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Abstract

Objective: In a three-wave ∼6 yrs longitudinal study we investigated if expansion of
lateral ventricle (LV) volumes (regarded as a proxy for brain parenchyma loss) predicts
performance on a test of response inhibition. Participants and Methods: Anatomical
trajectories of left (LH) and right (RH) lateral ventricle volumes across the three
study-waves were quantified using the Longitudinal Stream in Freesurfer 5.3 and
modelled using a linear mixed-effects (LME) algorithm. All participants (N = 74, mean
age 60.7 yrs at inclusion, 48 females) performed the Color-Word Interference Test
(CWIT). Response time on the third condition was used as a measure of response
inhibition (RI) and divided into three classes (fast, medium and slow). The Extreme
Gradient Boosting (XGBoost) algorithm was used for calculating the relative
importance of selected LV volume features from the LME model in predicting RI class.
Finally, the two most important extracted features were fed into a 10-fold
cross-validation framework, estimating the accuracy, precision and recall of the RI class
prediction. Results: Four LME based features were selected to characterize LV volume
trajectories: steepness of LV volume change and the LV volume at the time of inclusion,
each from the right and left hemisphere. The XGBoost procedure selected the steepness
measure from the right and the volume at inclusion from the left hemisphere as the two
most important features to predict RI performance. The 10-fold cross validation
procedure showed a recall, precision and accuracy score (.40 - .50) that were clearly
above chance level. Conclusion: Measures of the LV volume trajectories gave a fairly
good prediction of response inhibition performance, confirming the role of LV volume as
a biomarker of cognitive function in older adults. Future studies should investigate the
value of the lateral ventricle volume trajectories as predictors of cognitive preservation
or decline into older age.

[*]Corresponding author: Astri J. Lundervold, Department of Biological and Medical
Psychology, University of Bergen,Jonas Lies vei 91, 5009 Bergen, NORWAY, E-mail:
astri.lundervold@uib.no, Phone: +47 55586216

Short title: Lateral ventricle volume trajectories and response inhibition

PLOS 1/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2018. ; https://doi.org/10.1101/468678doi: bioRxiv preprint 

https://doi.org/10.1101/468678
http://creativecommons.org/licenses/by/4.0/


1 Introduction

Normal aging is associated with morphometric changes in several brain regions and a 1

corresponding decline in cognitive function, with trajectories of age-related changes that 2

are characterized by individual differences [1]. Major events, biological and genetic 3

factors through the lifespan obviously contribute to the heterogeneity observed in 4

samples of older individuals [2, 3, 12], both regarding the rate of structural brain 5

changes [5], the rate and extent of cognitive changes [6] and in brain-cognition 6

relations [7, 12]. In the severe end of the distribution, the most extensive parenchyma 7

loss is associated with dementia, a syndrome defined by a severe decline in cognitive 8

function [8]. On the other end of the scale we find so-called ”superagers” [9]. They show 9

maintained cognitive function into old age [10], with a corresponding preservation of 10

brain structure over time [11,12]. These findings support that age-related structural 11

brain changes can act as strong predictors of cognitive abilities in old age, and 12

emphasize the importance of taking individual differences into account in studies of 13

associations between brain and cognition. 14

Several studies have linked changes in cognitive function to changes in specific 15

regions of the brain (e.g., [13–16]). Prefrontal cortex is one such area, linked to both 16

global aspects of cognitive function like fluent intelligence [17] and to specific measures 17

defined within the concept of executive function (e.g., [18, 19]). Executive function (EF) 18

is of special interest in studies including older participants, as EF has been described as 19

a hallmark of cognitive aging [20,21]. The concept of EF does, however, include several 20

subcomponents. In the present study, we have focused on response inhibition (RI). RI is 21

described as one of the core components of EF [22], and RI performance is known to be 22

impaired as part of normal cognitive aging [23,24]. The close relation between response 23

inhibition and fluent intelligence [25] and between fluid intelligence and various 24

properties of brain structure [17] add to the interest of this EF subcomponent. The 25

specificity of the relations between brain regions and RI and other subcomponents of EF 26

is, however, still not clear. Inconsistent results are reported and can at least partly be 27

explained by individual differences in age-related volume changes across different brain 28

regions [26], but also by what Salthouse et al. [25] described as the ”ability impurity” of 29

EF tests. In fact, subfunctions of EF are most likely dependent on multiple, 30

interconnected brain regions [22]. In the present study, we will therefore not use volume 31

changes in specific parenchymal brain regions as predictors of RI, but rather use 32

trajectories of change in the lateral ventricle volumes as a more general proxy of 33

age-related brain parenchyma loss. 34

The choice of LV volumes is further supported by studies describing the brain’s 35

fluid-filled ventricles as a biomarker of the aging brain [27–29], and studies linking 36

age-related ventricular expansion to changes in cognitive function at a subject-specific 37

level [30–32]. A study by Todd et al. [33] showed a strong linear relationship between 38

LV volume expansion and worsening of cognitive performance over a two-years period. 39

The study assessed cognitive function by tests primarily designed to reveal symptoms of 40

major neurocognitive disorders. Less is known about the longitudinal relationship 41

between LV volume expansion and more specific measures of cognitive functions that 42

are prone to normal age-related changes. The eight year longitudinal study by Long et 43

al. [26] is an exception. The study assessed the co-evolution of volumetric brain changes 44

and cognitive function in a large group of healthy older adults with tests defined as 45

measures of different cognitive domains. The results showed volumetric reduction across 46

several brain regions, and that faster cerebral atrophy and ventricular expansion were 47

associated with rapid decline in performance on tests of verbal memory and executive 48

function. 49

The study by Long and colleagues [26] motivated the present study to further 50

investigate the ability of LV volume-derived biomarkers to predict cognitive 51
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performance. In the present study we restricted the evaluation of cognitive function to 52

one test of RI: the third condition of the Color-Word interference (CWIT) test from the 53

Delis and Kaplan Executive Function Scale (D-KEFS) [34]. We assume influence of 54

processing speed and other fundamental abilities upon this test measure [24,35]. 55

Moreover, its close relation to fluid intelligence [25] and various characteristics of the 56

brain [17] make CWIT strongly susceptible to age-related changes. From this, we expect 57

to confirm the expansion of ventricles that Long et al. [26] reported from their 58

statistical mixed effects model, as well as an association between LV expansion and 59

performance on CWIT. The main contribution of the present study is the extension of 60

the statistical procedure used by most previous studies to include a machine learning 61

framework, aiming at probabilistic prediction of RI performance from selected brain 62

”signatures” of LV volumes. More specifically, we first used a linear mixed-effect (LME) 63

analysis similar to Long et al. [26] to select characteristics of the subject-specific 64

trajectories of the left and right LV volumes. These characteristics were then included 65

in a classification procedure, predicting individual belongings to one of three classes of 66

performance level (fast, medium and slow) on the RI test. Feature importance was 67

identified in the analyses using an extreme gradient boosting procedure. To obtain 68

results that may generalize to other samples, we incorporated a small collection of both 69

linear and non-linear classifiers in a k-fold cross validation scheme using multiple 70

disjoint training and test sets drawn from our sample in order to estimate predication 71

performance (i.e., accuracy, precision and recall). From previous studies we expected to 72

find an age-related expansion of the LV volumes [36], a slower age-related expansion of 73

LV volumes in women than in men [37–39], and that age would influence the response 74

inhibition performance [23,24]. Our main hypothesis was that proper model based 75

features characterizing the LV volume trajectories could act as good predictors of RI 76

performance when included in a comprehensive classification framework. 77

2 Methods 78

2.1 Sample 79

The study included 74 healthy middle-aged and older subjects (48 females, 26 males; 80

mean age 62.5 years at inclusion). They were all participants in a longitudinal 81

investigation on cognitive aging, including neuropsychological and multi-modal brain 82

MRI examinations. Subjects with a history of substance abuse, present neurological or 83

psychiatric disorder, or other significant medical conditions when considered for 84

inclusion, were excluded from participation. All subjects from the first study wave 85

(N = 163) were invited to a follow-up study (wave 2) about three years later (N = 133), 86

and to a third study (wave 3) about three years thereafter (N = 107). 87

Among the 107 participants of the third study-wave, 74 subjects provided successful 88

and complete set of Freesurfer analyzed MRI data across the three waves and results 89

from the cognitive test of response inhibition in wave 3. These subjects were included as 90

the cohort of the present study. 91

An inspection of the neuropsychological test data from the three study-waves 92

confirmed that none of the participants showed results indicating dementia. The test 93

battery included two subtests from the Wechsler Abbreviated Scale of Intelligence 94

(WASI, [40]) in the first study-wave to estimate intellectual function, and the Mini 95

Mental Staus Examination (MMSE, [41]) in study-waves 2 and 3. All participants 96

obtained a MMSE score equal to or above 25, and their mean IQ score was 117.1 (SD 97

10.2). None of the participants obtained a score on the second edition of the Beck 98

Depression scale (BDI-II) [42] indicating a diagnosis of depression. 99

All participants signed an informed written consent form, and the Regional 100
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Committees for Medical and Health Research Ethics of Western Norway approved the 101

three study waves. 102

2.2 Response inhibition 103

The total raw response-time (RT) score (in seconds) on the third condition of the 104

CWIT [34] was included as the measure of response inhibition. In this condition, 105

subjects are requested to name the colors of color-words printed in incongruent colors 106

(e.g., the the word ”red” printed in green) as fast and correct as possible. From this, it 107

is assumed that the participant has to inhibit the more automatic response to read the 108

word, often referred to as the Stroop effect. In the two previous conditions of CWIT, 109

the participants named a set of colours and read a set of color words. The third 110

condition thus includes these two fundamental abilities, and their response time is also 111

dependent on processing speed [35]. Trained research assistants administrated the test 112

in a quiet room designed for a neuropsychological examination. 113

2.3 MRI acquisition and brain segmentation 114

Multi-modal MR imaging was performed on a 1.5 T GE Signa Echospeed scanner (MR 115

laboratory, Haraldsplass Deaconess Hospital, Bergen) using a standard 8-channel head 116

coil. Two consecutive T1-weighted 3D volumes were recorded from each subject (to 117

improve SNR and brain segmentation) using a fast spoiled gradient echo (FSPGR) 118

sequence (TE = 1.77 ms; TR = 9.12 ms; TI = 450 ms; FA = 7◦; FoV = 240 × 240 mm2, 119

image matrix = 256 × 256 × 124; voxel resolution = 0.94 × 0.94 × 1.40 mm3; TA = 6:38 120

min). 121

The same scanner (no upgrades) and T1-w 3D imaging protocol were used at each of 122

the three study waves. Brain segmentation and morphometric analysis accross the three 123

waves was conducted using the FreeSurfer image analysis suite, version 5.3 124

(documented and freely available online from https://surfer.nmr.mgh.harvard.edu). To 125

extract reliable volume estimates and their trajectories (e.g. left and right lateral 126

ventricles), the cross-sectionally processed images from the three study waves were 127

subsequently run through the longitudinal stream [44] in FreeSurfer. 128

Specifically, an unbiased within-subject template space and image is created using 129

robust, inverse consistent registration [43]. Several processing steps, such as skull 130

stripping, Talairach transforms, atlas registration as well as spherical surface maps and 131

parcellations are then initialized with common information from the within-subject 132

template, significantly increasing reliability and statistical power [44]. As a consequence 133

of the longitudinal processing stream and within-subject registration, the estimated 134

total intracranial volume (eTIV) for a given subject remains fixed across the three study 135

waves. Figs 1 illustrates the longitudinal MRI recordings (orig.mgz) and the 136

corresponding FreeSurfer segmentations (aseg.mgz) from one of the participants at each 137

of the three study waves. The age at the MRI examinations and corresponding left and 138

right LV volumes are given along the time-line. 139

————————————————————— 140

Fig 1 about here. 141

Fig 1: The longitudinal MRI recordings (orig.mgz) and the corresponding FreeSurfer 142

segmentations (aseg.mgz) from one of the participants at each of the three study waves. 143

The age at the MRI examinations and corresponding left and right lateral ventricle 144

volumes are given along the time-line. 145

————————————————————— 146
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2.4 Statistical analyses 147

2.4.1 Identification of individual trajectories of LV volume changes 148

Mixed effects modelling was used to identify measures of individual trajectories of LV 149

volume change according to the following equation: 150

V olij = β0 + β1Ageij + (b0i + b1iAgeij) + εij

where i is subject (i = 1, . . . , N = 74) and j is wave (j = 1, . . . , n = 3). V olij - volume 151

of left (right) lateral ventricle in subject i at wave j (response), and Ageij - age (in 152

years) of subject i at wave j (predictor). β0 and β1 are fixed effects model parameters, 153

b0i and b1i are random effects model parameters, and εij is random residual errors, with 154

zero mean and constant variance δ = ε2. 155

Two features were selected from the LME model to define the individual trajectories. 156

The first is denoted steepness of individual volume trajectory, defined as the random 157

slope effects β1. The second feature represents the LV volumes when included in the 158

study, defined as the deviance at wave 1 between subject-specific LV volume and the 159

age-matched LV volume expected from the cohort fixed effect regression line, Vdev (Figs 160

2). For each of these features, one is selected from the right and one from the left 161

hemisphere. These four variables were included as predictors in further analyses. 162

————————————————————— 163

Fig 2 about here. 164

Fig 2: Illustration of he subject-specific measures of LV volume trajectories obtained 165

from the LME analysis. 166

————————————————————— 167

Results from descriptive statistics and correlation analyses were included to illustrate 168

univariate associations between demographic data (age and gender), the selected 169

measures of LV volume trajectories and response inhibition. 170

2.4.2 Prediction of response inhibition 171

To study prediction of RI performance from the LV volume trajectories, we casted the 172

problem as a classification task with balanced classes. To obtain such classes, we 173

divided the participants into fast (F), medium (M), and slow (S) performers, using 174

appropriate thresholds for the RI reaction time. By this we obtained equal prior 175

probabilities of belonging to either F, M or S, (i.e, close to the same number of 176

participants in each class). Technically we used the qcut() function in Pandas to 177

compute the reaction time threshold values. 178

An extreme Gradient Boosting (XGBoost) procedure as provided by 179

https://github.com/dmlc/xgboost was used to identify the order of importance of 180

the measures of LV volume trajectories selected from the LME analysis (presented in 181

the result part) in discriminating between the three levels of performance on the RI 182

measure. This classifier implements a meta estimator that fits a number of randomized 183

decision trees on various sub-samples of the dataset and use averaging to improve the 184

predictive accuracy and control over-fitting. 185
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To measure the quality of a split in a tree node, we used the Gini impurity criterion, 186

and to aim at a statistically good results concerning the feature importance we specified 187

n estimators = 10000 as the number of trees in the forest. During the procedure, 188

nodes are expanded until all leaves in the tree are pure. 189

2.4.3 Prediction using k-fold cross validation framework 190

From the feature importance analysis, the top two ranked predictors selected to 191

represent the trajectories of the LV volumes were included for a comprehensive 192

classification study. We used k-fold cross validation to assess the prediction properties 193

(accuracy, precision, recall). This was applied by including a linear (multinomial logistic 194

regression = MLR) and a non-linear classifier (multi-layer perceptron = MLP, with 195

three layers) and a voting classifier. 196

For the performance assessment on each fold, we used the accuracy score (the ratio 197

of correct classifications), precision score (the ratio tp/(tp+fp), where tp is the number 198

of true positive and fp number false positives), recall score (sensitivity, the ratio 199

tp/tp+fn) where fn is the number of false negatives. All these measures were generated 200

from sklearn.metrics. 201

These supervised data-driven machine learning analysis were implemented in Jupyter 202

notebooks using Python (3.5.4), Numpy (1.12), Pandas (0.20), Statsmodels (0.8), 203

XGBoost (0.6), Scikit-learn (0.19), rpy2 (2.8.5) and Matplotlib (2.0) for producing Figs 204

3 and 4. Our Jupyter notebook for computing feature importance and classification 205

with k-fold cross-validation will be available on GitHub [address TBA]. 206

3 Results 207

3.1 Three wave changes in lateral ventricular volumes 208

A linear mixed-effect (LME) model was used to investigate the age-related evolution of 209

the ventricular volumes. Figs 3a and 3b show the fixed and random effects lines 210

calculated from the LV modeling for the left and right hemispheres, respectively. The 211

fixed effects line shows expansion of LV volumes with increasing age, with an overall 212

cohort change of 428.73 µL/year for the LV on the left side, and 425.99 µL/year for the 213

right side. There was a trend towards a steeper slope in the oldest part of the sample, 214

but the fixed effects line was less steep than ordinary linear least squares regression line 215

(broken line), which did not take the dependencies between the measures from the three 216

study-waves into account. 217

————————————————————— 218

Fig 3 (a) and (b) about here. 219

Fig 3: Subject-specific longitudinal lateral ventricle volumes versus age in left (a) and 220

right (b) hemisphere shown as color-coded line plots across the three study waves. For 221

left and right hemisphere the random effects, estimated from the linear mixed-effect 222

model V olij = β0 + β1Ageij + (b0i + b1iAgeij) + εij , are depicted as thin line segments 223

in black superimposed on the line plots. The thick regression line in black represents the 224

estimated fixed effect, and the broken line represents ordinary linear least squares 225

regression (OLS) line. 226

————————————————————— 227
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3.2 Explorative data analysis 228

The mean response inhibition performance (reaction-time) in the third study-wave was 229

56.99 s (sd = 14.5 s). 230

Figs 4 shows the distributions of age, the four volume measures, the response 231

inhibition performance (RI), and their correlations. The influence of gender is 232

illustrated by presenting the results separately for females and males. The LV volume 233

measures for females were shifted to the lower end of the distribution, while the gender 234

distributions were similar for age and RI. The univariate correlations between the left 235

(β1L) and right (β1R) steepness measures (r = .94) and the two deviance measures 236

VdevL and VdevR (r = .89) were strong. Statistically significant correlations between 237

RI and the left (r = 48, p < .001) and the right (r = .53, p < .001) steepness measures 238

of LV volumes were found for females only. The correlations between RI and the LV 239

volume measures were non-significant. 240

————————————————————— 241

Fig 4 about here. 242

Fig 4: Pair-plot illustrating the distributions and correlations between age, the four LV 243

volume trajectory measures and response-inhibition. The results are given separately for 244

females (in red) and males (in green). 245

————————————————————— 246

3.3 Predicting response-inhibition from trajectories of the LV 247

volumes 248

The XGBoost analysis was used to investigate the relative importance of the four 249

measures characterizing individual LV volume trajectories in predicting RI performance. 250

Figs 5 shows that the most important feature was defined from the LV volume in the left 251

hemisphere at inclusion. The second most important feature was selected from the right 252

hemisphere, and represents the steepness of the trajectory from the first to the third 253

study-wave. These two features were chosen for the final cross validation procedure. 254

A supplementary analysis was conducted to investigate the importance of gender 255

when included together with the four LV volume measures and age in the XGBoost 256

procedure. The results convincingly illustrated a minor importance of gender. Even age 257

did not obtain stronger importance than the volume measures. 258

————————————————————— 259

Fig 5 about here. 260

Fig 5: The Figure shows the result from the XGBoost analysis including the four 261

selected measures of LV volume trajectories. VdevL/R: the deviance measure in the 262

left/right hemisphere; b1iL/R = steepness of the trajectory in the left/right hemisphere. 263

————————————————————— 264
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3.4 Prediction using a k-fold cross validation framework 265

Table 2 summarizes the classification performance using our cross-validation procedure 266

including a linear multinominal logistic regression analysis, a nonlinear multilayer 267

perceptron, and a voting classifier. According to the voting classifier, selecting the class 268

label that represents the majority (mode) among the two other classifiers, the 269

predictions of response inhibition category yielded an accuracy, precision and recall that 270

were about .50. For this multinomial distributed sample divided into three classes with 271

close to equal probabilities, this classification result is clearly above chance level. Taken 272

together, the results support that a larger longitudinal expansion in the LV volumes is 273

associated with poorer response inhibition in a given subject. 274

Accuracy Precision Recall
MLR 0.514 (0.179) 0.483 (0.245) 0.514 (0.179)
MLP 0.417 (0.178) 0.377 (0.198) 0.417 (0.178)
Voting 0.507 (0.179) 0.499 (0.241) 0.507 (0.179)

Table 2: Classification performance using the three different classifiers in stratified 275

k-fold validation scheme (k = 10 splits) of the ventricular volumes evolution, estimated 276

by the LME modeling. The features were standardized to zero mean and unit variance, 277

and the performance measures represents the mean and standard deviation (SD) from 278

the set of k folds. Each fold (test and train data splits) were kept the same for each 279

classifier using the scikit-learn pipeline mechanism. MLR = multinominal logistic 280

regression; MLP = multilayer perceptron (thre layers); Voting = the soft voting 281

classifier predicting the class label based on the argmax of the sums of the predicted 282

probabilities among the two other classifiers, MLR and MLP. 283

4 Discussion 284

The present study showed an almost linear age-related expansion of the lateral ventricle 285

volumes over a six years period. Four variables were selected from the linear 286

mixed-effect analysis (LME) to characterize the individual trajectories in the sample: a 287

random slope representing the steepness of change from the first to the third study-wave, 288

and a measure of the LV volumes when included in the study, i.e., the distance between 289

the observed volume and the volume expected from the age-related fixed cohort effect. 290

For both variables, one was estimated for the right and one for the left hemisphere. The 291

univariate exploratory data analysis showed that distributions of these four LV volume 292

measures were characterized by gender differences, and that the response inhibition 293

performance correlated strongly with age and the steepness measures in females. The 294

multivariate XGBoost analysis did, however, show that age and gender were of minor 295

importance compared to the four brain measures in predicting response inhibition 296

performance. Two measures - the steepness measure from the right hemisphere and the 297

deviance measure from the left hemisphere - were computed as the two most important 298

features. When included in the 10-fold cross-validation procedure, they were shown to 299

predict performance on the test of response inhibition clearly above chance level. 300

The trajectories of the lateral ventricle volumes depicted in Fig 2 confirmed results 301

from previous studies showing that healthy aging is associated with expansion of the 302

ventricular system [5,26]. The pair-wise correlation analysis showed that statistically 303

significant results between the steepness measure and age were restricted to the female 304

part of the sample. Gender differences have also been reported in previous studies on 305

age-related LV volume changes [38,39], with age-related expansion described as slower in 306
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females than males. The deviance measures from the left and right hemisphere, selected 307

as two features of the LV volume trajectories in our study, were lower in females than 308

males across all ages. This reflects that the LV volumes were lower in females than 309

males when included in the study. The effect of gender on the steepness measures did, 310

however, show a different pattern: although females showed a lower steepness in the 311

younger age groups, this trend shifted to a male dominance in the oldest part of the 312

sample. This emphasize the importance of including a wide age range in studies of 313

brain-behaviour relations, noting that the conclusions by Chung et al. [38] and Hasan et 314

al. [39] included groups in their 40s and between 18 and 59 years, respectively. 315

The pair-wise correlation analysis did also reveal strong associations between 316

response inhibition performance and the steepness measures of the LV volume 317

trajectories. By this, the present results were similar to the results reported by 318

McDonald et al. [13] and Aljondi et al. [14], assessing atrophy rates and corresponding 319

changes in cognitive function in groups of older adults at two time-points. The 320

conclusions from McDonalds et al. [13] were, however, based on results from a sample of 321

patients with Mild Cognitive Impairment (MCI), and no significant correlations were 322

found among any of the lobar atrophy rates and cognitive measures in the healthy 323

controls. Aljondi et al. [14], using the same FreeSurfer longitudinal stream procedure as 324

in the present study to estimate atrophy and a linear regression analysis to model 325

brain-cognition changes, included a sample of healthy older women. In a ten-years 326

follow-up study, they showed that atrophy rates were associated with increased rates of 327

cognitive decline. Interestingly, our results from the explorative data analysis within the 328

females subsample were similar to the results by Aljondi et al. [14]. 329

Results from the explorative analysis thus suggest a gender specific brain-cognition 330

relationship in older age. However, the correlation approach, including pairs of variables, 331

are obviously not appropriate to detect the relative importance of demographic 332

variables like gender. The machine-learning approach included in the present study 333

rather demonstrated that gender were of minor importance when included together with 334

the four measures of LV volume trajectories. Furthermore, although a pair-wise analysis 335

showed weak correlations between response inhibition performance and the deviance 336

measures, the importance of LV volumes when included in the study was clearly 337

demonstrated by the machine-learning approach. When included in the cross-validation 338

procedure together with the steepness measure of the LV volume change from the first to 339

third study-wave, the prediction validity of response inhibition performance was clearly 340

above chance level. The importance of level of performance have been widely discussed 341

in studies of trajectories of change in cognitive function (e.g., [45]) and brain imaging 342

(e.g., [1]), and separation of the effects of aging from differences at baseline is described 343

as one of the many challenges when interpreting results from longitudinal studies. Our 344

study showed the importance of considering this challenge by including information 345

from baseline when selecting features characterizing trajectories of age-related changes, 346

not at least in further studies inspired by a life-time perspective on brain health [46]. 347

The statistical approaches selected in the present study have gained increased 348

attention and support during the last two decades (see [47] for an overview), and we 349

therefore believe that the present results may inspire further studies with a goal to 350

obtain more accurate diagnostic and monitoring tools for brain health in older age. The 351

continuous influence of such factors on the brain and cognitive function throughout the 352

life-span, emphasize the importance of such studies also for detection of signs of Mild 353

Cognitive Impairment (MCI), where a cognitive decline is described as more severe than 354

expected from age and education level. The importance of detecting and treat patients 355

with MCI is underscored by results showing that more than 50% of those defined as 356

MCI are expected to progress to dementia within five years [48]. Currently, temporal 357

lobe atrophy are commonly used as a diagnostic tool for neurodegenerative disorders. 358
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The findings in this study give arguments for including information about changes in LV 359

volumes, and by this supporting studies showing that such measures could even be more 360

sensitive than a temporal lobe atrophy change rate to identify a neurodegenerative 361

disorder (e.g., [49]). 362

There are several limitations in our study that need to be commented. The exclusive 363

use of morphometric measures is one such weakness. Inclusion and fusion of multimodal 364

MRI data (e.g., diffusen MRI and fMRI) is expected to provide a more comprehensive 365

description of the brain patterns and a more accurate prediction of cognitive function. 366

Inclusion of a larger set of features is, however, dependent on a much larger data set 367

than in the present study, and gives a strong argument for sharing data in future 368

studies [50]. Inclusion of performance on only one cognitive test may be considered as 369

another weakness. Previous studies on brain-behaviour relations in the aging brain have 370

mainly focused on episodic memory function [12]. We will argue that a measure of 371

response inhibition, known to be affected as part of normal cognitive aging [23,24], 372

should not be underrated as an important outcome measure. The so-called ”ability 373

impurity” [25] of this and other measures of executive function can rather be evaluated 374

as a strength, in that the performance is likely also dependent on abilities that are 375

commonly defined within other cognitive domains (e.g., processing speed and memory 376

function). To sort this out, future studies should include both more ”pure” measures 377

and more general composite measures. Finally, the selection of a general brain measure 378

like LV volumes can be criticized. Most studies have included more specific brain 379

regions. However, the association between a given cognitive domain and a regional brain 380

area is not clear-cut, which can be illustrated by studies associating structural measures 381

of hippocampal volume with episodic memory function [51], executive function [52] as 382

well as processing speed [53]. There are obviously many factors influencing brain 383

measures like LV volumes as well as different aspects of cognitive function trough the 384

life-span, and even interactions between brain-behaviour measures in more general [54]. 385

Although we did find the clear pattern of our LV volume measures intriguing, future 386

studies should follow the advice from Steffener et al. [54] to utilize multiple 387

neuroimaging modalities within a conceptual model of cognitive aging when predicting 388

complex function defined within the concept of executive function and cognitive control. 389

Taken together, the results in the present study confirmed the importance of brain 390

changes for cognitive function in older age. Individuals differ both regarding brain 391

changes and the associated pace and level of cognitive changes in older age [1], leaving 392

us with a task to search for ways to preserve our brain. A study by Habeck et al. [55] 393

used a computational model to quantify the brain maintenance and cognitive reserve for 394

single subjects by including chronological age, neuropsychological performance and 395

structural brain measures as features. In a follow-up study they identified cognitive 396

reserve networks that was task irrelevant, supporting that life experiences may preserve 397

the individual against age- or disease related changes [56] We believe that inclusion of 398

such features into a predictive model similar to the one used in the present study would 399

give further information about factors of importance to brain health and successful 400

cognitive aging in older age [12]. 401
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