
Family reunion via error correction: An efficient analysis of
duplex sequencing data

NICHOLAS STOLER​1​, BARBARA ARBEITHUBER​2​, GUNDULA POVYSIL​3​, MONIKA HEINZL​3​, RENATO

SALAZAR​3​, KATERYNA MAKOVA​2​, IRENE TIEMANN-BOEGE​3​ and ANTON NEKRUTENKO​1

1​ Graduate Program in Bioinformatics and Genomics, The Huck Institutes for Life Sciences, The Pennsylvania State
University, University Park, PA, USA

2​ Department of Biology, The Pennsylvania State University, University Park, PA, USA

3​ Institut für Biophysik, Johannes Kepler Universität, Linz, Österreich (Austria)

1

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Abstract
Duplex sequencing is the most accurate approach for identification of sequence variants present at very low

frequencies. Its power comes from pooling together multiple descendants of both strands of original DNA

molecules, which allows distinguishing true nucleotide substitutions from PCR amplification and sequencing

artifacts. This strategy comes at a cost—sequencing the same molecule multiple times increases dynamic range

but significantly diminishes coverage, making whole genome duplex sequencing prohibitively expensive.

Furthermore, every duplex experiment produces a substantial proportion of singleton reads that cannot be used

in the analysis and are, technically, thrown away. In this paper we demonstrate that a significant fraction of

these reads contains PCR or sequencing errors within duplex tags. Correction of such errors allows “reuniting”

these reads with their respective families increasing the output of the method and making it more cost effective.

Additionally, we combine error correction strategy with a number of algorithmic improvements in a new version

of the duplex analysis software, Du Novo 2.0, readily available through Galaxy, Bioconda, and as the source

code.

2

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Introduction
Numerous, often clinically important, research scenarios require detection of sequence variants that are present

in a minute fraction (10​-5​–10​-9​) of molecules under study. Examples include detection of cancer-related

mutations in liquid biopsies, identification of fetal DNA in a mother’s bloodstream, assessing dynamics of the

immune system, tracing mutational landscape of bacteria through the evolution of antibiotic resistance,

studying genomic changes in viral pathogens and many others (for a comprehensive review see ​(Salk et al. 2018)​).

Conventional approaches, where a sample is sequenced and resulting reads are aligned against a reference

genome to find differences, are ill suited for variants present at frequencies below 1% ​(Rebolledo Jaramillo et al.

2014; Schmitt et al. 2015)​. A number of techniques has been developed to circumvent this issue with Duplex

Sequencing (DS) being currently the most sensitive ​(Schmitt et al. 2012; Salk et al. 2018)​. DS is based on using

unique tags (also called barcodes throughout this manuscript) to label individual molecules of the input DNA.

During amplification steps that are required for the preparation of Illumina sequencing libraries, each of these

molecules gives rise to multiple descendants. The descendants of each original DNA fragment are identified and

grouped together using tags—one simply sorts tags in sequencing reads lexicographically and all reads

containing the same tag are bundled into a ​family​. These families (usually with three members or more) form

single stranded consensus sequences (SSCS) for the forward or the reverse strand, respectively. Complementary

SSCSs are then grouped to produce duplex consensus sequences (DCSs; see Fig. 1). A legitimate sequence variant

is found in the majority of the reads within a family. In contrast, sequencing and amplification errors will

manifest themselves as “polymorphisms” within a family and so can be identified and removed (yellow

rectangles in Fig. 1).

Despite its power DS is a complex technique. Reliable identification of sequence variants requires each initial

fragment to form a family with at least three members for each strand. To achieve this, it is necessary to

precisely quantify the amount of input DNA during the library preparation step. Too much DNA results in small

family sizes and makes variant identification impossible, while too little creates very large families at the

expense of sequencing coverage. Furthermore, because DS barcodes are a part of the sequencing read, they

accumulate PCR and sequencing errors. These errors prevent matching barcodes and therefore artificially split

DS read families (red dots in Fig. 1) decreasing the efficiency of the procedure. In this manuscript we describe a

new, efficient approach to the analysis of DS data that includes barcode error correction. It significantly

improves the yield and performance of the technique. We also describe new quality control approaches designed

to increase output of DS experiments.

3

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://paperpile.com/c/7FYxVI/WgOL
https://paperpile.com/c/7FYxVI/4oPA+F5vp
https://paperpile.com/c/7FYxVI/4oPA+F5vp
https://paperpile.com/c/7FYxVI/LhrB+WgOL
https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Results and Discussion

Datasets

To test our results we used two previously published datasets. The first dataset was produced by Schmitt et al.

(Schmitt et al. 2015)​, who employed DS to identify a rare mutation at the ​ABL1​ locus responsible for resistance to

a chronic myeloid leukemia therapeutic compound imatinib. The second dataset was produced by our group as a

part of an experimental evolution study where DS was used to track frequencies of adaptive mutations in

plasmid pBR322 ​(Mei et al. 2018)​.

Barcode errors result in lost reads

Typical DS tags are randomized 12-mers. Since each DNA fragment is labeled by two tags, one at each end, there

are theoretically 4​(12+12)​ unique combinations. However, the input DNA in a standard DS experiment contains ~10​6

– 10​11 ​molecules creating a large tag-to-input excess (4​24​ ≫ 10​11​). Because of such excess it is, theoretically, highly

unlikely to observe distinct input DNA molecules tagged by barcodes that are highly similar to each other.

To confirm this expectation we have selected 1,000 random duplex tags from the two datasets discussed above

and compared them against each other (Fig. 2A; 1,000 tags were selected to speed up the computation; see

Methods). Because tags are used to group reads into families, the family size is known for each tag. We also

know if tags form single strand families (SSCS) and which of these, in turn, form duplex families. By comparing

each of 1,000 tags against themselves we can calculate the number of differences among all tags (the Hamming

distance referred to as “HD” in the remainder of this manuscript). Most tags are different by 5-7 nucleotides,

which is consistent with our expectation. However, a substantial fraction of tags (85 and 494 out of 1,000 for

ABL1​ and pBR322 datasets, respectively; Fig. 2A) differed by just a single nucleotide, which, based on the large

excess of unique tags to molecules mentioned above, is unexpected. A likely explanation to this is that tags

differing by a single nucleotide are in fact derived from the same barcode and the single difference is the result

of PCR or sequencing error. An observation further supporting this explanation is that almost a half of the reads

containing these tags (grey areas of the bars in Fig. 2) are singletons—do not form families with any other reads.

Reads containing tags forming larger families (with at least two members) must have occurred in an earlier step

given that more than one read is affected, and are therefore likely PCR errors. The core issues with errors within

tags is that they prevent combining reads into families as reads containing such tags cannot be grouped into

their respective SSCS and are therefore lost reducing the overall efficiency of a duplex experiment (Fig. 1). Being

able to correct these errors is thus critical to improving cost effectiveness of duplex sequencing.

4

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://paperpile.com/c/7FYxVI/F5vp
https://paperpile.com/c/7FYxVI/oG6j
https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Barcode error correction increases yield

Forming families of reads descended from the same original fragment requires grouping reads by barcode (Fig.

1). This is straightforward when no sequencing errors are present and can be done by simple lexicographic

sorting. Yet as we have shown in the previous section, errors are widespread and this eliminates sorting as a

legitimate analysis strategy. An alternative approach will involve performing all-versus-all comparison of all

barcodes to identify those that differ by one or two nucleotides and further checking them to see if they are

potentially derived from the same DNA fragment with differences being introduced by PCR or sequencing

errors. The challenge is that the all-versus-all comparison has ​O​(​n​2​) time complexity and thus is prohibitive as a

routine analysis strategy. There are several tools that approach this problem in different ways. The most

common strategy is to reduce the search space by first aligning the raw reads to the reference genome. One can

then consider barcodes of only those reads that align to one region of the reference. This does not change the

time complexity of the search, but reduces the search space from the millions of barcodes in the entire sample to

the dozens that may be aligned to a particular genomic location. Several tools are available which use this

strategy ​(Smith et al. 2017; Xu et al. 2018; Fennell and Homer 2018)​. However, reference-based approaches are

inevitably biased and it was our main impetus to avoid the use of a reference sequence ​(Stoler et al. 2016)​.

Alternatively, a strategy implemented in MAGERI, a tool which does not require a reference sequence to form

consensus sequences, is able to perform efficient barcode error correction with the use of a custom

seed-and-extend alignment algorithm ​(Shugay et al. 2017, 2014)​. However, it only forms single-strand consensus

sequences, not the duplex consensus sequences required in our analysis.

To overcome these limitations we have adopted Burrows-Wheeler ​k​-mer indexing implemented in Bowtie

(Langmead et al. 2009)​ to quickly perform all-versus-all comparison of duplex tags. We are using the original

version of Bowtie (not Bowtie2) that was optimized for very short reads. Specifically, we create an FM-index for

all barcodes in the sample and then align individual barcodes (as if they were reads) against that index. Results of

this alignment are represented as a graph where each vertex corresponds to a barcode. An edge is drawn

between two vertices if an alignment exists between two barcodes. An alignment should have mapping quality

and edit distance above a user-defined threshold with default values set to 20 and 3, respectively (in the

discussion below we vary edit distance values from 1 to 3). The resulting graph contains a large number of

disconnected clusters, each of which theoretically represents a single barcode together with all its derivatives

created due to PCR and sequencing errors. A correct barcode can therefore be chosen by picking the vertex with

the highest number of reads associated with it. To assess effectiveness of this error correction strategy we have

developed a tool for producing simulated DS data (see Methods). Using this simulator we produced 400,000

duplex reads and analyzed them using our error correction approach. We then proceeded to calculate how many

families (and thus, DCSs) were added to the analysis because of the correction. This increase in yield—the most

important consequence of error correction— was substantial. The 400,000 simulated duplex reads produced

5

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://paperpile.com/c/7FYxVI/f9HD+lJIH+4m3G
https://paperpile.com/c/7FYxVI/gaRM
https://paperpile.com/c/7FYxVI/EcAP+KYuS
https://paperpile.com/c/7FYxVI/A5Ko
https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

43,344 DCSs without correction. Running error correction by setting edit distance to one, two, or three

mismatches resulted in 52,896, 53,420, and 53,454 DCSs, respectively. This constituted a 23% increase in yield (at

three mismatches) compared the an uncorrected analysis. Effectively the error correction algorithm “shrinks”

the pool of singletons (family size, FS, of 1) by reuniting them with families containing correct barcodes,

increasing the likelihood that a group of reads surpasses the minimal member number (family size [FS] ≥ 3) for

calling a SSCS.

Next, we proceeded to test our approach on real duplex sequencing datasets we used above. We specifically

explored if tag error correction improves the number of consensus bases in SSCS and DCS, when allowing for 1,

2, or 3 mismatches in the tags. The results of error correction are summarized in Table 1, Fig. 2, and Fig. S1. The

error correction decreased the number of singletons (FS ≥ 3) while increasing the numbers of DCSs by

re-incorporating singletons into duplex families. This was particularly striking in pBR322 dataset, where the

number of DSC increased from 77,164 to 89,513. One can also see that increasing the edit distance during error

correction to 2 or 3 did not have such a drastic effect in reducing the number of singletons and increasing the

overall SSCS and DCS (Fig. S1).

New alignment engine improves consensus generation

The first version of Du Novo had a number of limitations resulting in poor performance. It was taking close to 24

hours to analyze a single duplex experiment. There were two primary reasons for this: the use of MAFFT aligner

and inadequate parallelization strategy for executing multiple consensus generating jobs.

First, we sought to increase the performance of consensus generation step by employing a different multiple

alignment tool that can be integrated into Du Novo codebase. We evaluated two candidate tools: SeqAn

(​https://github.com/seqan/seqan​) and Kalign2 ​(Lassmann et al. 2009)​. SeqAn is a library of algorithms,

including a multiple sequence aligner, specifically written to be incorporated into other genomics tools. Written

in C++, it can be compiled and its functions called from Python. Kalign2 is an aligner using the Wu-Manber

approximate string-matching algorithm ​(Wu and Manber 1992)​ to significantly speed up alignment while

maintaining accuracy. Kalign2 is written in C and can also be compiled and called from Python. With some

modification, it is possible to communicate with its functions directly from Python, without temporary files.

This allows the greatest efficiency and greatest integration into a Python process. SeqAn and Kalign2 were

evaluated against MAFFT, the existing algorithm in use by Du Novo. The aligners were tested by performing a

multiple sequence alignment on a duplex read family extracted from a duplex experiment sequencing the whole

human mitochondrial genome ​(Stoler et al. 2016)​. The family contained 74 reads, 41 single nucleotide

substitutions relative to the consensus, and no indels. The number of reads in the alignment was varied from 1 to

74, and the time taken to perform the alignment was measured. Fig. 3 shows the results of this experiment.

SeqAn was the slowest at all alignment sizes, with the worst performance at handling of large alignments. It

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://github.com/seqan/seqan
https://paperpile.com/c/7FYxVI/Cz9S
https://paperpile.com/c/7FYxVI/9i2F
https://paperpile.com/c/7FYxVI/gaRM
https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

took 58× more time than MAFFT at 10 reads, and 427× more at 40 reads. The fastest for all sizes was Kalign2. At

10 reads, it took less than 10 milliseconds. At 30 reads it was 9× faster, but at 60 reads it was only 4× faster than

MAFFT. Since the median family size for an ideal duplex experiment is only around a dozen reads, Kalign2’s

advantage is significant and we chose it as the default alignment engine for Du Novo.

Smarter parallelization improves speed

Du Novo uses the multiprocessing Python module for parallel processing. In order to maintain the ordering of

the aligned families, the old algorithm would start ​N​ alignment jobs in parallel, then check each job in order for

results. This created a bottleneck at the slowest job: the ​N​ jobs would take as long as the slowest one. The new

algorithm maintains a queue of jobs executing or waiting to be executed. In order to maintain ordering the

algorithm keeps an ordered list of submitted jobs. It fills the queue, then begins processing outputs in order of

submission. This still requires waiting for all jobs in a batch to finish before continuing, but to reduce the

bottleneck, the queue is made larger than the number of available workers. As soon as a job finishes and a

worker is freed, it begins work on a new job. This lets new jobs run on CPUs freed by the fastest jobs while the

slowest job is still running. If ​W​ is the number of workers and ​M​ is a multiplier such that ​M​×​W​ is the queue size,

then a single batch of ​M​×​W​ jobs will take less time than ​M​ batches of ​W​ jobs. Diminishing returns occur as ​M

grows, so ​M​ is set to eight by default. To show the combined effect of the change in alignment and queueing

algorithms, Du Novo 2.15, using Kalign2 and the default queue size was compared with Du Novo 0.4, using

MAFFT and the old queueing algorithm. Table 2 shows that the combination of the two changes results in an

over 9× faster performance at low levels of parallelization. The trend in memory usage is the same as when

comparing Kalign2 vs. MAFFT.

Next we used the simulated dataset to test whether the change in alignment algorithm affects the accuracy of the

pipeline. The simulated experiment was the same, but with 40,000 fragments generated instead of 400,000.

Because the input was one homogenous sequence with no minor variants, any differences from the input must

be due to incorrect consensus base calls. Using the previous multiple sequence aligner, MAFFT, resulted in an

error rate of 0.00563 differences per output base (Table 3). Using Kalign2 instead resulted in 0.00561 differences.

Adding barcode error correction improved this figure slightly to 0.00525 while also increasing the yield. The

standard pipeline published by Loeb ​et al​. ​(Schmitt et al. 2012)​ was also compared, resulting in 0.0114 differences

per output base.

Using Du Novo

By combining tag error correction with the new alignment engine and parallelization improvements we sought

to develop software that can be readily employed by a wide audience of users. To achieve this goal we are

distributing Du Novo in three complementary ways:

7

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://paperpile.com/c/7FYxVI/LhrB
https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

- Interactive pipeline at ​http://usegalaxy.org​. Here users can upload datasets of any size and process using

the complete Du Novo pipeline to produce SSCS and DCS sequences. The Galaxy system contains all

tools for downstream processing including mapping and variant calling. To help users effectively use

our system we have developed an detailed step-by-step tutorial that can be found here:

http://bit.ly/dunovo-tutorial​.

- Bioconda package. Du Novo code relies on a number of software components that need to be installed

before the tool can be used. Conda package eliminated the need to install these dependencies by

automatically installing all components using ​conda install dunovo​​ command (see

http://bit.ly/dunovo-bioconda​).

- Source code for the package can be found in GitHub at ​https://github.com/galaxyproject/dunovo​. It is

distributed under Academic Free License.

Methods

Barcode error analysis

The Hamming distance quantifies similarity or dissimilarity between two DNA sequences of equal length by

calculating the number of differences between them :

D​i,j​ is the number of sites where X​i​ match and X​j​ do not match, ​k​ is the index of the respective site out of a total

number of sites ​n​. The input data was in tabular format organized into family size, the sequence of the tag, and

the direction of the tag in the SSCS (​ab ​= forward or ​ba​ = reverse). Each tag represents a family of paired-end

sequences forming SSCS. Since the whole dataset contained more than one million tags, the comparison of all

tags was computationally too demanding. Thus, we parallelized the algorithms and only selected 1,000 random

tags from the data set and compared them to the whole dataset to estimate the minimum Hamming distance

between tags. A sample of 1,000 tags gives a very similar estimate than the Hamming distance estimated for a

sample of 10,000 and ~130,000 tags (Fig. S1). Note that unless noted otherwise, the reported Hamming distance

is the minimum Hamming distance of a tag to the other tags in the dataset.

Error correction

The script ​baralign.sh​​ performs an alignment of all barcodes against themselves (all scripts mentioned in this

section can be found at ​https://github.com/galaxyproject/dunovo​). First, it extracts all unique barcode sequences

8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

http://usegalaxy.org/
http://bit.ly/dunovo-tutorial
http://bit.ly/dunovo-bioconda
https://github.com/galaxyproject/dunovo
https://github.com/galaxyproject/dunovo
https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

(concatenations of ​a​+​b​ tags) as FASTA sequences. Then it indexes them, along with their reversed (​b​+​a​) versions,

with bowtie-build and aligns them to the index with bowtie ​-v 3 --best -a​​. This alignment is then read by

correct.py​​, which uses the networkx module to constructs graphs where each vertex is a barcode and each edge

is a high-quality alignment between two barcodes. The definition of a high-quality alignment can be based on

the MAPQ mapping quality, the edit distance given by the NM tag, or distance between the aligned starting

positions of the two barcodes. The default values for these filters is 20, 1, and 2, respectively. Then, for each

graph, a “correct” barcode is chosen by one of two methods. The default method is to choose the barcode which

appears in the largest number of reads. An alternative is to choose the barcode with the most edges to other

barcodes.

Generating simulated duplex data

To validate effectiveness of our approach we have first applied it to a simulated duplex sequencing dataset

generated with a duplex sequencing simulator developed to test the correctness of the Du Novo algorithms

against known duplex sequencing behavior and sources of errors. It simulates an entire duplex sequencing

experiment but taking a reference genome sequence as input, randomly fragmenting it, adding random

barcodes to the ends of these fragments, simulating PCR and sequencing errors to produce a set of simulated

duplex reads. To randomly fragment the reference sequence, it uses ​wgsim​​ (​https://github.com/lh3/wgsim​) in

error-free mode (options ​-e 0 -r 0 -d 0​​), using ​-1 ​​ to set the length of the fragments. Then it simulates

random oligomer synthesis to produce duplex barcodes using a uniform 25% probability for each base. It

concatenates these oligomers, along with a constant linker sequence, with the fragment sequence to produce

starting fragments. These simulated tagged fragments than undergo ​in silico ​PCR in order to introduce

amplification errors. First, a family size is chosen from an empirical distribution observed in a previous duplex

experiment. Then, the phylogenetic tree relating these reads is generated. For a family size of ​n​, the process

starts with ​n​ reads at the root node representing the original fragment molecule. Each read is randomly assigned

to a daughter molecule with 50% probability. Then the process repeats with each daughter, using the number of

reads assigned to the daughter instead of ​n​. Because amplification efficiencies decline as PCR cycles continue,

the probability of replication starts at 1 and is divided by 1.05 each cycle, a realistic value compared with observed

reactions ​(Larionov et al. 2005)​. Once a tree is generated, errors are simulated at each node and propagated to

their descendents. Then, sequencing is simulated, also with errors, and reads are output. A log of the errors is

also saved, in order to allow checking results against the “truth”. Unless noted otherwise, simulated data

presented here were generated with a sequencing and PCR polymerase error rate of 0.001 errors per base. 25

cycles of PCR were simulated, the fragment lengths were set to 400bp, and the read lengths to 100bp. Using this

approach we have generated a datasets containing 400,000 simulated duplex reads and applied our error

correction strategy.

9

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://github.com/lh3/wgsim
https://paperpile.com/c/7FYxVI/52Mn
https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Du Novo 2.0

The basic algorithms in Du Novo 2.15 remain as described in Stoler ​et al.​ 2016, except the addition of barcode

error correction, the Kalign2 multiple sequence aligner, and the replacement of the parallel job queueing

algorithm. In all experiments described here, the threshold required to form a consensus base

(​make-consensi.py​​’s​ ​--cons-thres​​) was 0.7, 3 reads were required to create a consensus sequence

(​--min-reads​​), and a PHRED score of at least 25 was required to count a base toward the consensus (​--qual ​​).

When consensus reads were filtered, the script ​trimmer.py​​ was used from the ​bfx​​ directory of Du Novo’s

distribution. Unless noted otherwise, the script was set to remove the 5’ end of reads when the proportion of N’s

in a 10 base window exceeded 0.3 (​--filt-base N --window 10 --thres 0.3​​). If either of the reads in a pair

was trimmed to less than 75 bases, both were removed (​--min-length 75​​).

10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

References

Fennell T, Homer N. 2018. ​fgbio​. fulcrumgenomics ​https://github.com/fulcrumgenomics/fgbio​ (Accessed July 5,
2018).

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. ​Genome Biol​ ​10​: R25.

Larionov A, Krause A, Miller W. 2005. A standard curve based method for relative real time PCR data processing.
BMC Bioinformatics​ ​6​: 62.

Lassmann T, Frings O, Sonnhammer ELL. 2009. Kalign2: high-performance multiple alignment of protein and
nucleotide sequences allowing external features. ​Nucleic Acids Res​ ​37​: 858–865.

Mei H, Arbeithuber B, Cremona M, DeGeorgio M, Nekrutenko A. 2018. A high resolution view of adaptive
events. ​http://dx.doi.org/10.1101/429175​.

Rebolledo Jaramillo B, Su MS-W, Stoler N, McElhoe JA, Dickins B, Blankenberg D, Korneliussen TS,
Chiaromonte F, Nielsen R, Holland MM, et al. 2014. Maternal age effect and severe germ-line bottleneck in
the inheritance of human mitochondrial DNA. ​Proc Natl Acad Sci U S A​ ​111​: 15474–15479.

Salk JJ, Schmitt MW, Loeb LA. 2018. Enhancing the accuracy of next-generation sequencing for detecting rare
and subclonal mutations. ​Nat Rev Genet​ ​19​: 269–285.

Schmitt MW, Fox EJ, Prindle MJ, Reid-Bayliss KS, True LD, Radich JP, Loeb LA. 2015. Sequencing small genomic
targets with high efficiency and extreme accuracy. ​Nat Methods​ ​12​: 423–425.

Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. 2012. Detection of ultra-rare mutations by
next-generation sequencing. ​Proc Natl Acad Sci U S A​ ​109​: 14508–14513.

Shugay M, Britanova OV, Merzlyak EM, Turchaninova MA, Mamedov IZ, Tuganbaev TR, Bolotin DA, Staroverov
DB, Putintseva EV, Plevova K, et al. 2014. Towards error-free profiling of immune repertoires. ​Nat Methods
11​: 653–655.

Shugay M, Zaretsky AR, Shagin DA, Shagina IA, Volchenkov IA, Shelenkov AA, Lebedin MY, Bagaev DV,
Lukyanov S, Chudakov DM. 2017. MAGERI: Computational pipeline for molecular-barcoded targeted
resequencing. ​PLoS Comput Biol​ ​13​: 13–17.

Smith T, Heger A, Sudbery I. 2017. UMI-tools: Modeling sequencing errors in Unique Molecular Identifiers to
improve quantification accuracy. ​Genome Res​ ​27​: 491–499.

Stoler N, Arbeithuber B, Guiblet W, Makova KD, Nekrutenko A. 2016. Streamlined analysis of duplex sequencing
data with Du Novo. ​Genome Biol​ ​17​: 180.

Wu S, Manber U. 1992. Fast text searching: allowing errors. ​Commun ACM​ ​35​: 83–91.

Xu C, Gu X, Padmanabhan R, Wu Z, Peng Q, DiCarlo J, Wang Y. 2018. smCounter2: an accurate low-frequency
variant caller for targeted sequencing data with unique molecular identifiers. ​bioRxiv​ 281659.

11

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

http://paperpile.com/b/7FYxVI/4m3G
http://paperpile.com/b/7FYxVI/4m3G
http://paperpile.com/b/7FYxVI/4m3G
https://github.com/fulcrumgenomics/fgbio
http://paperpile.com/b/7FYxVI/4m3G
http://paperpile.com/b/7FYxVI/4m3G
http://paperpile.com/b/7FYxVI/A5Ko
http://paperpile.com/b/7FYxVI/A5Ko
http://paperpile.com/b/7FYxVI/A5Ko
http://paperpile.com/b/7FYxVI/A5Ko
http://paperpile.com/b/7FYxVI/A5Ko
http://paperpile.com/b/7FYxVI/A5Ko
http://paperpile.com/b/7FYxVI/52Mn
http://paperpile.com/b/7FYxVI/52Mn
http://paperpile.com/b/7FYxVI/52Mn
http://paperpile.com/b/7FYxVI/52Mn
http://paperpile.com/b/7FYxVI/52Mn
http://paperpile.com/b/7FYxVI/Cz9S
http://paperpile.com/b/7FYxVI/Cz9S
http://paperpile.com/b/7FYxVI/Cz9S
http://paperpile.com/b/7FYxVI/Cz9S
http://paperpile.com/b/7FYxVI/Cz9S
http://paperpile.com/b/7FYxVI/Cz9S
http://paperpile.com/b/7FYxVI/oG6j
http://paperpile.com/b/7FYxVI/oG6j
http://dx.doi.org/10.1101/429175
http://paperpile.com/b/7FYxVI/oG6j
http://paperpile.com/b/7FYxVI/4oPA
http://paperpile.com/b/7FYxVI/4oPA
http://paperpile.com/b/7FYxVI/4oPA
http://paperpile.com/b/7FYxVI/4oPA
http://paperpile.com/b/7FYxVI/4oPA
http://paperpile.com/b/7FYxVI/4oPA
http://paperpile.com/b/7FYxVI/4oPA
http://paperpile.com/b/7FYxVI/WgOL
http://paperpile.com/b/7FYxVI/WgOL
http://paperpile.com/b/7FYxVI/WgOL
http://paperpile.com/b/7FYxVI/WgOL
http://paperpile.com/b/7FYxVI/WgOL
http://paperpile.com/b/7FYxVI/WgOL
http://paperpile.com/b/7FYxVI/F5vp
http://paperpile.com/b/7FYxVI/F5vp
http://paperpile.com/b/7FYxVI/F5vp
http://paperpile.com/b/7FYxVI/F5vp
http://paperpile.com/b/7FYxVI/F5vp
http://paperpile.com/b/7FYxVI/F5vp
http://paperpile.com/b/7FYxVI/LhrB
http://paperpile.com/b/7FYxVI/LhrB
http://paperpile.com/b/7FYxVI/LhrB
http://paperpile.com/b/7FYxVI/LhrB
http://paperpile.com/b/7FYxVI/LhrB
http://paperpile.com/b/7FYxVI/LhrB
http://paperpile.com/b/7FYxVI/KYuS
http://paperpile.com/b/7FYxVI/KYuS
http://paperpile.com/b/7FYxVI/KYuS
http://paperpile.com/b/7FYxVI/KYuS
http://paperpile.com/b/7FYxVI/KYuS
http://paperpile.com/b/7FYxVI/KYuS
http://paperpile.com/b/7FYxVI/EcAP
http://paperpile.com/b/7FYxVI/EcAP
http://paperpile.com/b/7FYxVI/EcAP
http://paperpile.com/b/7FYxVI/EcAP
http://paperpile.com/b/7FYxVI/EcAP
http://paperpile.com/b/7FYxVI/EcAP
http://paperpile.com/b/7FYxVI/EcAP
http://paperpile.com/b/7FYxVI/f9HD
http://paperpile.com/b/7FYxVI/f9HD
http://paperpile.com/b/7FYxVI/f9HD
http://paperpile.com/b/7FYxVI/f9HD
http://paperpile.com/b/7FYxVI/f9HD
http://paperpile.com/b/7FYxVI/f9HD
http://paperpile.com/b/7FYxVI/gaRM
http://paperpile.com/b/7FYxVI/gaRM
http://paperpile.com/b/7FYxVI/gaRM
http://paperpile.com/b/7FYxVI/gaRM
http://paperpile.com/b/7FYxVI/gaRM
http://paperpile.com/b/7FYxVI/gaRM
http://paperpile.com/b/7FYxVI/9i2F
http://paperpile.com/b/7FYxVI/9i2F
http://paperpile.com/b/7FYxVI/9i2F
http://paperpile.com/b/7FYxVI/9i2F
http://paperpile.com/b/7FYxVI/9i2F
http://paperpile.com/b/7FYxVI/lJIH
http://paperpile.com/b/7FYxVI/lJIH
http://paperpile.com/b/7FYxVI/lJIH
http://paperpile.com/b/7FYxVI/lJIH
https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Acknowledgments
 This study has been funded by the funds provided by the Eberly College of Science at the Pennsylvania State

University and NIH Grants U41 HG006620 and R01 AI134384-01 as well as NSF ABI Grant 1661497. Funding for

R.S., M.H., G.P., and I.T-B was provided by the Linz Institute of Technology (LIT213201001) and the Austrian

Science Fund (FWFP30867000).

12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Table 1. ​Effect of error correction on duplex datasets analysis

Sample ABL1 pBR322

errors 0 1 2 3 0 1 2 3

SSCS ab 38,493 37,803 37,007 36,280 84,231 81,929 78,481 73,647

SSCS ba 38,202 37,496 36,772 36,080 84,085 81,741 78,234 73,160

DSC 20,745 21,299 22,151 23,180 77,164 80,640 84,359 89,513

13

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Table 2. ​ Time and memory usage of different versions of ​align-families.py​​, using different multiple

sequence alignment algorithms. At low levels of parallelization, Kalign2 made the process over 8 times faster,

with a memory usage less than twice as much as MAFFT. The new algorithm sped up the tool between 1 and

2.05x. Naturally, at higher levels of parallelization, the reduction of the job queue bottleneck made more of a

difference. Memory usage appeared to not be affected, which is expected due to the small size of the job queue

compared with the rest of memory usage. To attempt to disentangle the effects of the job queueing algorithm

from all the other changes between 0.4 and 2.15, the two versions were compared with all parameters set as

similarly as possible. In both cases, the number of ​--processes​​ was set to 32 and MAFFT was used as the

aligner. Crucially, the ​--queue-size​​ for the 2.15 version was set to be 32, the same as the number of

--processes​​. This approximates the bottleneck in the pre-2.0 version of Du Novo’s job queueing algorithm.

Comparing the median of 3 trials of each, the wallclock time of 2.15 was 27% higher than that of 0.4. This could

be because of the higher overhead in the more complicated parallelization algorithm, or other changes between

0.4 and 2.15.

version aligner time/
memory

CPUs

1 2 4 8 16 32

0.4 MAFFT

time
(seconds)

28,638 15,769 8,912 5,173 3,038 1,747

2.15
MAFFT 28,754 14,282 7,079 3,463 1,686 854

Kalign2 4,731 1,777 945 600 381 246

0.4 MAFFT

memory
(MB)

23,704 12,299 6,622 3,755 2,284 1,602

2.15
MAFFT 23,927 12,599 6,850 3,985 2,541 1,810

Kalign2 24,648 23,220 12,408 6,668 3,781 2,327

14

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Table 3.​ Effect of aligner on “correctness”.

Method Aligner Barcode error
correction

Errors per
base

Du Novo MAFFT Uncorrected 0.563%

Du Novo Kalign2 Uncorrected 0.561%

Du Novo Kalign2 Corrected 0.525%

Loeb N/A Uncorrected 1.140%

15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Figure 1. Effect of errors on the Duplex Sequencing procedure.​ Here input DNA is sheared and barcodes are

ligated to the ends of the DNA molecules (colored rectangles in ​Barcoded DNA​). After paired-end library

preparation and sequencing each original molecules gives rise to multiple reads (​Paired-end reads ​pane). This

process also inadvertently generates sequencing errors represented by yellow rectangles and red circles. The

yellow rectangles and red circles are used to depict errors arising inside read compartments corresponding to

original DNA and adapters, respectively. Reads are then grouped by barcode to produce “families”. In this

example each family is required to contain at least three reads. As shown here one of the reads contains an error

(red circle) within the barcode. The error makes this particular barcode different from others. As a result it

cannot be added into the family and remains a singleton (the error correction algorithm described here was

developed specifically to correct such errors and allow singletons to be joined with their respective families).

Each family is subsequently reduced into a Single Strand Consensus Sequence (SSCS) and each respective SSCS

is merged with its counterpart from the opposite strand to generate Duplex Consensus Sequences (DCS).

Figure 2. Error correction increases yield of Duplex Sequencing. ​In each figure top two graphs represent counts

of SSCSs and bottom two show counts of DCSs. ​(A). ​Before error correction. ​(B)​. After error correction.

Figure 3. Alignment engine comparison. ​MAFFT, kalign, and seqan were ran

Figure S1.​ ​Tag error correction allowing no, 1, 2, or three mismatches. ​A​. Shown is the analysis of the sequence differences

in the tags (derived from the tabular sequencing file of a targeted genomic region) stratified by family size (FS). The

hamming distance (HD) is the number of different nucleotides estimated for a subset of tags (​n​=1000) randomly selected

from the overall data (~1 million families) and compared with all the tags in the library. The HD recorded is the smallest HD

(minimal HD) of the tag to the rest of the database. ​B​. The same data is plotted by family size and stratified by HD. Note

that the total number of families decreases as singletons are reassigned to pre-existing families​.

16

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Figure 1.

17

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Figure 2A.

18

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Figure 2B.

19

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Figure 3

20

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

Figure S1

21

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469106doi: bioRxiv preprint

https://doi.org/10.1101/469106
http://creativecommons.org/licenses/by/4.0/

