalytic subunit α (PIK3CA) (Supplementary Table 4). 315 
Additionally, 15 proteins are distinguished as targets of four of these major pathways: Serotonin 316 
receptors 5HTR2-A, -B and -C), GABAA receptors 1-6 (GABRA1- GABRA6), β-1 adrenergic 317 
receptor 1 (ADRB1), Ras-related C3 botulinum toxin substrate 1 (RAC1; member of Rho family of 318 
GTPases), mAChR M3 (CHRM3) and DA receptor D2 (DRD2) and two predicted targets p38α 319 
(MAPK14) and DA receptor D1 (DRD1). 320 

AMPA receptor plays a crucial role in LTP and LTD, which are vital to neuroplasticity, memory and 321 
learning (Volkow et al., 2016). Serotonin receptors, expressed in both the CNS and the peripheral 322 
nervous system (e.g. gastrointestinal tract), are responsible for anxiety, impulsivity, memory, mood, 323 
sleep, thermoregulation, blood pressure, gastrointestinal motility and nausea (Pytliak et al., 2011). 324 
They have been proposed to be therapeutic targets for treating cocaine use disorder (Howell and 325 
Cunningham, 2015). RAC1 is involved in five neuroplasticity pathways, including axon guidance, 326 
adherens junction and tight junction pathways (Supplementary Table 4), and 13 intracellular signal 327 
transduction pathways. It regulates neuroplasticity, as well as apoptosis and autophagy (Natsvlishvili 328 
et al., 2015). DA receptor D2 is a target of 28 drugs of abuse (out of 50 examined here) and is 329 
involved in cAMP signaling, and gap junction pathways, in addition to dopaminergic signaling. It is 330 
implicated in reward mechanisms in the brain (Blum et al., 1996) and the regulation of drug-seeking 331 
behaviors (Edwards et al., 2006). Finally, PI3K turns out to be the most pleiotropic target among 332 
those targeted by drugs of abuse, being involved in 61 pathways identified here, including 333 
neuroplasticity pathways such as axon guidance, and several downstream signaling pathways such as 334 
PI3K-Akt, mTOR, Ras and Jak-STAT pathways.  335 

Overall, 23 proteins are distinguished here as highly pleiotropic proteins involved in at least four of 336 
the five major categories of pathways implicated in drug abuse. Most of them are ligand- or voltage-337 
gated ion channels or neurotransmitter receptors, mainly AMPAR, NMDAR, Cav2.1, mAChR, and 338 
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serotonin and DA receptors. However, it is interesting to note the targets PI3K and p38α, not 339 
currently reported in the DBs DrugBank and STITCH, emerge as highly pleiotropic targets of the 340 
drugs of abuse. These are predicted to directly or indirectly affect addiction development. Finally, a 341 
number of proteins take part in specific drug-abuse-related pathways and might serve as targets for 342 
selective treatments. Supplementary Table 6 provides a list of such targets uniquely implicated in 343 
distinctive pathways. 344 

3.5 Pathway enrichment highlights the interference of drugs of abuse with synaptic 345 
neurotransmission 346 

It is broadly known that neurotransmitters such as DA, 5-HT, NE, endogenous opioids, ACh, 347 
endogenous cannabinoids, Glu and GABA are implicated in drug addiction (Tomkins and Sellers, 348 
2001; Everitt and Robbins, 2005; Parolaro and Rubino, 2008; Benarroch, 2012). Our analysis also 349 
showed the serotonergic synapse (p-value = 4.64E-20), GABAergic synapse (p-value = 3.45E-19), 350 
cholinergic synapse (p-value = 1.64E-08), dopaminergic synapse (p-value = 1.25E-07) and 351 
glutamatergic synapse (p-value = 1.83E-04) pathways were significantly enriched (Supplementary 352 
Table 4). A total number of 34 drugs (across six different groups) target at least one of these 353 
pathways. However, the identification of a pathway does not necessarily mean that the drug directly 354 
affects that particular neurotransmitter transport/signaling. There may be indirect effects due to the 355 
crosstalks between synaptic signaling pathways. For example, the ionotropic glutamate receptors 356 
NMDAR and AMPAR are also the downstream mediators in the dopaminergic synapse pathway. 357 
Likewise, GABARs are downstream mediators in the serotonergic synapse pathway.  358 

In Figure 4, we highlight five major neurotransmission events that directly mediate addiction, and 359 
illustrate how eight drugs of abuse interfere with them. Despite the promiscuity of the drugs of abuse, 360 
some selectively map onto a single synaptic neurotransmission pathway. For example, psilocin (a 361 
hallucinogen whose structure is similar to 5HT (Diaz and Diaz, 1997)) interacts with several types of 362 
5HTRs, regulating serotonergic synapse exclusively (see Figure 4 and Supplementary Table 4). In 363 
contract, loperamide (not shown) affects all neurotransmission pathways by interacting with the 364 
voltage-dependent P/Q-type calcium channel (VGCC), regulating calcium flux on synapses. Cocaine 365 
targets four of these synaptic neurotransmission events (serotonergic, GABAergic, cholinergic, and 366 
dopaminergic synapses), through its interactions with 5-HT3R, sodium- and chloride-dependent 367 
GABA transporter (GAT), muscarinic (M1 and M2) and nicotinic AChRs, and DAT, respectively. 368 
Methadone affects three synaptic neurotransmissions, including serotonergic synapse, dopaminergic 369 
synapse and glutamatergic synapse through the interactions with SERT, DAT, and glutamate 370 
receptors (NMDAR) respectively. 371 

It is worth noting that predictions by our PMF model lead to a better understanding of the way drugs 372 
of abuse affect neurotransmissions. In addition to the new role of M5 we discussed in Section 3.2, 373 
our PMF model predicted that cannabichromene, a cannabinoid whose primary target is the transient 374 
receptor (TRPA1), is found to interact with DAT and directly regulate dopaminergic transmission, 375 
which will require further examination. Synaptic neurotransmission events act as upstream signaling 376 
modules that ‘sense’ the early effects of drug abuse. In the next section, we focus on the downstream 377 
signaling events elicited by drug abuse. 378 

3.6 mTORC1 emerges as a downstream effector activated by drugs abuse 379 

The calcium-, cAMP-, Rap1-, Ras-, AMPK-, ErbB-, MAPK-, and PI3K-Akt-signaling pathways in 380 
the SG category (Supplementary Table 4) crosstalk with each other and form a unified signaling 381 
network. As shown in Figure 5, ligand-binding to GPCRs modulates the production of cAMP, which 382 
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leads to the activation of Rap1. Activated Rap1 modules the Ca2+ signaling by inducing the 383 
production of inositol triphosphate (IP3) and also activates the PI3K-Akt signaling cascade. 384 
Stimulations of ErbB family of receptor tyrosine kinases (related to epidermal growth factor receptor 385 
EGFR) as well as insulin-like growth factor receptor IGF1R trigger both PI3K-Akt and MAPK 386 
signaling cascades (proteins colored blue in Figure 5). Notably all these pathways merge and 387 
regulate a group of downstream proteins (shown in dark yellow in Figure 5); and at the center of this 388 
cluster lies the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) which is likely to be 389 
synergistically regulated by all these merging pathways. 390 

mTORC1 is not only a master regulator of autophagy (Rabanal-Ruiz et al., 2017), but also controls 391 
protein synthesis and transcription (Ma and Blenis, 2009). It has been reported to promote 392 
neuroadaptation following exposure to drugs of abuse including cocaine, alcohol, morphine and Δ9-393 
tetrahydrocannabinol (THC) (Neasta et al., 2014). Our results suggest that mTORC1 may act as a 394 
universal effector of the cellular response to drug abuse at an advanced (preoccupation and 395 
anticipation, or craving) stage, controlling the synthesis of selected proteins and ensuing cell growth, 396 
which may result in persistent alterations in the dendritic morphology and neuronal circuitry.  397 

In Figure 5, selected interactions between drugs from different substance groups and their targets are 398 
highlighted using gray arrows. Our PMF model predicted that diazepam would interact with PI3K to 399 
influence mTORC1 signaling (dashed gray arrows denote predictions). It has been reported that 400 
Ro5-4864, a benzodiazepine derivative of diazepam suppresses activation of PI3K (Yousefi et al., 401 
2013), which corroborates our prediction. We further predicted that cannabichromene may interact 402 
with IκB kinase β (IKKβ) to regulate mTORC1 by inhibiting TSC1/2. Interestingly, another 403 
cannabinoid arachidonoylethanolamine is known to directly inhibits IKKβ (Sancho et al., 2003). 404 
Taken together, our results identified a unified network that underlies the development of drugs 405 
addiction, in which mTORC1 appears to play a key effector role. 406 

4 Discussion 407 

In the present study we focused on the targets and pathways affected by drugs of abuse, toward 408 
gaining a systems-level understanding of key players and dominant interactions that control the 409 
response to drug abuse and the development of drug addiction. Using machine learning methods, we 410 
focused on 50 drugs of abuse that form a chemically and functionally diverse set, and analyzed their 411 
142 targets as well as the corresponding cellular pathways and their crosstalk. Our analysis 412 
identified:  413 

(i) 48 additional proteins targeted by drugs of abuse, including PIK3CA, IKBKB, EGFR, and 414 
IGF1R, are shown to be key mediators of downstream effects of drug abuse. 415 

(ii) 161 new interactions between the drugs of abuse and the known and predicted targets, 416 
including those between cocaine and M5, methylphenidate and OPRM1, and diazepam and 417 
PI3K, not reported in existing DBs, but supported by prior experiments, and others (e.g. the 418 
interactions of canabichromene with IKBKB and DAT) that await experimental validation. 419 

(iii) A dataset of 70 pathways, composed of 6 neurotransmission pathways, 46 signal transduction 420 
pathways, 8 neuroplasticity pathways and 10 autonomic nervous system innervation pathways 421 
which are proposed to govern different stages of the molecular, cellular and tissue level 422 
responses to drug abuse and in addiction development. 423 

Overall, our comprehensive analysis led to new hypotheses on drug-target interactions and signaling 424 
and regulation mechanism elicited by drugs of abuse in general, along with those on selected targets 425 
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and pathways for specific drugs. Below we elaborate on the biological and biomedical implications 426 
of these findings. 427 

4.1 Persistent restructuring in neuronal systems as a feature underlying drug addiction 428 

Enriched pathways in the neuroplasticity category include gap junction, LTP, LDP, adherens 429 
junction, regulation of actin cytoskeleton, focal adhesion, axon guidance, and tight junction 430 
(Supplementary Table 4). These are responsible for the changes in the morphology of dendrites. For 431 
instance, DA regulates excitatory synaptic plasticity by modulating the strength and size of synapses 432 
through LTP and LTD (De Roo et al., 2008; Volkow and Morales, 2015). The restructuring of 433 
dendritic spines involves the rearrangements of cytoskeleton and actin-myosin (Volkow and Morales, 434 
2015). The axon guidance molecules guide the direction of neuronal growth. 435 

Drugs of abuse can induce the changes in CNS through these pathways. For example, chronic 436 
exposure to cocaine increases dendritic spine density in medium spiny neurons (Russo et al., 2010). 437 
The disruption in axon guidance pathway and alteration in synaptic geometry can result in drug-438 
related plasticity (Bahi and Dreyer, 2005). The persistent restructuring in the CNS caused by drugs of 439 
abuse is responsible for long-term behavioral plasticity driving addiction (Volkow et al., 2003; Russo 440 
et al., 2010; Volkow and Morales, 2015). As will be further discussed below, mTORC1 plays a 441 
central role in the synthesis of new proteins (e.g. AMPARs) and thereby neuronal (dendrites) growth, 442 
alteration of the synaptic geometry and therefore rewiring of the neuronal circuitry. 443 

4.2 ANS may mediate the negative-reinforcement of drug addiction 444 

Our results further show that the pathways regulating ANS-innervated systems are associated with 445 
drugs of abuse. As the NP pathways may influence the neuroplasticity in the ANS, we hypothesize 446 
that drugs of abuse may induce the persistent restructuring in ANS as well. The drug-related 447 
plasticity in ANS may lead to the dysregulation of ANS-innervated systems and cause negative 448 
effects and feelings during the second stage of drug addiction.  449 

Drug addiction is well known as a brain disease (Volkow and Morales, 2015). However, many drugs 450 
of abuse can disrupt the activity of ANS and cause disorders in ANS-innervated systems (Al-Hasani 451 
and Bruchas, 2011; Huang, 2017). For example, opioids (e.g. morphine) alter neuronal excitability 452 
and neurotransmission in the ANS (Wood and Galligan, 2004), and induce disorders in 453 
gastrointestinal system, smooth muscle, skin, cardiovascular, and immune system (Al-Hasani and 454 
Bruchas, 2011). Cannabinoids (e.g. THC) modulate the exocytotic NE release in ANS-innervated 455 
organs through presynaptic cannabinoid receptors (Ishac et al., 1996). 456 

The pathways we identified in the ANS category regulate insulin secretion, gastric acid secretion, 457 
vascular smooth muscle contraction, pancreatic secretion, salivary secretion and renin secretion 458 
(Supplementary Table 4). Their dysfunction may be associated with the autonomic withdrawal 459 
syndrome, such as thermoregulatory disorder (chills and sweats) and gastrointestinal upset 460 
(abdominal cramps and diarrhea), which has been observed in drug/substance users (Wise and Koob, 461 
2014). In addition, the stress and depression caused by these negative effects may be part of the 462 
negative reinforcement of drug addiction (Self and Nestler, 1995; Koob and Le Moal, 2001). In other 463 
words, the drug induced ANS disorders can feedback to CNS and mediate the negative 464 
reinforcement. Compared to the structural changes in CNS, the disorder and persistent restructuring 465 
in ANS is less studied and it could be a future direction in the study of development of drug addiction 466 
and related diseases. 467 
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4.3 mTORC1 signaling plays a key role in mediating cellular morphological changes in 468 
response to continued drug abuse 469 

The functioning and regulation of mTOR signaling has been elucidated over the past two decades. It 470 
became clear that mTORC1 plays a crucial role in regulating diverse cellular processes including 471 
protein synthesis, autophagy, lipid metabolism, and mitochondrial biogenesis (Saxton and Sabatini, 472 
2017). In the brain, mTORC1 coordinates neural development, circuit formation, synaptic plasticity, 473 
and long-term memory (Lipton and Sahin, 2014). The dysregulation of mTORC1 pathway is 474 
associated with many neurodevelopmental and neurodegenerative diseases such as Parkinson’s 475 
disease and Alzheimer’s disease. mTORC1 been noted to be an important mediator of the 476 
development of drug addiction and relapse vulnerability (Dayas et al., 2012). Accumulating 477 
evidences show that pharmacological inhibition of mTORC1 (often through rapamycin treatment) 478 
can prevent sensitization of methamphetamine-induced place preference (Narita et al., 2005), reduce 479 
craving in heroin addicts (Shi et al., 2009), attenuate the expression of alcohol-induced locomotor 480 
sensitization (Neasta et al., 2010), suppress the expression of cocaine-induced place preference 481 
(Bailey et al., 2012), protect against the expression of drug-seeking and relapse by reducing AMPAR 482 
(GluA1) and CaMKII levels (James et al., 2014), and inhibit reconsolidation of morphine-associated 483 
memories (Lin et al., 2014).  484 

Our unbiased computational analysis based on a diverse set of 50 drugs of abuse supports the 485 
hypothesis that mTORC1 may act as a universal effector or controller for neuroadaptations induced 486 
by drugs of abuse (Neasta et al., 2014). The major signal transduction pathways we identified that 487 
involve targets of drugs of abuse interconnect and converge to the mTORC1 signaling cascade 488 
(Figure 5). Most drugs of abuse in our list target upstream regulators of mTORC1, including 489 
membrane receptors (e.g. GPCRs, RTKs and NMDAR), kinases (e.g. PI3K, p38α, and IKKβ), and 490 
ion channels (e.g. CaV2.1 and TRPV2). Notably, the drug-related impact of some of these targets has 491 
been experimentally confirmed. For example, blockade of NMDAR using MK801 reduces the 492 
amnesic-like effects of cannabinoid THC (Puighermanal et al., 2009). Likewise, PI3K inhibitor 493 
LY294002 can suppress morphine place preference (Cui et al., 2010) and the expression of cocaine-494 
sensitization (Izzo et al., 2002).   495 

The downstream effectors of mTORC1, which specifically mediate drug behavioral plasticity is far 496 
from known. mTORC1 can mediate the activation of S6Ks and 4E-BPs, which leads to increased 497 
production of proteins required for synaptic plasticity including AMPAR and PSD-95 (Dayas et al., 498 
2012). EM reconstruction of hippocampal neuropil showed the variability in the size and shape of 499 
dendrites depending on synaptic activity (Bartol Jr et al., 2015), which in turn correlates with 500 
information storage. Recently studies have revealed that Atg5- and Atg7-dependent autophagy in 501 
dopaminergic neurons regulates cellular and behavioral responses to morphine (Su et al., 2017). 502 
Cocaine exposure results in ER stress-induced and mTORC1-dependent autophagy (Guo et al., 503 
2015). Fentanyl induces autophagy via activation of ROS/MAPK pathway (Yao et al., 2016). 504 
Methamphetamine induces autophagy through the κ-opioid receptor (Ma et al., 2014). These 505 
observations are all consistent with the conclusion drawn here with regard to the role of mTORC1 as 506 
a major effector of cellular responses to drug addiction. 507 

4.4 Drug repurposing opportunities for combatting drug addiction 508 

Autophagy modulating drugs have been shown to have therapeutic effects against liver and lung 509 
diseases. The signaling network presented in Figure 5 involves many targets of such drugs. For 510 
instance, carbamazepine affects IP3 production and enhances autophagy via calcium-AMPK-511 
mTORC1 pathway (Hidvegi et al., 2010). It has been identified as a potential drug for treating α1-512 
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antitrypsin deficiency, hepatic fibrosis, and lung proteinopathy (Hidvegi et al., 2010; Hidvegi et al., 513 
2015). Rapamycin is a potential drug for lung disease such as fibrosis (Abdulrahman et al., 2011; 514 
Patel et al., 2012). Other liver and lung drugs which facilitate the removal of aggregates by 515 
promoting autophagy may also affect drug-related neurodegenerative disorders. Supplementary 516 
Table 7 summarizes 15 autophagy-modulating drugs for liver and lung diseases. Target identification 517 
and pathway analysis of this subset of drugs using the same protocol as those adopted for the 50 518 
drugs of abuse indeed confirmed that drugs of abuse and liver/lung drugs share many common 519 
pathways (Supplementary Figure 5). Notably, among those pathways, neuroactive ligand-receptor 520 
interactions, calcium signaling, and serotonergic synapse pathways are among the top 10 enriched 521 
pathways of both drugs of abuse and liver/lung drugs. Amphetamine addiction and alcoholism are 522 
also enriched by targets of liver/lung drugs. Thus, an interesting future direction is to examine 523 
whether autophagy modulating drugs for liver and lung diseases could be repurposed, if necessary by 524 
suitable refinements to increase their selectivity, for treating drug addiction. 525 
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 805 

10  Figure legends 806 

Figure 1. Distribution of the dataset of 50 drugs of abuse based on their structure and 807 
interaction (with targets) similarities (A-D), and pairwise similarities and classification of the 808 
corresponding targets based on their interaction patterns with the drugs of abuse. (A-D) Drug-809 
drug distance maps for the studied 50 addictive drugs based on (A) 2D structure fingerprints and (B) 810 
interaction patterns with targets using the correlation cosines between their target vectors (see 811 
Materials and Methods), and corresponding dendrograms (C-D). The indices of drugs of abuse in (A) 812 
and (B) follow the same order as those used in Supplementary Table 1. The drug labels in C and D 813 
are color-coded based on their categories: CNS stimulants (green), CNS depressants (blue), opioids 814 
(cyan), cannabinoids (light brown), anabolic steroids (black) and hallucinogens (magenta). Note that 815 
the drugs of abuse in the same category do not necessarily show structural similarities nor similar 816 
interaction pattern with targets. (E) Pairwise distance map for the 142 known targets based on their 817 
interaction patterns with the 50 drugs. The indices in (E) follows the same order as those listed 818 
clockwise in the dendrogram (F). The tree maps in (C), (D) and (F) are generated based on the 819 
respective distances values in the (A), (B) and (E). 820 

Figure 2. Promiscuity of drugs of abuse and their targets, and major families of proteins 821 
targeted by drugs of abuse. Number of known (gray) and predicted (white) interactions are shown 822 
by bars for (A) drugs of abuse and (B) their targets. The examined set consists of 50 drugs of abuse 823 
and a total of 142 known and 48 predicted targets, involved in 445 (known) and 161 (predicted) 824 
interactions. Panel A displays the number of interactions known or predicted for all 50 drugs. Panel B 825 
displays the results for the targets that interact with at least 4 known drugs (36 targets). The colors 826 
used for names of drugs and targets are same as those used in Figure 1. Panel C displays the 827 
distribution of families of proteins targeted by drugs of abuse. 828 

Figure 3. Results from pathway and target enrichments analysis. Five broad categories of 829 
pathways are distinguished among those involving the targets of drug abuse: NT, synaptic 830 
neurotransmission pathways; SG, signal transduction pathways; DS, disease-associated pathways; 831 
ANS, autonomic nervous system-innervation pathways; and NP, neuroplasticity related pathways. 832 
(A) Numbers of pathways (red bars) and targets (gray bars) of drug abuse lying in the five 833 
categories, based on data available in DrugBank and STITCH. The pink and white stacked bars are 834 
the corresponding numbers for pathways and targets additionally predicted by PMF. (B) Overlaps 835 
between the target content of the five pathway categories. See the complete list of pathways and 836 
targets in Supplementary Table 4. 837 

Figure 4. The impact of drugs of abuse on synaptic neurotransmission. Five major 838 
neurotransmission events are highlighted, mediated by (counterclockwise, starting from top): GABA 839 
receptors and transporters, ionotropic glutamate receptors (NMDAR and AMPAR) and cation 840 
channels, serotonin (5HT) receptors (5-HTR) and transporters (SERT), muscarinic or nicotinic 841 
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AChRs, and dopamine (DA) receptors and transporters. Vesicular monoamine transporters (VMAT) 842 
that translocate DA are also shown. Drugs affecting the different pathways are listed, color coded 843 
with their categories, as presented in Figure 1. Solid red arrows indicate a known drug-target 844 
interaction, dashed red arrows indicate predicted drug-target interactions. Other molecules shown in 845 
the diagram are: KA, kainate receptor; MAO, monoamine oxidase; HVA, homovanillate; 3-MT, 3-846 
methoxytyramine; MOR, mu-type opioid receptor; AChE, acetylcholinesterase; and 5-H1AA, 5-847 
hydroxyindoleacetate. 848 

Figure 5. A unified signaling network mediates the effects of drugs of abuse. Black arrows 849 
represent the activation, inhibition, and translocation events during signal transduction. Solid gray 850 
arrows represent the known drug-target interactions. Dashed gray arrows represent predicted drug-851 
target interactions. The diagram illustrates the targets of several drugs of abuse belong to different 852 
categories: loperamide and fentanyl belong to the opioids group; midomafetamine and ketamine are 853 
from the hallucinogens group; triazolam and diazepam are CNS depressants; cannabichromene is a 854 
cannabinoid; methamphetamine and cocaine are CNS stimulants; nandrolone is an anabolic steroid. 855 
The mTORC1 emerges as a hub where the effects on several targets of abused drugs appear to be 856 
consolidated to lead to cell death and/or protein synthesis in the CNS, and in particular 857 
AMPAR/PSD95 synthesis that induces morphological changes in the dendrites.  858 
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