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ABSTRACT 

Diminishing returns epistasis causes the benefit of the same advantageous mutation 

smaller in fitter genotypes, and is frequently observed in experimental evolution.  However, its 

occurrence in other contexts, environment-dependence, and mechanistic basis are unclear.  Here 

we address these questions using 1005 sequenced segregants generated from a yeast cross.  

Under each of 47 examined environments, 66-92% of tested polymorphisms exhibit diminishing 

returns epistasis.  Surprisingly, improving environment quality also reduces the benefits of 

advantageous mutations even when fitness is controlled for, indicating the necessity to revise the 

global epistasis hypothesis.  We propose that diminishing returns originates from the modular 

organization of life where the contribution of each functional module to fitness is determined 

jointly by the genotype and environment and has an upper limit, and demonstrate that our model 

predictions match empirical observations.  These findings broaden the concept of diminishing 

returns epistasis, reveal its generality and potential cause, and have important evolutionary 

implications.   
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INTRODUCTION 

Diminishing returns epistasis refers to a reduction in the benefit of an advantageous 

mutation when it occurs in a relatively fit genotype compared with that in a relatively unfit 

genotype (Griffing 1950; Jerison and Desai 2015).  It is believed to explain at least in part why 

experimental evolution of microbes almost invariantly shows a decreasing speed of adaptation as 

the fitness of the population rises (Wiser, et al. 2013; Couce and Tenaillon 2015).  Diminishing 

returns epistasis has been indirectly inferred from the dynamics of adaptation (Moore, et al. 2000; 

Kryazhimskiy, et al. 2009; Perfeito, et al. 2014; Good and Desai 2015) and directly demonstrated 

by engineering the same mutation in multiple strains of different fitnesses (MacLean, et al. 2010; 

Chou, et al. 2011; Khan, et al. 2011; Kryazhimskiy, et al. 2014; Wang, et al. 2016).  While 

diminishing returns epistasis appears common among fixed mutations in experimental evolution, 

it is unknown whether it is restricted to experimental evolution, where fixed beneficial mutations 

are de novo and tend to have large effects (Orr 2002; Rokyta, et al. 2005), or is also widespread 

among standing genetic variants.  Furthermore, whether and how the pattern of diminishing 

returns epistasis varies across environments have not been investigated.  Most importantly, the 

underlying cause of diminishing returns epistasis remains elusive.  A commonly considered 

hypothesis termed the global epistasis hypothesis posits that "the effect of each mutation depends 

on all other mutations, but only through their combined effect on fitness" and that “each 

individual beneficial mutation provides a smaller advantage in a fitter genetic background” 

(Kryazhimskiy, et al. 2014).  Although this hypothesis is currently regarded as the leading 

description and explanation of diminishing returns epistasis (Kryazhimskiy, et al. 2014; Wang, et 

al. 2016), to what extent it is true and why it may be true remain unanswered.  Note that the 

diminishing returns relationship between the activity of an enzyme and the flux of the relevant 
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metabolic pathway is well explained by the metabolic control theory (Kacser and Burns 1981; 

Dykhuizen, et al. 1987; Chou, et al. 2014), but this theory cannot explain diminishing returns 

epistasis arising from interactions among mutations of different genes.   

Here we develop a high-throughput method to investigate diminishing returns epistasis 

among standing genetic variants.  We report widespread diminishing returns epistasis from 

single nucleotide polymorphisms (SNPs) segregating in budding yeast, discover a novel type of 

diminishing returns that results from an improvement in environment quality, provide evidence 

that the origin and patterns of diminishing returns are best explained by the modular structure of 

life, and discuss evolutionary implications of these findings. 

 

RESULTS 

Quantifying diminishing returns epistasis by comparing mean benefits in multiple genetic 

backgrounds 

Diminishing returns epistasis is conventionally demonstrated by showing that the same 

mutation causes a smaller growth rate increase in a relatively fit strain than in a relatively unfit 

strain (MacLean, et al. 2010; Chou, et al. 2011; Khan, et al. 2011; Kryazhimskiy, et al. 2014; 

Wang, et al. 2016).  If the observed diminishing returns epistasis is genuine and general, it 

should also be testable by comparing the mean benefits of the mutation in two sets of strains that 

differ in mean growth rate (see Materials and Methods).  Using this approach allows testing 

diminishing returns epistasis for each nucleotide difference between the genomes of two 

organisms that can be crossed to produce a hybrid and its segregants, as long as the genotypes 

and growth rates of the segregants can be acquired.  For example, for an A/G polymorphism at a 

site, we can calculate the effect of substituting A with G by comparing the mean growth rate of 
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segregants with genotype A (or AA for diploid segregants) and the mean growth rate of 

segregants with genotype G (or GG for diploid segregants) at the site, because the A segregants 

and G segregants are on average equivalent for the rest of their genomes due to random 

assortment and recombination in meiosis.  The above calculation can be separately performed in 

two sets of strains with different mean growth rates, allowing testing diminishing returns 

epistasis.  

We applied this method to a dataset that includes the genome sequences of 1005 haploid 

segregants produced from the hybrid between the BY and RM strains of the yeast 

Saccharomyces cerevisiae (Bloom, et al. 2013).  BY is derived from the widely used laboratory 

strain S288c, whereas RM is derived from the vineyard strain RM11-1a.  The dataset also 

includes the mean end-point colony radius of each segregant on agar plates in 47 environments, 

which vary in temperature, pH, carbon source, metal ions, and small molecules (Bloom, et al. 

2013).  We estimated the growth rate of a segregant in each environment using the corresponding 

colony radius (Fig. S1; see Materials and Methods).     

 

Widespread diminishing returns epistasis among standing genetic variants  

To demonstrate diminishing returns epistasis, we need to show that the mean benefit of a 

mutation in slow-growth segregants is greater than that in fast-growth segregants.  In each 

environment, we computed for each SNP the mean growth rate (RBY) of the least fit 20% of BY-

allele-carrying segregants and that (RRM) of the least fit 20% of RM-allele-carrying segregants 

(Fig. 1a).  The effect of the SNP in these slow-growth segregants is sL = |RBY - RRM|.  We 

similarly computed the mean growth rate (R'BY) of the fittest 20% of BY-allele-carrying 

segregants and that (R'RM) of the fittest 20% of RM-allele-carrying segregants (Fig. 1a) and 
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estimated the effect of the same SNP in these fast-growth segregants by sH = |R'BY - R'RM|.  The 

diminishing returns epistasis is present if sH < sL.   

Under the null hypothesis that the benefit of a mutation is independent of the growth rate 

of the genetic background, a SNP has a 50% chance to exhibit sH < sL.  Strikingly, in each of the 

47 environments studied, between g = 66% and 92% of the 28,220 SNPs tested show sH < sL (Fig. 

1b, Table S1), with an average of 80%.  Although the relationship between sH and sL for one 

SNP is not independent from that for a linked SNP, the estimated g in each environment is 

unbiased.  The non-independence among SNPs, however, makes it difficult to test if g 

significantly exceeds the chance expectation of 50% in an environment.  But, because the growth 

rates of all segregants were separately measured in different environments, the g values from 

different environments were estimated independently.  The observation that all 47 independently 

estimated g values exceed 50% has a binomial probability lower than 10-14 under the null 

hypothesis of g = 0.5, strongly suggesting a general presence of diminishing returns epistasis 

across environments.  Our results hold when 10% or 30% (instead of 20%) of segregants are 

used to estimate sL and sH.  We verified that our results are not an artifact of transforming colony 

radius to growth rate, because repeating the analysis using colony radius showed that g varies 

from 58% to 88% across the 47 environments.  We also examined in each environment the 

subset of SNPs for which the beneficial allele is the same in the 20% slow- and 20% fast-growth 

segregants.  Forty of the 47 environments (P = 10-6, binomial test) have more than 50% of such 

SNPs exhibiting diminishing turns (mean across 47 environments = 62%).      

Following a recent analysis of the same dataset (Wei and Zhang 2017), we mapped 

quantitative trait loci (QTLs) underlying the growth rate variation among the segregants (at a 

false discover rate of 0.05) in each of the 47 environments.  The number of QTLs identified 
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ranged from 0 to 33 in the 47 environments, with a mean of 15.8 (Wei and Zhang 2017).  Zero 

QTL was mapped in one environment.  In three environments, the ratios between the number of 

BY-allele-carrying segregants with growth data and that of RM-allele-carrying segregants with 

growth data at putative QTLs differ significantly from the corresponding ratio in all 1005 

segregants, making effect size estimation unreliable.  In two environments, sH < sL in exactly 50% 

of QTLs.  In the 41 remaining environments, 37 showed sH < sL in over 50% of QTLs (P = 

5.2×10-8, binomial test) and 20 of them showed sH < sL in significantly more than 50% of QTLs 

(nominal P < 0.05; Table S1).  By contrast, only 4 environments showed sH < sL in fewer than 

50% of QTLs and none of these environments showed sH < sL in significantly fewer than 50% of 

QTLs.  Thus, the prevalence of diminishing returns epistasis is also evident among SNPs having 

independent growth effects.  By bootstrapping the segregants used (see Materials and Methods), 

we confirmed that sH is significantly smaller than sL at the nominal P-value of 0.05 for 202 of a 

total of 613 QTLs with unbiased growth rate distributions (101 significant QTLs after Bonferroni 

correction of multiple testing per environment).      

 

Benefits of advantageous mutations decrease with environment quality  

Because the yeast growth data contained 47 environments, we investigated how 

environmental changes impact the growth effects of advantageous mutations.  Specifically, we 

wonder if improving the environment also leads to the diminishing returns phenomenon.  To this 

end, we define the quality (Q) of an environment to the population of segregants considered by 

the mean growth rate of all segregants in the environment (Table S1).  We first measured the 

effect (s > 0) of each SNP in an environment by the absolute value of the difference between the 

mean growth rate of all BY-allele-carrying segregants and that of all RM-allele-carrying 
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segregants in the environment.  If having better environments reduces the benefit of an 

advantageous mutation, s should decrease as Q rises (see Fig. 2a for an example).  Such a 

negative correlation between Q and s should be common among all SNPs examined if this type 

of diminishing returns is widespread.  Indeed, for 92.7% of SNPs across the genome, we 

observed a negative rank correlation between Q and s across environments (Fig. 2b).  

To examine whether the above negative correlation is simply a byproduct of the 

canonical diminishing returns epistasis associated with a rise in the growth rate of the 

background genotype, we controlled for growth rate in estimating s using the following 

procedure (Fig. 2c).  Firstly, we chose a fixed growth rate R for all environments.  Secondly, we 

picked two groups of 20% of all BY-allele-carrying segregants for each SNP and in each 

environment.  The first group are the least fit segregants whose growth rates exceed R, while the 

second group are the fittest segregants whose growth rates are below R.  Thirdly, we estimated 

the mean growth rate RBY using these 40% of BY-allele-carrying segregants and identified the 

percentile range of these segregants among all BY-allele-carrying segregants.  Fourthly, we 

estimated the corresponding RRM from the segregants in the same percentile range of all RM-

allele-carrying segregants.  Fifthly, we calculated the fitness effect of the SNP by s1 = | RBY – 

RRM|.  Sixthly, we repeated the above steps 2-5 after switching BY with RM, and estimated R’RM, 

R’BY, and s2 = |R’RM – R’BY|.  We then estimated s' = (s1 + s2)/2, which is the growth effect of the 

SNP in the environment given R.  In this procedure, the same percentile range in BY- and RM-

allele-carrying segregants were used to ensure an unbiased estimation of the effect size of each 

SNP upon the control of growth rate.  

Because the range of growth rates of all segregants varies substantially among the 47 

environments (Fig. S1), to investigate the correlation between Q and s' among as many 
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environments as possible, we picked an R of 2.8, which allowed a comparison among nine 

environments.  We found that the rank correlation between Q and s' is negative for 68.5% of all 

SNPs examined (Fig. 2d).  We repeated this analysis under two other R values (2.6 and 3.0), and 

found the average fraction of SNPs exhibiting negative correlations with Q to be 63% for the 

three R values considered.  A total of 600 SNPs were identified as QTLs in one or more 

environments.  For each of these SNPs, we estimated its effect (s and s') in each environment and 

correlated it with Q.  For the 600 correlations between s (or s') and Q across the 47 environments, 

86.2 % (or 72.3%) are negative.  These results suggest that, although variable fitness is a cause 

of the negative Q-s correlation, it is not the sole reason.  Hence, the diminishing returns from 

advantageous mutations in better environments, a form of gene-environment interaction (G×E), 

is distinct from the canonical diminishing returns in fitter genotypes within an environment, a 

form of gene-gene interaction (G×G).   

Although the above results from SNPs and those from QTLs are qualitatively similar, 

they differ quantitatively.  We confirmed that SNP density does not affect the fraction of SNPs 

showing negative Q-s correlations, nor does it affect the average Q-s correlation (see Materials 

and Methods).  We discuss factors that may cause the quantitative differences between SNP- and 

QTL-based results in Discussion.   

  

The modular life model recapitulates the empirical patterns of diminishing returns 

The above finding that the same mutation confers different advantages on different 

genetic backgrounds even when these backgrounds are equally fit cannot be explained by the 

global epistasis hypothesis and suggests the relevance of the specific genomic compositions of 

these backgrounds to the fitness effect of a mutation.  It is widely accepted that life is organized 
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in a highly modular manner, where each module is a discrete object composed of a group of 

tightly linked components and performs a relatively independent task (Raff 1996; Hartwell, et al. 

1999; Ihmels, et al. 2002; Ravasz, et al. 2002; Barabasi and Oltvai 2004; Wall, et al. 2004; 

Wagner, et al. 2007).  Intuitively, diminishing returns epistasis could arise from the modular 

structure of life.  Specifically, our modular life model posits that each module makes a distinct 

contribution to fitness and that this contribution has an upper limit.  Under this model, the same 

advantageous mutation may contribute to a module and fitness greatly if the functionality of the 

module is far from its maximum but may contribute only slightly if the module is approaching its 

maximal functionality.  In addition, we assume that the environment contributes differently to 

the functionalities of various modules and that different environments have different 

contributions.  Because the functionalities of various modules can be different among equally-fit 

genotypes, under this model, the specific genomic composition of the background genotype 

matters to the fitness effect of a mutation.  Our model can be seen as an extension of the global 

epistasis model from one module to multiple modules and from considering genetic effect only 

to considering both genetic and environmental effects.  This extension presumably allows 

making specific testable predictions about diminishing returns epistasis both within and across 

environments.  We here explore the modular life model in an attempt to recapitulate the major 

empirical patterns of diminishing returns.  

We started by a computer simulation of the modular life model (Fig. 3a and Materials 

and Methods).  We considered two scenarios where the growth rate of a genotype is respectively 

determined by the geometric mean functionality of all modules or the arithmetic mean 

functionality of all modules.  The results obtained under the two scenarios are qualitatively 

similar, and they are respectively presented in the main text (Fig. 3) and Fig. S2.  According to 
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the modular life model, we simulated the genotypes and growth rates of 1000 haploid segregants 

in 50 environments (see Materials and Methods).  One hundred genes belonging to 10 modules 

were considered, with each gene harboring one SNP that distinguishes between a fully functional 

allele and a null allele.  We analyzed the simulated data the same way we analyzed the real data.  

Similar to what was observed in the real data (Fig. 1b), the simulated data show diminishing 

returns epistasis for >50% of SNPs in each environment (Fig. 3b).  Furthermore, similar to what 

was found in the real data (Fig. 2b, d), most SNPs in the simulated data show a negative 

correlation between growth effect and environment quality, with or without the control for 

growth rate (Fig. 3c).  The similarity between the results from the simulated data and real data 

indicates that the observed patterns of diminishing returns are explainable by the modular feature 

of life. 

 

Why effect size decreases with environment quality even after the control for growth rate  

Although the canonical diminishing returns epistasis is easily explained by the modular 

life model, that s' decreases with Q (Fig. 2d and Fig. 3c) is puzzling.  Furthermore, because we 

estimated s' from groups of segregants that differ in multiple genes, it is unclear whether the 

negative correlation between s' and Q holds when s' is estimated by comparing genotypes that 

differ by a single SNP upon the control of growth rate across environments.  To this end, we 

measured the effect of a beneficial mutation in each genetic background and then averaged this 

effect across multiple backgrounds in simulated data.  Specifically, we simulated 50,000 

segregants in 50 environments as in the previous section except that stochastic noise in growth 

rate is omitted to improve the sensitivity of the analysis.  In each environment, we first identified 

all segregants whose growth rates are in the range of 0.899-0.901.  This range is much narrower 
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than the maximal growth effect of any beneficial mutation simulated; therefore, the identified 

segregants are essentially equally fit.  We estimated the growth effect of a gene in an 

environment by averaging the effect of replacing its null allele with functional allele in the above 

segregants in which the focal gene is occupied by the null allele.  We then correlated between the 

growth effect of the gene and Q among environments.  For the 100 genes simulated, 63 showed a 

negative rank correlation (P = 0.006, N = 100, binomial test).  We repeated this analysis using 

another growth rate range (0.949-0.951) and found 68 of 100 genes to show negative rank 

correlations (P = 2×10-4).  These results, quantitatively similar to those in Fig. 3c, confirm that 

the negative correlation between s' and Q observed in the simulation is genuine.  The cause for 

this correlation is that, when the growth rate is controlled for, the among-module variance in 

functionality increases with Q.  The reason is that, in this scenario, under a high Q environment, 

genotype quality must be relatively low, meaning that it has only a small number of functional 

alleles distributed among all modules, rendering the among-module variance in functionality 

relatively high.  By contrast, under a low Q environment, genotype quality must be relatively 

high, meaning that it has many functional alleles distributed among all modules, rendering the 

among-module variance in functionality relatively low.  Thus, the fraction of modules 

approaching the upper limit in functionality is greater in good environments than in poor 

environments, even when the mean functionality per module is the same.  Consequently, the 

growth effect of a beneficial mutation tends to reduce with Q.  We confirmed this reasoning 

using the above simulated data.  In particular, we found that the among-module variance in 

functionality averaged across all segregants aforementioned correlates positively with Q for both 

of the growth rate ranges considered (Fig. S3a, b).  The same trend holds when growth rate is 
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defined by the arithmetic mean instead of geometric mean of functionality across modules (Fig. 

S3c, d).   

 

DISCUSSION 

In this work, we designed a high-throughput method for testing diminishing returns 

epistasis among standing genetic variants and applied it to 28,220 SNPs as well as 741 QTLs 

between two yeast strains.  We found widespread diminishing returns from beneficial mutations 

in each of the 47 environments studied, demonstrating that diminishing returns epistasis is 

abundant among natural genetic variants.  There are pros and cons in analyzing QTLs only 

versus analyzing all SNPs.  The QTL-based analysis considers influential SNPs that are 

independent from one another, but undoubtedly misses many causal SNPs due to the limited 

statistical power in QTL identification and hence provides an incomplete picture of the entire 

genome.  The analysis of all SNPs provides a complete and unbiased picture of the genome, but 

because of the linkage among SNPs, some of the statistical tests are difficult.  Nevertheless, we 

found that the two approaches resulted in qualitatively similar findings.  The minor quantitative 

differences between the two approaches could be due to chance and/or the following.  First, 

QTLs tend to have much larger effects than average SNPs.  According to the modular life model, 

larger effects are more likely to occur in modules that are still far from saturation in functionality.  

Thus, QTLs are less likely than average SNPs to be subject to diminishing returns epistasis.  

Second, the commonly used QTL mapping assumes an additive model, which may underestimate 

the diminishing returns.  If QTLs that show diminishing returns within an environment also tend 

to have diminishing returns when Q rises, the Q-s correlation will also be affected.   
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Canonical diminishing returns epistasis is a form of gene-gene interaction, because it is 

conventionally quantified by comparing the effect of a mutation in genotypes of different 

fitnesses in the same environment.  Our work broadens the concept of diminishing returns to 

gene-environment interaction, because we found that the effect of a beneficial mutation 

decreases with environment quality.  The results suggest that both types of diminishing returns 

(gene-gene and gene-environment interactions) are prevalent among standing genetic variants 

across environments.  Our observation supports the common belief that the fitness effects of 

mutations tend to increase in stressful environments (Agrawal and Whitlock 2010) and further 

demonstrates that this increase also occurs even when the background genotype fitness is 

controlled.   

The prevailing view prior to this study is that diminishing returns depends on the fitness 

of the background genotype, as described by the global epistasis hypothesis.  Our finding that the 

benefit of an advantageous mutation decreases with environment quality even when the fitness of 

the background genotype remains unchanged cannot be explained by the current global epistasis 

model.  Furthermore, a close examination of a previous study (Kryazhimskiy, et al. 2014) 

showed that the growth effects of a mutation in several strains of similar growth rates can be 

significantly different even under the same environment (Table S2).  We proposed that 

diminishing returns can be explained by the modular structure of life, where each module 

contributes to a fitness component and has a maximal possible contribution.  Consistently, our 

computer simulation demonstrates that this modular life model recapitulates the empirical 

patterns of diminishing returns.  The patterns of diminishing returns observed in the simulation 

are due to three properties of the model that are not dependent on the specific parameters used in 

the simulation.  First, when fitness is defined by the geometric mean of functionality among 
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modules, the geometric mean generates a concave relationship between the functionality of a 

module and fitness.  Second, when the functionality of a module saturates, any mutation that 

could potentially increase the functionality of the module becomes neutral.  This is why 

diminishing returns epistasis is still observed even when fitness is defined by the arithmetic mean 

functionality across modules (Fig. S2).  Third, because better environments on average have 

higher environmental contributions to the functionality of a module, the functionality of a 

module is closer to saturation in better environments.  Consequently, the second property dictates 

that the benefit of an advantageous mutation is expected to be smaller in better environments.  

Fourth, as explained in the last section in RESULTS, even when fitness is controlled for, the 

variance in functionality among modules is higher in better environments, rendering the 

probability that an advantageous mutation falls in a saturated module higher in better 

environments.   

Our model is inspired by the modular epistasis model (Tenaillon, et al. 2012; 

Kryazhimskiy, et al. 2014) proposed to explain a phenomenon related to diminishing returns−a 

reduction in beneficial mutation rate when a population gradually rises in fitness during 

adaptation (Silander, et al. 2007; Tenaillon, et al. 2012).  This phenomenon may be termed 

decreasing supplies, because it is about decreasing supplies of beneficial mutation as adaptation 

progresses.  The modular epistasis model asserts that a population has limited ways to adapt and 

will run out of beneficial mutations if all modules reach their maximal functionalities.  It is clear 

that our modular life model is similar to the modular epistasis model despite that they are 

proposed to explain different phenomena; one main difference is that our model includes 

environmental contributions to the functionalities of individual modules, allowing considering 

both genotype and environment qualities in the study of diminishing returns.  It is also obvious 
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that our model is able to explain decreasing supplies, because an advantageous mutation will no 

longer be visible to selection when its benefit reduces to a certain level via diminishing returns.  

This can indeed be seen in our simulation of the modular life model (Fig. S4).  

Although the modular epistasis model is supported by the finding that deleting different 

genes are rescued by different sets of beneficial mutations (Blank, et al. 2014; Filteau, et al. 

2015), it was disfavored in an empirical test (Kryazhimskiy, et al. 2014).  Specifically, 

Kryazhimskiy et al. evolved S. cerevisiae for 240 generations to obtain 64 different founder lines.  

They then evolved the 64 founders for 500 generations, with 10 replicates per founder.  They 

reasoned that, under the modular epistasis model, the substitutions observed in the 10 replicates 

from the same founder should have larger overlaps than those observed in the lines from 

different founders.  However, no significant difference was detected.  Although this finding 

appears inconsistent with the modular epistasis model, it is possible that 240 generations of 

evolution did not create large enough differences among the 64 founders in the distribution of 

functionality among modules.  Another possibility is that only one module could contribute to 

the specific adaptation studied; therefore all improvements in all founders were in the same 

module, which would not predict the difference expected by the authors.   

In another study (Wang, et al. 2016), several substitutions observed from an experimental 

evolution study of Escherichia coli were tested on a number of strains picked from the E. coli 

phylogeny.  The authors asked whether the higher the ecological similarity between the E. coli 

strains used in the experimental evolution and tested now, the closer the growth effects of the 

substitutions in the two strains, but found only a marginally significant result.  However, because 

ecological similarity may not correlate well with the similarity in module functionality, this 

comparison has limited power in testing the modular epistasis hypothesis.   
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In our simulation of the modular life model, we computed the growth rate of a genotype 

using either the geometric or arithmetic mean functionality among modules.  While it is unclear 

which scenario is more appropriate, the fact that both simulation schemes qualitatively 

recapitulated the empirical diminishing returns patterns suggests that the primary cause of these 

patterns is the gene-gene and gene-environment interactions within modules.  Needless to say, 

our simulation is oversimplified.  For instance, antagonistic gene-environment interactions (Qian, 

et al. 2012) have not been considered.  Thus, our simulation currently cannot explain how a 

beneficial allele becomes deleterious upon an environmental change, which is occasionally 

observed in real data (Wei and Zhang 2017).  The modular life model is meant to provide the 

primary mechanism of diminishing returns.  Refinement of the model with many more 

parameters would be necessary for it to explain the specific and detailed features of diminishing 

returns.  

That our modular life model can recapitulate major empirical patterns of diminishing 

returns does not prove that it represents the truth, because the possibility exists that some other 

models can also explain these patterns.  In this context, it is worth mentioning Fisher’s geometric 

model (FGM) (Fisher 1930), because it has been used to explain diminishing returns epistasis 

during adaptive walks (Blanquart, et al. 2014).  The FGM depicts a particular, simple phenotype-

fitness map without empirical basis.  Under the assumption that the phenotypic effect of a 

mutation is independent of the genetic background, one could show that, as the background 

genotype becomes fitter, the benefit of a mutation reduces simply because it tends to overshoot 

the optimum, resulting in diminishing returns.  However, mutations are highly idiosyncratic 

under the FGM (Tenaillon 2014), which appears inconsistent with the empirical patterns of 

diminishing returns (Kryazhimskiy, et al. 2014).  It is also worth noting that adaptive trajectories 
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simulated under the NK model show negative epistasis between non-consecutive substitutions 

and positive epistasis between consecutive substitutions (Draghi and Plotkin 2013; Greene and 

Crona 2014).  But the prevalence of diminishing returns epistasis predicted by the NK model is 

much lower than observed in experimental evolution (Wünsche, et al. 2017).  Whether the NK 

model can explain our findings from standing genetic variants in single and multiple 

environments is unknown.    

Although our modular life model is designed retrospectively to explain patterns of 

diminishing returns, it can also explain several reported phenomena of mutational effects in 

different environments.  For instance, Chou et al. tested the growth effects of a novel transporter 

system that enhances metal uptake in Methylobacterium extroquens in various metal-poor (MP) 

environments (Chou, et al. 2009).  They observed that the same beneficial mutation had larger 

effects in better environments.  At first glance, this observation appears contradictory to our 

model.  However, the environments considered in our simulation of the modular life model do 

not have a limiting factor as in their experiment.  If we consider metal uptake as a module and if 

the contributions of all tested MP environments to that module are equally low, our model can 

explain their observation.  Let us assume that the product of functionalities of all modules except 

the metal uptake module is M1 in a relatively good environment and M2 in a relatively poor 

environment, respectively.  Let us further assume that the environmental and genetic 

contributions to the functionality of the metal uptake module total x for the background genotype 

in all MP environments.  The contribution of the beneficial mutation to the metal uptake module 

is y.  Under the assumption that the growth rate is the geometric mean of all K modules, the 

growth improvement from the mutation in the relatively good environment is [M1(x+y)]1/K - 

(M1x)1/K = M1
1/K[(x+y)1/K-x1/K].  Similarly, the growth improvement from the mutation in the 
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relatively poor environment is M2
1/K[(x+y)1/K-x1/K].  Because M1 is greater than M2, the effect size 

of the mutation increases as the environment gets better.  The same trend is predicted by our 

model when the genotype instead of environment is improved in non-metal uptake modules, as 

was observed (Chou, et al. 2009).  The phenomenon that environmental stresses sometimes 

decrease the harm of deleterious mutations (Kishony and Leibler 2003) can be similarly 

explained by our model.  Note that the observations from these experiments cannot be explained 

if fitness equals the arithmetic mean functionality in the modular life model, suggesting that the 

geometric mean functionality definition of fitness may be more generally applicable than the 

arithmetic mean definition.  

Our findings about the patterns and mechanistic basis of diminishing returns have several 

important evolutionary implications.  First, the observation that the benefit of an advantageous 

mutation generally decreases with environment quality Q implies a negative correlation between 

a population's additive genetic variance in growth rate (VR) and Q.  This is indeed true in the 

yeast data ( = -0.56, P = 8×10-5; see Materials and Methods).  All else being equal, the growth 

rate variance among individuals is also expected to decrease as Q rises.  Consistently, we 

observed a negative correlation between the growth rate variance among the 1005 segregants 

studied here and Q (Fig. 4a).  That is, the among-individual variation in growth rate gets larger 

as the environment becomes harsher, echoing earlier observations made in much smaller datasets 

(Lewontin and Matsuo 1963; Kondrashov and Houle 1994; Korona 1999; Szafraniec, et al. 2001).  

Second, Fisher's Fundamental Theorem of natural selection states that the rate with which a 

population adapts equals the variance of fitness (Fisher 1930).  Because the variance of fitness 

(or growth rate) rises as Q reduces, the same population should adapt faster in harsher 

environments.  Third, related to the above point, evolvability is the ability of a population to 
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respond to selection.  Evolvability (E) equals additive fitness variance VF divided by the mean 

fitness of the population (F) (Houle 1992).  If we regard growth rate as a proxy for fitness, we 

have E ≈ VR/Q.  Thus, evolvability rises precipitously as a population moves to harsher 

environments (Fig. 4b).  This prediction is supported by some anecdotes in the literature.  For 

instance, it was reported that the relative fitness gain in the laboratory evolution of an E. coli 

strain is faster in the less preferred temperatures of 32C and 42C than in its optimal 

temperature of 37C (Bennett, et al. 1992).  A more recent experimental evolution study also 

showed that the relative fitness of yeast rises more rapidly in a high temperature environment 

than in an optimal temperature environment (Jerison, et al. 2017).  Future studies are required to 

test this prediction critically and systematically.  Fourth, the modular structure of life creates 

functional redundancy within modules when the functionality of the module approaches its 

maximum.  This redundancy means that when a population is fully adapted to an environment, 

the population can accumulate genetic variation with little fitness variation, a phenomenon 

known as phenotypic robustness to mutations (de Visser, et al. 2003; Wagner 2005).  This hidden 

genetic variance can be useful for adaptation when the environment changes.  Thus, via the 

phenomenon of diminishing returns, the modular structure of life fundamentally impacts both the 

robustness and evolvability of organisms.  It will be of great interest to verify our yeast-based 

observations in other species. 

 

MATERIALS AND METHODS 

Genotype and phenotype data 

We acquired from the Kruglyak lab the genotype data of 1040 segregants from a cross 

between the BY and RM strains of S. cerevisiae (Bloom, et al. 2013), including a total of 28,220 
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SNPs mapped to the reference genome sequence R64-1-1 (Bloom, et al. 2015).  These SNPs 

were considered in our analysis.  We downloaded the genome annotations for R64-1-1 from 

Ensembl biomart.  We also obtained from the Kruglyak lab the average end-point colony radius 

of each segregant in each of 47 environments, including one (fructose medium) that was not in 

the original paper (Bloom, et al. 2013).  After requiring each segregant to have both genotype 

and phenotype data in at least one environment, we retained 1005 qualified segregants for 

subsequent analysis.  Note that colonies with ln(radius) > 3.508 had been excluded from the data 

by the original authors (Bloom, et al. 2013) to minimize the effect of growth saturation on 

growth rate estimation.  We further removed those colonies with ln(radius) < 1.6, because this 

value approaches the lower limit of colony size measurement.  To avoid potential biases created 

by these removals, in any environment, we considered only those SNPs for which the fraction of 

BY-allele-carrying segregants after the removals is not significantly different from that in all 

1005 segregants (nominal P > 0.05, binomial test).  We converted colony radius to average 

growth rate as described in the next section.   

Growth rate variance (V) among segregants under each environment was computed from 

the growth rates of the segregants.  We obtained the narrow-sense heritability (h2) under each 

environment from Table S2 of a previous study (Bloom, et al. 2013) and computed the additive 

growth rate variance by VR = Vh2.  Evolvability was calculated using E ≈ Vh2/Q (Houle 1992).  

 

Growth rate estimation from colony size 

The original phenotype measured is the mean radius (D) of each colony at the end of T = 

48h of growth on solid media.  We transformed D to average growth rate in the following way.  

Let the number of cells in a colony be N, which can be described by  
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KN aD ,        (1)  

where K is a constant presumably between 2 (if colonies resemble columns) and 3 (if colonies 

resemble spheres) and a is a constant representing the number of cells per unit volume.  Cell 

growth can be described by  

   0

( )

0 0

T

R t dt
RTN N e N e


  ,     (2) 

where N0 is the number of colonizing cells, N is the number of cells at time T,  R(t) is the growth 

rate at time t, and R  is the average growth rate from time 0 to T.  From Eqs. (1) and (2), we have  

   0
RT KN e aD .       (3) 

Eq. (3) can be converted to  

   0( / ) ln (ln ln ) /R K T D a N T   .    (4) 

It is reasonable to assume that N0 is constant or has little effect on the colony size at 48h, because 

otherwise QTLs would not have been identified.  Because T is also constant and K and a are 

presumably approximately constant (see below), lnD and R  have approximately the same linear 

relationship for all strains.  As a result, lnD can be used to represent R  when comparing R  

values.  Throughout this study, we used lnD as a measure of R .  Because all analyses are based 

on R , our results hold when the average growth rate in the 48h is regarded as a fitness proxy.   

 To verify that K and a are approximately constant, we grew 91 randomly picked 

segregants on YPD agar plates for 48h.  We scanned colonies and measured the pixel number per 

colony using SGATools (Wagih, et al. 2013), allowing quantifying the colony radius D.  We 

then estimated the corresponding cell number N in each colony using flow cytometry (BD 

AccuriTM C6).  If K and a in Eq. (1) are constant across genotypes, lnN should be a linear 
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function of lnD.  Indeed, our data showed that lnN and lnD have a linear correlation of r = 0.74 

(P < 10-16), supporting approximate constancies in K and a across genotypes.   

To verify that the yeast growth did not saturate at 48h, we grew 79 randomly picked 

segregants on an YPD plate.  We scanned colonies and estimated D at 13 time points every 2-3h 

from 15h to 48h of growth.  The lnD shows a fairly linear increase over the assayed time without 

dramatic decline in any of the 79 segregants (Fig. S5a).  We conducted a linear regression 

between lnD and time of growth for each colony (Fig. S5b), and found that the average adjusted 

r2 = 0.94, suggesting that R(t) did not change much during the course of 48h growth.  Indeed, a 

quadratic fitting improves the adjusted r2 only slightly to an average of 0.96, despite that the 

improvement occurred to most segregants (Fig. S5b).  Because our formulation (Eq. 4) considers 

the average growth rate from 0 to 48h, our method is valid as long as the slight saturation is not 

more pronounced for fast-growth segregants than slow-growth segregants.  Indeed, we found no 

significant correlation among the 79 segregants tested between the growth rate rank at 48h and 

Δ(adjusted r2), which is the difference in adjusted r2 between the quadratic and linear regressions 

and a measure of saturation (Fig. S5c).   

 

Estimating epistasis from growth rate 

Let FWT, FA, FB, and FAB be the fitness of the wild-type, mutant A, mutant B, and the 

corresponding double mutant, respectively.  It is commonly thought that (FAB/FWT) = 

(FA/FWT)(FB/FWT) when there is no epistasis.  In other words, ln(FAB) = ln(FA) + ln(FB) - ln(FWT) 

under no epistasis.  Let RWT, RA, RB, and RAB be the growth rates of the wild-type, mutant A, 

mutant B, and the corresponding double mutant, respectively.  The relationship between fitness 

and growth rate of a genotype is F = eRt, or lnF = Rt, where t is the generation time of the wild-
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type.  Hence, under no epistasis, RAB = RA + RB - RWT.  In other words, epistasis can be estimated 

by RAB - (RA + RB -RWT) = (RAB - RA) - (RB - RWT), which is the growth effect of mutation B on 

the background of mutant A minus the corresponding effect on the wild-type background.  This 

is why diminishing returns epistasis is commonly assessed by comparing the growth effect of a 

mutation on two genetic backgrounds.  

 

Assessing the fitness effect of a mutation in multiple genetic backgrounds 

 Diminishing returns epistasis is conventionally demonstrated by a higher growth benefit 

of a mutation in a less fit genotype than in a fitter genotype.  Here we show that it can also be 

demonstrated by a higher growth benefit in a group of less fit genotypes than in a group of fitter 

genotypes.  Suppose we are interested in assessing the growth effect of mutating allele X1 to X2 

at a site in two different genetic backgrounds G and H (locus X is not considered part of the 

genetic background).  The growth rate of the genotype with X1 in background G is R(G+X1) = 

A(G)+A(X1)+E(G)+E(G, X1), where A(G) is the total additive effect of all alleles in G, A(X1) is 

the additive effect of X1, E(G) is the total epistatic effect among all alleles in G, and E(G, X1) is 

the epistatic effect between X1 and G.  Similarly, the growth rate of the genotype with X2 in 

background G is R(G+X2) = A(G)+A(X2)+E(G)+E(G, X2).  Thus, the growth effect of the 

mutation in background G is R(G+X2)-R(G+X1) = A(X2)-A(X1)+E(G, X2)-E(G, X1) = A(X2)-

A(X1)+ΔE(G, X2-X1), where ΔE(G, X2-X1) is the difference in epistatic effect between X2 and X1 

in G and will be referred to as the epistatic effect of the mutation in G.  The corresponding 

growth effect of the mutation in background H is R(H+X2)-R(H+X1) = A(X2)-A(X1)+ΔE(H, X2-

X1).  Hence, the difference between the growth effect of the mutation in H and that in G is μ = 

[R(H+X2)-R(H+X1)]-[R(G+X2)-R(G+X1)] = ΔE(H, X2-X1)-ΔE(G, X2-X1), which is the difference 
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in the epistatic effect of the mutation in the two backgrounds.  Analysis of diminishing returns is 

to study μ.  Specifically, diminishing returns means that, when R(H+X1) > R(G+X1), μ = ΔE(H, 

X2-X1)-ΔE(G, X2-X1) < 0.  In other words, when the genetic background becomes fitter, the 

epistatic effect of the mutation becomes smaller.   

 Now let us consider a group of 2k relatively unfit random genotypes, of which G1, G2, ..., 

and Gk carry X1 while Gk+1, Gk+2, ..., and G2k carry X2; frequencies of alleles at other loci are not 

different between the first and last k genotypes.  The mean growth effect of muting X1 to X2 in 

the above 2k genotypes is   

               

               

k+i 2 i 1
1 1

k+i 2 k+i k+i 2 i 1 i i 1

2 1 k+i 2

1

i 1 k+i i k+i i

1

1 1
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X X [ G , X

X ) /

] / ] /
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 

     

    

 



 

 

 

 (5) 

There are three terms in the right-hand side of Eq. (5).  The first term is the additive effect of the 

mutation.  The second term is the mean epistatic effect of the mutation in the genetic 

backgrounds concerned.  The third term is expected to be 0, because the first and last k 

genotypes are on average the same in additive and epistatic growth effects.  Thus, Eq. (5) can be 

written as 

   k+i 2 i 1 2 11
1 1

2(G +X ) / (G +X ) / (G, X - )X XX
k k

i i

R k R k A A E
 

      ,   (6) 

where the last term is the mean epistatic effect of the mutation in G backgrounds.   

Let us similarly consider a group of 2k relatively fit genotypes, of which H1, H2, ..., and 

Hk carry X1 while Hk+1, Hk+2, ..., and H2k carry X2.  The mean growth effect of mutating X1 to X2 

in the above 2k genotypes can be similarly written as   

   k+i 2 i 1 2 1
1 1

2 1(H +X ) / (H +X ) / (H, X -XX ).X
k k

i i

R k R k A EA
 

         (7)  
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Using Eqs. (6) and (7), we can find that the difference between the growth effect of the 

mutation in the H backgrounds and that in the G backgrounds is 

 2 1 2 1' (H, X -X ) (G, X -X )E E    .         (8) 

Thus, it is clear that μ and μ' measure the same thing except that the epistatic effect of the 

mutation in one genetic background is considered in the former while the mean epistatic effect of 

the mutation in multiple backgrounds is considered in the latter.  Given the stochasticity of 

epistasis, mean epistasis is presumably more informative than a single epistasis value in the 

study of diminishing returns patterns. 

 

Bootstrap test of the significance of diminishing returns epistasis 

 We examined whether sH is significantly smaller than sL for each QTL by a bootstrap test. 

We first calculated the observed sL- sH.  We then generated a bootstrap sample of growth rates 

from the fitted 20% of BY-carrying segregants as well as a bootstrap sample of growth rates 

from the fitted 20% of RM-carrying segregants, allowing the estimation of sH from the bootstrap 

samples.  We similarly generated bootstrap samples and obtained the estimate of sL and then sL- 

sH.  This process was repeated 10,000 times.  P-value is estimated by the proportion of bootstrap 

replications in which sL < sH.  

 

Testing the effect of SNP density on Q-s correlation 

For every 20 consecutive SNPs, we calculated the distance in base pair between the two 

boundary SNPs and then the SNP density in the region.  We calculated the fraction of SNPs 

showing negative Q-s correlations as well as the average correlation coefficient of these 20 SNPs.  

Among 1396 regions with 20 SNPs, SNP density does not correlate with the fraction of SNPs 
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showing negative Q-s correlations in the region ( = 0.0161, P = 0.55), nor the average 

correlation coefficient of the 20 SNPs ( = -0.045, P = 0.12).  Similar results were obtained 

when 549 regions each with 50 consecutive SNPs were analyzed ( = 0.045 and -0.050; P = 0.29 

and 0.24, respectively). 

 

Simulation of the modular life model 

We assume that the growth rate of a genotype in an environment is the combined effects 

of C functional modules.  Each module has a functionality value that is the sum of environmental 

and genetic contributions to the module.  The maximum possible functionality of each module is 

1 and the minimum is 0.  Consequently, further improvement in genotype or environment quality 

has no contribution to the functionality of a module when it reaches the maximum.  Each module 

has M contributing genes, each with one SNP that distinguishes between a fully functional allele 

and a null allele.  There are N haploid segregants in a population; the genotype of each segregant 

is made up of CM genes, each carrying the functional allele with a 50% probability.   

In our simulation, the specific values of various parameters are not critical to the 

conclusion, as long as the functionalities of some modules reach the upper limit.  Below is the set 

of parameters used in generating Fig. 3bc.  We used C = 10, M = 10, and N = 1000, and 

simulated 50 environments.  The maximal contributions of the 10 genes to the functionality of a 

module were set to be 0.11, 0.12, 0.13, …, and 0.2, respectively.  Thus, the functional allele of 

gene 1 contributes 0.11 units of functionality to its module, while the null allele contributes 0 

unit.  We assumed that the contribution of an environment to a module is a normal random 

variable with a standard deviation of 0.05.  The mean of the normal distribution is 0.2000, 

0.2035, 0.2070, …, and 0.3715, respectively, from the 50 environments.  We also added a noise 
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term, drawn randomly from the normal distribution of mean = 0 and standard deviation = 0.01, to 

the growth rate of each simulated genotype in each environment.  The simulation parameters 

when fitness equals the arithmetic mean functionality across modules are detailed in Fig. S2 

legend.  

 

Reanalysis of Kryazhimskiy et al.'s data of diminishing returns 

We reanalyzed the data from Figure 3 of Kryazhimskiy et al. (Kryazhimskiy, et al. 2014).  

The growth rates of all strains were measured using flow cytometry-based competition assays 

against the ymCitrine-labelled DivAncCit strain and were represented by percent difference from 

DivAncCit.  HO, GAT2, WHI2, and SFL1 genes were separately deleted in each of 40 different 

ancestor strains.  The growth rate of each ancestor strain was measured in triplets, and we 

calculated the mean growth rate and its standard error using the three repeats.  For the deletion 

strains, the growth rates of one to five replicate colonies were measured three times each.  For 

these strains, we first calculated the growth rate of each replicate and then calculated the mean 

growth rate and its standard error using the replicates.  When there was no replication, we 

calculated the mean growth rate and its standard error using the repeats.  We used two-tailed Z-

test to identify all pairs of strains whose growth rates are not significantly different from each 

other.  For each of these strain pairs, we used a two-tailed Z-test to test if the effect sizes of the 

same mutation are significantly different.  The strain pairs with significantly different growth 

effects for the same mutation after Bonferroni correction are shown in Table S2.  

 

Data availability 
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All data generated in this study and scripts for modular life model simulation are 

available under https://github.com/AprilWei001/Diminishing-Returns-Epistasis.  
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Figure legends 

Fig. 1. Widespread diminishing returns among standing genetic variants in yeast. sH, growth rate 

effect of a SNP in fast-growth segregants; sL, growth rate effect of a SNP in slow-growth 

segregants. (a) Scheme for estimating sH and sL. For each SNP under each environment, grey 

triangles represent BY-allele-carrying segregants, while black circles represent RM-allele-

carrying segregants. The fittest 20% of BY-allele-carrying and fittest 20% of RM-allele-carrying 

segregants are used to estimate sH, whereas the least fit 20% of BY-allele-carrying and least fit 

20% of RM-allele-carrying segregants are used to estimate sL. The data plotted are hypothetical 

and not all segregants used in each group are shown. (b) Frequency distribution of the fraction (g) 

of SNPs exhibiting diminishing returns epistasis (i.e., sH < sL) in the 47 environments examined.  

 

Fig. 2. Most SNPs show a negative correlation between its effect on growth rate and 

environment quality (Q). (a) Among-environment correlation between Q and the absolute value 

of the growth effect for the SNP exhibiting the strongest negative correlation. Each dot 

represents one environment. Spearman's rank correlation ρ and the associated P-value are 

presented. (b) Frequency distribution of the rank correlation (ρ) between Q and the absolute 

value of the growth effect (s) of a SNP measured using all segregants. (c) Scheme for estimating 

the growth effect (s') of a SNP upon the control of growth rate. After the focal growth rate 

(vertical dashed line) is chosen, the same percentile ranges (blue shaded area for BY and red 

shaded area for RM) are used in the growth rate distributions of BY- and RM-allele-carrying 

segregants for estimating the effect size. See main text for details. (d) Frequency distribution of 

the rank correlation between Q and the absolute value of the growth effect (s') of a SNP upon the 

control of growth rate. 
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Fig. 3. Simulation of the modular life model produces diminishing returns patterns resembling 

empirical observations. (a) Simulation scheme under the geometric mean growth rate model. 

Different modules (M1, M2, and M3) are colored differently. Different environments 

(Environments 1 and 2) contribute differently to various modules, as illustrated by the three 

boxes that are filled to different levels. Each module contains a number of genes, each of which 

could have either a functional allele designated as 1 (filled box) or a null allele designated as 0 

(open box). Two genotypes (Genotypes 1 and 2) are shown as examples. The functionality of a 

module is the sum of environmental and genetic contributions but cannot exceed 1. The growth 

rate of each genotype is computed from the functionalities of the individual modules using the 

formula indicated. See Methods for parameters used in the simulation. (b) Frequency distribution 

of the fraction of genes exhibiting diminishing returns from simulated data. (c) Frequency 

distribution of the rank correlation (ρ) between Q and the effect of a SNP measured using either 

all segregants (s; black) or a group of segregants with a fixed median growth rate (s'; grey). The 

fraction of ρ's that are negative is indicated in black and grey for s and s', respectively.  Here, s 

and s' could be negative if the functional allele is found less fit than the null allele (due to 

sampling error).   

 

Fig. 4. Growth rate variance and evolvability of a population increase as the environment quality 

(Q) declines. (a) Correlation between Q and the growth rate variance among the segregants 

examined. (b) Correlation between Q and the evolvability of the population of segregants studied. 

Spearman's rank correlation ρ and associated P-value are presented.  
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