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Abstract 24 

Background: The heterogeneous phenotype and complex genetic architecture of Autism 25 

Spectrum Disorder (ASD) has thus far limited our understanding of genotype-phenotype 26 

correlations, hindering early diagnosis and patient prognosis. Copy Number Variants (CNVs) 27 

targeting a diversity of genes have been implicated in ASD, however correlations with clinical 28 

patterns are unclear.  29 

Methods: In this study, we developed a novel machine learning integrative approach that seeks 30 

to delineate associations between ASD clinical profiles and disrupted biological processes 31 

inferred from CNVs spanning brain-expressed genes. 32 

Results: Clustering analysis of relevant clinical measures from 2446 ASD cases, retrieved from 33 

the Autism Genome Project (AGP) database, identified two distinct phenotypic subgroups, with 34 

a milder and a more severe phenotype. Patients in the two clusters differed significantly in verbal 35 

status, ADOS-defined severity, adaptive behaviour profiles and intellectual ability, with verbal 36 

status contributing the most for cluster stability and cohesion. In the clustered ASD cases, 37 

functional enrichment analysis of brain-expressed genes disrupted by rare CNVs identified 15 38 

statistically significant biological processes. These biological processes included cell adhesion, 39 

nervous system development, cognition and protein polyubiquitination and were in line with 40 

previous ASD findings. Random Forest feature importance analysis showed a positive 41 

contribution of all disrupted biological processes to the classification of ASD cases in the 42 

identified clusters. A Naive Bayes classifier was generated to predict the ASD phenotype from 43 

the identified disrupted biological processes. For a subset of patients with higher Information 44 

Content scores calculated for the disrupted biological processes, the classifier achieved 45 

predictions with a high precision but low recall (Precision: 0.82, Recall: 0.39). 46 

Conclusions: This study highlights the usefulness of machine learning approaches to reduce 47 

clinical heterogeneity by taking advantage of multidimensional clinical measures. Furthermore, it 48 

shows that phenotype-genotype correlations can be established in ASD, and that milder and more 49 

severe clinical presentations have distinct underlying biological mechanisms. However, precise 50 

predictions of the phenotype from genetic data were only achieved for the subset of patients with 51 

higher biological information content. These findings are therefore a first step towards the 52 
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translation of genetic information into clinically useful applications, while emphasizing the need 53 

for larger datasets with complete clinical and biological information.  54 

Keywords 55 

Autism Spectrum Disorder (ASD), machine learning, integrative systems medicine, 56 

genotype/phenotype associations, ASD heterogeneity, integrating data, CNVs   57 

Background 58 

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that manifests with 59 

persistent deficits in social communication and interaction, and unusual or repetitive behaviour 60 

and/or restricted interests [1]. ASD presents a highly heterogeneous clinical phenotype and 61 

frequently co-occurs with other comorbidities, such as Intellectual Disability (ID), epilepsy and 62 

Attention Deficit Hyperactivity Disorder (ADHD) [2–6]. Heritability estimates indicate a strong 63 

genetic influence in ASD aetiology [7–9], however reliable genetic markers for the disease are 64 

unavailable. ASD is diagnosed through neurodevelopmental assessment, which can be 65 

challenging especially in the case of very young children. Improving early diagnosis and 66 

prognosis using biological markers with a robust predictive power would provide an advantage 67 

to young patients, who benefit the most from an early start of specific intervention [10]. 68 

Copy Number Variant (CNV) screening is nowadays widely used for etiological diagnosis, with 69 

causative genetic alterations identified in approximately 25% of ASD cases [11]. A large number 70 

of rare genetic variants have been implicated in ASD, and the wide genetic heterogeneity that 71 

characterizes this disorder likely contributes to phenotypic variability in ASD patients [12]. 72 

Integrative pathway and network analysis of large scale ASD genomic studies have advanced 73 

significantly the identification of disrupted biological processes [13–17]; however, our 74 

understanding of the biological meaning of the large number of putative pathogenic variants, 75 

their phenotypic manifestations, and the reliable interpretation of many genetic findings for 76 

clinical application is still lagging.  77 

To improve our ability to infer clinical meaning from rare CNVs in ASD, for eventual 78 

application as biological markers, we developed a machine learning-based approach involving 79 

the integration of gene functional annotations and clinical phenotypes. Our approach was 80 
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developed in four steps, namely: 1) definition of clinically distinct subgroups in ASD cases; 2) 81 

discovery of functionally enriched biological processes defined by rare CNVs disrupting brain-82 

expressed genes in the same ASD cases; 3) assessment of the contribution of disrupted biological 83 

processes for classification of ASD phenotypes; 4) design and predictive effectiveness 84 

characterization of a machine learning classifier for clinical outcome in ASD patients. 85 

 86 

Methods 87 

Figure 1 shows the graphical representation of the overall methodology, described in detail 88 

below.  89 

 90 

Figure 1: Integrative systems medicine approach to identify complex genotype-phenotype 91 

associations. Clinical and genetic data from the Autism Genome Project (AGP) was used in this 92 

study (A) Clinical data analysis processing: clinical data comprises reports of ASD diagnosis and 93 

neurodevelopmental assessment instruments. Agglomerative Hierarchical Clustering (AHC) was 94 

used to identify clinically similar subgroups of individuals in stable, validated clusters, defined 95 

by multiple clinical measures. (B) CNV data processing: rare high confidence CNVs previously 96 

identified by the AGP, targeting brain-expressed genes, were retained for analysis. CNV data 97 

was merged with clinical data from clustered ASD subjects for a final list of CNVs targeting 98 

brain genes. (C) Functional annotation analysis: Biological processes defined by brain-expressed 99 

genes targeted by CNVs were obtained using g:Profiler. (D) Classifier design: A Naive Bayes 100 

machine learning classifier was trained and tested on patient’s data, to predict the phenotypic clustering of 101 

patients from biological processed disrupted by rare CNVs targeting brain-expressed genes.  102 

 Participants  103 

The ASD dataset used in this study was obtained from the Autism Genome Project (AGP) [18] 104 

database, and comprises CNV data and clinical information from 2446 ASD patients. The AGP 105 

was an international collaborative effort from over 50 different institutions to identify risk genes 106 

for ASD. The group of individuals with phenotypic information from clustering and rare CNV 107 

data, used in final analysis included 1213 males (83.4%) and 144 females (10.6%).   108 
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 ASD diagnosis, clinical assessment instruments and clinical features 109 

Individuals meeting criteria defined by the Diagnostic and Statistical Manual of Mental 110 

Disorders IV (DSM–IV) [19] and the thresholds for Autism or ASD from the Autism Diagnostic 111 

Interview-Revised (ADI-R) [20] and the Autism Diagnostic Observation Schedule (ADOS) were 112 

classified as ASD cases [21]. The AGP defined a phenotypic classification system based on the 113 

combined ADI-R and ADOS diagnosis, categorizing subjects into Strict (meeting thresholds for 114 

Autism by the ADI-R and ADOS), Broad (meeting thresholds for Autism from one instrument 115 

and ASD from the other) and Spectrum (meeting thresholds for Autism from at least one 116 

instrument or ASD from both). Individuals with an ASD diagnosis from only one instrument and 117 

no information from the other, or not meeting thresholds for Autism or ASD from one of the 118 

instruments, regardless from the classification from the other, were not included in the study. 119 

Clinical measures used in this study were retrieved from the AGP database, including the ADIR 120 

verbal status, ADOS severity score, Vineland Adaptive Behaviour Scales (VABS) [22] subscales 121 

and an Intelligence Quotient (IQ).  122 

The ADI-R verbal status is a dichotomized measure indicating the verbal status of the individual 123 

at evaluation. The ADOS severity metric ranges from 1 to 10 and is calculated from ADOS 124 

modules 1 to 3 raw scores [23]. As there is no algorithm available to calculate ADOS severity 125 

score for ADOS module 4 reports, which is applied only to adolescents and adults, subjects with 126 

the ADOS module 4 (N= 149) were dropped from further processing. The severity score 127 

distribution is collapsed into three categories, namely Autism (severity scores ranging from 6 to 128 

10), ASD (severity scores ranging from 4 to 5) and Non-Spectrum (severity scores from 1 to 3), 129 

which reflect the mapping of the severity metric onto raw ADOS scores. The ADOS Non-130 

spectrum category includes individuals with a mild phenotype, and in this study 125 individuals 131 

with a Non-spectrum ADOS severity score fell within the Spectrum phenotypic class from the 132 

AGP, meaning they met thresholds for autism from the ADI-R, and were thus included.  133 

The VABS is used to assess adaptive functioning of individuals and consists of three subscales, 134 

namely, socialization, communication and daily living skills scores, and also computes a 135 

composite score. Subjects with VABS scores ≤70 were classified in a dysfunctional adaptive 136 

behavior category, for all subscales. IQ scores of ASD cases were also retrieved from the AGP 137 
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database, and categorized with the following thresholds: IQ>70 normal, 50<IQ<70 mild 138 

intellectual disability, IQ<50 severe intellectual disability.  139 

Clinical reports from the ASD patients were examined for missing values, and clinical features 140 

with more than 70% information were retained for the analysis. To minimise missing value 141 

imputation bias, individuals with missing values above this threshold for more than two clinical 142 

features were also excluded. Completeness of each clinical feature is reported in Table S1 143 

(Additional file 1). Missing values were imputed using the missForest [24] R package that 144 

implements the Random Forest [25] algorithm, a decision tree-based supervised machine 145 

learning method. Imputation error was assessed using the normalised global Proportion of 146 

Falsely Classification (PFC), and the missing values imputation error was 0.12.  147 

 Clustering analysis of ASD clinical data 148 

To focus on core domains of ASD symptoms, verbal skills, disease severity, adaptive behavior 149 

and intellectual levels, which strongly condition prognosis, were selected for further analysis.  150 

Verbal status was obtained from the ADI-R, ASD severity scored from the ADOS, adaptive 151 

functioning from the VABS, using its three subdomains, and a performance IQ category from the 152 

IQ assessment contributed by participating sites to the AGP database. Other IQ domains had too 153 

many missing values to be used. The Agglomerative Hierarchical Clustering (AHC) [26] method 154 

was used to identify independent phenotypic subgroups from the selected clinical features. 155 

Correlations between clinical features were assessed using the Pearson method, and features with 156 

a correlation value of > 0.75 were considered correlated. The Gower [27] metric was used to 157 

calculate the distance matrix from the patient’s clinical data. To normalise the effect of highly 158 

correlated variables on clustering, the weight for correlated variables (VABS subscales of 159 

socialisation, communication, and daily living skills) was reduced to half during distance matrix 160 

calculation. To identify phenotypic subgroups, the AHC method using Ward2 [28] criteria was 161 

applied to the distance matrix.  162 

To assess the contributions of each clinical feature in defining the clusters, we excluded one 163 

feature at a time, re-performed the clustering and observed the changes in Silhouette values of 164 

both clusters. For this purpose, we selected Silhouette value as an evaluation metric because it 165 
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was also used to define outliers in clinical data. A decrease in the Silhouette value of a cluster 166 

after removing one feature indicates its importance in defining this cluster and vice versa.     167 

 Goodness of clustering assessment 168 

A Silhouette method [29] was employed to estimate the goodness of the clustering results. The 169 

Silhouette value for each individual shows how well the individual is clustered, and ranges from 170 

-1 to 1, with individuals scoring below 0 considered as wrongly clustered. In addition, the 171 

Silhouette value for each cluster was derived, and clusters with Silhouette value of > 0.25 were 172 

considered as true clusters. Bootstrapping with 1000 iterations was used to measure the stability 173 

of clusters, where a boot mean value above 0.85 corresponds to stable clusters. All clustering 174 

analysis was performed in R environment, using Cluster [30] and FPC packages.  175 

 Functional enrichment analysis 176 

Genotyping and CNV calling methods for the AGP ASD subjects (N=2446) were previously 177 

described [18]. CNVs called by any two algorithms (high confidence CNVs) and above 30kb in 178 

size were retained for further analysis. To screen for rare CNVs (<1% in control population) 179 

CNV frequencies in control populations were estimated using the genotypes from the studies by 180 

Sheikh et al. [31] (N = 1320) and Cooper et al. [32] (N = 8329), identified using the same 181 

genotyping platform [18]. Control genotypes were obtained from the Database of Genomic 182 

Variants (DGV) [33].  183 

To focus CNV selection on variants spanning brain-expressed genes, avoiding a priori 184 

hypotheses from ASD candidate gene assumptions, an extensive list comprising 15585 brain-185 

expressed genes was obtained from Parikshak et al. [34]. The brain-expressed gene list was 186 

prepared from brain RNA-seq data, collected at thirteen different developmental stages, 187 

including genes expressing during early brain developmental phase. The full criteria and 188 

parameters used to define the brain-expressed gene list were previously described [34]. .  189 

The g:Profiler [35] tool was employed to identify biological processes enriched for brain-190 

expressed genes spanned by rare CNVs in ASD individuals. g:Profiler implements a 191 

hypergeometric test to estimate the statistical significance of enriched biological processes, 192 

followed by multiple corrections for the tested hypotheses using the Benjamini-Hochberg 193 
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procedure. g:Profiler uses Gene Ontology (GO) data to find the biological annotations for input 194 

genes. 195 

The GO tool contains a Directed Acyclic Graph (DAG) structure with a clear hierarchical parent-196 

to-child relationship between GO terms. Because of this DAG structure, functional enrichment 197 

analysis can result in redundant GO terms, which may lead to high correlations between GO 198 

terms. To minimise the correlations between GO terms, the Revigo [36] tool was employed to 199 

redundant GO results. Revigo uses the methods of semantic similarity to measure similarities 200 

between GO terms. The SimRel [37] method was used to calculate similarities between GO 201 

terms, and terms with a similarity score of > 0.7 were grouped.  202 

 Feature importance assessment 203 

The mean decrease in accuracy of the Random Forest algorithm was used to compute the 204 

importance score of each disrupted biological process for categorizing ASD subjects into defined 205 

phenotypic clusters. A stratified ten-fold cross-validation quan 206 

tifies the importance of all features. The importance score of all disrupted biological processes 207 

was recorded at each fold. A final importance score for each biological process was calculated by 208 

averaging their importance score values across all the ten folds. Random Forest was 209 

implemented using randomdForst R package [38].  210 

 Classifier learning and cross-validation 211 

A Naive Bayes [39] machine learning method was employed to predict the ASD phenotypic 212 

group, defined by the clustering analysis, from biological processes disrupted by rare CNVs. 213 

This method employs the Bayes theorem of probability for training and testing of the model, and 214 

the algorithm was implemented using the klaR R package with default parameters. Precision, 215 

recall, specificity and F-score were used as evaluation measures. To train and test the Naive 216 

Bayes, a stratified five-fold cross-validation approach was used, in which data was first split into 217 

five equal subsets with equal class probabilities; a Naive Bayes model was trained on any four 218 

subsets, and the remaining subset was used as the test set. This process was repeated five times 219 

and each time a different subset was used as test set. For each repetition, the model performance 220 

was estimated and mean values for precision, recall, specificity and F-score were reported. The 221 
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Naive Bayes classifier was trained on patient’s data by using the “more severe” cluster as the 222 

positive class and the “less severe” cluster as the negative class.  223 

The Information Content (IC) from each individual represents the level of specificity of 224 

biological processes disruption, and was derived by summing the IC values of all the biological 225 

processes disrupted in each individual. IC is a numerical value that describes the specificity of a 226 

GO term using its position in the GO DAG structure.  227 

 228 

Results 229 

 Identification of ASD clusters defined by clinical phenotype 230 

A total of 1817 ASD subjects from the AGP were retained for analysis after assessment of 231 

missing values in clinical features. Agglomerative hierarchical clustering analysis of clinical 232 

observations from these patients initially identified two phenotypically independent clusters. To 233 

minimise the phenotypic complexity and define the most stable and cohesive clusters, weakly 234 

clustered individuals with a Silhouette value less than 0.300 (representing a balance between 235 

number of individuals lost and goodness of clustering) were excluded from the clustering 236 

analysis. After removal of weakly or wrongly clustered individuals, cluster 1 contained 903 ASD 237 

cases, while cluster 2 comprised 494 patients (Table 1). Elimination of the loosely clustered 238 

individuals resulted in more stable and cohesive clusters, with high values for clusters stability 239 

and reduced average distance between the two individuals in a cluster (Table 1).  240 

                Table 1: Clustering validation, after removal of weakly clustered individuals.  241 

Clusters validation measures Cluster 1 Cluster 2 

 Clusters size (N) 903 494 

 Average distance between two patients 0.235 0.231 

 Silhouette value 0.567 0.579 

 Average Silhouette of both clusters 0.571 

 Cluster stability 0.998 0.996 

 242 
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Overall, the cluster validation through the Silhouette method and bootstrapping showed that both 243 

clusters were true and consistent.  244 

 Clinical interpretations of the clusters 245 

All clinical measures differed significantly between the two clusters, as shown in Table 2. 246 

Cluster 1(Additional file 1: black circles in Figure S1) includes a higher number of individuals, 247 

who generally exhibited a milder clinical phenotype, while Cluster 2 (Additional file 1: red 248 

triangles in Figure S1) included a higher percentage of subjects with severe dysfunction. All 249 

individuals in Cluster 1 were verbal according to the ADI-R, while Cluster 2 included only non-250 

verbal cases. The mean age of ADI-R assessment was 7.7 years, an age when verbal status is 251 

generally well established. Furthermore, the mean age of individuals in Cluster 1 (mean age 252 

8.02) and Cluster 2 (mean age 7.01) did not significantly differ.  253 

For all VABS sub-domains, roughly half of the subjects in Cluster 1 were in the normal range; 254 

conversely, over 97% of individuals belonging to Cluster 2 showed dysfunctional adaptive 255 

behaviour. Consistent with the other clinical measures, over 96% of cases from Cluster 1, but 256 

less than one third in Cluster 2, scored at the normal level in performance IQ, while a much 257 

higher percentage of ASD cases from Cluster 2 than from Cluster 1 presented with a 258 

performance IQ in the range of severe intellectual disability.  259 

Regarding the ADOS severity score, approximately 14% of the individuals in Cluster 1 were 260 

assigned to the milder category of the ADOS severity score (“Non-spectrum” for ADOS, but 261 

scoring positive for “Autism” in the ADI-R, and therefore classified in the AGP “Spectrum” 262 

phenotypic class, see methods). Conversely, none of the individuals in Cluster 2 scored in this 263 

category. On the other hand, a significantly higher percentage of cases in Cluster 2 (20.65%) 264 

than individuals in Cluster 1 (7.09%) scored in the intermediate ASD severity category. It is 265 

noteworthy that both clusters show a similarly high percentage of individuals scoring in the 266 

“Autism” ADOS severity category. This is not surprising since this broad category (scores 267 

ranging from 6 to 10) comprises all subjects classified in the Strict AGP phenotype class but also 268 

a large proportion of individuals in the AGP Broad phenotype class. The “Autism” ADOS 269 

severity score therefore targets a subset of the study population that can be quite heterogeneous 270 

in phenotypic presentation. Corroborating this, we found that the “Autism” category of the 271 
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ADOS severity score is not significantly associated with the clusters (χ2= 0.15, p = 0.901, df = 272 

2), even though overall there is a significant association of the overall ADOS severity scores 273 

(Table 2).  274 

Table 2: Clusters 1 and 2 statistics for each clinical measure. 275 

          aFisher Exact Test, bChi-Square test 276 

Both clusters were strongly dominated by the male gender, partly because of the high percentage 277 

of males in the dataset after the elimination of weakly or wrongly clustered individuals. 278 

However, the percentage of males was higher in cluster 1, representing the milder phenotype, 279 

consistent with general observations that male to female ratios are higher in datasets that 280 

comprise more high- function ASD individuals.    281 

Clinical 

measure  
Clinically defined categories Cluster 1 N (%) 

Cluster 2 N 

(%) 
p-value 

ADIR verbal 

status 

 ADI-R-non verbal 0 (0) 494 (100) 
<0.00001a 

 ADI-R-verbal 903 (100) 0 (0) 

ADOS 

severity 

score 

 ADOS severity score Autism (score 

6-10) 
714 (79.07) 392 (79.35) 

<0.00001b 
 ADOS severity score ASD (score 4-

5) 
64 (7.09) 102 (20.65) 

 ADOS severity score Non-spectrum 

(score 1-3) 
125 (13.84) 0 (0) 

VABS 

communicati

on 

 Dysfunctional VABS 

communication (score ≤ 70) 
307 (34) 493 (99.8) 

<0.00001a 
 Normal VABS communication 

(score > 70) 
596 (66) 1 (0.2) 

VABS daily 

living skills 

 Dysfunctional VABS daily living 

skills (score ≤ 70) 
478 (52.94) 484 (97.98) 

<0.00001b 
 Normal VABS daily living skills 

(score > 70) 
425 (47.07) 10 (2.02) 

VABS 

socialization 

 Dysfunctional VABS socialization 

(score ≤ 70) 
497 (55.04) 490 (99.19) 

<0.00001a 
 Normal VABS socialization  (score 

> 70) 
406 (44.96) 4 (0.81) 

Performance 

IQ Scale 

 Severe disability (score <50) 2 (0.22) 218 (44.13) 

<0.00001b 
 Moderate disability (score ≥ 50 and 

≤70) 
31 (3.43) 125 (25.3) 

 Normal ability (score > 70) 870 (96.35) 151 (30.57) 

Gender 
 Male 830 (91.92) 417 (84.41) 

0.000015b 
 Female  73 (8.08) 77 (15.59) 
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Analysis of the contribution of each clinical feature in defining clusters showed that the main 282 

contributor was the ADIR verbal status variable (Additional file 1: Table S2). The VABS 283 

subscales had a strong effect on Cluster 1 but a modest role in defining Cluster 2. Performance 284 

IQ also contributed more to Cluster 1 whereas for Cluster 2 it has the least effect. The ADOS 285 

severity score did not have a major role in defining either cluster, as indicated by the similar high 286 

percentage of subjects scoring within the range of “Autism” in the ADOS severity scale in both 287 

clusters. Similarly, gender was not an important contributor to the definition of either cluster. 288 

 Disrupted biological processes from brain-expressed genes targeted by  rare CNVs  289 

CNVs (N=129754) identified in 2446 subjects with ASD were filtered to select rare, high 290 

confidence CNVs, over 30 Kb in size and that contained complete or partial brain-expressed 291 

gene sequences. The selected high confidence, rare CNVs (N=12683) disrupted 4025 brain-292 

expressed genes in 2414 subjects with ASD (86.8% males and 13.2% females).  293 

Phenotypic cluster and rare CNV data was complete for 1357 individuals with ASD, and 294 

available for integration. Functional enrichment analysis of rare CNVs targeting brain-expressed 295 

genes (N=2738) in 1357 patients identified 17 statistically significant biological processes 296 

(Additional file 1: Table S3). g:Profiler did not recognize 187 genes from the input list. 297 

The redundancy of GO terms in functional enrichment analysis, caused by overlapping 298 

annotations in ancestors and descendent terms in the DAG structure of GO, was reduced by 299 

grouping the terms that had a semantic similarity score higher than 0.7 (Additional file 1: Table 300 

S3). The Revigo tool used to reduce redundancy did not recognise one biological process 301 

(Plasma membrane bounded cell projection organization). After redundancy reduction, 16 302 

biological processes remained (Table 3), with the Calcium-dependent cell-cell adhesion via 303 

plasma membrane cell adhesion molecules biological process merged with Homophilic cell 304 

adhesion via plasma membrane adhesion molecules (similarity score = 0.76).  305 

The most significant biological process identified in this dataset was Homophilic cell adhesion 306 

via plasma membrane adhesion molecules, which includes 53 brain-expressed genes disrupted 307 

by the selected CNVs. The ten most significant biological processes were related to cell adhesion 308 

and cellular organization, and also included nervous system development and protein 309 
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poliubiquitination (Table 3). Moreover, two significant biological processes were related to 310 

behavior and cognition. 311 

Table 3: Statistically significant enriched biological processes for CNVs spanning brain-312 

expressed genes (N=2738). FDR: False Discovery Rate  313 

Biological processes 
Enriched 

genes (N) 

FDR p-

value 

 Homophilic cell adhesion via plasma membrane adhesion molecules 53 6.30E-09 

 Cell-cell adhesion via plasma-membrane adhesion molecules 66 1.70E-07 

 Cellular component organization or biogenesis 944 5.70E-05 

 Cellular component organization 915 7.00E-05 

 Cellular component biogenesis 475 0.00066 

 Cellular component assembly 434 0.00177 

 Nervous system development 363 0.00215 

 Organelle organization 562 0.00475 

 Protein polyubiquitination 64 0.00592 

 Cell projection organization 231 0.00836 

 Cellular localization 418 0.0091 

 Single-organism behavior 83 0.0196 

 Regulation of cellular component organization 364 0.0257 

 Plasma membrane bounded cell projection organization 223 0.0282 

 Cognition 56 0.0364 

 Single-organism organelle organization 263 0.044 

             314 

 Biological process importance for prediction of ASD clinical phenotype  315 

The enriched biological processes and phenotypic cluster information for ASD cases were 316 

combined in a matrix to assess the predictive value of the biological processes for categorization 317 

in one of the two phenotypic clusters, broadly characterized by a milder and a more severe 318 

phenotypic presentation. The 57 individuals containing both rare CNV and cluster information 319 
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that did not present any enriched biological process were excluded, so further analysis comprised 320 

1300 ASD patients. 321 

Table 4 shows the ranking in importance of disrupted biological processes for categorization of 322 

subjects into ASD phenotypic clusters, computed using the Random Forest importance score 323 

function.  324 

Table 4: Importance of each biological process from Random Forest in classifying ASD subjects 325 

into defined phenotypic clusters.   326 

Random 

Forest rank 
Biological process 

Mean Decrease in 

Accuracy 

1 Regulation of cellular component organization 0.052 

2 Cell projection organization 0.025 

3 Cellular component assembly 0.025 

4 Single organism behaviour 0.020 

5 Organelle organization 0.018 

6 Single organism organelle organization 0.017 

7 Cellular component biogenesis 0.014 

8 Cognition 0.013 

9 Nervous system development 0.010 

10 Cellular localization 0.009 

11 Cellular component organization 0.006 

12 Protein polyubiquitination 0.005 

13 Homophilic cell adhesion via plasma membrane adhesion molecules 0.005 

14 Cell adhesion via plasma membrane adhesion molecules 0.005 

15 Cellular component organization or biogenesis 0.003 

 327 

The importance of each biological process was calculated using the mean decrease in accuracy, 328 

computed by permuting each biological process. The feature importance analysis using Random 329 

Forest, which was trained and tested using stratified 10-fold cross-validation over the integrated 330 

dataset, revealed positive values for all features, indicating that all of the biological processes are 331 

positively contributing for classification. The most important biological process for the 332 

classification was Regulation of cellular component organization, with a mean decrease in 333 

accuracy of 0.052. The most significantly enriched biological process in the overall ASD dataset, 334 

Homophilic cell adhesion via plasma membrane adhesion molecules was ranked at position 14, 335 
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indicating it is not a top contributor to phenotypic categorization of ASD subjects into the 336 

phenotypic clusters, in this population.  337 

 Predicting clinical phenotype from the biological processes disrupted by rare CNVs in 338 

ASD patients 339 

The Naive Bayes supervised machine learning method was trained and tested using phenotypic 340 

clustering information and the 15 biological processes inferred from rare CNVs targeting brain-341 

expressed genes in ASD patients. The classifier was trained with the assumption that ASD 342 

subjects with a more dysfunctional clinical phenotype, subgrouped in Cluster 2, would present a 343 

different pattern of disrupted biological processes from the individuals with a milder expression 344 

of ASD phenotype in Cluster 1.  345 

The Naive Bayes classifier trained on data from 1300 patients did not perform well in predicting 346 

the more dysfunctional clinical phenotype from disrupted biological processes (Table 5), with 347 

scores indicating a low accuracy of the predictive model.   348 

To further dissect the information available, the biological process Information Content (IC) for 349 

each individual was calculated by summing the IC values for all the biological processes 350 

disrupted in that individual. ASD subjects in the first IC quantile (N = 325) had highest IC 351 

scores, while ASD cases belonging to fourth quantile (N = 326) contained lowest IC scores. The 352 

performance of the Naive Bayes classifier improved when only ASD subjects with higher IC 353 

were selected for analysis. Analysis of the group of individuals with highest IC (first quantile) 354 

resulted in a higher predictability of ASD clinical outcome (Table 5). The classifier trained and 355 

tested on individuals from the first two (1st and 2nd) and first three (1st, 2nd, and 3rd) quantiles also 356 

performed better than the classifier designed using the whole dataset of clusters and biological 357 

processes (Table 5). The Naive Bayes classifier was thus able to make reasonably good 358 

predictions of ASD severity, but only for a subset of ASD individuals with higher IC. This 359 

indicates that improved GO information, as well as larger datasets with more GO information 360 

available, are needed to usefully integrate clinical and biological data.  361 

 362 

 363 

 364 
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            Table 5: Naive Bayes performance in predicting the severe phenotype of ASD  365 

 Data used for classification N Precision Recall Specificity F-score 

All ASD cases  1300 0.221 0.379 0.655 0.279 

ASD cases from 1st quantile with highest IC  325 0.816 0.389 0.699 0.526 

ASD cases from 1st and 2nd quantiles of IC  649 0.23 0.384 0.65 0.284 

ASD cases from first three quantiles of IC  974 0.29 0.389 0.672 0.329 

 366 

Discussion 367 

The discovery of diagnostic and prognostic biomarkers for ASD has the potential to improve the 368 

reliability of diagnosis at earlier stages of development, as well as the phenotypic categorization 369 

for prognosis, eventually informing personalized intervention that is particularly beneficial for 370 

very young children. However, in spite of the enormous volume of genetic information generated 371 

by genomic approaches in the past decade, the clinical diagnosis of ASD patients is still solely 372 

based on neurodevelopmental assessment. The results of many genomic tests, including CNV 373 

arrays and clinical exomes, still leave about 80% of the cases without any explanation regarding 374 

the biological pathways underlying their disease and their personal clinical presentation.  375 

In this study, we developed a novel integrative approach to predict ASD phenotypes from 376 

biological processes defined by genetic alterations. Overall, our approach sought to exploit 377 

multidimensional clinical measures to define subgroups of ASD patients presenting similar 378 

clinical profiles, and then to identify the biological processes disrupted by CNVs that might 379 

predict these more homogeneous clinical patterns. For the sake of eventual clinical utility, we 380 

chose clinical measures with well-established relevance and frequently used in clinical settings, 381 

but established no other restrictions. Further, we did not set any a priori hypothesis for gene 382 

selection, besides being expressed in the brain.   383 

The clustering of clinical data from ASD cases resulted in two subgroups that were clearly 384 

distinguishable in terms of severity of phenotype, defined by multiple clinically relevant 385 

measures including verbal status, ASD severity, adaptive function and cognitive ability. The 386 

identification of only two clusters for the clinical phenotype, with an important proportion of 387 

individuals in the AGP dataset that could not be adequately clustered was expected, as it reflects 388 

the high clinical heterogeneity of ASD. The identification of these subgroups was in line with 389 
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previous results by Veatch et al. [40], who also identified two clusters differing in severity using 390 

two independent population samples, including the Autism Genetic Resource Exchange (AGRE) 391 

and also the AGP dataset. While clinical variables were not fully coincidental between the two 392 

studies, we confirmed that the verbal status, ADOS-based severity, VABS-based 393 

communication, socialization and daily living skills, as well as gender, were all significantly 394 

different between clusters. We noted an unequal contribution of each clinical measure to 395 

definition of each cluster, with verbal status the main contributor and the ADOS severity score a 396 

low contributor for both clusters, while Performance IQ was mainly important for Cluster 1.  397 

In our study, the larger Cluster 1 was characterized by a generally milder phenotype, with all 398 

individuals being verbal, a large proportion in the normal IQ range and significantly higher 399 

numbers of subjects scoring better in adaptive behavior subscales. Cluster 1 also showed a higher 400 

male to female ratio, as expected given the general observation that higher functioning ASD 401 

subgroups have a larger proportion of males. The smaller Cluster 2 included only non-verbal 402 

subjects, and had a higher percentage of subjects with a more dysfunctional phenotype in terms 403 

of adaptive behavior, as well as lower IQ scores. Because cognitive ability is such an important 404 

variable for prognosis, we included performance IQ as a clinical variable, in spite of the 405 

limitations related to the heterogeneity of IQ measurement tools used for patient assessment by 406 

AGP contributing sites. For the AGP dataset, an effort was previously made to rationalize the 407 

tests used, and cognitive level was established using a categorical classification provided by 408 

AGP sites in three categories, namely severe intellectual disability, mild intellectual disability 409 

and normal IQ, for verbal, performance and full scale IQ scores. Limitations were also 410 

introduced by the proportions of missing data; given the adopted control of the validity of 411 

imputation procedures, only performance IQ met the criteria for reliable imputation, so only this 412 

measure was used.  413 

Because our main goal was to improve the power for phenotypic subgroup prediction by 414 

genetically defined biological processes, we focused on obtaining compact and stable clusters by 415 

using strict criteria for cluster stability to assess the goodness of clustering, at the expense of 416 

population sample dimension. As expected, the weakly clustered individuals tended to have more 417 

divergent scores across clinical measures (data not shown), and therefore were more difficult to 418 

cluster with high confidence. It is intriguing that a higher proportion of females than males was 419 

removed, suggesting that this divergence of scores is more frequent in girls. This observation 420 
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generally supports recent debates on the lower adequateness of assessment criteria to the female 421 

autism phenotype [41].  422 

To test the hypothesis that phenotypic subgroups have specific underlying pathological 423 

mechanisms, we first sought to identify the biological processes enriched in the gene sets 424 

disrupted by rare CNVs detected in the AGP dataset. The functional enrichment analysis 425 

conducted in this study was independent of any prior assumptions or weighting criteria of genes 426 

relative to ASD risk. To make functional enrichment analysis hypothesis-free and to let the data 427 

speak, we screened for CNVs disrupting any brain-expressed genes. The objective was to obtain 428 

a complete picture of the convergence of rare CNVs, targeting any brain-expressed genes, into 429 

biological processes relevant for brain function.  430 

The biological processes identified in the functional enrichment analysis showed an overlap with 431 

putative core biological mechanisms of ASD defined by previous studies. For example, 363 432 

brain genes spanned by rare CNVs were enriched for neurodevelopment biological process and 433 

56 genes were associated with cognition process. Enrichment of nervous system development 434 

and cognition processes in ASD has been previously reported by studies using different 435 

approaches, including transcriptome analysis and co-expression networks [15] and is supported 436 

by the function of genes most consistently implicated in ASD, like PTEN, RELN, SYNGAP1, 437 

ANK2, SCN2A and SHANK3 [42]. Noh et al. analysis of de novo CNVs spanning ASD genes 438 

also implicated cognitive processes, and showed a convergence in cellular component 439 

organization or biogenesis, cellular component assembly, and organelle organization biological 440 

processes [16]. Other studies implicated cell adhesion processes in ASD as important 441 

components of synapse formation and function (46, 47). Dysregulation of polyubiquitination was 442 

also in line with previous studies reporting an excess of variants in genes involved in 443 

ubiquitination processes, which regulate neurogenesis, neuronal migration and synapse 444 

formation, and are thus essential for brain development [43–46].   445 

This biological heterogeneity parallels the extensive phenotypic heterogeneity that characterizes 446 

ASD. For this reason, we sought to identify the biological processes underlying the more 447 

homogeneous phenotypic subgroups defined by the clusters. The Random Forest algorithm was 448 

used to assess the importance of each enriched biological process in discriminating the two ASD 449 

phenotype subgroups. Feature importance analysis showed that all the biological process 450 

contributed positively to the classification of ASD severity. However, the feature importance 451 
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ranking was different from the significance ranking of enriched biological processes. Despite 452 

their relevance for ASD, the top three statistically significant biological processes identified by 453 

functional enrichment analysis were least important for the classification of subjects into the 454 

phenotypic milder and more dysfunctional subgroups. These findings support the concept that 455 

the integration of datasets with multidisciplinary information, including genomic and clinical 456 

data, is necessary to discover the biological mechanisms that lead to specific clusters of 457 

symptoms.  458 

The Naive Bayes classifier was able to make useful predictions of ASD phenotypic subgroups 459 

from disrupted biological processes, but only for a subset of individuals for whom annotations 460 

had higher information content for the biological processes defined by the CNVs. Currently, GO 461 

contains more than 40,000 biological concepts, which are rapidly evolving with the increasing 462 

knowledge of biological phenomena and with our ability to structure this knowledge. Therefore, 463 

it is expected that the performance of the proposed classifier will improve with the progress in 464 

GO annotations.   465 

Given the high clinical heterogeneity of ASD, clustering of individuals according to a 466 

multidimensional phenotype will result in subgroups with more homogeneous clinical patterns 467 

and for whom the causes of this disease are more likely to have the same underlying biological 468 

mechanism. The clustering of individuals according to multidimensional clinical symptoms per 469 

se is likely to have implication for prognosis and outcomes, as concurrent symptoms may have a 470 

synergistic effect on disease progression, and may thus also help guide clinical practice and 471 

intervention. However, thus far this perspective has been insufficiently explored, and not enough 472 

datasets are yet available with detailed clinical information that can be merged for large scale 473 

analysis. The alterations in diagnostic criteria over time and the changes in versions of 474 

instruments like the ADI-R and the ADOS create important challenges for data merging across 475 

population samples, which are needed so that sufficient statistical power is achieved for definite 476 

conclusions. This study is clear in this limitation, as the number of subjects with important 477 

missing data in multiple clinical features was high in the AGP dataset, reducing analytical power, 478 

and thus only two stable clusters could be defined. The next research steps will necessarily have 479 

to involve overcoming limited clinical information and merging challenges between available 480 

datasets, like AGRE and the Simons Foundation Autism Research Initiative (SFARI), so that 481 

models established for biological predictions can be useful in clinical settings. On the other hand, 482 
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while genomic information gets easier and cheaper to collect, improvements are also necessary 483 

regarding GO annotations; a large number of subjects with phenotypic subgroup data did not 484 

have sufficient GO information content to be useful for classifier predictions.  485 

Conclusion 486 

Overall, the present approach is proof of concept that genotype-phenotype correlations can be 487 

established in ASD, and that biological processes can predict multidimensional clinical 488 

phenotypes. Importantly, it highlights the usefulness of machine learning approaches that take 489 

advantage of multidimensional measures for the construction of more homogeneous clinical 490 

profiles. It further stresses the need to overcome the limitations of analyzing individual gene 491 

variants in favor of considering biological processes disrupted by an heterogeneous set of gene 492 

variants. The results stress two major requisites for translation of genomic information into 493 

useful clinical applications: that study datasets include detailed and complete clinical 494 

information, and that databases containing biological process information are rigorously and 495 

extensively curated. Identification of biological processes for specific clinical subgroups will be 496 

important to discover physiological targets for pharmacological therapy that can be efficient for 497 

subgroups of patients. This strategy can equally become very useful in clinical settings, for 498 

predicting outcomes and planning interventions for subgroups of patients whose specific patterns 499 

of clinical presentation are defined by the genes disrupted by specific genetic variants.        500 

 501 

 502 
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