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Abstract

Nucleic acid molecular biology and synthetic biology are undergoing rapid ad-
vances with the emergence of designer riboswitches controlling living cells,
CRISPR/Cas9-based genome editing, high-throughput RNA-based silencing, and
reengineering of mRNA translation. Many of these efforts require the design of
nucleic acid interactions, which relies on accurate models for DNA and RNA ener-
getics. Existing models utilize nearest neighbor rules, which were parameterized
through careful optical melting measurements. However, these relatively simple
rules often fail to quantitatively account for the biophysical behavior of molecules
even in vitro, let alone in vivo. This is due to the limited experimental throughput
of optical melting experiments and the infinitely large space of possible motifs that
can be formed. Here, we present a convolutional neural network architecture to
model the energies of nucleic acid motifs, allowing for learning of representations
of physical interactions that generalize to arbitrary unmeasured motifs. First, we
used existing parameterizations of motif energies to train the model and demon-
strate that our model is expressive enough to recapitulate the current model. Then,
through training on optical melting datasets from the literature, we have shown
that the model can accurately predict the thermodynamics of hairpins containing
unmeasured motifs. This work demonstrates the utility of convolutional models for
capturing the thermodynamic parameters that underlie nucleic acid interactions.

1 Introduction

RNA has recently emerged as the ideal candidate for a building block to create the next generation of
therapeutics, with the potential to specifically disable or manipulate the genes involved in disease.
RNA’s functional versatility is exemplified by the development of myriad novel RNA-based synthetic
biology tools, including designer riboswitches controlling living cells [24, 31, 8], CRISPR/Cas9-
based genome editing [13, 17], RNA-based silencing [20, 22], and reengineering of mRNA translation
[21, 7]. The ability to design RNA elements is central to gaining precise control over these systems
and customizing them for use as potential RNA-based therapeutics. However, doing so relies upon a
thorough understanding of the energetics of RNA interactions, and computational models have proven
inadequate to quantitatively account for the biophysical behavior of RNA molecules. This lack of
predictive models has been a major barrier to the wide adoption of existing RNA-based technologies.

Current nucleic acid energetic models have relied upon nearest neighbor rules, which posit that the
thermodynamic contribution of a base pair depends only upon the sequence of itself and its nearest
base pair [2, 25, 34]. This enables the energy of a given structure to be estimated by breaking it up
into its constituent motifs. Dynamic programming techniques can be applied to estimate the lowest
energy conformations of a given sequence [23].

While this model has been sufficient as a guide for RNA secondary structure stabilities, it falls
short in painting a complete picture of an RNA molecule’s full conformational ensemble. This is
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largely because the model has been parameterized using less than 103 optical melting measurements
[27, 35, 34, 18] and rough, sequence-agnostic approximations are used for unmeasured motifs. While
optical melting experiments have been adequate to parameterize base pair energies, more careful
modeling is necessary to characterize the loops in the intervening regions. These secondary structure
elements are key to positioning RNA helices in the correct orientation and determining the overall
structure.

A major challenge in modeling these loop elements is that the sequence space for loop elements,
including hairpin loops, internal loops and multiloops, grows exponentially with length. Thus,
accurate energetic models require parameterization of this space without the ability the make direct
measurements of every element. State-of-the-art nearest neighbor models use linear approximations
based on the length of the loop, with terms for the identity of the closing base pair and first mismatch
for hairpin loops [12, 27]. However, this model clearly ignores important sequence-dependent
energetic contributions that are exacerbated as loop sizes increase [33, 32].

Convolutional neural networks (CNNs) are a particularly suitable approach for extracting the sequence
contributors to these energies from massive experimental datasets. These models are hierarchical
in nature, mirroring the folding process of complex RNA structures [4]. In addition, they have
been shown to be effective in other tasks involving modeling of nucleic acid sequences [1, 37, 14].
Thus, convolutional models may be an effective architecture for modeling the interactions between
neighboring bases that will allow for generalization of the energetic model to large loop elements.
Here, we explore the use of CNNs for predicting the energies of unmeasured RNA structural motifs.

Figure 1: Nearest neighbor model for RNA energetics. Each secondary structure is broken up into
overlapping structural motifs, whose folding free energies are assumed to be additive.

2 Methods

2.1 Datasets

Initially, models were trained directly on motif energies given by parameter sets for the nearest
neighbor model [18]. These were parsed from the files used by the NUPACK software [36]. The
dataset includes Watson-Crick helices, triloops and tetraloops, mismatches, dangling ends, and 1x1,
1x2, and 2x2 internal loops. In addition, 1,000 multiloops were randomly generated and their energies
were calculated based on the linear approximation described by Turner and colleagues [18]. This
resulted in a set of 13,207 motifs, which were split into a training and test set.

Models were then trained and evaluated on experimental data from the literature. These data were
taken from six different papers that made optical melting measurements for 109 RNA hairpins at
standard conditions of 1M NaCl [9, 10, 28, 26, 27, 19]. 28 of the hairpins with the largest loop
elements, with seven or more unpaired nucleotides, were held out as test data to evaluate the ability
of the model to generalize to larger loops, and 10 of the remaining training hairpins were used as
a validation dataset for hyperparameter tuning. An additional dataset of 33 hairpins taken after the
training of the nearest neighbor parameter sets was used as an additional test set [30]. These papers
all used standard optical melting fitting procedures, and ∆G37 values (folding free energy at 37◦C)
reported by each paper were used for training.
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2.2 Model training

For the experimental data, since motif energies cannot be individually measured, the model must
be trained from energies for an entire structure. To simplify training, each hairpin was assumed to
only adopt a single secondary structure, as specified in the original papers, and undergo a two-state
transition between folded and fully unfolded. These assumptions enable us to easily decompose each
hairpin into its subcomponent motifs (Figure 1). As in the classical nearest neighbor model, the overall
energy is modeled as the sum of individual motif energies, and the gradients were backpropagated
through this sum during training.

During each training step, a random batch of hairpins is selected and a single motif length is selected
to simplify the tensor operations in training. Motifs in our dataset range from length 2 to 11, and a
length is also chosen proportionally to the number of motifs of that length.

2.3 Model architecture

As in the nearest neighbor model for RNA energetics, each secondary structure is decomposed into
individual motifs (Figure 1) [3, 27, 35]. The CNN is used to predict the energy of each of these
motifs, and the model assumes that these energies are additive.

Each motif is represented using a circular matrix, where pairs of bases that are linked by phosphodi-
ester bonds along the backbone of the RNA or by hydrogen bonds in a base pairing interaction are
consecutive rows in the resulting matrix (Figure 2, left). This ensures that the close proximity of
interacting bases is captured by the structure of the matrix representation.

Figure 2: CNN model for RNA motif energies. Each motif is converted to a row within a binary
matrix (left), with columns representing sequence identity, base pairing, and whether a base is a part
of a 5′ or 3′ dangling end (as in the last motif in Figure 1). Convolutions are computed on this circular
input matrix to get the first hidden layer (red) and similarly for subsequent hidden layers (green).
These convolutional layers are able to represent increasingly long sequence features, with 3-base
features in the first hidden layer, 5-base features in the second hidden layer, and so on. Finally, these
features are aggregated into a final fully connected layer (blue) and summed to produce the output
(gray).

Given this matrix representation of each motif, 1D convolutions with width 3 and stride 1 are applied
over the sequence dimension (Figure 2, red & green). Multiple layers of convolutions can be applied,
with the values in the first hidden layer representing sequences features involving up to 3 bases,
the second layer up to 5 bases, and so on. This architecture allows the model to learn sequence
features bottom-up, integrating shorter motifs into longer and longer motifs at each layer. Interactions
between nucleotides that are physically near each other in space (e.g. base pairing) are accounted for
in earlier layers, so that a nucleotide’s immediate context is taken into consideration as longer range
interactions are represented in later layers. To get the final energy, the sequence features in all hidden
layers are combined into a final fully connected layer (Figure 2, blue) and summed over all positions
to get a single value regardless of length (Figure 2, gray).
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For the motif-level model, we used 10 convolutional layers of 50 units each, while for the optical
melting model, we used a single convolutional layer of 20 units. In both cases, we used a learning
rate of 10−4 and a dropout rate of 0.5.

2.4 Software

Code for training and testing models is available at https://github.com/wuami/nn2.

3 Results

3.1 Recovering nearest neighbor energies with a CNN

To evaluate the expressivity of this model, we first applied the model to the individual motif energies
given by the Turner 1999 parameter set [18]. This dataset encompassed all explicity parameterized
values, including base pairs, apical loops, and internal loops. In addition, 1,000 multiloops were
randomly generated and their energies were calculated based on the linear approximation described
by Turner and colleages [18]. In total, this dataset comprised of over 13,000 motif energies.

We were able to train a model that captured this parameter set with an RMSE of 0.11 kcal/mol on
a held out test set (Figure 3). Excluding the multiloops that are not explicitly parameterized, with
energies derived directly from a linear model, the RMSE is 0.21 kcal/mol, comparable to the error of
the parameter estimates given by the fit in the original paper [18]. The error was similar for motifs of
different lengths and types. This suggests that the CNN model is at least as expressive as the original
Turner mode and should be able to capture RNA energetic parameters at least as well. Furthermore,
this result suggests that this model can be trained to capture generalizable motif features, allowing it
to generalize to an unseen test set derived directly from experimental data.

Figure 3: A CNN model accurately recovers the Turner 1999 [18] parameters on a test set for motifs
of various lengths, including base pairs, internal loops, and multiloops.

3.2 Training models on optical melting data

To validate the effectiveness of this model trained directly on experimental data, we turned to
optical melting data from the literature. These experiments are considered to be the gold standard
in measuring nucleic acid thermodynamics [34, 25, 18]. Our dataset consisted of measurements
for 109 RNA hairpins containing 125 unique motifs. Hairpins containing a loop of more than 6
nucleotides were held out as a test set to evaluate the model’s ability to generalize learned features
to larger unmeasured motifs. A separate validation set from the shorter loop hairpins was used for
hyperparameter tuning.

As a comparison, we made predictions for the same constructs using ViennaRNA, a commonly-used
secondary structure prediction software package [16]. This package uses nearest neighbor parameters
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derived from a set of measurements that includes our data, effectively using our test hairpins in
training of their model. Nevertheless, our model performs similarly to ViennaRNA as measured by
correlation. In addition, we outperform ViennaRNA when excluding one paper for which neither
model is able to make meaningful predictions. However, the CNN predictions are shifted by a
constant offset, resulting in poor RMSE values (Figure 4). While this offset could likely be mitigated
by training on a more comprehensive dataset, it should have no effect on predictions made with
downstream minimum free energy secondary structure or partition function calculations, as long as
all hairpins have the same error.

CNN ViennaRNA

Figure 4: The CNN performs similarly to ViennaRNA in terms of correlation, despite the ViennaRNA
model being trained partially on the test dataset.

In addition, we tested our model on a separate dataset of hairpins collected after the Turner 1999
parameters were published [30]. While our model performed worse than ViennaRNA overall, it is
able to capture variance within hairpins with the same closing base pair (Figure 5). This suggests
that, in combination with information from the existing nearest neighbor models, it may be able to
capture energetic differences in loops across sequence variants with improved accuracy.

CNN ViennaRNA

Figure 5: On a more recent dataset, the CNN performs worse overall but is able to capture variance
within sets of hairpins with the same closing base pair.
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The simple architecture of our model also enables some interpretation of the convolutional filters,
which encode motif features that contribute to energetic predictions. Figure 6 shows the weights
trained for the first convolutional layer, which can be interpreted as features that incorporate infor-
mation from 3-mers of the motif. For example, the highest weighted convolutional filter (left) has
strongly positive weights for a G and C that are adjacent in the motif representation, suggesting it
may be a detector of GC base pairs, which would be expected to be a strong contributor to motif
energies.

Figure 6: The three convolutional filters with the strongest weights in the fully connected layer show
the input features contribute to predicting motif energies.

4 Discussion

Modern technologies have enabled massively parallel, quantitative measurement of tens of thousands
of individual RNA sequences [5, 29, 15]. These methods will allow for high-throughput measurement
of melting curves at the scale needed for more exhaustive characterization of motifs. However, given
the arbitrarily large number of possible motifs that can be formed by nucleic acids, models that
generalize learned principles to unmeasured motifs are still necessary. These rich datasets will enable
the training of deeper and more expressive convolutional models. Due to the small size of our dataset,
we only used a one-layer network for the experimental validation, limiting the ability of the model
to represent higher order features. In addition, the constant offset observed in our predictions for
hairpins containing long motifs would likely be resolved by a larger dataset containing a more diverse
set of motif lengths.

Existing RNA secondary structure prediction software use dynamic programming methods to de-
termine the lowest energy conformation that a given sequence can adopt. As a result of removing
the linear assumptions used for multiloops in these algorithms, the dynamic programming algorithm
also becomes infeasible. Integrating the CNN model into these methods would require computing
the energies of all motifs that could be formed by a particular RNA. While many short motifs could
be precomputed for the purposes of secondary structure prediction software, this may be infeasible
for long RNA molecules, and computational shortcuts may be necessary to reduce the search space
[11, 6].

This work demonstrates the utility of convolutional neural networks for modeling nucleic acid
thermodynamics. Our models enable more accurate modeling of unmeasured motifs and illustrates
the need for modern, high-throughput measurements to advance predictive models of nucleic acid
thermodynamics.
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