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Abstract 
 
Dense genotype data and thousands of phenotypes from large biobanks, coupled with 
increasingly accessible summary association statistics from genome-wide association studies 
(GWAS), provide great opportunities to dissect the complex relationships among human traits 
and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based 
biobank-wide scans for disease-trait associations. Compared to traditional regression 
approaches, BADGERS uses GWAS summary statistics as input and does not require multiple 
traits to be measured on the same cohort. We applied BADGERS to two independent datasets 
for Alzheimer’s disease (AD; N=61,212). Among the polygenic risk scores (PRS) for 1,738 traits 
in the UK Biobank, we identified 48 significant trait PRSs associated with AD after adjusting for 
multiple testing. Family history, high cholesterol, and numerous traits related to intelligence and 
education showed strong and independent associations with AD. Further, we identified 41 
significant PRSs associated with AD endophenotypes. While family history and high cholesterol 
were strongly associated with neuropathologies and cognitively-defined AD subgroups, only 
intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These 
results provide novel insights into the distinct biological processes underlying various risk 
factors for AD. 
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Introduction 
 
Late-onset Alzheimer’s disease (AD) is a prevalent, complex, and devastating 
neurodegenerative disease without a current cure. Millions of people are currently living with AD 
worldwide, and the number is expected to grow rapidly as the population continues to age [1, 2]. 
With the failure of numerous drug trials, it is of great interest to identify modifiable risk factors 
that can be potential therapeutic targets for AD [3-5]. Epidemiological studies that directly test 
associations between measured risk factors and AD are difficult to conduct and interpret 
because identified associations are in many cases affected by confounding and reverse 
causality. These challenges in risk factor studies for complex disease are ubiquitous and are 
particularly critical for AD due to its extended pre-clinical stage – irreversible pathologic changes 
have already occurred in the decade or two prior to clinical symptoms [6]. In an effort to combat 
confounding and reverse causality, Mendelian randomization (MR) methods [7-9] have been 
developed to identify causal risk factors for disease using data from genome-wide association 
studies (GWAS). Despite the favorable theoretical properties in identifying causal relationships, 
these methods have limited statistical power, therefore they are not suitable for hypothesis-free 
screening of risk factors. 
 
Motivated by transcriptome-wide association study – an analysis strategy that identifies genes 
with genetically-regulated expression values associated with disease [10-12] – we sought a 
systematic and statistically-powerful approach to identify AD risk factors using summary 
association statistics from large-scale GWAS. GWAS for late-onset AD have been successful, 
and dozens of associated loci have been identified to date [13-19]. Although direct information 
about risk factors is limited in these studies, dense genotype data on a large number of samples, 
in conjunction with independent reference datasets for thousands of complex human traits, such 
as the UK Biobank [20], make it possible to genetically impute potential risk factors and test 
their associations with AD. This strategy allows researchers to study risk factors that are not 
directly measured in AD studies. Furthermore, it reduces reverse causality because the 
imputation models are trained on independent, younger, and mostly dementia-free reference 
cohorts, thereby improving the interpretability of findings. 
 
Here, we introduce BADGERS (Biobank-wide Association Discovery using GEnetic Risk 
Scores), a statistically-powerful and computationally-efficient method to identify associations 
between a disease of interest and a large number of genetically-predicted complex traits using 
GWAS summary statistics. We applied BADGERS to identify associated risk factors for AD from 
1,738 heritable traits in the UK Biobank and replicated our findings in independent samples. 
Furthermore, we performed multivariate conditional analysis, Mendelian randomization, and 
follow-up association analysis with a variety of AD biomarkers, AD-related pathology findings, 
and cognitive subgroup phenotypes to provide mechanistic insights into our findings.  
 
 
 
Results 
 
Method overview 
 
Here, we briefly introduce the BADGERS model. Complete statistical details are discussed in 
the Methods section. BADGERS is a two-stage method to test associations between traits. First, 
polygenic risk score (PRS) models are trained to impute complex traits using genetic data. Next, 
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we test the associations between a disease or trait of interest and the PRSs of various traits. 
Given a PRS model, the genetically-imputed trait can be denoted as: �� �  �� 
where �  is the � � 	  genotype matrix for �  individuals in a GWAS, and �  denotes pre-
calculated weight values of 	 SNPs in the PRS model. Then, we test the association between 
measured trait 
 and imputed trait �� via a univariate linear model  
 �  � � �� � � 
The test statistic for  can be expressed as: � � ������ � ����� 

where �� is the vector of SNP-level association z-scores for trait 
, and � is a diagonal matrix 
with the jth diagonal element being the ratio between standard deviation of the jth SNP and that 
of ��.  
 
This model can be further generalized to perform multivariate analysis. If � imputed traits are 
included in the analysis, we use a similar notation as in univariate analysis:  ��� � ��� 
Here, �� is a 	 � � matrix and each column of �� is the pre-calculated weight values of SNPs 
for each imputed trait. Then, the associations between 
 and � imputed traits ���  �1 � � � �� are 
tested via a multivariate linear model 
 �  �� � ���� � �� 
where � � ��, … , ���  is the vector of regression coefficients. The z-score for �  �1 � � � �� 
can be denoted as: �� � �������� � 1����

 ��������Θ�� 

where �  is the inverse variance-covariance matrix of ��� ;  �  is the � � 1  vector with the kth 
element being 1 and all other elements equal to 0; Θ is a 	 � 	 diagonal matrix with the ith 
diagonal element being �"#$����; and �� is defined similarly to the univariate case as the vector 
of SNP-level association z-scores for trait 
. 
 
 
Simulations 
 
We used real genotype data from the Genetic Epidemiology Research on Adult Health and 
Aging (GERA) to conduct simulation analyses (Methods). First, we evaluated the performance 
of our method on data simulated under the null hypothesis. We tested the associations between 
randomly simulated traits and 1,738 PRSs from the UK Biobank and did not observe inflation of 
type-I error (Supplementary Table 1). Similar results were also observed when we simulated 
traits that are heritable but not directly associated with any PRS. Since BADGERS only uses 
summary association statistics and externally estimated linkage disequilibrium (LD) as input, we 
also compared effect estimates in BADGERS with those of traditional regression analysis based 
on individual-level data. Regression coefficient estimates and association p-values from these 
two methods were highly consistent in both simulation settings (all correlations > 0.94; Figure 
1A and Supplementary Figures 1-2), showing minimal information loss in summary statistics 
compared to individual-level data. To evaluate the statistical power of BADGERS, we simulated 
traits by combining effects from randomly selected PRS and a polygenic background (Methods). 
We set the effect size of PRS to be 0.02, 0.015, 0.01, 0.008, and 0.005. BADGERS showed 
comparable statistical power to the regression analysis based on individual-level genotype and 
phenotype data (Figure 1B). Overall, our results suggest that using summary association 
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statistics and externally estimated LD as a proxy for individual-level genotype and phenotype 
data does not inflate type-I error rate or decrease power. The performance of BADGERS is 
comparable to regression analysis based on individual-level data. 
 
Figure 1. Simulation results. BADGERS and regression analysis based on individual-level data showed (A) highly 
consistent effect size estimates for 1,738 PRS in simulation (setting 1; Pearson correlation=0.962), and (B) 
comparable statistical power (setting 3).  

 
 
 
Identify risk factors for late-onset AD among 1,738 heritable traits in the UK Biobank 
 
We applied BADGERS to conduct a biobank-wide association scan (BWAS) for AD risk factors 
from 1,738 heritable traits (p<0.05; Methods) in the UK Biobank. We repeated the analysis on 
two independent GWAS datasets for AD and further combined the statistical evidence via meta-
analysis (Supplementary Figure 3). We used stage-I association statistics from the 
International Genomics of Alzheimer’s Project (IGAP; N=54,162) as the discovery phase, then 
replicated the findings using 7,050 independent samples from the Alzheimer’s Disease Genetics 
Consortium (ADGC). We identified 50 significant PRS-AD associations in the discovery phase 
after correcting for multiple testing, among which 14 had p<0.05 in the replication analysis. 
Despite the considerably smaller sample size in the replication phase, top trait PRSs identified 
in the discovery stage showed strong enrichment for p<0.05 in the replication analysis 
(enrichment=2.5, p=2.2e-5; hypergeometric test). In the meta-analysis, a total of 48 trait PRSs 
reached Bonferroni-corrected statistical significance and showed consistent effect directions in 
the discovery and replication analyses (Figure 2 and Supplementary Table 2).  
 
Unsurprisingly, many identified associations were with dementia-related PRSs. PRSs for Family 
history of AD and dementia showed the most significant associations with AD (meta-analytic 
p=3.7e-77 and 5.2e-28 for illnesses of mother and father, respectively). The PRS for having any 
dementia diagnosis is also strongly and positively associated (p=8.5e-11). In addition, we 
observed consistent and negative associations between PRSs for better performance on 
cognitive tests and AD. These cognitive traits include those for fluid intelligence score (p=2.4e-
14), time to complete a card matching task (p=2.8e-9), ability to remember and comply with an 
instruction despite interference information (p=9.1e-11), and many others. Consistently, PRSs 
for educational attainment showed strong inverse associations with AD. The PRS for higher age 
at which the person completed full time education was inversely associated with AD (p=2.5e-7). 
PRSs for four out of seven traits based on a survey about education and professional 
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qualifications were significantly associated with AD (Supplementary Figure 4). Higher 
education traits, such as having a university degree (p=4.4e-12), A levels/AS levels or 
equivalent education in the UK (p=6.9e-9), and professional qualifications (p=7.1e-6), were 
inversely associated with AD. In contrast, the PRS for choosing “none of the above” in this 
survey (i.e. do not have any listed education or qualification) was directly associated with AD 
(p=1.6e-11). Other PRSs with notable strong associations included those for high cholesterol 
(p=2.5e-15; positive), lifestyle traits such as cheese intake (p=2.5e-10; negative), occupational 
traits such as jobs involving heavy physical work (p=2.7e-10; positive), anthropometric traits 
including height (p=5.3e-7; negative), and traits related to pulmonary function, e.g. forced 
expiratory volume in 1 second (FEV1; p=1.9e-6; negative). Detailed information for all 
associations is summarized in Supplementary Table 2. 
 
Figure 2. PRS-based BWAS identifies risk factors for AD. Meta-analysis p-values for 1,738 heritable traits in the 
UK Biobank are shown in the figure. P-values are truncated at 1e-15 for visualization purpose. The horizontal line 
marks the Bonferroni-corrected significance threshold (i.e. p=0.05/1738). Positive associations point upward and 
negative associations point downward. Traits with p<1e-7 are labeled. 

 
 
 
Multivariate conditional analysis identifies independently associated risk factors 
 
Of note, associations identified in marginal analysis are not guaranteed to be independent. We 
observed clear correlational structures among the PRSs of identified traits (Figure 3). For 
example, PRS of various intelligence and cognitive traits are strongly correlated, and the PRS 
for consumption of cholesterol lowering medication is correlated with the PRS for self-reported 
high cholesterol. To account for the correlations among trait PRSs and identify risk factors that 
are independently associated with AD, we performed multivariate conditional analysis using 
GWAS summary statistics (Methods). First, we applied hierarchical clustering to the 48 traits 
we identified in marginal association analysis and divided these traits into 15 representative 
clusters. The traits showing the most significant marginal association in each cluster were 
included in the multivariate analysis (Supplementary Figure 5). Similar to the marginal analysis, 
we analyzed IGAP and ADGC data separately and combined the results using meta-analysis 
(Supplementary Table 3). All 15 representative trait PRSs remained nominally significant 
(p<0.05) and showed consistent effect directions between marginal and conditional analyses 
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(Supplementary Table 4). However, several traits showed substantially reduced effect 
estimates and inflated p-values in multivariate analysis, including PRSs for fluid intelligence 
score, mother still alive, unable to work because of sickness or disability, duration of moderate 
activity, and intake of cholesterol-lowering spreads. Interestingly, major trait categories that 
showed the strongest marginal associations with AD (i.e. family history, high cholesterol, and 
education/cognition) were independent from each other. Paternal and maternal family history 
also showed independent associations with AD, consistent with the low correlation between 
their PRSs (correlation= 0.052). 
 
Figure 3. PRS correlation matrix for the 48 traits identified in marginal association analysis. Trait categories 
and association directions with AD are annotated. The dendrogram indicates the results of hierarchical clustering. We 
used 1000 Genomes samples with European ancestry to calculate PRS for each trait and assess their correlations. 
Label “irnt” indicates that standardized traits using rank-based inverse normal transformation were used in GWAS.  

 
 
Influence of the APOE region on identified associations 
 
Further, we evaluated the impact of APOE on identified associations. We removed the extended 
APOE region (chr19: 45,147,340–45,594,595; hg19) from summary statistics of the 48 traits 
showing significant marginal associations with AD and repeated the analysis. We observed a 
substantial drop in the significance level of many traits, especially family history of AD, dementia 
diagnosis, and high cholesterol (Supplementary Table 5 and Figure 4). 38 out of 48 traits 
remained significant under stringent Bonferroni correction after APOE removal. Interestingly, the 
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associations between AD and almost all cognitive/intelligence traits were virtually unchanged,
suggesting a limited role of APOE in these associations. Removal of an even wider region
surrounding APOE showed similar results (Supplementary Figure 6). 
 
Figure 4. Influence of the APOE region on PRS-AD associations. The horizontal and vertical axes denote
association p-values before and after removal of the APOE region, respectively. Original p-values (i.e. the x-axis)
were truncated at 1e-20 for visualization purpose.  

 
 
 
Causal inference via Mendelian randomization 
 
Next, we investigated the evidence for causality among identified associations. We performed
MR (Methods) in IGAP and ADGC datasets separately and meta-analyzed the results. Among
the 48 significant traits identified by BADGERS, inverse variance-weighted (IVW) MR identified
23 nominally significant causal effects (p<0.05) on AD (Supplementary Table 6). The signs of
all significant causal effects were consistent with results from BADGERS. The most significant
effect was family history (p=1.1e-233 and 1.7e-69 for illnesses of mother and father,
respectively). Having any dementia diagnosis (p=9.1e-7), high cholesterol (p=4.1e-6), A
levels/AS levels education (p=1.7e-4), and time spent watching television (p=2.4e-4) were also
among top significant effects. Of note, fluid intelligence score, one of the most significant
associations identified by BADGERS, did not reach statistical significance in MR (p=0.06). 
 
 
Associations with AD subgroups, biomarkers, and pathologies 
 
To further investigate mechanistic pathways for the identified risk factors, we applied BADGERS
to a variety of AD subgroups, biomarkers, and neuropathologic features (Supplementary Table
7). Overall, 29 significant associations were identified under a false discovery rate (FDR) cutoff
of 0.05, and these AD-related phenotypes showed distinct association patterns with PRSs for
AD risk factors (Figure 5; Supplementary Figure 7). First, we tested the associations between
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the 48 PRSs for AD-associated traits and five AD subgroups defined in the Executive Prominent 
Alzheimer’s Disease (EPAD) study of cognitively-defined AD subgroups, i.e. isolated relative 
impairments in memory, language, and visuospatial functioning, no domain with an isolated 
relative impairment, and multiple domains with relative impairments (Methods) [21, 22]. The 
PRS for maternal family history of AD and dementia was strongly and consistently associated 
with all five cognitively defined AD subgroups (Supplementary Table 8), with the group with 
isolated relative memory impairment showing the strongest association (p=3.3e-16), which is 
consistent with the higher frequency of APOE ε4 in this subgroup [21]. The PRS for paternal 
family history was not strongly associated with any of the cognitively defined subgroups but the 
effect directions were consistent with those found for maternal history. Interestingly, PRSs for 
intelligence and cognitive traits, such as ability to remember and comply with an instruction 
despite interference information (p=2.7e-5) and fluid intelligence score (p=6.8e-5), were 
specifically associated with the group with no domain with an isolated relative impairment. PRSs 
for high cholesterol and related traits were positively associated with the groups with isolated 
relative impairments in language and memory and the group with multiple domains with relative 
impairments but showed weaker associations with the group with isolated relative impairment in 
visuospatial functioning and the group with no domain with an isolated relative impairment.  
 
Figure 5. Associations between identified AD risk factors and various AD subgroups, CSF biomarkers, and 
neuropathologic features. Asterisks denote significant associations based on an FDR cutoff of 0.05. P-values are 
truncated at 1e-5 for visualization purpose. 
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Next, we extended our analysis to a different GWAS dataset for three AD-related biomarkers in 
cerebrospinal fluid (CSF): amyloid beta (Aβ42), tau, and phosphorylated tau (ptau181) [23]. 
Somewhat surprisingly, AD risk factors did not show strong associations with Aβ42 and tau 
(Supplementary Table 9). Maternal family history of AD and dementia was associated with 
ptau181 (p=4.2e-4), but associations were absent for Aβ42 and tau. It has been recently 
suggested that CSF biomarkers have sex-specific genetic architecture [24]. However, no 
association passed an FDR cutoff of 0.05 in sex-stratified analyses (Supplementary Table 10). 
 
Further, we applied BADGERS to a variety of neuropathologic features of AD and related 
dementias (Methods), including neuritic plaques (NPs), neurofibrillary tangles (NFTs), cerebral 
amyloid angiopathy (CAA), Lewy body disease (LBD), hippocampal sclerosis (HS), and vascular 
brain injury (VBI) [25]. PRSs for family history of AD/dementia (p=3.8e-8, maternal; p=1.4e-5, 
paternal) and high cholesterol (p=2.1e-5) were strongly associated with NFT Braak stages 
(Supplementary Table 11). NP also showed very similar association patterns with PRSs for 
these traits (p=2.7e-19, maternal family history; p=2.6e-7, paternal family history; p=0.001, high 
cholesterol). Of note, the association between the PRS of maternal family history of 
AD/dementia and NP remained significant even after APOE removal (p=2.3e-4; 
Supplementary Table 12). The other neuropathologic features did not show strong 
associations. Despite not being statistically significant, PRSs for family history of AD/dementia 
was negatively associated with VBI, and PRSs for multiple intelligence traits were positively 
associated with LBD, showing distinct patterns with other pathologies (Supplementary Figure 
7). We also note that various versions of the same neuropathology findings all showed 
consistent associations in our analyses (Supplementary Figure 8). The complete association 
results for all the aforementioned endophenotypes are summarized in Supplementary Table 13. 
 
Figure 6. Associations between six traits and pre-clinical cognitive phenotypes in WRAP. Error bars denote 
the standard error of effect estimates. Statistically significant associations (FDR<0.05) are marked by asterisks. 

 
 
 
Associations with cognitive traits in a pre-clinical cohort 
 
Finally, we studied the associations between PRSs for AD risk factors and pre-clinical cognitive 
phenotypes using 1,198 samples from the Wisconsin Registry for Alzheimer's Prevention 
(WRAP), a longitudinal study of initially dementia-free middle-aged adults [26]. Assessed 
phenotypes include mild cognitive impairment (MCI) status and three cognitive composite 
scores for executive function, delayed recall, and learning (Methods). A total of 12 significant 
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associations reached an FDR cutoff of 0.05 (Supplementary Table 14). Somewhat surprisingly, 
although the effect directions were consistent with other related associations reported in our 
study, parental history and high cholesterol, the risk factors that showed the strongest 
associations with various AD endophenotypes, were not significantly associated with MCI or 
cognitive composite scores in WRAP. Instead, PRSs for education and intelligence-related traits 
strongly predicted pre-clinical cognition (Figure 6). PRSs for A-levels education and no 
education both showed highly significant associations with delayed recall (p=4.0e-5 and 7.7e-7) 
and learning (p=7.6e-6 and 5.0e-8). No education was also associated with higher risk of MCI 
(p=2.5e-4). Additionally, fluid intelligence score was positively associated with the learning 
composite score (p=7.5e-4), and time to complete a card matching task was negatively 
associated with the executive function (p=1.1e-5).  
 
 
 
Discussion 
 
In this work, we introduced BADGERS, a new method to perform PRS-based association scans 
at the biobank scale using GWAS summary statistics. Through simulations, we demonstrated 
that our method provides consistent effect estimates and similar statistical power compared to 
regression analysis based on individual-level data. Additionally, we applied BADGERS to two 
large and independent GWAS datasets for late-onset AD. Among 1,738 heritable traits in the 
UK Biobank, we identified 48 trait PRSs showing statistically significant associations with AD. 
These trait PRSs covered a variety of categories including family history, cholesterol, 
intelligence, education, occupation, and lifestyle. Although many of the identified traits are 
genetically correlated, multivariate conditional analysis confirmed multiple strong and 
independent associations for AD. PRS for family history showing strong associations with AD is 
not a surprise, and many other associations are supported by the literature as well. The 
protective effect of higher educational and occupational attainment on the risk and onset of 
dementia is well studied [27, 28]. Hypercholesterolemia is also known to associate with β-
amyloid plaques in the brain and higher AD risk [29-31]. 
 
More interestingly, these identified trait PRSs had distinct association patterns with various AD 
subgroups, biomarkers, pathologies, and pre-clinical cognitive traits. Five cognitively-defined AD 
subgroups were consistently associated with maternal family history, but only the group without 
substantial relative impairment in any domain was associated with PRSs for intelligence and 
education. In addition, PRSs for family history and high cholesterol were strongly associated 
with classic AD neuropathologies including NP and NFT while PRSs for intelligence and 
educational attainment were associated with pre-clinical cognitive scores and MCI. We also 
investigated the influence of APOE on the identified associations. Effects of PRSs for family 
history and high cholesterol were substantially reduced after APOE removal. In contrast, 
associations with PRSs for cognition and education were virtually unchanged. These results 
suggest that various AD risk factors may affect the disease course at different time points and 
via distinct biological processes, and genetically predicted risk factors for clinical AD include at 
least two separate components. While some risk factors (e.g. high cholesterol and APOE) may 
directly contribute to the accumulation of pathologies, other factors (e.g. intelligence and 
education) may buffer the adverse effect of brain pathology on cognition [28].   
 
Further, we note that the association results in BADGERS need to be interpreted with caution. 
Although PRS-based association analysis is sometimes treated as causal inference in the 
literature [32], we do not consider BADGERS a tool to identify causal factors. Key assumptions 
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in causal inference are in many cases violated when analyzing complex, highly polygenic traits, 
which may lead to complications when interpreting results. In our analysis, BADGERS showed 
superior statistical power compared to MR-IVW – among the 48 traits identified by BADGERS, 
only 7 reached Bonferroni-corrected statistical significance in MR (Supplementary Table 6). 
We envision BADGERS as a tool to prioritize associations among a large number of candidate 
risk factors so that robust causal inference methods can be applied to carefully assess causal 
effects. Limited sample size in the AD endophenotypes datasets is another limitation in our 
study. We have used data from the largest available GWAS for CSF biomarkers and 
neuropathologies. Still, small sample size made it challenging to assess the effects of traits that 
were weakly associated with AD. Finally, emerging evidence has highlighted sex-specific 
genetic architecture of AD [24, 33]. In our analysis, maternal family history of AD showed 
stronger associations with various phenotypes than paternal family history. This is consistent 
with what has been reported in the literature [34, 35]. However, we note that this may also be 
explained by the sample size difference in UK Biobank (Ncase=28,507 and 15,022 for samples 
with maternal and paternal family history, respectively). We also performed sex-stratified 
analyses for CSF biomarkers but identified limited associations, possibly due to the small 
sample size. Overall, sex-specific effects of risk factors remain to be investigated in the future 
using larger datasets. Finally, BADGERS requires training data for genetic prediction models 
and the downstream disease GWAS to be independent but of similar genetic ancestry. 
Development of methods that are more robust to sample overlap and diverse genetic ancestry 
remains an open problem for future research. 
 
In conclusion, BADGERS is a statistically powerful method to identify associated risk factors for 
complex disease. Large-scale biobanks continue to provide rich data on various human traits 
that may be of interest in disease research. Our method uses GWAS to bridge large biobanks 
with studies on specific diseases, lessens the limitation of insufficient disease cases in biobanks 
and lack of risk factor measurements in disease studies, and provides a statistically-justified 
approach to identifying risk factors for disease. We have demonstrated the effectiveness of 
BADGERS through extensive simulations, a two-stage BWAS for late-onset AD, and various 
follow-up analyses of identified risk factors. Our results provide new insights into the genetic 
basis of AD and reveal distinct mechanisms for the involvement of risk factors in AD etiologies. 
The ever-growing sample size in GWAS and biobanks, in conjunction with increasingly 
accessible summary association statistics, makes BADGERS a powerful and valuable tool in 
human genetics research.  
 
 
 
Methods 
 
BADGERS framework 
 
The goal of this method is to study the association between 
, a measured trait in the study, and ��, a trait imputed from genetic data via a linear prediction model: �� �  �� 
Here, ���	  is the genotype matrix for �  individuals in a study of trait 
 . �	��  is the pre-
calculated weight values on SNPs in the imputation model. 	 denotes the number of SNPs. We 
use 
, a � � 1 vector, to denote the trait values measured on the same group of individuals. We 
test the association between 
 and �� via a linear model 
 �  � � �� � �  
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where � is the intercept, �  is the term for random noise, and regression coefficient   is the 
parameter of interest. The ordinary least squares (OLS) estimator for  can be denoted as 

� �  %&"���, 
�"#$���� � %&"���, 
�"#$���� � 1"#$���� �� ' %&"���, 
�(%&"��	 , 
�) 

Here, �
 is the jth column of �. Additionally, we derive the formula for the standard error of �: 

����� � * "#$���� � "#$���� � * "#$�
�� � "#$���� 

The approximation in this formula is based on the assumption that trait 
 has complex etiology 
and imputed trait ��  only explains a small proportion of its phenotypic variance. When an 
accurate estimate of "#$���  is difficult to obtain, this approximation approach provides 
conservative results and controls type-I error in the analysis. 
 
In practice, individual-level genotype (i.e. �) and phenotype data (i.e. 
) may not be accessible 
due to policy and privacy concerns. Therefore, it is of practical interest to perform the 
aforementioned association analysis using summary association statistics. Standard genetic 
association analysis tests the association between trait 
 and each SNP via the following linear 
model: 
 �  +
 � �
,
 � -
  �1 � . � 	� 
The OLS estimator for ,
 and its standard error have the following forms. 

,/
 �  %&"��
 , 
�"#$��
�  

���,/
� � * "#$�-
�� � "#$��
� � * "#$�
�� � "#$��
� 

Again, the approximation is based on the empirical observation in complex trait genetics – each 
SNP explains little variability of 
 [36]. 
 
Next, we derive the test statistic (i.e. z-score) for : � � ������ 

� * �"#$�
� � "#$0��1 �� ' %&"���, 
�(%&"��	 , 
�) 

� 1
2"#$0��1 ��

3
44
5 �"#$����,/���0,/�1(�"#$��	�,/	��0,/	1 6

77
8

 

� ����� 
where � is a diagonal matrix with the jth diagonal element being  

�

 � *"#$��
�"#$0��1  

and �� is the vector of SNP-level z-scores obtained from the GWAS of trait 
, i.e. 
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��
 � ,/
��0,/
1 

Without access of individual-level genotype data, "#$��
� and "#$0��1 need to be estimated 
using an external panel with a similar ancestry background. We use �� to denote the genotype 
matrix from an external cohort, then "#$��
� can be approximated using the sample variance of ��
. Variance of �� can be approximated as follows "#$0��1 � ��9:� 
where 9: is the variance-covariance matrix of all SNPs estimated using ��. However, when the 
number of SNPs is large in the imputation model for trait �, calculation of 9: is computationally 
intractable. Instead, we use an equivalent but computationally more efficient approach. We first 
impute trait � in the external panel using the same imputation model  �� �  ��� 
Then, "#$0��1 can be approximated by sample variance "#$0��1. 
 
Thus, we can test association between 
  and ��  without having access to individual-level 
genotype and phenotype data from the GWAS. The required input variables for BADGERS 
include a linear imputation model for trait �, SNP-level summary statistics from a GWAS of trait 
, and an external panel of genotype data. With these, association tests can be performed. 
 
 
Multivariate analysis in BADGERS 
 
To adjust for potential confounding effects, it may be of interest to include multiple imputed traits 
in the same BADGERS model. We still use 
 to denote the measured trait of interest. The goal 
is to perform a multiple regression analysis using � imputed traits (i.e. ���, ..., ���) as predictor 
variables: 
 �  ���� � ��   
Here, we use ��� � ����, … , ����  to denote a � � �  matrix for �  imputed traits. Regression 
coefficients � � ��, … , ���  are the parameters of interest. To simplify algebra, we also 
assume trait 
 and all SNPs in the genotype matrix � are centered so there is no intercept term 
in the model, but the conclusions apply to the general setting. Similar to univariate analysis, 
traits ���, … , ��� are imputed from genetic data via linear prediction models: ��� � ��� 
where �	��

�  are imputation weights assigned to SNPs. The ith column of �  denotes the 
imputation model for trait ��. Then, the OLS estimator �� and its variance-covariance matrix can 
be denoted as follows: �� � �������������������
 %&"���� � "#$�
�������������� 
The approximation is based on the assumption that imputed traits ���, … , ��� collectively explain 
little variance in 
, which is reasonable in complex trait genetics if � is not too large. We further 
denote: 

� ; �0���������1�� � < "#$����� = %&"����, ����( > (%&"���� , ���� = "#$����� ?��

 

All elements in matrix � can be approximated using a reference panel ��: %&"���� , ��
� � %&"���� , ��
� 
Therefore, the z-score for �  �1 � @ � �� is 
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�� � �������� 

�  ����������
�����"#$�
� 

� 1����

 ��������Θ�� 

where  � is the � � 1 vector with the kth element being 1 and all other elements equal to 0, Θ is a 	 � 	 diagonal matrix with the ith diagonal element being �"#$����, and similar to the notation 
in univariate analysis, �� is the vector of SNP-level z-scores from the GWAS of trait 
. Given 
imputation models for � traits (i.e. ��), GWAS summary statistics for trait 
 (i.e. ��), and an 
external genetic dataset to estimate �  and Θ , multivariate association analysis can be 
performed without genotype and phenotype data from the GWAS. 
 
 
Genetic prediction 
 
Any linear prediction model can be used in the BADGERS framework. With access to individual-
level genotype and phenotype data, users can train the model using their preferred statistical 
learning methods, e.g. penalized regression or linear mixed model. When only GWAS summary 
statistics are available for risk factors (i.e. �), PRS can be used for imputation. We used PRS to 
impute complex traits in all analyses reported throughout the paper. Of note, more advanced 
PRS methods that explicitly model LD [37] and functional annotations [38] to improve prediction 
accuracy have been developed. However, additional independent datasets may be needed if 
there are tuning parameters in PRS. In general, higher imputation accuracy will improve 
statistical power in association testing [12]. The BADGERS software allows users to choose 
their preferred imputation model.  
 
 
Simulation settings 
 
We simulated quantitative trait values using genotype data of 62,313 individuals from the GERA 
cohort (dbGap accession: phs000674). Summary association statistics for each of the simulated 
traits were generated using PLINK [39]. We ran BADGERS on summary statistics based on the 
simulated traits and PRS of 1,738 traits in the UK Biobank. To compare BADGERS with the 
traditional approach that uses individual-level data as input, we also directly regressed 
simulated traits on the PRS of UK Biobank traits to estimate association effects.  
 
Setting 1. We simulated values of a quantitative trait as identically and independently distributed 
samples from a normal distribution with mean 0 and variance 1. In this setting, simulated trait 
values were independent from genotype data.  
 
Setting 2. We simulated values of a quantitative trait based on an additive random effect model 
commonly used in heritability estimation [40]. We fixed heritability to be 0.1. In this setting, the 
simulated trait is associated with SNPs, but is not directly related to PRSs of UK Biobank traits. 
 
Setting 3. We randomly selected 100 PRSs from 1,738 UK Biobank traits and calculated PRSs 
on GERA data. For each of these 100 PRSs, we simulated a quantitative trait by summing up 
the effect of a PRS, a polygenic background, and a noise term. 
 � �, �  AB �  - 
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Here, � denotes the genotype of samples; , is the effect size of each variant; B is the PRS of 
one of the selected traits; A is the effect size of the PRS; and - is the error term following a 
standard normal distribution. The polygenic background and random noise (i.e. �, � -) were 
simulated using the same model described in setting 2. This term and the PRS were normalized 
separately. The standardized effect size (i.e. A) was set as 0.02, 0.015, 0.01, 0.008, and 0.005 
in our simulations. In this setting, simulated traits are directly associated with SNPs and PRSs. 
For each value of A, statistical power was calculated as the proportion of significant results 
(p<0.05) out of 100 traits. 
 
 
GWAS datasets 
 
Summary statistics for 4,357 UK Biobank traits were generated by Dr. Benjamin Neale’s group 
and were downloaded from http://www.nealelab.is/uk-biobank. AD summary statistics from the 
IGAP stage-I analysis were downloaded from the IGAP website (http://web.pasteur-
lille.fr/en/recherche/u744/igap/igap_download.php). ADGC phase 2 summary statistics were 
generated by first analyzing individual datasets using logistic regression adjusting for age, sex, 
and the first three principal components in the program SNPTest v2 [41]. Meta-analysis of the 
individual dataset results was then performed using the inverse-variance weighted approach 
[42].  
 
GWAS summary statistics for neuropathologic features of AD and related dementias were 
obtained from the ADGC. Details on these data have been previously reported [25]. We 
analyzed a total of 13 neuropathologic features, including four NP traits, two traits for NFT Braak 
stages, three traits for LBD, CAA, HS, and two VBI traits. Among different versions of the same 
pathology, we picked one dataset for each pathologic feature to show in our primary analyses, 
but results based on different datasets of the same pathologic feature were consistent 
(Supplementary Figure 8). Six AD subgroups were defined in a recent paper on cognitively 
defined AD subgroups [21] on the basis of relative performance in memory, executive 
functioning, visuospatial functioning, and language at the time of Alzheimer’s diagnosis. Each 
person’s average across these four domains was calculated, and differences identified between 
performance in each domain and the individual average score. A threshold of 0.80 SD units was 
identified as an indicator of a substantial relative impairment. Each person could have a 
substantial relative impairment in zero, one, or two or more domains. Those with zero were 
assigned to the “no domain with a relative impairment” group. Those with exactly one were 
assigned to the associated group, e.g. isolated relative memory impairment, isolated relative 
language impairment, etc. Those with two or more domains with a substantial relative 
impairment were assigned to the multiple domains with a substantial impairment group. Each of 
these subgroups was compared with healthy controls in case-control association analyses. We 
did not include the executive functioning subgroup in our analysis due to its small sample size in 
cases. GWAS of these subgroups is described in [20]; we analyzed the summary statistics from 
those analyses here. Detailed information about the design of CSF biomarker GWAS and the 
recent sex-stratified analysis has been described previously [23, 24]. Details on the association 
statistics for AD subgroups, CSF biomarkers, and neuropathological features are summarized in 
Supplementary Table 7. 
 
 
Analysis of GWAS summary statistics 
  
We applied LD score regression implemented in the LDSC software [43] to estimate the 
heritability of each trait. Among 4,357 traits, we selected 1,738 with nominally significant 
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heritability (p<0.05) to include in our analyses. We removed SNPs with association p-values 
greater than 0.01 from each of the 1,738 summary statistics files, clumped the remaining SNPs 
using a LD cutoff of 0.1 and a radius of 1 Mb in PLINK [39], and built PRS for each trait using 
the effect size estimates of remaining SNPs.  
 
Throughout the paper, we used samples of European ancestry in the 1000 Genomes Project as 
a reference panel to estimate LD [44]. In univariate analyses, we tested marginal associations 
between each PRS and AD using the IGAP stage-I dataset and replicated the findings using the 
ADGC summary statistics. Association results in two stages were combined using inverse 
variance-weighted meta-analysis [42]. A stringent Bonferroni-corrected significance threshold 
was used to identify AD-associated risk factors. For associations between identified risk factors 
and AD endophenotypes, we used an FDR cutoff of 0.05 to claim statistical significance. We 
applied hierarchical clustering to the covariance of 48 traits we identified from marginal 
association analysis, then divided the result into 15 clusters and selected one most significant 
trait from each cluster and used them to perform multivariate conditional analysis. We analyzed 
IGAP and ADGC datasets separately, and combined the results using meta-analysis. 
 
We used MR-IVW approach [45] implemented in the Mendelian Randomization R package [46] 
to study the causal effects of 48 risk factors identified by BADGERS. For each trait, we selected 
instrumental SNP variables as the top 30 most significant SNPs after clumping all SNPs using a 
LD cutoff of 0.1.   
 
 
Analysis of WRAP data 
 
WRAP is a longitudinal study of initially dementia-free middle-aged adults that allows for the 
enrollment of siblings and is enriched for a parental history of AD. Details of the study design 
and methods used have been previously described [26, 47]. After quality control, a total of 1,198 
participants whose genetic ancestry was primarily of European descent were included in our 
analysis. On average, participants were 53.7 years of age (SD=6.6) at baseline and had a 
bachelor’s degree, and 69.8% (n=836) were female. Participants had two to six longitudinal 
study visits, with an average of 4.3 visits, leading to a total of 5,184 observations available for 
analyses. 
 
DNA samples were genotyped using the Illumina Multi-Ethnic Genotyping Array at the 
University of Wisconsin Biotechnology Center. Thirty-six blinded duplicate samples were used 
to calculate a concordance rate of 99.99%, and discordant genotypes were set to missing. 
Imputation was performed with the Michigan Imputation Server v1.0.3 [48], using the Haplotype 
Reference Consortium (HRC) v. r1.1 2016 [49] as the reference panel and Eagle2 v2.3 [50] for 
phasing. Variants with a quality score R2<0.80, MAF<0.001, or that were out of HWE were 
excluded, leading to 10,499,994 imputed and genotyped variants for analyses. Data cleaning 
and file preparation were completed using PLINK v1.9 [51] and VCFtools v0.1.14 [52]. 
Coordinates are based on the hg19 genome build. Due to the sibling relationships present in the 
WRAP cohort, genetic ancestry was assessed and confirmed using Principal Components 
Analysis in Related Samples (PC-AiR), a method that makes robust inferences about population 
structure in the presence of relatedness [53]. 
 
Composite scores were calculated for executive function, delayed recall, and learning based on 
a previous analysis [54]. Each composite score was calculated from three neuropsychological 
tests, which were each converted to z-scores using baseline means and standard deviations. 
These z-scores were then averaged to derive executive function, delayed recall, and learning 
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composite scores at each visit for each individual. Cognitive impairment status was determined 
based on a consensus review by a panel of dementia experts. Resulting cognitive statuses 
included cognitively normal, early MCI, clinical MCI, impairment that was not MCI, or dementia, 
as previously defined [55]. Participants were considered cognitively impaired if their worst 
consensus conference diagnosis was early MCI, clinical MCI, or dementia (n=387). Participants 
were considered cognitively stable if their consensus conference diagnosis was cognitively 
normal across all visits (n=803). 
 
The 48 PRSs were developed within the WRAP cohort using PLINK v1.9 [51] and tested for 
associations with the three composite scores (i.e. executive function, delayed recall, and 
learning) and cognitive impairment statuses. MCI status was tested using logistic regression 
models in R, while all other associations, which utilized multiple study visits, were tested using 
linear mixed regression models implemented in the lme4 package in R [56]. All models included 
fixed effects for age and sex, and cognitive composite scores additionally included a fixed effect 
for practice effect (using visit number). Mixed models included random intercepts for within-
subject correlations due to repeated measures and within-family correlations due to the 
enrollment of siblings. 
 
 
Software availability 
 
The BADGERS software is freely available at https://github.com/qlu-lab/BADGERS 
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