1	TITLE: Global transcriptional regulation of innate immunity in C. elegans
2	
3	SHORT TITLE: p38 MAPK – ATF regulated immunity in C. elegans
4	
5	AUTHORS: Marissa Fletcher ¹ , Erik J. Tillman ¹ , Vincent L. Butty ² , Stuart S. Levine ² , and
6	Dennis H. Kim ¹ *
7	
8	
9	
10	AUTHOR AFFILIATIONS: 1Department of Biology, Massachusetts Institute of
10 11	AUTHOR AFFILIATIONS: ¹ Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
11	Technology, Cambridge, MA 02139, USA
11 12	Technology, Cambridge, MA 02139, USA
11 12 13	Technology, Cambridge, MA 02139, USA ² BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
11 12 13 14	Technology, Cambridge, MA 02139, USA ² BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA *Corresponding author
11 12 13 14 15	Technology, Cambridge, MA 02139, USA ² BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA *Corresponding author

19 Abstract

20	The nematode Caenorhabditis elegans has emerged as a genetically tractable animal host
21	in which to study evolutionarily conserved mechanisms of innate immune signaling. We
22	previously showed that the PMK-1 p38 mitogen-activated protein kinase (MAPK)
23	pathway regulates innate immunity of C. elegans through phosphorylation of the
24	CREB/ATF bZIP transcription factor, ATF-7. Here, we have undertaken a genomic
25	analysis of the transcriptional response of C. elegans to infection by Pseudomonas
26	aeruginosa, combining genome-wide expression analysis by RNA-seq with ATF-7
27	chromatin immunoprecipitation followed by sequencing (ChIP-Seq). We observe that
28	PMK-1-ATF-7 activity regulates a majority of all genes induced by pathogen infection,
29	and observe ATF-7 occupancy in regulatory regions of pathogen-induced genes in a
30	PMK-1-dependent manner. Moreover, functional analysis of a subset of these ATF-7-
31	regulated pathogen-induced target genes supports a direct role for this transcriptional
32	response in host defense. The genome-wide regulation through PMK-1-ATF-7 signaling
33	reveals global control over the innate immune response to infection through a single
34	transcriptional regulator in a simple animal host.

35 Author Summary

- 36 Innate immunity is the first line of defense against invading microbes across metazoans.
- 37 Caenorhabditis elegans lacks adaptive immunity and is therefore particularly dependent
- 38 on mounting an innate immune response against pathogens. A major component of this
- 39 response is the conserved PMK-1/p38 MAPK signaling cascade, the activation of which
- 40 results in phosphorylation of the bZIP transcription factor ATF-7. Signaling via PMK-1
- 41 and ATF-7 causes broad transcriptional changes including the induction of many genes
- 42 that are predicted to have antimicrobial activity including C-type lectins and lysozymes.
- 43 In this study, we show that ATF-7 directly regulates the majority of innate immune
- 44 response genes upon pathogen infection of *C. elegans*, and demonstrate that many ATF-7
- 45 targets function to promote pathogen resistance.

46 Introduction

47	Convergent genetic studies of host defense of Drosophila melanogaster and
48	mammalian innate immune signaling revealed a commonality in signaling pathways of
49	innate immunity that has helped motivate the study of pathogen resistance mechanisms in
50	genetically tractable host organisms such as <i>Caenorhabditis elegans</i> [1]. The simple <i>C</i> .
51	elegans host has enabled the genetic dissection of integrative stress physiology
52	orchestrating host defense of C. elegans[2-5]. Genetic analysis of resistance of C. elegans
53	to infection by pathogenic Pseudomonas aeruginosa has defined an essential role for a
54	conserved p38 mitogen-activated protein kinase pathway that acts on a CREB/ATF
55	family bZIP transcription factor, ATF-7, in immune responses [6,7]. A complementary
56	approach to characterizing the host response has been organismal transcriptome-wide
57	characterization of genes induced upon infection by a number of different bacterial
58	pathogens [8-15]. Putative effector genes encoding lysozymes and C-type lectin domain
59	(CTLD)-containing proteins have been identified that have also served as useful markers
60	of immune induction. Here, we report the genome-level characterization of the C. elegans
61	response to P. aeruginosa that is mediated by ATF-7 activity downstream of PMK-1
62	activation, combining RNA-seq analysis of pathogen-induced gene expression with
63	ChIP-seq analysis of ATF-7 binding, which suggests global regulation of the immune
64	response of <i>C. elegans</i> through a single MAPK- transcription factor pathway.
65	

66 Results and Discussion

We performed RNA-seq on wild-type (N2), *pmk-1* mutant, or *atf-7* mutant
animals exposed to *E. coli* OP50 or *P. aeruginosa* PA14 to identify genes that are

69	differentially regulated upon infection that also require PMK-1 or ATF-7 for induction
70	(Figure 1A). We found that in wild-type animals, 890 genes were two-fold upregulated
71	(adjusted p-value < 0.05), and 803 genes were two-fold downregulated upon <i>P</i> .
72	aeruginosa exposure, compared to animals exposed in parallel to E. coli (Figure 1B;
73	Table S1). Many of these upregulated genes have been previously implicated in the C .
74	elegans immune response and including genes encoding C-type lectin domain (CTLD)-
75	containing genes and lysozymes, corroborating prior microarray-based gene expression
76	studies (Figure 1C) [8-10,12-14]. In contrast, gene ontology analysis of genes that are
77	decreased in expression upon P. aeruginosa exposure shows enrichment for genes
78	associated with homeostasis with significant ontology terms consistent with growth,
79	development and reproduction (Figure S1A). Of note, many of the genes upregulated in
80	response to P. aeruginosa exposure exhibit relatively low expression when animals are
81	propagated on E. coli, whereas genes that are decreased in expression upon P. aeruginosa
82	exposure are expressed at a higher basal level during normal growth conditions on E. coli
83	(Figure 1D, S1B). In parallel, we analyzed P. aeruginosa-mediated gene expression
84	changes in <i>pmk-1</i> and <i>atf-7</i> mutants to identify the proportion of genes induced by <i>P</i> .
85	aeruginosa exposure that required PMK-1 and/or ATF-7 for induction (Figure S2). We
86	observed that 70% of genes significantly induced two-fold or greater by <i>P. aeruginosa</i>
87	exposure were no longer fully induced upon loss of <i>pmk-1</i> , and that 53% of upregulated
88	genes were no longer fully induced upon loss of <i>atf-7</i> (Figure 1E, Table S1). We also
89	found that 41% of genes reduced two-fold or more by <i>P. aeruginosa</i> required PMK-1,
90	and 50% required ATF-7 for reduction of expression (Figure S2B, Table S1). These data

91	implicate a high degree of involvement of PMK-1-ATF-7 signaling in the majority of
92	changes in gene expression induced in response to infection by <i>P. aeruginosa</i> .
93	To evaluate the role of ATF-7 in the direct regulation of genes induced by P .
94	aeruginosa infection, we performed chromatin immunoprecipitation followed by
95	sequencing (ChIP-seq) of animals carrying a GFP-tag fused to the C-terminal end of the
96	endogenous atf-7 locus. Using a GFP polyclonal antibody for immunoprecipitation, we
97	generated ChIP binding profiles for animals in either the wild-type background (atf-
98	7(qd328[atf-7::2xTY1::GFP])) or the pmk-1 mutant background (pmk-1(km25);atf-
99	7(qd328[atf-7::2xTY1::GFP])) after a four hour exposure to either E. coli OP50 or P.
100	aeruginosa PA14, for a total of four conditions, similar to the treatment described in
101	Figure 1A. In all conditions analyzed, ATF-7 exhibited abundant association throughout
102	the genome, with around 9,000 total peaks identified as enriched by MACS2,
103	corresponding to 23% of genes and 25% of transcription start sites (TSSs) (Table S2).
104	Analysis of the ATF-7 binding profile across all genes associated with enriched
105	TSSs, as well as the subset altered in expression by <i>P. aeruginosa</i> in wild-type animals
106	according to our RNA-seq data, revealed that ATF-7 is preferentially located at the
107	promoter regions of genes that are increased in expression by P. aeruginosa, and that this
108	enrichment for ATF-7 is lessened by <i>pmk-1</i> loss (Figure 2B, Figure S3A). MEME
109	analysis of the most enriched loci identified significant enrichment for the motif
110	GACgTCA, which corresponds to the Jun D bZIP motif expected for ATF-7 (Figure 2A).
111	This motif is present in as many as 80% of the most highly enriched regions of the
112	genome and its abundance is positively correlated with enrichment levels.

113 To identify the most likely immediate downstream targets of ATF-7, we set a 114 peak threshold based on the fraction of peaks containing the bZIP motif after ranking 115 ATF-7 peaks by enrichment (Figure S3B). This resulted in ~1500-4000 highly enriched 116 locations per experiment. Overlap of the of the retained ATF-7 binding profile of P. 117 aeruginoasa-induced genes compared to the RNA-seq data from P. aeruginosa induction 118 was measured using a Gene Set Enrichment Analysis (GSEA), which showed that ChIP 119 peaks were enriched for association with transcripts that are positively changed upon 120 pathogen exposure in both E. coli and P. aeruginosa ChIP conditions (Figure 2C, Figure 121 S3C). This association remains in the *pmk-1* mutant, although at weaker significance 122 level (Figure 2D, Figure S3D). Moreover, we also evaluated ATF-7 binding at individual 123 genomic loci induced by *P. aeruginosa* infection that were dependent on ATF-7 for full 124 upregulation. Examinations of distinct genetic loci further support the conclusions drawn 125 from the metagene analyses described above (Figure 3). These observations suggest a 126 direct transcriptional regulatory role for ATF-7 in the induction of broad transcriptional 127 changes upon immune challenge involving activation of p38/PMK-1 MAPK signaling in 128 response to P. aeruginosa infection. 129 For functional validation of putative ATF-7-regulated immune response target

genes, we focused on transcripts that were upregulated at least two-fold by *P. aeruginosa*exposure in an ATF-7-dependent manner and that were also bound by ATF-7 in any of
our four ChIP-seq conditions. Included among these putative ATF-7 targets were genes
encoding antimicrobial effector molecules, such as CTLD-containing proteins and
lysozymes (Table S3). We determined whether RNAi-mediated knockdown of these
genes resulted in enhanced susceptibility to killing by *P. aeruginosa* and observed that

136 RNAi of 13 of 43 genes conferred enhanced sensitivity to killing by *P. aeruginosa*,

137 without affecting survival on non-pathogenic *E. coli* (Table S3, Figure S4).

138	Our data suggest that ATF-7 is a direct regulator of immune effector genes that is
139	regulated by PMK-1 p38 MAPK. We previously proposed a model in which PMK-1
140	phosphorylates ATF-7 in response to pathogen infection, switching the activity of ATF-7
141	from that of a transcriptional repressor to that of an activator, allowing the induction of
142	immune response genes [7]. Our data here are consistent with this model, showing a
143	strong dependence of pathogen-induced gene induction on PMK-1 and ATF-7, and a high
144	degree of occupancy of regulatory regions of pathogen-induced genes by ATF-7 under
145	basal and pathogen-induced conditions, with ATF-7 occupancy of pathogen-induced
146	genes being strongly dependent on PMK-1. Moreover, our data reveal that PMK-1-ATF-
147	7 signaling regulates over half of all pathogen-induced genes at the genome-wide level.
148	PMK-1 signaling has also been implicated in a number of non-infection contexts in
149	C. elegans [2,16,17]. Interestingly, we observed that ATF-7 binds quite strongly to
150	several key regulators of stress response pathways. We found that ATF-7 exhibits
151	binding affinity to regulators of autophagy (lgg-1), the Unfolded Protein Response (xbp-
152	1), and the oxidative stress response (<i>skn-1</i>), as well as several immunity regulators (<i>hlh-</i>
153	30, zip-2, and interestingly, atf-7) (Figure 4). These observations suggest that initiation of
154	other stress responses may be integrated with the immune response. For example, we
155	have previously shown that immune response activation in developing larval is lethal
156	without compensatory XBP-1 activity, establishing an essential role for XBP-1 during
157	activation of innate immunity during infection of C. elegans [2]. We speculate that ATF-
158	7 may function to activate anticipatory stress responses that can be activated in concert

- 159 with innate immunity to promote host survival during microbial infection in a context-
- 160 dependent manner. Our genomic and genetic findings in the simple, genetically tractable
- 161 *C. elegans* host reveal a striking degree of global regulation of the organismal response to
- 162 pathogenic bacteria through a single p38 MAPK-regulated transcriptional regulator. Our
- 163 data support the idea that host defense, on a genome-wide and organism-wide level, is
- under the control of a limited number of stress-activated signaling pathways that regulate
- 165 global regulators of gene transcription.

166 Materials and Methods

167 C. elegans Strains

168 Strains used: N2, ZD386 (atf-7(qd22 qd130)), KU25 (pmk-1(km25)), ZD1807 169 (atf-7(qd328[atf-7::2xTY1::GFP])), ZD1976 (atf-7(qd328[atf-7::2xTY1::GFP]);pmk-170 1(km25)). C. elegans were maintained at 16°C on E. coli OP50 as described [18]. The atf-171 7(qd328) allele was generated by the CRISPR-Cas9 system as described [19,20] and 172 verified by Sanger sequencing. GFP expression in ZD1807 (atf-7(ad328)) was verified by 173 immunobloting, and pull-down was assessed by IP-IB. The *atf-7(ad238)* allele was 174 confirmed to function as wild-type, as assayed by susceptibility to P. aeruginosa strain 175 PA14 in a slow kill assay, and then crossed into the *pmk-1(km25)* mutant background. 176 177 **Preparation of Animals for Sequencing Experiments** 178 Slow Kill Assay (SKA) plates were prepared as previously described [21]. P. 179 aeruginosa strain PA14 or E. coli OP50 was grown overnight in Luria Broth (LB), 180 seeded onto SKA media and then grown overnight at 37°C, followed by an additional day 181 at room temperature as previously described [22]. Large populations of animals were 182 synchronized by egg-preparation of gravid adult worms in bleach, followed by L1 arrest 183 overnight in M9 buffer. L1 animals were dropped onto concentrated OP50 lawns seeded 184 onto Nematode Growth Media (NGM) and raised to the L4 larval stage at 20°C (about 40 185 h). Upon reaching L4, worms were washed off growth plates with M9 and placed on 186 SKA plates prepared as described above, seeded with either PA14 or OP50 and incubated 187 at 25°C for four hours. At this time, worms were harvested by washing for downstream 188 applications.

189

190 Chromatin Immunoprecipitation Followed by Sequencing

191	After three washes in M9 buffer, animal pellets were resuspended in an equal
192	volume of PBS + complete ULTRA protease inhibitor tablets (Roche), flash frozen in
193	liquid nitrogen, and stored at -80°C until chromatin immunoprecipitation (ChIP). ChIP
194	was preformed as described [23,24] using Ab290, a ChIP-grade polyclonal GFP antibody
195	(Abcam). Libraries were prepared using the SPRIworks Fragment Library System
196	(Beckman Coulter) and single-end sequenced on an Illumina HiSeq2000 sequencer.
197	Three biological replicates of at least 15,000 animals were prepared and sequenced for
198	each condition, with the exception of only two replicates for <i>atf-7(qd328)</i> on PA14, as
199	one of the samples failed to pass quality control.
200	ChIP-seq reads were aligned against the C. elegans WBPS9 assembly using bwa
201	v. 0.7.12-r1039 [25] and the resulting bam files were sorted and indexed using samtools
202	v. 1.3 [26]. Sorted bam files were pooled by strain and microbial treatment, and peaks
203	were called using MACS2 (v. 2.1.1.20160309), as follows: callpeak on specific strain
204	bam file ("-t" flag) against the N2_PA14 control sample bam file ("-c" flag) callpeak -c
205	N2_PA14_control.sorted.bam -g cekeep-dup allcall-summitsextsize 150 -p 1e-3
206	nomodel -B. Peak locations were intersected with regions +/-0.5kb around annotated TSS
207	based on the WBPS9/WS258 annotation using bedtools intersect (v2.26.0) [27], and in
208	cases of multiple peaks associated with a given TSS, peaks with maximal enrichment
209	over N2 control were retained. For the purpose of motif identification, peaks were ranked
210	by fold-enrichment over N2 control in descending order and the top 400 peaks were
211	retained, regions +/- 200 bps around the summit were retrieved and sequences were

212	obtained with bedtools getfasta. MEME-ChIP v. 4.12.0 [28] was used to call motifs using
213	the following parameters: meme-chip -octime 300 -order 1 -db
214	db/JASPAR/JASPAR2018_CORE_nematodes_non-redundant.meme -meme-mod anr -
215	meme-minw 5 -meme-maxw 30 -meme-nmotifs 8 -dreme-e 0.05 -centrimo-local -
216	centrimo-score 5.0 -centrimo-ethresh 10.0 . Presence of the top motifs under each peak
217	called by macs2 was assessed using Mast v.5.0.1 [29] on the same +/- 200bp region
218	around the summit of each peak. The number of peaks with one or more occurrences of
219	the motif was tallied using a 200-peak window, and plotted across all peaks ranked either
220	by log-fold enrichment over N2 or -log-transformed p-values. Inflection points in the
221	motif density function were used to narrow down the number of peaks retained for
222	downstream analyses.
223	

224 **RNA Sequencing**

.

After three washes in M9 buffer, TRIzolTM Reagent (Invitrogen) was added to 225 226 worm pellets and flash frozen in liquid nitrogen. Following an additional round of freezethaw, RNA was isolated using the Direct-zolTM RNA MiniPrep kit (Zymo Research). 227 228 Libraries were prepared using the Kapa mRNA Hyperprep kit and paired end reads were 229 sequenced on the Illumina NextSeq500 sequencer. Three biological replicates of at least 230 1,000 animals were prepared and sequenced for each condition, with the exception of 231 only two replicates for atf-7(qd22 qd130) on PA14, as one of the samples failed to pass 232 quality control. 233 Reads were aligned against the C. elegans WBPS9 assembly/ WS258 annotation

234 using STAR v. 2.5.3a [30] with the following flags: -runThreadN 16 --runMode

235	alignReadsoutFilterType BySJoutoutFilterMultimapNmax 20alignSJoverhangMin
236	8alignSJDBoverhangMin 1outFilterMismatchNmax 999alignIntronMin 10
237	alignIntronMax 1000000alignMatesGapMax 1000000outSAMtype BAM
238	SortedByCoordinatequantMode TranscriptomeSAM . withgenomeDir pointing to a
239	low-memory footprint, 75nt-junction WBPS9/WS258 STAR suffix array. Gene
240	expression was quantitated using RSEM v. 1.3.0 [31] with the following flags for all
241	libraries: rsem-calculate-expressioncalc-pmealignments -p 8 against an annotation
242	matching the STAR SA reference. Posterior mean estimates (pme) of counts and
243	estimated "transcript-TPMs" were retrieved for genes and isoforms. Subsequently, counts
244	of isoforms sharing a transcription start site (TSS) were summed, and differential-
245	expression analysis was carried out using DESeq2 [32] in the R v3.4.0 statistical
246	environment, building pairwise models of conditions to be compared (microbial
247	exposures within each genotype). Sequencing library size factors were estimated for
248	each library to account for differences in sequencing depth and complexity among
249	libraries, as well as gene-specific count dispersion parameters (reflecting the relationship
250	between the variance in a given gene's counts and that gene's mean expression across
251	samples).
252	Differences in gene expression between conditions (expressed as log2-
253	transformed fold-changes in expression levels) were estimated under a general linear
254	model (GLM) framework fitted on the read counts. In this model, read counts of each

255 gene in each sample were modeled under a negative binomial distribution, based on the

256 fitted mean of the counts and aforementioned dispersion parameters. Differential

257 expression significance was assessed using a Wald test on the fitted count data (all these

258	steps were performed using the DESeq() function in DESeq2) [32]. P-values were
259	adjusted for multiple-comparison testing using the Benjamini-Hochberg procedure [33].
260	
261	Data availability
262	Raw data presented in this manuscript have been deposited in NCBI's Gene
263	Expression Omnibus [34] and are accessible through GEO SuperSeries accession number
264	GSE119294, which contains SubSeries GSE119292 (RNA-seq data, including count
265	files) and SubSeries GSE119293 (ChIP-seq data, including wig files and peak calls).
266	
267	Evaluation of ATF-7 binding and modulation of gene expression
268	Metagene analyses of gene expression and ATF-7 binding enrichment were
269	generated by ngs.plot as described [35], using ChIP .bam files from each condition
270	normalized to N2 control as input. Genes considered two-fold upregulated or
271	downregulated are listed in the "N2_up" and "N2_down" tabs of Table S1, respectively.
272	Correlations between ATF-7 binding and regulation of gene expression were
273	interrogated using the gene set enrichment analysis (GSEA) framework [36]. Briefly, all
274	transcription start sites (TSSs) associated with a protein-coding transcript were ranked
275	based on differential expression results from DESeq2 (log2 fold-changes), which is a
276	measure of the correlation between their expression and the host response to infectious
277	agents. Biases in expression of ATF-7-bound TSSs were assessed using a walk down the
278	list tallying a running-sum statistic, which increases each time a TSS is part of the list and
279	decreases otherwise. The maximum of this metrics (i.e. where the distribution if furthest
280	away from the background) is called the enrichment score (ES). Significance is estimated

281	using random permutations of the TSSs to generate p-values gauging how often the
282	observed ES can be seen in randomized gene sets, for each direction of the expression
283	biases independently. Multiple-testing correction is addressed using a false-discovery rate
284	calculation on permuted datasets.
285	
286	Gene Ontology analysis
287	Genes with adjusted p-values <0.05 were considered for Gene Ontology
288	enrichment analysis using the DAVID online webtool, considering as a background the
289	union of all genes with a non-zero baseMean value across any of the DE comparison,
290	based on unique WormBase IDs.
291	
292	Killing Assays and Bacterial Strains
293	PA14 plates were prepared as described as above. N2 animals were grown on
294	NGM, supplemented with 25 ug/mL carbenicillin and 2mM isopropyl b-D-1
295	thiogalactopyranoside (IPTG), that was seeded with either the E. coli HT115 expressing
296	plasmids targeting the gene of interest or the empty L4440 vector backbone for two
297	generations prior to each experiment. Animal populations were synchronized by egg lay.
298	At the L4 larval stage, approximately 30 worms were transferred to prepared SKA plates
299	and incubated at 25°C. Animals were scored for killing twice daily until the majority of
300	animals had died. Within each experiment, three plates were prepared and scored per
301	RNAi treatment. All clones were obtained from the Ahringer [37] or Vidal [38]RNAi
302	libraries and were verified by sequencing. For a list of all RNAi clones used, see Table
303	S4.

304 Author Contributions

- 305 M.F. and E.J.T. performed all experiments. V.B. and S.S.L. performed bioinformatics
- analysis of RNA-seq and ChIP-seq datasets. M.F. and D.H.K analyzed data, interpreted
- 307 results, and wrote the paper with input from E.J.T.
- 308

309 Acknowledgements

- 310 We thank H.R. Horvitz and the *Caenorhabditis* Genetics Center for providing strains and
- reagents. This work was funded by NIH grants R01GM084477 (to DHK) and
- 312 T32GM007287 (to MF and EJT).

313 Figure 1: Exposure to *P. aeruginosa* prompts gene expression changes.

- 314 (A) Schematic of experimental design. Yellow bacterial lawn indicates E. coli OP50,
- 315 green bacterial lawn indicates *P. aeruginosa* PA14. PMK-1 and ATF-7 activation states
- are indicated below each condition. (B) Volcano plot of transcripts corresponding to
- 317 differentially expressed protein-coding genes by exposure to *P. aeruginosa* PA14 versus
- 318 E. coli OP50 in N2 animals. Orange and blue colored dots denote the top 100 outliers that
- are increased or decreased, respectively, and are annotated with their gene names. (C)
- 320 Top GO terms and InterPRO classifications of transcripts that are significantly
- upregulated (adjusted p-value < 0.05) in N2 animals exposed to PA14 versus OP50. (D)
- 322 Average expression (RPM) across the gene body of genes that are two-fold upregulated
- 323 by exposure to pathogenic PA14. (E) Venn diagram of induced genes that are dependent
- 324 upon *pmk-1* or *atf-7* for complete upregulation.

325 Figure 2: ATF-7 associates with genes that are differentially expressed upon

326 exposure to pathogenic *P. aeruginosa*.

- 327 (A) Motif analysis of ATF-7::GFP ChIP peaks. The top 400 peaks (indicated by red
- 328 shading) were considered for motif analysis. (B) Metagene analysis of ATF-7::GFP
- 329 binding profile in WT or *pmk-1(km25)* mutant animals exposed to PA14 across genes that
- are two-fold upregulated (by RNA-seq) upon exposure to PA14. Shading represents
- 331 standard error among replicates. (C,D) Gene Set Enrichment Analysis (GSEA) of
- transcripts detected by RNA-seq (ranked from most upregulated to most downregulated
- 333 upon PA14 exposure in N2 animals) for association with ATF-7::GFP peaks in WT (C)
- 334 or *pmk-1(km25)* mutant (D) animals exposed to PA14.

335 Figure 3: ATF-7 binding at PA14-induced genes.

- 336 Examples of ATF-7::GFP read pileup at individual loci in all four ChIP conditions.
- 337 Expression in transcripts per kilobase million (TPM) in all RNA-seq conditions are
- displayed to the right of each locus. For genes with multiple isoforms, the most highly
- abundant transcript is displayed.

340 Figure 4: ATF-7 binds to regulatory regions of key regulators of stress physiology.

- 341 Examples of ATF-7::GFP read pileups stress response (A-C) and immune (D-F)
- 342 regulators.
- 343

344 Supplemental Figure 1: Expression of genes decreased by PA14 exposure.

- 345 (A) Top GO terms and InterPRO classifications of transcripts that are significantly
- downregulated (adjusted p-value < 0.05) in N2 animals exposed to PA14 versus OP50.
- 347 (B) Average expression (RPM) across the gene body of genes that are two-fold
- 348 downregulated by exposure to pathogenic PA14. (C) Venn diagram of decreased genes
- that are dependent upon *pmk-1* or *atf-7* for complete downregulation.

350 Supplemental Figure 2: Differential PA14-induced gene expression in *pmk-1* and *atf-*

351 7 mutant animals.

- 352 2x2 comparison of genes differentially expressed by exposure to PA14 in N2 animals (x-
- axis) or upon loss of *pmk-1* (A) or *atf-7* (B) (y-axis). Transcripts highlighted in purple
- 354 correspond to genes that were significantly different compared to OP50 in both genotypes
- 355 (adjusted p-value of <0.05). Blue dots indicate genes that are significantly different in the
- 356 N2 PA14/OP50 comparison only. Red dots represent genes that reach significance in
- 357 only the mutant condition. Grey dots indicate genes with detected transcripts in at least
- 358 one condition being compared, but that failed to reach significance cutoffs in either data

359 set.

360 Supplemental Figure 3: Evaluation of ATF-7::GFP peaks.

- 361 (A) Motif analysis of ATF-7::GFP ChIP peaks. The top 400 peaks were considered for
- 362 motif analysis. (B) Metagene analysis of ATF-7::GFP binding in all four ChIP conditions
- across all genes, genes that are two-fold upregulated, or two-fold downregulated by
- 364 RNA-seq upon exposure to PA14 in a wild-type (N2) background. Shading represents
- 365 standard error among replicates. (C) Ranked ATF-7::GFP peaks called in animals in all
- 366 four ChIP conditions. Double red arrow indicates the peaks that were retained for further
- 367 analysis. (D,E) Gene Set Enrichment Analysis (GSEA) of transcripts detected by RNA-
- 368 seq (ranked from most upregulated to most downregulated upon PA14 exposure in N2
- animals) for association with ATF-7::GFP peaks in WT (C) or *pmk-1(km25)* mutant (D)
- animals exposed to OP50.

- 371 Supplemental Figure 4: ATF-7 target genes that effect survival on *P. aeruginosa*
- 372 **PA14**.
- 373 Representative survival curves of animals treated with RNAi against indicated genes that
- resulted in a significant (p-value < 0.05 by log-rank test) reduction in survival on PA14
- 375 compared to EV controls in 2/2 experiments. Animals were treated with RNAi for two
- 376 generations prior to exposure to PA14. EV refers to HT115 carrying the Empty Vector
- 377 control plasmid, L4440.

378 Table S1: RNA-seq summary

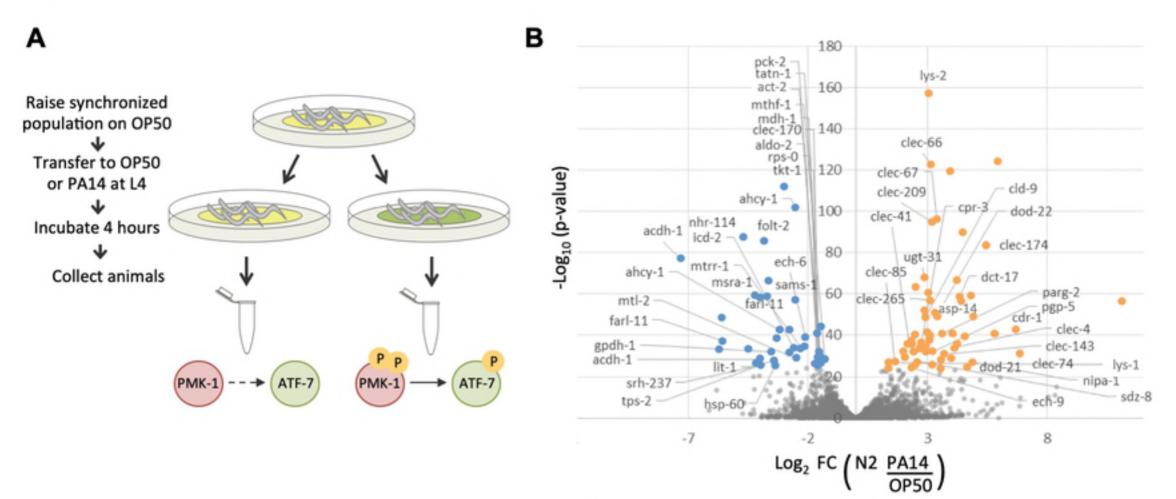
- 379 See separate electronic (.xlsx) file.
- 380

381 Table S2: ATF-7::GFP peaks from ChIP-seq.

- 382 See separate electronic (.xlsx) file.
- 383

Table S3: Genes tested for Esp phenotype by RNAi knockdown.

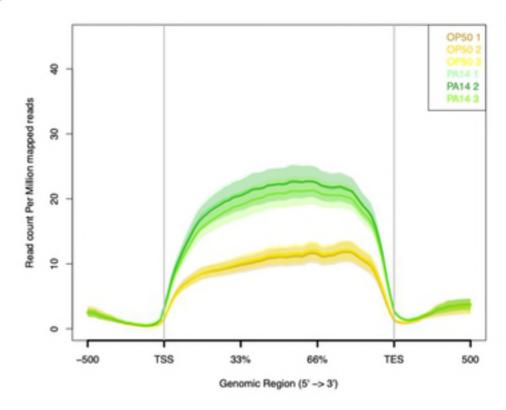
- 385 Protein domains classified using the David 6.8 Functional Annotation Tool. "Yes,"
- indicates a significant (p-value < 0.05 by log-rank test) reduction in survival on PA14
- 387 compared to Empty Vector control in 2/2 experiments.

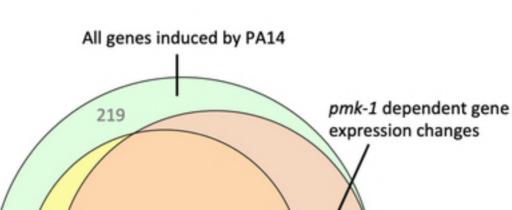

388 **References**

389 390	1.	Schulenburg H, Kurz CL, Ewbank JJ. Evolution of the innate immune system: the worm perspective. Immunol Rev. 2004;198: 36–58.
391 392 393	2.	Richardson CE, Kooistra T, Kim DH. An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature. Nature Publishing Group; 2010;463: 1092–1095. doi:10.1038/nature08762
394 395 396	3.	Dunbar TL, Yan Z, Balla KM, Smelkinson MG, Troemel ER. C. elegans detects pathogen-induced translational inhibition to activate immune signaling. Cell Host & Microbe. 2012;11: 375–386. doi:10.1016/j.chom.2012.02.008
397 398 399 400	4.	McEwan DL, Kirienko NV, Ausubel FM. Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans. Cell Host & Microbe. 2012;11: 364–374. doi:10.1016/j.chom.2012.02.007
401 402 403	5.	Pellegrino MW, Nargund AM, Kirienko NV, Gillis R, Fiorese CJ, Haynes CM. Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature. 2014;516: 414–417. doi:10.1038/nature13818
404 405 406 407	6.	Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science. American Association for the Advancement of Science; 2002;297: 623–626. doi:10.1126/science.1073759
408 409 410 411	7.	Shivers RP, Pagano DJ, Kooistra T, Richardson CE, Reddy KC, Whitney JK, et al. Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans. Ashrafi K, editor. PLoS Genet. 2010;6: e1000892. doi:10.1371/journal.pgen.1000892
412 413 414	8.	Mallo GV, Kurz CL, Couillault C, Pujol N, Granjeaud S, Kohara Y, et al. Inducible Antibacterial Defense System in C. elegans. Current Biology. 2002;12: 1209–1214. doi:10.1016/S0960-9822(02)00928-4
415 416 417 418	9.	Huffman DL, Abrami L, Sasik R, Corbeil J, van der Goot FG, Aroian RV. Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proceedings of the National Academy of Sciences. 2004;101: 10995– 11000. doi:10.1073/pnas.0404073101
419 420 421 422	10.	O'Rourke D, Baban D, Demidova M, Mott R, Hodgkin J. Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res. 2006;16: 1005–1016. doi:10.1101/gr.50823006
423 424	11.	Shapira M, Hamlin BJ, Rong J, Chen K, Ronen M, Tan M-W. A conserved role for a GATA transcription factor in regulating epithelial innate immune responses.

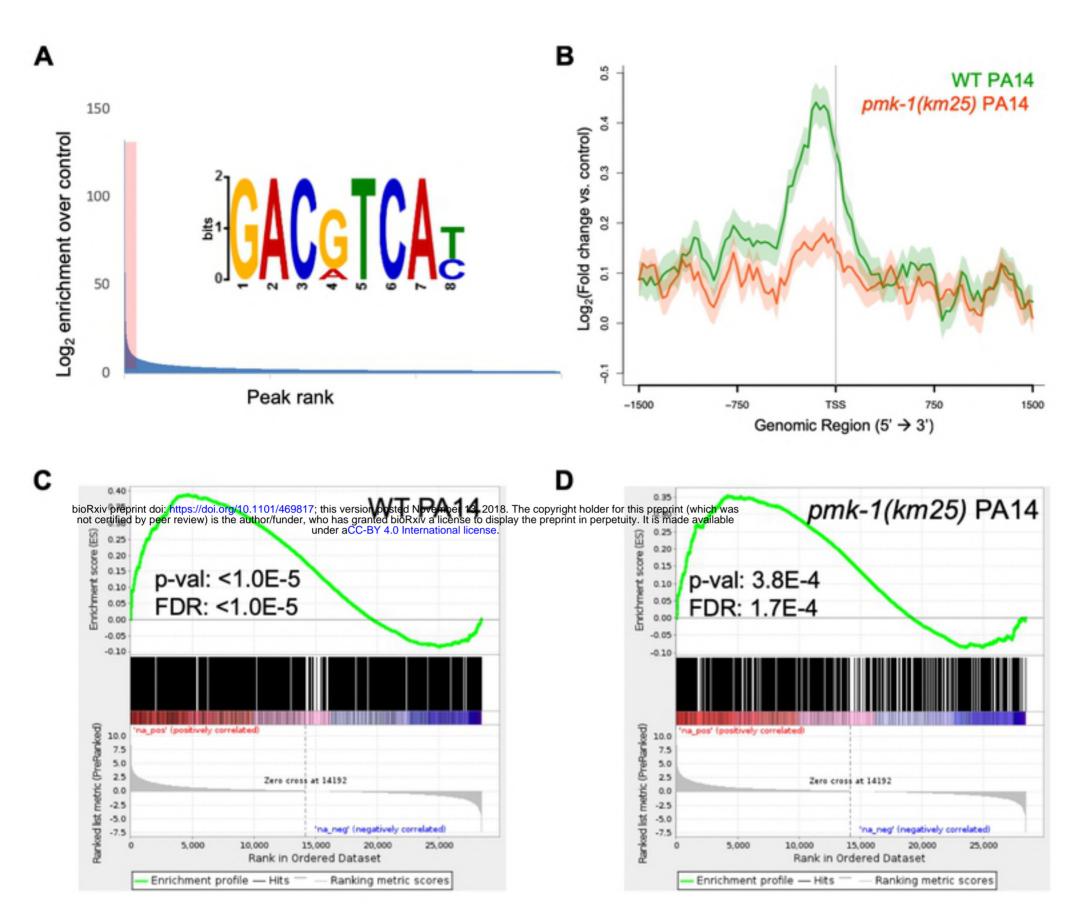
425 426		Proceedings of the National Academy of Sciences. 2006;103: 14086–14091. doi:10.1073/pnas.0603424103
427 428 429	12.	Troemel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, Kim DH. p38 MAPK Regulates Expression of Immune Response Genes and Contributes to Longevity in C. elegans. PLoS Genet. 2006;2: e183. doi:10.1371/journal.pgen.0020183
430 431 432 433	13.	Wong D, Bazopoulou D, Pujol N, Tavernarakis N, Ewbank JJ. Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biology. 2007;8: R194. doi:10.1186/gb-2007-8-9-r194
434 435 436 437	14.	Engelmann I, Griffon A, Tichit L, Montañana-Sanchis F, Wang G, Reinke V, et al. A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans. Lehner B, editor. PLoS ONE. 2011;6: e19055. doi:10.1371/journal.pone.0019055
438 439 440	15.	Shivers RP, Youngman MJ, Kim DH. Transcriptional responses to pathogens in Caenorhabditis elegans. Curr Opin Microbiol. 2008;11: 251–256. doi:10.1016/j.mib.2008.05.014
441 442 443 444	16.	Inoue H, Hisamoto N, An JH, Oliveira RP, Nishida E, Blackwell TK, et al. The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes & Development. 2005;19: 2278–2283. doi:10.1101/gad.1324805
445 446 447 448	17.	Chikka MR, Anbalagan C, Dvorak K, Dombeck K, Prahlad V. The Mitochondria- Regulated Immune Pathway Activated in the C. elegans Intestine Is Neuroprotective. Cell Reports. 2016;16: 2399–2414. doi:10.1016/j.celrep.2016.07.077
449 450	18.	Brenner S. The genetics of Caenorhabditis elegans. Genetics. Genetics Society of America; 1974;77: 71–94. doi:10.1073/pnas.0910342106
451 452 453 454	19.	Arribere JA, Bell RT, Fu BXH, Artiles KL, Hartman PS, Fire AZ. Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics. 2014;198: 837–846. doi:10.1534/genetics.114.169730
455 456 457 458	20.	Tillman EJ, Richardson CE, Cattie DJ, Reddy KC, Lehrbach NJ, Droste R, et al. Endoplasmic Reticulum Homeostasis Is Modulated by the Forkhead Transcription Factor FKH-9 During Infection of Caenorhabditis elegans. Genetics. 2018;: genetics.301450.2018. doi:10.1534/genetics.118.301450
459 460 461	21.	Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proceedings of the National Academy of Sciences. 1999;96: 715–720.

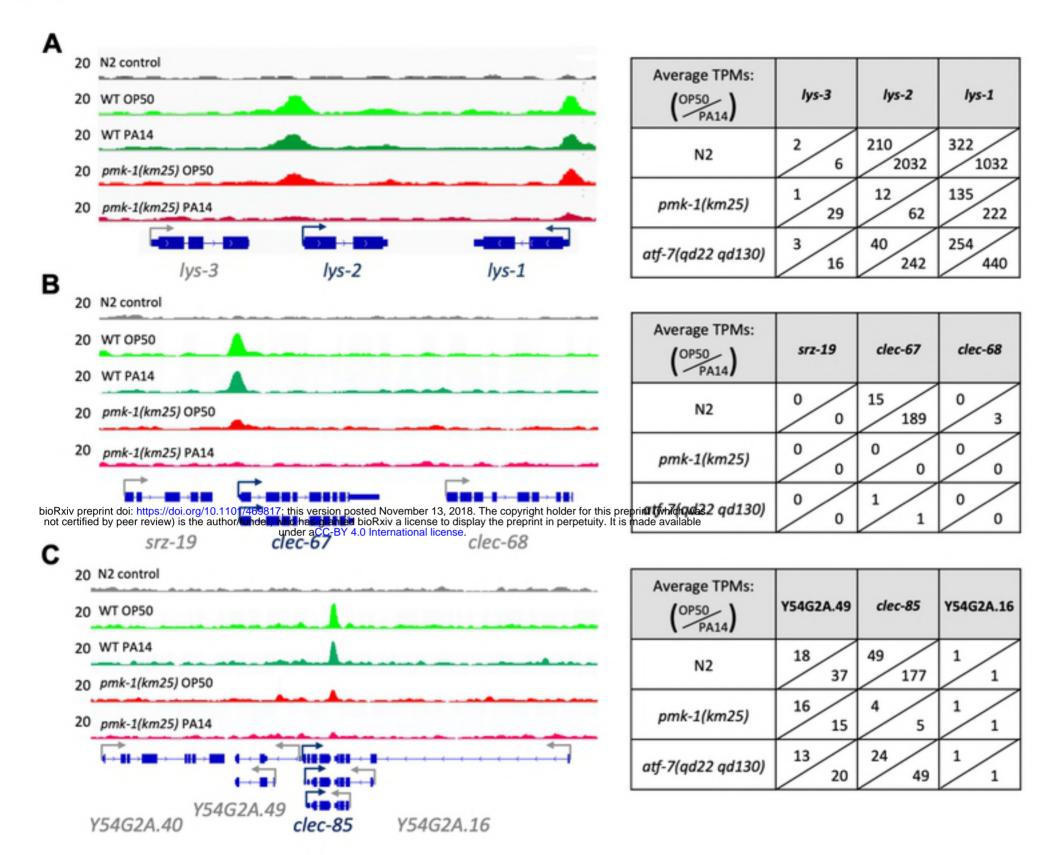
462 463 464	22.	Meisel JD, Panda O, Mahanti P, Schroeder FC, Kim DH. Chemosensation of Bacterial Secondary Metabolites Modulates Neuroendocrine Signaling and Behavior of C. elegans. Cell. 2014;159: 267–280. doi:10.1016/j.cell.2014.09.011
465 466 467	23.	Ercan S, Giresi PG, Whittle CM, Zhang X, Green RD, Lieb JD. X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation. Nat Genet. 2007;39: 403–408. doi:10.1038/ng1983
468 469 470 471	24.	Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science. American Association for the Advancement of Science; 2010;330: 1775–1787. doi:10.1126/science.1196914
472 473	25.	Li H. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25: 1754–1760. doi:10.1093/bioinformatics/btp324
474 475 476	26.	Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079. doi:10.1093/bioinformatics/btp352
477 478 479	27.	Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26: 841–842. doi:10.1093/bioinformatics/btq033
480 481	28.	Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011;27: 1696–1697. doi:10.1093/bioinformatics/btr189
482 483	29.	Bailey TL, Gribskov M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics. 1998;14: 48–54.
484 485 486	30.	Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29: 15–21. doi:10.1093/bioinformatics/bts635
487 488 489	31.	Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12: 323. doi:10.1186/1471-2105-12-323
490 491 492	32.	Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. BioMed Central Ltd; 2014;15: 550. doi:10.1186/s13059-014-0550-8
493 494 495	33.	Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B. 1995;57: 289–300.

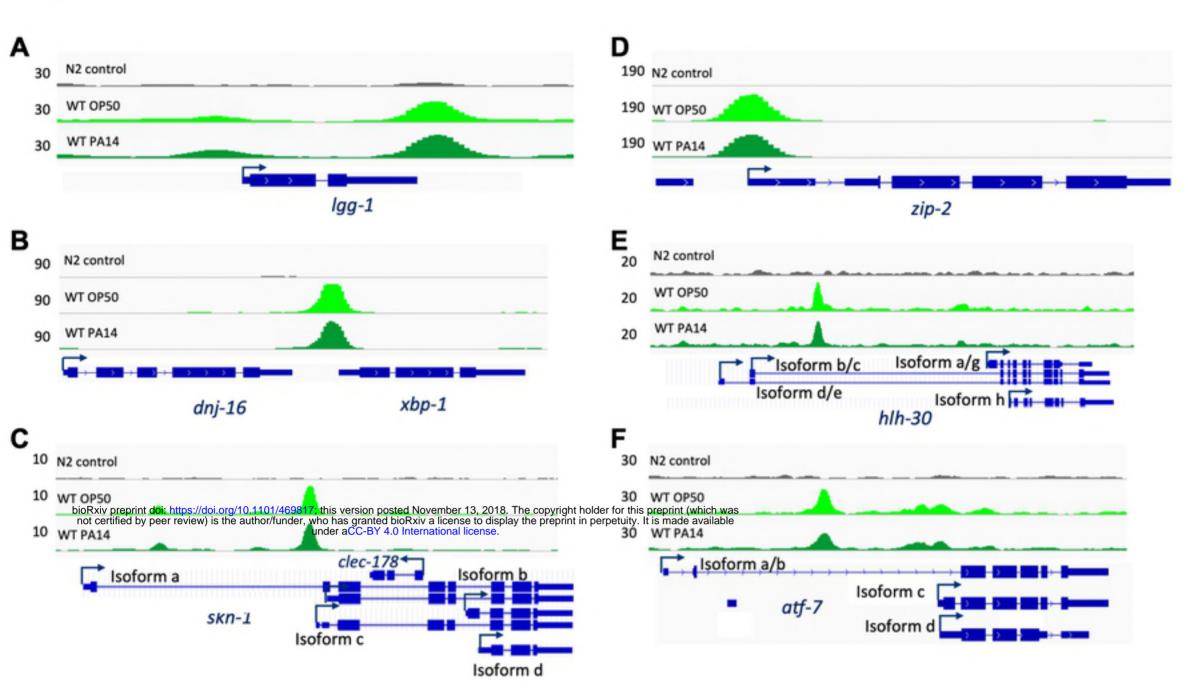

496 497 498	34.	Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. Oxford University Press; 2002;30: 207–210.
499 500 501	35.	Shen L, Shao N, Liu X, Nestler E. ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics. 2014;15: 284. doi:10.1186/1471-2164-15-284
502 503 504 505	36.	Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102: 15545–15550. doi:10.1073/pnas.0506580102
506 507 508	37.	Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 2003;421: 231–237. doi:10.1038/nature01278
509 510 511	38.	Rual J-F, Ceron J, Koreth J, Hao T, Nicot A-S, Hirozane-Kishikawa T, et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome- based RNAi library. Genome Res. 2004;14: 2162–2168. doi:10.1101/gr.2505604


С

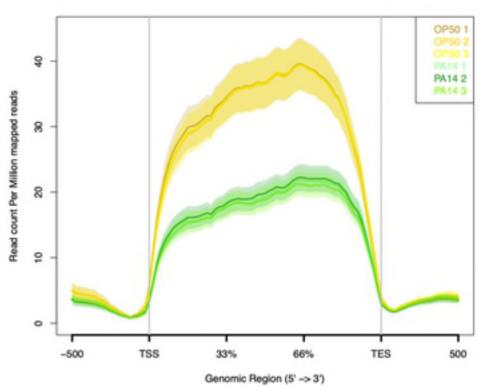
bioRxiv preprint doi: https://doi.org/10.1101/469817; this version posted November 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in the petuity. It is made available under aCC-BY 4.0 International license.

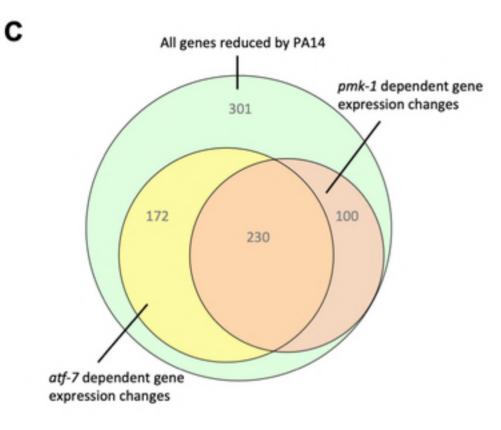

GO term, InterPRO classification	Fold Enrichment	p-value	FDR
GO:0045087~ innate immune response	7.24	3.57E-61	5.03E-58
IPR003366: CUB-like domain	13.97	1.91E-28	2.74E-25
GO:0050829~ defense response to Gram- negative bacterium	7.55	2.00E-15	2.81E-12
IPR005071: Transmembrane glycoprotein	11.27	4.35E-10	6.24E-07
IPR001304: C-type lectin	3.60	2.05E-07	2.94E-04
IPR002035: von Willebrand factor, type A	6.84	4.03E-07	5.77E-04



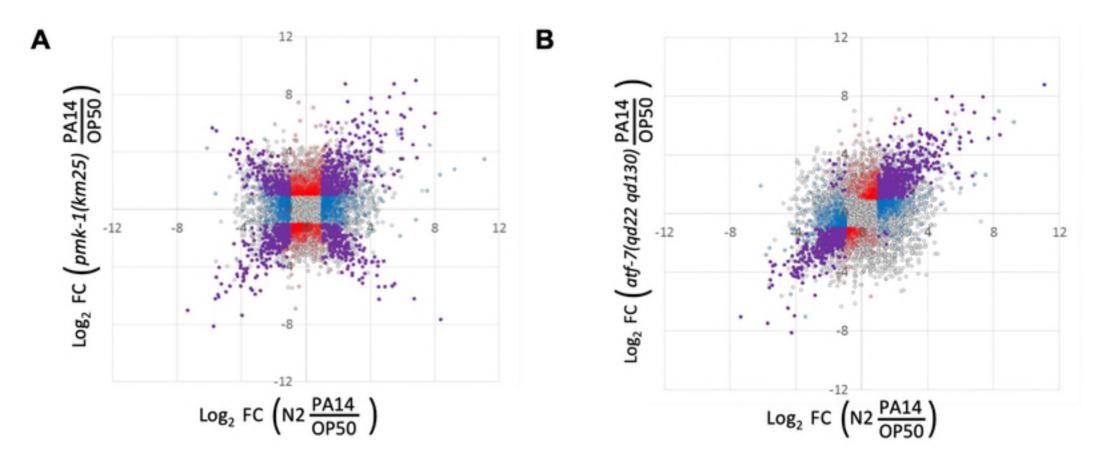

Е

51 195 425 atf-7 dependent gene expression changes

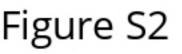



Α

GO term, InterPRO classification	Fold Enrichment	p-value	FDR
GO:000003~ reproduction	1.90	4.14E-17	6.13E-14
GO:0006412~ translation	4.34	2.11E-16	3.33E-13
GO:0002119~ nematode larval development	1.89	5.90E-15	8.72E-12
GO:0009792~ embryo development ending in birth or egg hatching	1.59	5.47E-12	8.11E-09
GO:0008340~ determination of adult lifespan	2.04	1.35E-09	2.00E-06
GO:0055114~ oxidation-reduction process	2.51	1.40E-08	2.08E-05
GO:0006915~ apoptotic process	2.49	8.73E-08	1.29E-04



bioRxiv preprint dor. https://doi.org/10.1101/469817; this version posted November 13-2018. The oppyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.


в

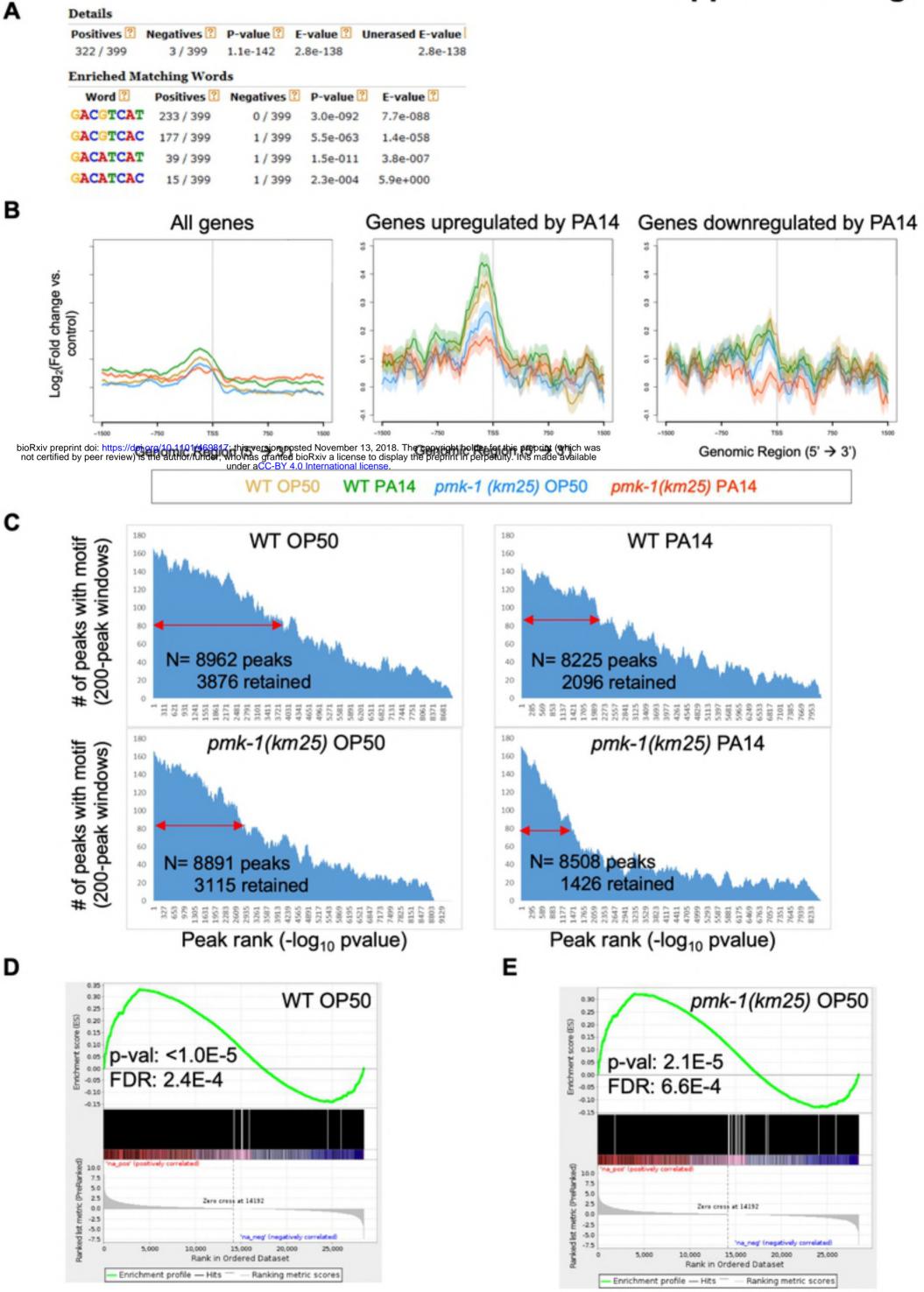
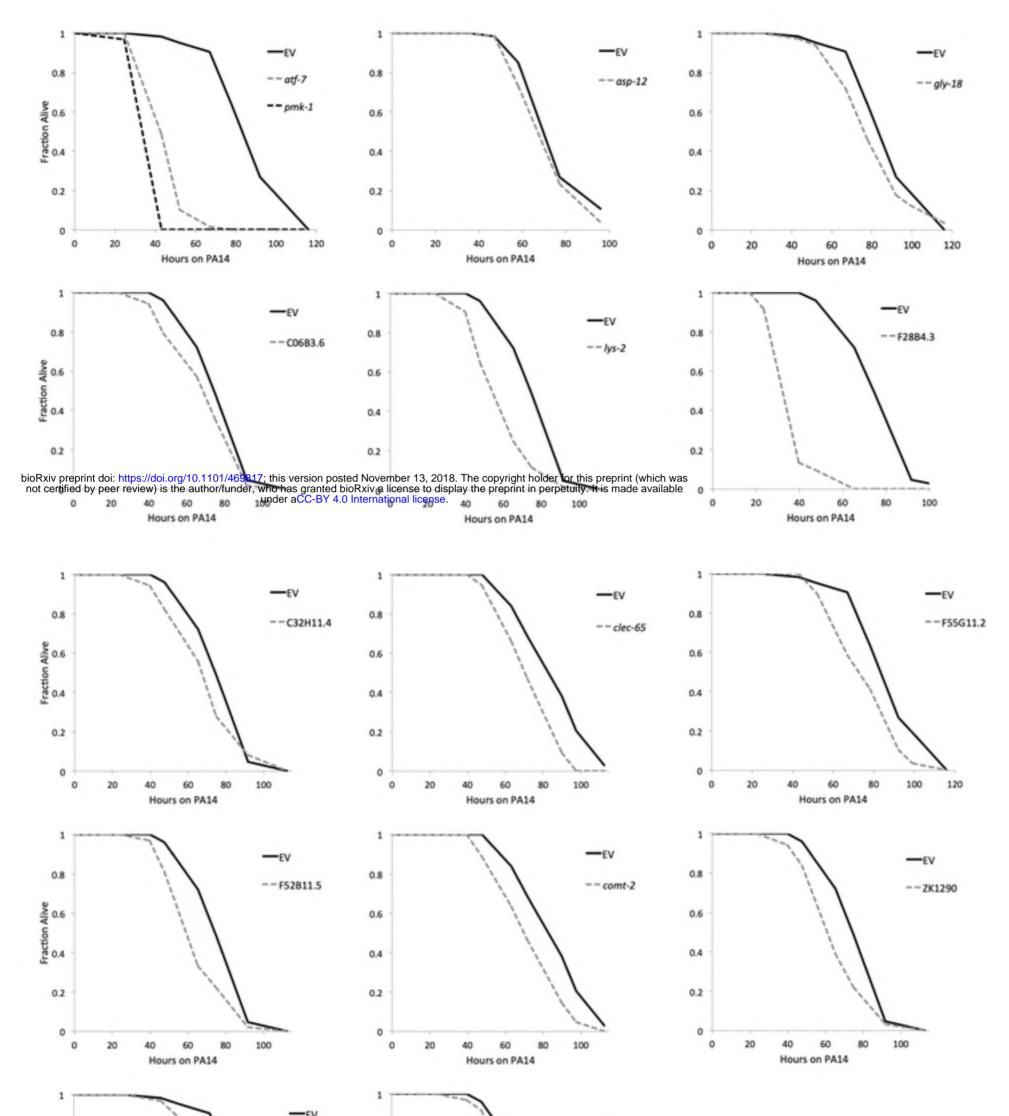


Figure S1



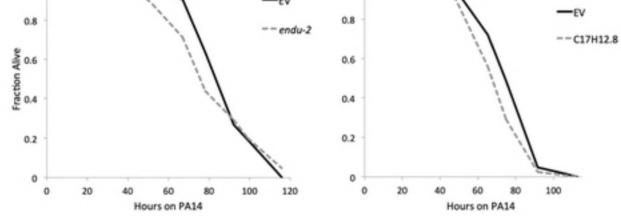

bioRxiv preprint doi: https://doi.org/10.1101/469817; this version posted November 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure S3

Figure S4