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Abstract  

The human brain constantly anticipates the future based on memories of the 

past. Encountering a familiar situation can trigger a prediction of what comes next, with 

a prediction error leading to pruning of the offending memory. Situations with more 

predictable events should trigger more reliable predictions, and this could have an 

impact on memory pruning. Our goal was to evaluate whether memories are spared 

from pruning in situations that allow for more reliable predictions. Participants viewed a 

sequence of objects, some of which (“cues”) reappeared multiple times, followed always 

by novel items. Half of the cues were followed by items from different (unpredictable) 

categories, while others were followed by items from a single (predictable) category. 

Pattern classification of fMRI data was used to identify category-specific predictions 

after each cue. Pruning was observed only in unpredictable contexts, while encoding of 

new items suffered more in predictable contexts. 
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Introduction  

What is past is prologue: similar to the function of autocomplete software on a 

smartphone, the brain learns from statistical patterns across time to generate 

expectations that guide future behavior. This process is essential for most of our 

fundamental abilities including language, perception, action, and memory. It is 

accomplished in part by domain-general implicit learning mechanisms (alternatively 

referred to as ‘statistical learning’ (Perruchet and Pacton, 2006; Turk-Browne and 

Scholl, 2009; Turk-Browne et al., 2005)) that allow us to acquire long-term knowledge 

about the statistical structure of the world (Kóbor et al., 2017; Romano et al., 2010). 

Studies of visual statistical learning have shown that observers can implicitly learn 

subtle statistical relationships between visual stimuli in both time (Fiser et al., 2007; 

Fiser and Aslin, 2002; Schapiro et al., 2012) and space (Chun and Jiang, 1998; Fiser 

and Aslin, 2001; Turk-Browne and Scholl, 2009). Knowledge of these statistics can build 

up expectations that trigger predictions about upcoming perceptual events (Turk-

Browne et al., 2010). In some situations, these expectations may be stimulus-specific 

(Conway and Christiansen, 2006), and in others they may be more abstract, for 

example, operating at a categorical level that relies on existing conceptual knowledge 

(Brady and Oliva, 2008). Many real-world situations have relatively stable abstract 

statistics but highly variable specific details. For example, when entering a coffee shop, 

one should expect to find a barista behind the counter, but not necessarily the same 

barista that served coffee on your prior visit. Here, a more abstract prediction (“some 

barista”) would be more reliable than a specific prediction (“that particular barista”).    
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The acquisition of new episodic memories is mediated by expectations of what 

will happen in the near future. Recent neural evidence shows that the brain processes 

(or encodes) predictable events less strongly than unpredictable events, as evidenced 

by diminished repetition priming effects for repeated words appearing in predictable 

temporal contexts (Rommers and Federmeier, 2018). An advantage of predictability is 

that it can help reduce processing of redundant information during encoding. However, 

this may come at the expense of detailed stimulus processing, leading to weaker 

encoding of new memories. Further support for this idea comes from research on 

“schemas” (Ghosh and Gilboa, 2014; Tse et al., 2007; Marlieke T R van Kesteren et al., 

2010; van Kesteren et al., 2012) which have been shown to influence memory 

encoding. Schemas are associative network structures that develop across multiple 

episodes and provide an abstract, conceptual framework to facilitate adaptive behavior. 

Schemas allow for reliable predictions at a fairly abstract level, but this comes at the 

cost of decreased attention to specific schema-consistent information, which may lead 

to reduced encoding of the new experience details.  

Likewise, the updating of existing memories is also influenced by temporal 

expectations. When an automatic prediction of an upcoming perceptual item is violated 

(misprediction), the resulting error signal can weaken the long-term memory 

representation of the mispredicted item, leading it to be pruned from memory (Kim et al., 

2017, 2014). Memory pruning is an adaptive, and error-driven learning process 

(Pagnoni et al., 2002; Schultz and Dickinson, 2000) in which irrelevant item 

representations are selectively removed from the memory trace to improve access to 

relevant memories. Prediction error does not always lead to pruning, however. For 
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example, the fidelity of reactivated predictions is often graded, and pruning is most likely 

for items that are moderately, but not strongly reactivated. When reactivated predictions 

don’t get pruned, they may instead become integrated with new learning episodes 

(Morton et al., 2017; Preston and Eichenbaum, 2013; Schlichting et al., 2015; 

Schlichting and Frankland, 2017; Schlichting and Preston, 2015; Zeithamova et al., 

2012a, 2012b). Memory integration is a process by which related experiences are 

stored as overlapping representations in the brain, forming memory networks that span 

events and support the flexible extraction of novel information. Importantly, it is unclear 

why certain memories are pruned and others are integrated. Therefore, a central goal of 

this study is to evaluate how the nature of statistically learned expectations influences 

how memories are both acquired and updated.  

 A key factor that may impact whether memories are pruned or integrated is the 

reliability of predictions that are generated in a familiar temporal context. For example, 

encountering familiar items in a sequence of stimuli can trigger automatic predictions for 

what stimuli will appear next based on which items appeared in the past. These 

predictions will be incorrect when novel items appear, and this prediction error can lead 

to poor memory for the familiar context items (e.g., ‘latent inhibition’ (Lubow, 1989)) but 

strong memory for the novel stimuli because their predictive relationships with the 

environment are not yet known (Dayan et al., 2000). Stronger encoding of these novel 

items and their temporal context following prediction errors may facilitate their 

anticipatory prediction when the same familiar context is reencountered. The 

anticipatory reactivation of their memory trace may contribute to their being pruned from 
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memory following a prediction error – that is, stronger predictions may lead to more 

pruning in unpredictable contexts. 

 On the other hand, encountering familiar items should generate more reliable 

predictions if those items are always followed by more predictable events. Reliable 

predictions should be formed even if the event details are novel and unpredictable, so 

long as some predictive information about them can be learned. Using existing semantic 

knowledge about the world (e.g., categorical information of visual objects), the brain can 

link conceptually related episodic events across time. For example, if familiar items are 

always followed by the same category of item, this should allow for more abstract, 

categorical-based statistical learning (Brady and Oliva, 2008). That is, over time the 

brain should adapt to the predictability (Brown and Braver, 2005; den Ouden et al., 

2009) of these category exemplars and as a result build expectations about categories 

rather than items. When the familiar items are reencountered, the reactivation fidelity 

(i.e., the item-specificity) of the automatic predictions should be lower (because the 

predictions are category-based), and this may reduce the likelihood of pruning those 

items from memory.  

Our episodic experiences are always changing, and details of precisely what will 

happen when we reencounter a familiar situation can be hard to predict. Yet, our 

experiences often contain hidden statistical structure that can be learned and 

generalized to new events. To date, memory pruning has been studied only in situations 

that consistently generate context-based prediction errors, without any predictable 

statistics across repeated exposures. However, it is also important to understand how 

memory is updated when higher-order predictability is embedded into our experiences. 
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Here, we tested whether the predictability of a familiar temporal context impacts the 

forgetting of previous episodic memories and the acquisition of new memories. We 

modified the paradigm of Kim et al. (Kim et al., 2014) to include multiple repetitions of 

particular items in a continuous sequence of visual object presentations (Figure 1A). 

FMRI data was collected during this incidental encoding task when observers made 

subcategory judgments about each object in the sequence, and memory for these items 

was tested later with a surprise item-recognition memory test. As a hidden rule, certain 

items (“cues”) appeared four times across the experiment, and all other items appeared 

only once. Cue repetitions were always followed by novel items. To manipulate the 

reliability of predictions generated by the cues, half of the cues were followed by items 

from different categories across repetitions (e.g., cue-airplane, cue-taco, cue-horse, 

cue-pliers; “incongruent” condition), and the other half of cues were followed by items 

from the same category (e.g., all animals: cue-badger, cue-tiger, cue-cow, cue-peacock; 

“congruent” condition).  

We applied category-based multivoxel pattern analysis (MVPA (Haxby et al., 

2014; Haynes and Rees, 2006; Lewis-Peacock and Norman, 2014a; Norman et al., 

2006)) to the fMRI data in high-order visual brain areas during this encoding task to 

quantify the perception of each stimulus, and to covertly measure the automatic 

prediction of items following the reappearance of familiar cues. These trial-by-trial 

neural measures were then linked to item-recognition performance on the subsequent 

memory test (Figure 1B). Memory pruning was evaluated at each cue repetition by 

assessing the relationship between neural evidence of automatic prediction of the 

previous item and its subsequent memory strength (stronger predictions leading to 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469965doi: bioRxiv preprint 

https://doi.org/10.1101/469965
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 8 of 43 

worse memory would be consistent with previous results on memory pruning (Kim et al., 

2017, 2014)). We hypothesized there would be more evidence of memory pruning in the 

incongruent condition, when the expectation-violating items were unpredictable and 

didn’t share features with the predicted items, as compared to the congruent condition, 

when the violating items were predictable at the category level. In addition, we 

hypothesize that there will be weaker encoding of new items in the congruent condition, 

relative to the incongruent condition, due to more reliable predictions (and reduced 

stimulus processing (Brady and Oliva, 2008)) afforded by conceptual-level statistical 

learning in these familiar temporal contexts.  

 

RESULTS 

Note that for all behavioral results, we report combined results (N = 46) from a 

group of fMRI participants (n = 22) and behavior-only participants (n = 24) who 

performed the same task outside the scanner (see Methods).  

Encoding task performance. Participants were shown a continuous stream of 

images, one at a time, for the purpose of incidental encoding for a surprise subsequent 

memory task at the end of the experiment (Figure 1). As a cover task, participants were 

asked to make a subcategory judgment for each image. The category of the stimulus 

changed every trial, and therefore, participants were required to maintain their attention 

and constantly update their response mappings. Subcategory judgments were fast (M = 

0.67 s, SEM = 0.01) and accurate (M = 0.87, SEM = 0.01; Figure 1A). Performance 

differed across conditions (incongruent, congruent), position (1st, 2nd, 3rd, 4th), and non-

paired items for both trial types (cue, item) in both accuracy and RT (one-way ANOVA, 
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omnibus Fs > 35, Ps < .001). Responses for cues were faster (0.62 s) and more 

accurate (0.94) than for non-cued items (0.70 s, 0.83) and non-paired items (0.70 s, 

0.82; pairwise t test, all Ps < .0003, significant after Bonferroni correction), suggesting 

that repeated encoding enhanced subcategorization performance. Across repetitions, a 

simple linear regression (coefficient estimate: βlin) shows that the accuracy to cues 

increased (all βlin > 0.01, Ps < .01) and the RTs decreased (all βlin < -0.01, Ps < .001), 

with no difference between conditions (condition x position ANOVA for cues, Fs < 3.84, 

Ps > .05). Categorization performance on the non-cued items did not change 

significantly across repetitions and conditions (Ps > .05).  

There was a significant interaction of condition x trial type on both RT and 

accuracy (both Ps < .001), with no difference for cues, but with both faster and more 

accurate responses for non-cue items in the incongruent condition (0.71 s vs. 0.70 s, 

0.81 vs. 0.85; both Ps < .001). This reflects greater alertness, and perhaps stronger 

encoding, following repeated cues in the incongruent condition. There was no three-way 

interaction of condition x position x trial type on either RT or accuracy. Overall the 

behavioral metrics on the encoding task indicate that participants were properly 

engaged in the task, and performance differences between the incongruent/congruent 

conditions demonstrate that they were sensitive to this manipulation. 

 

Subsequent recognition memory. Memory for all items was tested in a surprise 

recognition test at the end of the experiment (Figure 1B). There was a statistical trend 

for an interaction of condition (incongruent/congruent) x position (1st/2nd/3rd/4th) on 

recognition accuracy (two-way ANOVA, F(3, 135) = 2.32, P = .078). In follow-up 
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analyses, this interaction was significant across the first two item positions alone (two-

way ANOVA, F(1, 45) = 5.25, P = .027), with worse memory for the 1st items (M = 0.81, 

SEM = 0.01) compared to the 2nd items (M = 0.83, SEM = 0.01) in the incongruent 

condition (pairwise t test, t45 = -2.84, P = .007, significant after Bonferroni correction). 

This interaction was not significant for the final two item positions (F(1, 45) = 2.14, P = 

.15), and the results trended in the opposite direction, with significantly worse memory 

for the 4th items (M = 0.81, SEM = 0.01) compared to the 3rd items (M = 0.83, SEM = 

0.01) in the congruent condition (t45 = 2.35, P = .023). These results suggest that the 1st 

items in the incongruent condition may have been pruned, while this was not the case 

for the 1st items in the congruent condition. The key difference between these conditions 

is that, when the cue item repeated, automatic predictions for the 1st item had a greater 

degree of mismatch with the 2nd item (a novel item from a different category), but these 

predictions only mismatched at the exemplar level in the congruent condition (a novel 

item from the same category). Furthermore, we find evidence for decreased encoding 

for the 4th (and final) items in the congruent condition, consistent with the idea that in 

more predictable temporal contexts (e.g., when the category of the next item can be 

anticipated) the processing of new item-specific details is reduced.   
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Figure 1. Experimental design and behavioral performance. (A) Incidental encoding task with categorization accuracy 
and RT. Subcategory judgments for each picture in a sequence (CUE: items that were presented four total times; 
1st/2nd/3rd/4th ITEM: unique items that followed a cue in the specified order; NP: non-paired items that did not follow 
cues). The category for the cues was either face or scene, and there were four categories (animal, food, tool, and 
vehicle) for items and NP items. For main effects, Bonferroni adjusted alpha levels (α=.05/3) were applied per test. 
(B) Subsequent recognition task and recognition accuracy (A’) for all non-cue items studied previously. Four options 
with old/new and sure/unsure were given for the response. Error bars represent SEM with a Bonferroni adjusted 
alpha level (α=.05/2).  
 

Neural decoding results. All neural decoding was performed separately for 

each individual. Data from a functional localizer task was collected independently from 

the encoding task. Note that the stimuli used in the localizer task were separate from 

those used in the encoding task. The localizer consisted of a one-back working memory 

task with six categories of images (face, scene, animal, food, tool, and vehicle) and 

these data were used to train category-specific fMRI pattern classifiers (see Methods). 

Within the localizer data, we verified that brain activity patterns associated with 

processing each stimulus category were reliably differentiated in ventral temporal cortex 

(M = 0.58, SEM = 0.02, chance = 0.14 for 6 stimulus categories + rest; one-sample t 

test, Ps < .001, Figure 2-figure supplement 1B), using independent training and testing 

sets with cross-validation analysis. Decoding accuracy for the cue categories (face and 
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scene) was reliably higher than for the other four categories (animal, food, tool, and 

vehicle; paired t test, t21 = -15.34, P < .001). Pattern classifiers were then re-trained on 

all data (2 runs) from the localizer task and applied to the encoding task to decode 

every timepoint in the experiment. The category of each object was reliably decoded 

during its presentation (M = 0.32, SEM = 0.01, chance = 0.14, Ps < .001, Figure 2-figure 

supplement 1C).  

For every item that was viewed in the encoding task, we defined its “perception 

strength” as the amount of classifier evidence for that item during its presentation. There 

was no difference in perception strength across the four repetitions and two conditions 

(one-way ANOVA, F(7, 147) = 0.73, P = .672). For repeated cues, we also calculated 

the “prediction strength” corresponding to the item that followed the cue on the previous 

iteration (e.g., the prediction for “ram” during “Chris2” in the sequence: Chris1-ram, …, 

Chris2-sandwich, … in Figure 1A) as the amount of classifier evidence for the category 

of that item during the repeated presentation of the cue (see Methods for further 

details). There was also no difference in prediction strength across the three repetitions 

(2nd– 4th) and two conditions (F(5, 105) = 0.40, P = .849). Evidence for such cue-based 

predictions comes from the observation that decoding accuracy for the perception of 

cues (which appear four times each) was lower compared to the decoding accuracy for 

the perception of non-cue items which appeared only once (paired t test, t21 = 3.24, P < 

.01). This was true in both the incongruent (t21 = 2.75, P < .05) and congruent conditions 

(t21= 2.95, P < .01). This relationship is a reversal from the results in the localizer data 

alone where the cue categories (faces, scenes) were decoded with greater accuracy 

than the other four categories (t21 = 3.24, P < .01). This reduction in decoding accuracy 
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for the cues likely reflects the co-mingling of cue processing and automatic predictions 

of items from other categories triggered by the reappearance of the cue. This possibility 

will be addressed further in the Discussion. Next, both of these neural measures 

(perception strength and prediction strength) were linked to subsequent memory 

behavioral outcomes for each item that appeared in the sequence. The distributions of 

classifier evidence scores for both of these measures are shown in Figure 2C, showing 

that perception strength of new items was reliably higher than the prediction strength of 

the expected items (M = 0.69 vs. M = 0.52, P < .001).  

Prediction and subsequent memory. To evaluate the maximum impact of the 

congruency of the context manipulation, we focused our attention first on results for the 

final (4th) repetition of the cues in each condition when participants would have had the 

most opportunity to stabilize their learning of the statistical relationships between cues 

and items in each condition. This allows us to directly evaluate our main hypothesis that 

the reliability of context-based predictions (which should be maximally divergent across 

the two conditions during the final repetition) impacts episodic memory. In the 

incongruent condition, there was a negative relationship between the prediction strength 

for the previous (3rd) items and their subsequent memory (logistic regression, β = −0.74, 

P = .019, bootstrap one-tailed, Figure 2A). Stronger predictions for these mispredicted 

items (i.e., 3rd items) led to worse subsequent memory for them. In the congruent 

condition, however, this relationship was not reliably different than zero (β = −0.03, P = 

.531, Figure 2B). There was a statistical trend that this relationship was more negative 

in the incongruent vs. congruent condition (P = .082).  
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Control analyses confirmed that these relationships were specific to classifier 

evidence for the target category, by subtracting the mean classifier evidence of the 

three non-target categories from the target classifier evidence scores (see (Detre et al., 

2013; Kim et al., 2014)), and also by controlling for non-target category evidence using 

partial correlation (Figure 2-figure supplement 2A). To rule out the possibility that 

memory for these 3rd items was worse due to poor initial encoding, we also controlled 

for the perception strength of each item during encoding (Figure 2-figure supplement 

2C), and the relationship between prediction strength and subsequent memory 

remained negative in the incongruent condition (β = −0.18, P = .028), and non-existent 

in the congruent condition (β = −0.01, P = .521), suggesting an item-specific pruning 

effect existed only in the incongruent condition.  

Perception and subsequent memory. Focusing again on the final repetition of the 

cues, we evaluated the relationship between perception strength (measured neurally) of 

the final (4th) item in each set and the subsequent memory for those items measured 

with the surprise item-recognition test at the end of the experiment. If abstract memory 

structures were stabilized in the congruent contexts, the new items would have been 

also encoded in the abstract level at the expense of item details to facilitate learning 

efficiency. In the incongruent condition, there was a positive relationship between the 

perception strength of the 4th items and their subsequent memory (β = 1.24, P = .004, 

Figure 2A): stronger encoding of final items in this condition led to better subsequent 

memory for them. This relationship did not exist for the congruent condition (β = 0.39, P 

= .215, Figure 2B), and it was more positive in the incongruent vs. congruent condition 

(P = .046). The control analysis controlling non-target category evidence using partial 
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correlation confirmed that these relationships were specific to the evidence for the target 

category (Figure 2-figure supplement 2B).	

	
	
Figure 2. Predicting subsequent memory from brain activity during the final (4th) repetition of cues in the (A) 
incongruent and (B) congruent condition. Logistic regression results (coefficient estimate: β) linking classifier 
evidence and recognition accuracy are shown separately for 3rd items (prediction strength) and for 4th items 
(perception strength). Statistics are based on bootstrap analyses with 1,000 iterations. 
	

Changes across repeated contexts. We replicated the analyses reported above, 

now also for each of the three prior appearances of the cues. The relationship between 

prediction strength and subsequent memory in the incongruent condition was 

consistently negative for all cue repetitions (2nd/3rd/4th, Ps < .05), with no differences 

between the repetitions (Ps > .05; Figure 3A). There was no significant relationship for 

any repetition in the congruent condition. The positive relationship between perception 

strength and subsequent memory in the incongruent condition increased across 

repetitions (linear regression, βlin = 0.30, P = .073) but was significant only in the 4th 

repetition (P = .004) and a statistical trend in the 3rd repetition (P = .051; Figure 3A). 

This is likely due to the fact that the 1st, 2nd, and 3rd items all had potential contributions 

to their subsequent memory strength from both their initial perception and their 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469965doi: bioRxiv preprint 

https://doi.org/10.1101/469965
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 16 of 43 

subsequent misprediction (and possible pruning) during the next appearance of the cue. 

This could obscure the relationship between perception and memory for these earlier 

items. However, the 4th items only had contributions from their perception: there was no 

further appearance of the cue and thus no opportunity to mispredict the 4th item. 

Stronger perception strength for these items was, intuitively, associated with better 

subsequent memory for these items.  

In the congruent condition, this positive relationship decreased across repetitions 

(βlin = −0.51, P = .037) and was statistically significant only in the first two repetitions (1st 

and 2nd, Ps < .01). There was a significant interaction of condition and repetition on this 

relationship (P = .002). The link between perception strength and subsequent memory 

for these first two repetitions were significantly different between the conditions. We 

suggest that the influence of perception remained strong in the congruent condition 

because, unlike in the incongruent condition, these items were not specifically predicted 

and pruned upon subsequent appearances of the cues. Rather, predictions in the 

congruent condition may have become categorical in nature as contexts were repeated. 

This is supported by the prediction-to-memory results in Figure 2B, showing that 

prediction strength was unrelated to item-specific memory recognition performance in 

the congruent condition. 

Changes within a repeated context. To examine when prediction information 

emerged during a cue presentation, classifier evidence was divided into three periods 

on each trial: baseline (3 s before the cue), cue (3-5 s during the cue), and item (3-5 s 

during the item that followed the cue). All regressors were shifted 4 s to account for 

hemodynamic lag, and data were combined across repetitions. Results are shown 
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separately for each repetition in Figure 3-figure supplement 1. As expected, there was 

no relationship between prediction strength and subsequent memory in the baseline 

period of either condition (Figure 3B). In the incongruent condition, this relationship was 

consistently negative, and more negative than in the baseline period, for both the cue 

and item periods (Ps < .025). In contrast, there was no relationship, and no difference 

from baseline, in the congruent condition (Ps > .119, Figure 3B).   

 

	
Figure 3. Changes across time in the links between perception, prediction, and subsequent memory. (A) (Top) The 
relationship between perception strength and subsequent memory across all four cue repetitions in both the 
incongruent and congruent conditions. (Bottom) The relationship between prediction strength and subsequent 
memory across the 2nd, 3rd, and 4th repetitions of each cue (when prediction was possible) in each condition. (B) The 
relationship between prediction strength and subsequent memory is shown for different time windows within a cue 
presentation (baseline, cue, item), and averaged across the final three repetitions of each cue. Statistics are based 
on bootstrap analysis with 1,000 iterations. Error bars represent 95% CI.  
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This study demonstrates how encountering familiar situations in the visual world 

influences how we remember past events and how we process new experiences. 

Specifically, we show that when the temporal statistics of our experience allow for the 

learning of abstract, conceptual relationships between events, this changes our 

expectations of future events to be more abstract and less focused on item-specific 

details. Abstract predictions appear to have two main consequences: (1) memory for 

past events is better preserved (existing memories of specific items do not get “pruned” 

during prediction errors), and (2) memory for new events is worse because encoding is 

less focused on item-specific details.  

We hypothesized that incongruent contexts would result in the pruning of 

memories for past events experienced in that context, whereas congruent contexts 

would not. Consistent with this hypothesis, we found behavioral evidence of pruning in 

the incongruent condition, but not in the congruent condition, for the 1st items that 

followed a cue. Moreover, neural measures of prediction strength for each item in the 

incongruent condition were associated with worse subsequent memory for those items. 

This replicates the memory pruning effect observed previously (Kim et al., 2014) that 

describes a form of error-driven statistical learning in which the memory trace for a 

mispredicted event is weakened, which leads to subsequent forgetting of that event. For 

cues in the congruent condition, i.e., cues that were always followed by new exemplars 

from the same semantic category, no memory pruning was observed in the brain-

behavior relationships of those items. However, encoding of the details of new items at 

the end of the cue sequences was impaired compared to the incongruent condition, 

leading to worse overall memory for these items and no reliable relationship between 
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brain measures of perception strength and subsequent memory. Note that there were 

no differences on category evidence for both prediction and perception across condition 

and position, suggesting that the effects we found derived from differences in 

predictions to which our neural measures were insensitive (e.g. a prediction of a specific 

item from category A vs. an abstract expectation about category A). Together these 

results show that the predictability of events impacts how episodic memories are 

updated and how new memories are formed.  

 

Evidence for automatic predictions of items and categories. In our incidental 

encoding task, repeated cues in the incongruent condition were always followed by new 

items from new categories. Participants could not anticipate which item would follow a 

cue when it repeated, nonetheless, there was evidence for an automatic prediction for 

the previous item that followed the cue each time it repeated. Moreover, stronger 

predictions for previous items (none of which would ever reappear) were associated 

with weaker subsequent memory for those items (Figure 2A). This suggests that, in the 

incongruent condition, participants were generating item-specific predictions upon each 

cue reappearance, which in turn led to pruning of the item-specific episodic memories. 

Additional evidence for context-based predictions comes from the observation of 

reduced classifier decoding accuracy for the perception of the repeated cues compared 

to the single-exposure items (Figure 2-figure supplement 1C). Notably, this is the 

opposite relationship of classifier performance from within the localizer data alone, 

where the cue categories (face, scene) were decoded better than the other categories 

(animal, food, tool, and vehicle; Figure 2-figure supplement 2B). The elimination of the 
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decoding advantage for the repeated cues may have arisen from two sources: first, from 

reduced processing of the now-familiar cues across repeated presentations, and 

second, from the co-mingling of cue processing with an automatically triggered 

prediction for an item from another category, which would dilute the measurement of 

cue-specific neural activation.  

The argument for item-specific predictions is further supported by the observation 

of a strong relationship between perception strength and memory for the final items in 

the incongruent conditions. These items were remembered well, and their perception 

strength was directly related to their memory strength. This direct link between 

perception strength and memory suggests that individual item details were being 

encoded, which should in turn facilitate predictions of these items upon the next 

appearance of the cue. Note that it is likely that the encoding and subsequent prediction 

for these items would decrease if and when it was learned that these predictions were 

always violated, but this did not seem to occur in this study after only four repetitions.  

On the other hand, in the congruent condition, cues were always followed by new 

items from a single category (e.g., a cue was always followed by an animal: cue-badger, 

cue-tiger, cue-cow, cue-peacock). It is possible that participants could learn this 

relationship for each cue and make explicit predictions at the category level. However, 

post-experiment questionnaires confirmed that, aside from noticing repeated 

presentation of the cues, participants did not detect any structure in the order of any of 

the stimulus presentations. Any differences in context-based predictions between the 

experimental conditions would therefore be due to implicit learning of the transition 

probabilities associated with the different cues.  
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For each repetition of the congruent cues, there was no relationship between the 

neural evidence for prediction and subsequent memory for the previous (3rd) item 

(Figure 3A). Also, subsequent memory for the final (4th) item in congruent sets was poor 

and unrelated to neural perception strength for those items. Unlike in the incongruent 

condition, these data do not support an inference that participants were making item-

specific predictions for these cues. Rather, they suggest that implicit predictions in the 

congruent condition were made at the category level rather than at the item level (e.g., 

“expect some animal” instead of “expect that cow”). These results reflect the 

consequences of statistical learning focused not on item-specific details, but rather on 

abstract conceptual information (Brady and Oliva, 2008). Across multiple experiences, 

overlapping features (i.e., the semantic category) of individual events were extracted to 

form more generalized knowledge about these specific situations, similar to the 

formation of memory schemas (O’Reilly and Norman, 2002; Tse et al., 2007; van 

Kesteren et al., 2016, 2012). Once this general inference was developed, only category-

level information was encoded and the specific episodic details of new items were 

forgotten (van Kesteren et al., 2016, 2012).  

Our main analyses relied on category-specific fMRI pattern classifiers to covertly 

measure implicit predictions of previous items from a repeated context. Category 

classifiers can produce more robust decoding than sub-category classifiers or item-level 

classifiers, but of course they lack item specificity. We decided against proceeding with 

an item-level decoding approach due to insufficient decoding accuracy in early pilot 

data. Instead we used category information as a proxy for item information, and 

therefore we could not distinguish predictions for individual exemplars of a category 
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from generic category predictions. We must therefore rely on the relationship (or lack 

thereof) between these category-specific neural estimates and the item-specific 

behavioral measures for each stimulus to speculate on the nature of these predictions. 

Future work should use neural analyses sensitive to item-level representations (e.g., 

representational similarity analysis (Kriegeskorte et al., 2008)) to more directly test this 

idea.  

 

Memory pruning. Results for the incongruent condition in the present study, with 

cues followed by novel items from novel categories, were consistent with previous 

findings on memory pruning 19 which found a negative relationship between neural 

prediction strength for mispredicted items in a temporal sequence and subsequent 

memory for those items. Memory pruning is a form of error-driven learning that is 

consistent with predictions of the non-monotonic plasticity hypothesis (NMPH) (Detre et 

al., 2013; Lewis-Peacock and Norman, 2014b; Newman and Norman, 2010) which 

claims that moderately activated memories can lead to weakening and subsequent 

forgetting of those memories. Here, moderately active memories were created by the 

automatic context-based predictions that occurred during the incidental encoding task. 

In Figure 2A, the prediction strength for the 3rd item following a repeated cue is 

contrasted with the perception strength for the 4th item that actually appeared. The 

distributions of classifier evidence values show that perception strength (M = 0.69) was 

reliably higher than prediction strength (M = 0.52, P < .001, Figure 2C). Taking classifier 

evidence as an index of the strength of “memory activation”, we see that prediction 

leads to more moderately active representations (compared to perception), and the 
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NMPH predicts that these memory representations would be more vulnerable to 

weakening and long-term forgetting.  

According to this framework, predictions of a specific event are realized by 

anticipatory activation of its memory representation, resulting in relatively weak 

activation of its memory trace (compared to activation during the initial perception of the 

event). If this prediction is confirmed, its neural activation will increase, as will the 

strength of its representation in long-term memory, due to additional processing of the 

event. If the prediction is violated, its reactivated memory representation may persist in 

this moderately activated state which, according to the hypothesis, can trigger its 

weakening and forgetting. In temporal contexts that allow for more abstract statistical 

learning, the predictions may not contain representations of specific events from the 

past (e.g., “some animal” might be expected but not “that brown cow”). The lack of 

specificity in these predictions may have the effect of shielding the memories of those 

specific events from modification.  

These results are consistent with recent work in psycholinguistics. For example, 

the memory pruning of prior cue associates observed in our incongruent condition is 

consistent with work by Oppenheim and colleagues (2010) (Oppenheim et al., 2010), 

who describe a cumulative semantic interference effect in which retrieving a word can 

impair the retrieval of other words from the same semantic category. They argue that 

the ‘negative’ impact on related words and the ‘positive’ effect of repetition priming for 

the target words are two sides of the same coin, both resulting from error-driven implicit 

learning processes. Similar to the NMPH framework described above, the mechanism 

by which this is accomplished is modeled as the inhibition of weakly activated 
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competing words during the gradual learning of the associations between concepts and 

words.  

 

Memory pruning vs. memory integration. It could be argued that cues in the 

incongruent condition should trigger memory integration (Greve et al., 2018; Morton et 

al., 2017; Preston and Eichenbaum, 2013; Schlichting et al., 2015; Schlichting and 

Frankland, 2017; Schlichting and Preston, 2015; Zeithamova et al., 2012a, 2012b) 

rather than memory pruning, such that all items maintain their associations to the 

repeated context, similar to inferential learning (Morton et al., 2017; Preston and 

Eichenbaum, 2013; Schlichting et al., 2015; Schlichting and Frankland, 2017; 

Schlichting and Preston, 2015; Zeithamova et al., 2012a, 2012b). Recent evidence 

suggested that prediction error weakens overlapping representation between the 

mispredicted item and its context, leading to differentiation of their neural patterns in the 

hippocampus (Kim et al., 2017). However, the same neural consequences have also be 

observed for memory integration (Zeithamova et al., 2012a). The hippocampus has a 

critical role, not only for memory integration (Eichenbaum, 2000; van Kesteren et al., 

2016) but also in mismatch detection (Kumaran and Maguire, 2007; Long et al., 2016) 

for prediction errors. In a recent study by Long and colleagues (Long et al., 2016), the 

activation of the hippocampus was found to be positively correlated with prediction 

errors, and even more so if the mispredicted item was semantically related to the actual 

item. (This is similar to the congruent condition in the present study.) The hippocampus 

was not recruited when predictions were correct or unrelated semantically to the novel 

events. This suggests that mismatch signals are key for triggering updating of existing 
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memories (Kumaran and Maguire, 2007; Long et al., 2016; Schlichting and Preston, 

2015). In our data, however, we were unable to find any relationship between prediction 

strength and hippocampal activation, or any evidence of hippocampal involvement when 

mismatched predictions were semantically related to the new events (i.e., in the 

congruent condition). Unlike Long and colleagues’ study or inferential learning studies 

(Schlichting et al., 2015; Zeithamova et al., 2012b) in which the participants explicitly 

learned word-picture or picture-picture associations in the pre-training phase, the cue-

item associations were implicitly learned in our study. Explicit predictions based on 

over-learned associations might be too strong to trigger pruning of existing memories, 

but rather may promote integration of the new semantically related items (Mortan et al., 

2018; Schlichting et al., 2015).  

 

Reduced encoding in predictable contexts. In our study, the congruent 

condition involved repeated visual cues that were consistently followed by items from a 

single category. Results suggest that participants implicitly learned these relationships, 

as both behavioral evidence and neural evidence in this condition diverged from the 

incongruent condition in which the cues were always followed by a new item from an 

unpredictable category. Specifically, memory for the final item in the congruent sets was 

worse than previous items in the set (Figure 1C), and there was no relationship between 

neural evidence of perception for these items and their subsequent memory strength 

(Figure 2B). Together these results suggest that in temporal contexts with greater 

predictability (e.g., when the category of the next item can be anticipated), encoding of 

new items is reduced (but see (Friedman, 1979; Gronau and Shachar, 2015; Marlieke 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469965doi: bioRxiv preprint 

https://doi.org/10.1101/469965
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 26 of 43 

T. R. van Kesteren et al., 2010; Zwaan and Radvansky, 1998)). Consistent with this 

idea, Rommers and Federmeier (2018) (Rommers and Federmeier, 2018)  recently 

demonstrated evidence that predictable information is processed more weakly than 

unpredictable information. When words reappeared in predictable contexts, the neural 

responses measured using electroencephalography (EEG) indicated that the words 

were processed less than repeated words in unpredictable contexts. Specifically, the 

repetition priming effects were diminished in the N400 and LPC components of the EEG 

signal. The authors suggest that predictability allowed the brain to operate in top-down 

“verification mode” at the expense of detailed stimulus processing.   

Conclusions. The learning processes observed in this study are examples of 

adaptive forgetting that allow for the efficient use of the brain’s memory systems (Kim et 

al., 2017, 2014; Lewis-Peacock and Norman, 2014b; Wylie et al., 2008). Being able to 

anticipate the demands required of us in familiar situations can help us to respond more 

effectively and proactively. Pruning unreliable memories, via statistical learning, 

supports this behavior by reducing interference during context-based retrieval of 

relevant memories (Kumaran and Maguire, 2007). Here, we demonstrated that the 

stability of episodic memories is evaluated over multiple exposures to the context in 

which those memories were acquired. When a context afforded no accurate predictions, 

previous experiences were nonetheless anticipated, perhaps reflecting a persistent, but 

futile, effort to learn the statistics of the environment. Memory for these experiences was 

pruned when their predictions were violated. When a context afforded general 

information (but not specific details) about what to expect, the previously encountered 

events were no longer predicted, and their memories were shielded from pruning. 
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However, new learning was also diminished in these more stable contexts. These 

findings deepen our understanding of how episodic memories are formed and updated 

by demonstrating how our ability to predict the future influences how we remember the 

past. 

 

METHODS 

Participants. Thirty healthy young adults (13 male; age, M = 22 yr, SD = 3.48, all 

right-handed) were recruited from the student body and campus community of the 

University of Texas at Austin to participate in the neuroimaging experiment. Five 

participants were excluded due to low classifier accuracy in the localizer task (5 SEM 

below the mean), and three participants were excluded due to low recognition accuracy 

(10 SEM below the mean), resulting in final sample size of n=22. Twenty-four additional 

participants (13 male; age, M = 23.29y, SD = 4.81, left-handed = 1) were recruited for a 

behavior-only version of the experiment. All participants had normal or corrected-to-

normal vision. The study was approved by the University of Texas at Austin Institutional 

Review Board and informed consent was obtained from all participants.  

Stimuli. Colored pictures of common objects were used for this experiment. 

They were selected from six categories (with two subcategories each): famous faces 

(female/male), famous scenes (manmade/natural), animals (land/non-land), food 

(cooked/uncooked), tools (power/non-power), and vehicles (land/non-land). Object 

images were obtained from various resources (Morton et al., 2017) including Bank of 

standardized stimuli (Brodeur et al., 2014), and Google Images. 
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Procedure. The experiment proceeded in three tasks: incidental encoding, 

functional localizer, and subsequent recognition memory test. fMRI brain data was 

acquired for the encoding task (6 runs, 335s/run) and the localizer task (2 runs, 

513s/run) (N = 22, Figure 2-figure supplement 1A). Participants performed the 

subsequent recognition memory test either after the localizer (outside the scanner, N = 

14) or before the localizer (in the scanner, N = 8). For behavior-only participants (N = 

24), encoding and recognition phases were conducted sequentially. There was a 

significant condition (incongruent/congruent) x position (1st/2nd/3rd/4th) interaction on 

recognition accuracy for the post-scan participants (F(3, 39) = 3.13, P = .036) but not for 

the collapsed (F(3, 135) = 2.32, P = .078), during-scan (F(3, 21) = 0.40, P = .751), and 

behavioral-only participants (F(3, 69) = 2.16, P = .101).  

Incidental encoding task: Participants were shown a steady stream of images, 

one at a time, for the purpose of incidental encoding for a surprise subsequent memory 

task at the end of the experiment. In the stream, there were hidden sequences 

consisting of cue-item pairs. Each cue was associated with four different items, which 

made four cue-item pairs as one set. For half of the cues, all items were selected from a 

single category (congruent condition). For the other half of the cues, the items were 

selected from a new category each time (incongruent condition). There were 24 sets (96 

total cue-item pairs) for each condition, and 96 non-paired items that were not part of a 

set and never directly followed a cue. The pairs from a given set were not adjacent but 

appeared intermingled with other sets and non-paired items (mean lag = 8 trials). All 

cues appeared four times, and all other items appeared only once. In each run (80 

trials), there were four sets for both conditions and 16 non-paired items. Across all six 
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runs (480 trials total), the categories (e.g., animal, food, etc.) and subcategories (e.g., 

land/non-land, cooked/uncooked, etc.) of items and non-paired items were counter-

balanced.  

As a cover task, participants were asked to make a subcategory judgment for 

each image using one of two buttons on a 4-button box (in the scanner) or on a 

keyboard (outside the scanner). The category of the stimulus changed every trial, and 

therefore participants were required to constantly update their response mappings. To 

facilitate performance, we provided the two subcategory options for each stimulus (e.g., 

female/male for faces). On a trial, the stimulus displayed for 1 s on a white background 

box (visual angle: 21.8° x 21.8°), with empty feedback circles and text underneath the 

image displaying the subcategory choices, during which participants had to make a 

response. When the stimulus disappeared, a blank white box remained with feedback 

circles underneath, in which one of the circles was colored for 1 s based on 

performance (green: correct, red: incorrect, yellow: missed). The inter-trial interval was 

pseudo-randomly jittered at 2, 3, or 4 s.  

Either faces or scenes, but not both, were used as cue stimuli for each 

participant (N = 13/22 fMRI, and N = 12/24 behavioral participants had face cues). The 

non-selected category was not used for the encoding task for that participant. These 

two categories were chosen as cues based on their superior classification accuracy in 

ventral temporal cortex (face, scene; M = 0.78, SE = 0.03), relative to the other four 

categories (M = 0.47, SEM = 0.03), from a separate pilot sample (N = 3) on the localizer 

task (see Figure 2-figure supplement 1B). We chose famous people and famous places 

to facilitate recognition of the cues, which in turn should facilitate the generation of 
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context-based predictions when the cues repeated. The other four categories (animals, 

food, tools, vehicles) were used for the stimuli that appeared (only once) as items 

following a cue or as non-paired items. Participants practiced the task before scanning 

with a separate set of images until they reached a criterion of 80% accuracy for the 

subcategory judgment task. Categorization performance was calculated with accuracy 

and RT of the responses, and a simple linear regression was applied to track the 

performance changes across repetitions for trial type and condition. 

Subsequent recognition memory test: In this phase, the participants were given a 

surprise memory test for the objects that they saw in the encoding task. All objects used 

for non-cue items (288 old; 96 items for each incongruent, congruent, and non-paired 

condition) and 96 novel lures were tested in a random order. Participants made a 

recognition judgment using a 4-point scale: 1 = sure new, 2 = unsure new, 3 = unsure 

old, and 4 = sure old. Only “sure old” responses were treated as hits (Kim et al., 2014; 

Lewis-Peacock and Norman, 2014b), and we calculated memory sensitivity using A-

prime (A’) (Stanislaw and Todorov, 1999). A subset of participants (N = 8/22) took the 

memory test right after the encoding task in the scanner prior to the localizer phase to 

minimize any possible memory interference from stimuli in the localizer. However, there 

was no observed impact of task order on memory performance (F(1, 20) = 1.137, P = 

.299). For assessing statistical reliability of the subsequent memory results, we 

combined data from the behavioral and fMRI groups (N = 46 total).  

Functional localizer: Participants performed a one-back task with six categories 

of images: face, scene, animal, food, tool, vehicle. These stimuli were unique to the 

localizer and were never shown again. Each image was presented for 1.5 s on a white 
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background box followed by an inter-trial interval for 0.5 s in which only the white 

background box remained on the screen. Stimulus display parameters were similar to 

the encoding task. However, rather than making a subcategory judgment, participants 

responded “same” if the object matched the previous object or “different” otherwise (on 

average, there was 1 repeat every 5 trials). Responses were to be made within 1 s, and 

visual feedback was given using the color of the frame of the background box (green: 

correct, red: incorrect) immediately after the response, or after stimulus offset if no 

response was made. Stimuli were blocked by category with 10 trials per mini-block, 

lasting 20 s, and 6 mini-blocks (6 categories x alternate subcategory across blocks) per 

block, followed by 6 s of blank inter-block interval. There were two fMRI runs of the 

localizer task, each with 4 blocks (24 mini-blocks) presented in randomized order. 

Fifteen seconds were added to the end of each run to account for hemodynamic delay 

on the last trial. To verify the accuracy of the classifier, the one-sample t test was 

conducted for each category.  

Data acquisition. The Psychophysics Toolbox (http://psychtoolbox.org) was 

used to run experiments. Neuroimaging data were acquired on a 3.0-T Siemems Skyra 

MRI (Siemens, Erlangen, Germany) with a 64-channel head coil. High-resolution 

anatomical images were collected for registration from a T1-weighted 3-D MPRAGE 

volume (256 × 256 × 192 matrix, 1 mm3 voxels). A gradient-echo echo planar imaging 

sequence was applied for functional images with following parameters: TR = 1 s, 

multiband factor = 4, TE = 30 ms, 63° flip, 96 × 96 x 64 matrix, 2.4 mm3 voxels, 56 

slices, no gap. 
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Preprocessing. FSL (http://fsl.fmrib.ox.ac.uk) was used to preprocess the fMRI 

data. Functional volumes were corrected for motion, aligned to the mean volume of the 

middle run, detrended and temporal high-pass filtered (128s). Timepoints with 

excessive motion were removed (framewise displacement, threshold = 0.9 mm (Power 

et al., 2014); M = 6.7 TRs removed, SD = 14.5).  

Region-of-interest. Bilateral ventral temporal cortex (Grill-Spector and Weiner, 

2014; Haxby et al., 2001) (VTC) was anatomically delineated as a region of interest 

(ROI). The ROI in standard space was generated by combining bilateral temporal 

occipital fusiform cortex and posterior parahippocampal gyrus from the Harvard–Oxford 

cortical atlas. This was converted to native space and resampled to functional resolution 

for each subject using the transformation matrix derived from registration of that 

subject’s data to standard space. This size of this ROI across subjects was M = 4,266 

voxels, SD = 283.  

Classification Analyses. The Princeton Multi-Voxel Pattern Analysis Toolbox 

(www.pni.princeton.edu/mvpa) was used for multivoxel pattern classification using L2-

regularized, non-multinomial (one-vs-others, for each category) logistic regression. 

Classifiers were trained separately for each participant using localizer data in bilateral 

ventral temporal cortex. Regressors for all seven categories (face, scene, animal, food, 

tool, vehicle, rest) were shifted by 4 s to adjust for hemodynamic lag. To validate 

classifier performance, cross-validation was performed across the two runs of localizer 

data. This was done 22 times with different penalties (from 0 to 1000) to find the optimal 

penalty for each participant (M = 156, SD = 244). Prior to classification, feature selection 

was performed for each training set using a voxel-wise ANOVA across all categories 
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and timepoints (threshold: P = 0.0001). The selected voxels were used to train and test 

the classifier (19.2% of the original voxels; M = 820 voxels, SD = 237). Across subjects, 

classifier performance was reliably above chance for each category (M = 0.58, SEM = 

0.02, chance level = 0.14, Figure 2-figure supplement 1B). Five subjects were excluded 

from further analyses due to low classifier accuracy (5 SEM below the mean). Data from 

both localizer runs were then used to re-train the classifiers which were then applied to 

data from the encoding task. This produced classifier evidence scores (from 0 to 1) for 

each category at every timepoint in the encoding task. These scores reflect the 

likelihood that a test sample of brain activity contains a representation of a given 

category. The same individualized penalty derived from the cross-validation of the 

localizer data was used, and a new feature-selected mask was computed (26.6% of the 

original voxels; M = 1136, SD = 264). The perception strength of each object during the 

encoding task was defined as the average classifier evidence for the object’s category 

from its onset until the onset of the next stimulus (i.e., 1 s of display plus 2, 3, or 4 s of 

inter-trial interval, depending on jitter, shifted forward 4 s to account for hemodynamic 

lag; prediction window). On cue repetitions, the prediction strength for the item that 

previously followed the cue was defined as the average classifier evidence for that 

item’s category during the perception time window for the cue (perception window). 

Note that to minimize influence from the onset of the next item, but to keep the window 

size equal to the perception window, the prediction window was actually shifted 1 s 

backward prior to then being shifted 4 s forward (net: 3 s forward) to account for 

hemodynamic lag.  
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In an attempt to improve decoding sensitivity for predictions in this fast event-

related design, we modeled category-level beta estimates for the perception of each 

stimulus in the encoding task (General Linear Model, GLM, utilizing a hemodynamic 

response function) to remove the evoked activity from cue presentations. Then we 

modeled trial-specific beta estimates for the predictions from the residuals of this 

analysis (GLM including a regressor for that trial + another regressor for other trials) 

(Mumford et al., 2012). We applied the same classifiers trained on the localizer data 

with shifted regressors to decode the “prediction betas” from the encoding task. The 

results obtained from this analysis were qualitatively similar to the results obtained using 

the unmodeled, shifted regressors, which we chose to report here.   

Linking neural data to behavior. Binary logistic regression analysis was used 

to examine the impact on subsequent memory from prediction strength and perception 

strength during the encoding task. The result of each of these analyses is a coefficient 

estimate (β) of the relationship between the given neural evidence and the memory 

outcomes. To increase our ability to detect trial-specific effects, we pooled data from all 

subjects and then performed bootstrap resampling to evaluate the population reliability 

of the result (Efron, 1979). On each bootstrap iteration (of 1,000 total), we sampled 

randomly (with replacement) a collection of participants data to match the size of our 

experimental sample (N = 22). There were eight regressions conducted for perception 

strength and subsequent memory (incongruent/congruent x 1st/2nd/3rd/4th positions), and 

six regressions conducted for prediction strength and subsequent memory 

(incongruent/congruent x 2nd/3rd/4th positions). Statistical significance was calculated 

with a non-parametric test across bootstrap iterations, evaluating the stability of an 
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effect of interest by calculating the proportion of iterations in which the effect was found. 

Lastly, to verify that the effects were not arising from variance across participants but 

from within-subject variance, we repeated the main analyses using standardized (z-

scored) classifier evidence for each participant (Kim et al., 2014). Results from the main 

analyses were qualitatively similar and confirmed. Across repetitions, linear regression 

analyses were conducted on the binary logistic regression results (β) for each condition 

and process (prediction/perception), and F-test on the model was calculated for the 

statistical significance test.  

Mismatch signals in hippocampus. Linear regression analyses were applied to 

link mismatch signals in the hippocampus (Long et al., 2016) and prediction strength 

decoded from the ventral temporal cortex. The mismatch signal was defined as the 

average intensity of the signal during the perception window, and prediction strength 

was defined as the average classifier evidence during the prediction window. There was 

no reliable relationship between mismatch signals and prediction strength for either 

incongruent or congruent conditions (Ps > .05).  
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