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ABSTRACT 17	
Progress in understanding how individual animals learn will require high-throughput 18	
standardized methods for behavioral training but also advances in the analysis of the resulting 19	
behavioral data. In the course of training with multiple trials, an animal may change its behavior 20	
abruptly, and capturing such events calls for a trial-by-trial analysis of the animal’s strategy. To 21	
address this challenge, we developed an integrated platform for automated animal training and 22	
analysis of behavioral data. A low-cost and space-efficient apparatus serves to train entire 23	
cohorts of mice on a decision-making task under identical conditions. A generalized linear model 24	
(GLM) analyzes each animal’s performance at single-trial resolution. This model infers the 25	
momentary decision-making strategy and can predict the animal’s choice on each trial with an 26	
accuracy of ~80%. We also introduce automated software to assess the animal’s detailed 27	
trajectories and body poses within the apparatus. Unsupervised analysis of these features 28	
revealed unusual trajectories that represent hesitation in the response. This integrated 29	
hardware/software platform promises to accelerate the understanding of animal learning. 30	
 31	
INTRODUCTION 32	
Learning – the change of neural representation and behavior that results from past experience 33	
and the consequences of actions – is important for animals to survive and forms a central topic in 34	
neuroscience1. Different individuals may apply different strategies to the learning process, 35	
reflecting their individual personalities. Indeed, substantial differences in sensory biases, 36	
locomotion, motivation, and cognitive competence have been observed in populations of fruit 37	
flies2,3, rodents and primates4-6. Thus, it is critical to investigate learning at the individual level.  38	
 39	
Rodents, especially the mouse, have become popular experimental animals in studying 40	
associative learning and decision-making, because of the wide availability of transgenic 41	
resources7-10. They can learn to perform complex decision-making tasks that probe cognitive 42	
components such as working memory and selective attention11-13. However, differences in 43	
learning strategies across individuals have rarely been addressed, partly owing to the limitations 44	
of data gathering and analysis.  45	
 46	
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Studying differences among individuals requires training and collecting data from multiple 47	
animals in a standardized and high-throughput fashion. The training procedures are often time-48	
consuming, requiring several days to many weeks8,9, depending on the task. Although there have 49	
been advances in training automation, existing systems either require an experimenter to move 50	
animals from the home cage to the training apparatus14-16, or training animals within their own 51	
cages17-19. The former introduces additional sources of variability20,21, and the latter precludes 52	
tasks that require a large training arena. Following data acquisition, the analysis of behavior aims 53	
at understanding the learning process. Present approaches tend to focus on the averaged 54	
performance over many trials22. However, changes in behavior may happen at a single trial, and 55	
thus the modeling of behavior should similarly offer a time resolution of single trials to assess 56	
each animal’s individual approach to learning. 57	
 58	
To address these challenges, we present Mouse Academy, an integrated platform for automated 59	
training of group-housed mice and analysis of behavioral changes in learning a decision-making 60	
task. We designed hardware that makes use of implanted radio frequency identification (RFID) 61	
chips to identify each mouse, and guides the animal into a behavior training box. Synchronized 62	
video recordings and decision-making sequences are acquired during animal learning. To 63	
analyze the decision-making sequences, we developed an iterative generalized linear model 64	
(GLM). This model makes a prediction of the animal’s choice in each trial and gets updated 65	
based on the animal’s actual choice. This iterative GLM model achieves a prediction accuracy of 66	
~80%, and also reveals the decision-making strategy of the animal and how it changes over time. 67	
To analyze the animal’s behavior during the task in greater detail, we developed automated 68	
software that tracks the animal in video recordings and extracts its location and body pose using 69	
deep convolutional neural networks (CNNs). These features allowed us to perform an 70	
unsupervised analysis of each animal’s behavior, and discover individual traits of behavioral 71	
learning that were not apparent from the simple choice sequences. 72	
 73	
RESULTS 74	
The Mouse Academy platform consists of three components (Fig. 1): an automated RFID sorting 75	
and animal training system, an iterative GLM to analyze decision-making sequences, and 76	
behavior assessment software that extracts animal trajectories from video data.  77	
 78	
Automated RFID sorting supports individual training programs 79	
We designed the equipment in the following manner (Fig. 1a): RFID-tagged mice are grouped in 80	
a common home cage where food and bedding is supplied. The home cage connects to a 81	
behavior training box through a gated tunnel. The gates are controlled by a home-made RFID 82	
animal sorting system23: three RFID antennas are placed along the tunnel, with one near the 83	
home cage, one near the training box and one between the two; the motorized gates are placed 84	
between the RFID sensors, separating the tunnel into three compartments. An Arduino 85	
microcontroller integrates information from the RFID readers to open and shut the gates, 86	
allowing only one animal at a time to pass through the tunnel (Supplementary Figs. 1a, 1c, 1d 87	
and Supplementary Videos 1-4). The behavior box is outfitted with three ports, each of which 88	
contains a photo-transistor to detect snout entry, a solenoid valve to deliver water reward, and a 89	
light emitting diode (LED) to present visual cues. To maintain a controlled environment, the 90	
training box is isolated from the outside by a light- and sound-proof chamber (Supplementary 91	
Fig. 1b).  92	
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 93	
Once a mouse enters the training box, a protocol is set up to train the mouse to perform a certain 94	
task. In the experiments reported here, the animal must nose-poke the center port to initialize a 95	
trial and then hold the position for a short period. Visual or auditory stimuli are delivered, and 96	
based on these stimuli, the animal must choose to poke one of the side ports. If the correct 97	
response is chosen, the animal gets water reward from a lick tube in the response port, otherwise 98	
a timeout punishment is applied. This training process is controlled by Bpod, an Arduino 99	
microcontroller that interfaces with the three ports. Data from the response ports as well as video 100	
recordings from an overhead camera are acquired simultaneously as the animal is trained. 101	
 102	
The entire apparatus is orchestrated by a master program that coordinates the RFID sorting 103	
device, the Bpod system, synchronized video recording, data management and logging 104	
(Supplementary Fig. 1e). The program monitors the amount of water each animal consumes per 105	
day and regulates the time each animal can spend in the training box per session. In addition, the 106	
software updates the training protocol for each animal based on its performance, for example 107	
switching to a harder task once a simpler one has been mastered (Supplementary Fig. 2). This 108	
lets each animal learn at its own pace. 109	
 110	
The apparatus can be assembled at a materials cost of $1500-2500, with the cheaper option using 111	
a Raspberry Pi computer as the controller (Supplementary Fig. 1f and Supplementary Table 112	
1). Compared with designs in which each animal is automatically trained in its own home 113	
cage15,17, the system saves considerable space. Because housing and training are independent 114	
modules, the same system can be used for diverse training environments. 115	
 116	
We tested the automated RFID sorting and animal training system by training group-house mice 117	
to learn a variety of decision tasks, following similar procedures as reported previously11,12 118	
(Supplementary Fig. 2 and Online methods). The training period lasted 28 days, with up to five 119	
mice in the common home cage. Each animal occupied the training box for 3-4 hours per day 120	
(13-15% of the 24 hours) throughout the entire training period (Figs. 2a, 2b and Supplementary 121	
Fig. 3). For a sample cohort of four animals trained in sessions of 90 trials each, we found that 122	
the behavior box was occupied most of the time, with brief empty intervals of <10 min (Figs. 2c, 123	
2d and 2e). Each animal was trained for over 900 trials (10 sessions), and consumed more than 124	
1.9 mL of water per day (Fig. 2f). Interestingly there was no circadian pattern to the animals’ 125	
training activity, even though the setup was illuminated on a daily light cycle (12 h on / 12 h off) 126	
(Fig. 2g). As observed previously, it appears that animals working for a goal can avoid circadian 127	
modulation of the locomotor pattern24,25. 128	
 129	
A generalized linear model accurately predicts decision-making during training 130	
In a decision-making task, an animal is asked to associate distinct stimuli with distinct responses. 131	
Although this is the ultimate goal, during learning, it is often observed that the animal begins by 132	
basing its decisions on unrelated input variables and gradually switches to using the stimulus 133	
variables that actually predict reward. We define a policy as a mapping of these variables to the 134	
animal’s decisions. A fundamental goal in the study of learning is to infer what policy the animal 135	
follows at any given time and to determine how the policy evolves with experience.  136	
 137	
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We applied a generalized linear model (GLM) to map factors relevant to the animal’s decision-138	
making to its choices through logistic regression. A common way to build such a GLM is by 139	
fitting data of an entire session16,26. However, this loses resolution in single trials within the 140	
session. During learning, a change of policy can happen at each trial. Thus, we developed the 141	
model to make trial-by-trial choice predictions based on various factors the animal might 142	
plausibly use. The model works in an iterative two-step process (Fig. 1b). In the prediction step, 143	
the model makes a prediction for the next decision based on the input factors. Once the outcome 144	
of the animal’s decision is observed, an error term between the model’s prediction and the 145	
observation is computed. This error, after weighting by a reward factor and a temporal discount 146	
factor, is fed back to the loss function. In the update step, the model is updated by minimizing 147	
the regularized loss function. This iteration happens after every trial. The temporal discount 148	
factor accounts for the possibility that the most recent trials impact the current decision more 149	
than remote trials. The reward factor accounts for the fact that water rewards and timeout 150	
punishments may have effects of different magnitude on the updates of the animal’s policy. 151	
 152	
We illustrate the utility of this model by fitting results from an easy visual task, in which one of 153	
the two choice ports lights up to indicate the location of the reward, and the optimal policy is to 154	
simply poke the port with the light (Supplementary Fig. 2a, 2a’ and 2a’’). All the mice 155	
eventually reached a >83% performance level, comparable to what mice achieve in similar 156	
tasks19,27. The GLM makes a prediction for the outcome of each trial based on a weighted 157	
combination of several input variables: the current visual stimulus, a constant bias term, and 158	
three terms representing the history of previous trials (Fig. 3a). These inputs from a previous 159	
trial include the port choice, whether that choice was rewarded, and a term indicating the 160	
multiplicative interaction between the choice and reward (Choice x Reward). This term supports 161	
a strategy called win-stay-lose-switch (WSLS), which chooses the same port if it was rewarded 162	
previously and the opposite one if not. Since a GLM cannot multiply two inputs, we provided 163	
this interaction term explicitly. Each of the above terms has a weight coefficient that can be 164	
positive or negative. For instance, a positive weight for the visual stimulus supports turning 165	
towards the light, and a negative weight away from the light. 166	
 167	
To determine the extent of trial history that affects the animal’s behavior, we fitted the model to 168	
the response data including history-dependent terms up to three previous trials. We found that 169	
only the immediately preceding trial had an appreciable effect on the prediction accuracy, and 170	
thus restricted further analysis to those inputs (Fig. 3b). The model also has three 171	
hyperparameters (the temporal discount factor , the reward factor , and the regularization 172	
factor ), and we optimized them for each animal by grid search. We found that each animal 173	
had a different set of hyperparameters, reflecting differences in the learning process across 174	
individuals (Fig. 3c). Among the four sample mice, Animal 2 had the lowest temporal discount 175	
factor, suggesting that it weighed recent trials more heavily and updated the policy more quickly. 176	
Indeed, this is the animal that learned the fastest among the four (Fig. 3d). 177	
 178	
Predictions from the iterative GLM matched ~80% of the animals’ actual choices (Fig. 3f), and 179	
the predicted accuracy of each animal captured the actual fluctuations of its learning curve (Fig. 180	
3e and Supplementary Fig. 4). We compared the performance of the GLM with two other 181	
modeling approaches (Online methods). The first model was fit to the animal’s average 182	
performance in the task; its trial-by-trial match of the animal’s actual choices was only ~59% 183	

α  r
λ
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(Fig. 3g). The second model was a logistic regression fitted to data in a sliding window of N 184	
trials. This sliding window model performed worse than the iterative GLM when the window 185	
size was small (N = 20 and 30 trials, Fig. 3h); for larger windows the performance was 186	
comparable. Overall, the iterative model is advantageous because it makes predictions online as 187	
every trial occurs and adapts dynamically to the growing data set. 188	
 189	
Individual learning policies can be inferred from iterative GLM fitting 190	
The iterative GLM serves to infer what policy the animal follows in making decisions. The linear 191	
weight of each input term reflects its relative importance for the decision. By following this 192	
weight vector across trials one obtains a policy matrix that documents how the animal’s policy 193	
changes during learning (Figs. 1b and 4c). To test that the model can correctly capture a time-194	
varying policy, we simulated decision-making data from a ground truth policy that changed at a 195	
certain frequency, including a certain level of noise in the behavioral output (Fig. 4a). Over a 196	
wide range of policy change frequencies and noise levels, the GLM was able to capture the 197	
ground truth policy (Figs. 4a and 4b). In addition, different values of policy change frequency 198	
and noise levels led to different sets of hyperparameters fitted from the model, showing that the 199	
GLM can adapt to individuals with diverse learning characteristics (Supplementary Figs. 5a-e). 200	
 201	
We then recovered the policy matrix of each animal from the GLM fits. All four animals started 202	
with the non-optimal policy of WSLS. Subsequently each animal followed its own learning 203	
process (Fig. 4c): Animal 2 had a clear bias towards the right port at the beginning but it rapidly 204	
found the optimal policy of following the light. The other three animals were slower learners. 205	
Animal 3 and Animal 4 followed similar processes to converge to the optimal policy. Animal 1 206	
was distinct from the others. At the early stages, it had a strong bias towards the left port and it 207	
made decisions based on whether the previous choice was rewarded.  208	
 209	
We further validated the transition between policies during learning by analyzing the first and 210	
last sessions of each animal and counting how many choices could be explained by each policy 211	
(Fig. 4d). Indeed, we found a clear switch from the (non-optimal) WSLS policy to the (optimal) 212	
stimulus-based policy (Fig. 4e and Supplementary Fig. 5f). The animals might have been 213	
biased towards the WSLS strategy by a shaping method we used during training, which offered 214	
the animal a repeat of the same stimulus every time it made a mistake (Online methods). To test 215	
whether these correlations in the trial sequence influenced the final policy we performed two 216	
additional analyses. First, we only included trials following a correct trial, and performed logistic 217	
regression on these trials for each session. This analysis showed that at least on these trials, all 218	
the animals based their decisions on the light stimulus by the end of learning (Supplementary 219	
Fig. 6a). Second, we compared the error rate on trials following an incorrect choice with that 220	
following a correct one. We found no significant difference between the two error rates during 221	
the last session (Supplementary Figs. 6b and 6c), suggesting that the animals treated these two 222	
types of trials identically. 223	
 224	
Automated movement tracking reveals fine structure of behavioral responses  225	
Thus far the report has focused on the animal’s responses only as sensed by the nose pokes into 226	
response ports. The GLM fits of those responses already revealed differences in policy across 227	
individuals. To gain further insight into these individual preferences, it is essential to track each 228	
animal’s behavior along the way from stimuli to responses10. We thus developed software that 229	
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uses deep learning to automatically, quantitatively and accurately assess each animal’s behavior 230	
during decision-making (Figs. 1c and 5a). 231	
 232	
To track the animal location and body coordinates, we recorded videos of the animal from above, 233	
and analyzed them with a sequence of two deep convolutional neural networks (CNNs) that were 234	
pre-trained on annotated pose data (Fig. 5a and Supplementary Videos 5-7). The first CNN was 235	
based on the multi-scale convolutional (MSC) Multibox detector28 (Supplementary Fig. 7a). 236	
For each frame of the video it computed a crop frame around the body of the mouse. The second 237	
CNN was a Stacked Hourglass Network29 that used the cropped video frame to locate seven 238	
body landmarks: the nose, the ears, the neck, the body sides and the tail of the animal 239	
(Supplementary Figs. 7a and 7b). These landmarks allowed precise identification of the 240	
animal’s position and body pose (Supplementary Fig. 7c), from which we further extracted two 241	
features: the body centroid (average position of the seven landmarks) and the orientation (angle 242	
of the line connecting the centroid and the nose). 243	
 244	
To illustrate use of these behavioral trajectories, we focus on the period of the visual choice task 245	
where the animal reports its decision: from the time it leaves the center port to when it pokes one 246	
of the side ports. The trials fall into four groups based on location of the stimulus and the 247	
response. As expected, the trajectories of position and orientation clearly distinguish left from 248	
right choices (Figs. 5b and 5d). Interestingly, the trajectories also reveal whether the decision 249	
was correct: On incorrect decision, the trajectories reversed direction after ~0.5 s, because the 250	
animal quickly turned back to the center after finding no reward in the chosen port (Figs. 5c, 5e 251	
and Supplementary Video 5). A linear kernel support vector machine (SVM), trained to predict 252	
the category of each trial from a 1 s trajectory, was able to correctly distinguish correct and 253	
incorrect choices with an accuracy of over 90% (Supplementary Fig. 8). In addition, many of 254	
the trajectories were highly asymmetric and again revealed differences across individuals. For 255	
instance, Animal 2 and Animal 4 started from a location close to the right port, Animal 1 closer 256	
to the left port (Fig. 5c). This asymmetry correlates with the bias revealed by the iterative GLM: 257	
each animal prefers to select the port closer to its body location. 258	
 259	
Unsupervised behavioral analysis reveals moments of hesitation 260	
Whereas the supervised learning discussed above relies on prior classification of stimuli and 261	
responses, an unsupervised analysis has the potential to discover unexpected structures in the 262	
animal’s behavior30. We thus performed an unsupervised classification of the behavioral 263	
trajectories. 264	
 265	
After subjecting all the trajectories of a given animal to principal component analysis (PCA) we 266	
projected the data onto the top three components, which explained over 95% of the variance 267	
(Figs. 6a, 6b and Supplementary Fig. 9a). Importantly, without any labels from trial types, 268	
these three PCs captured meaningful features that differentiated the animal’s responses. The first 269	
PC separated movements to the left from those to the right (Figs. 6a and 6b). The third PC 270	
captured the turning-back behavior after an incorrect choice (Fig. 6b and Supplementary Fig. 271	
9a). The second PC captured different baseline positions (Fig. 6b). Each animal has its own 272	
preference for a baseline position somewhere off the midline of the chamber (Supplementary 273	
Fig. 9b). 274	
 275	
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We also projected the trajectories into 2 dimensions using a non-linear embedding method, t-276	
distributed stochastic neighbor embedding31,32 (t-SNE). Unlike PCA, this graph prioritizes the 277	
preservation of local structures within the data instead of the global structure32. In the t-SNE 278	
space the trajectories formed clear clusters (Fig. 6c).  Most of the clusters are dominated by one 279	
of the decision categories (Fig. 6c and Supplementary Fig. 9c). Interestingly, we found clusters 280	
in Animals 2, 3, and 4, in which the centroid trajectories were flat, unlike the trajectories of the 281	
four decision categories (Fig. 6d), suggesting that animals hesitated in these trials and made 282	
decisions only after a delay. Indeed, in trials flagged by these clusters, the animals had longer 283	
reaction times (Fig. 6e). Furthermore, such hesitating responses were more common following 284	
an incorrect trial (Fig. 6f); they may reflect a behavioral adjustment to prevent further mistakes33.  285	
 286	
DISCUSSION 287	
Despite the fact that rodents can be trained to perform interesting decision-making tasks7-10, the 288	
learning progress of individual animals has rarely been addressed. Doing so requires training and 289	
observing many animals in parallel under identical conditions, and the ability to analyze the 290	
decision policy of each animal on a trial-by-trial basis. To meet these demands, we developed 291	
Mouse Academy, an integrated platform for automated training and behavior analysis of 292	
individual animals.  293	
 294	
We demonstrate here that Mouse Academy can train group-housed mice in an automated and 295	
highly efficient manner while simultaneously acquiring decision-making sequences and video 296	
recordings. Automated animal training has been of great interest in recent years and efforts have 297	
focused on two directions. In one design, multiple animals are trained in parallel within stacks of 298	
training boxes. This requires a technician to transfer animals from their home cages to the 299	
behavior boxes14-16. Such animal handling has been reported to introduce additional 300	
variability20,21, and even the mere presence of an experimenter can influence behavioral 301	
outcomes34. Thus, eliminating the requirement for human intervention, as in Mouse Academy, 302	
likely reduces experimental variation. In another design, a training setup is incorporated within 303	
the animals’ home cage17-19. By contrast, Mouse Academy separates the functions of housing and 304	
training, and that modular design allows easy adaptation to a different purpose. For instance, one 305	
can replace the 3-port discrimination box with a maze to study spatial navigation learning35,36, or 306	
with an apparatus for training under voluntary head-fixation37. In each case, a single training 307	
apparatus can serve many mice, potentially from multiple home cages.  308	
 309	
To understand how an animal’s decision-making policies change in the course of learning, we 310	
developed a trial-by-trial iterative GLM. The evolution of the model is similar to online machine 311	
learning38 in which the data are streamed in sequentially, rather than in batch mode. The linear 312	
nature of the model supports a straightforward definition of the animal’s decision policy, namely 313	
as the vector of weights associated with different input variables. In addition, the simple linear 314	
structure allows rapid execution of the algorithm, which favors its use in real-time closed-loop 315	
behavior experiments. The model also allows several parametric adjustments. One specifies how 316	
much the recent trials are weighted over more distant ones in shaping the animal’s policy. 317	
Another rates the relative influence of reward versus punishments. Fitting these parameters to 318	
each animal already revealed differences in learning style. This model can have a broader use 319	
beyond mouse decision-making, for instance to track the progress of human learners from their 320	
answers to a series of quizzes39. 321	
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 322	
Finally we presented software for automated assessment of behaviors based on video recordings 323	
within Mouse Academy. Largely extending existing methods, the software uses deep 324	
convolutional neural networks for animal tracking and pose estimation. Because the animal’s 325	
movements are unconstrained, we performed the tracking in two stages: the first finds the animal 326	
within the video frame and the second locates the body landmarks. Compared to a single-shot 327	
procedure, this split approach requires fewer learning examples and less computation in the 328	
second stage38. The resulting behavioral trajectories can reveal intricate aspects of the animal’s 329	
decision process that are hidden from a mere record of the binary choices. The large data volume 330	
again calls for automated analysis, and both supervised machine learning methods30,40,41 and 331	
unsupervised classification30-32,42 have been employed for this purpose. Unsupervised analysis is 332	
not constrained by class labels, and can identify hidden structure in the data in an unbiased 333	
manner. In the present case, we discovered a motif wherein the animal hesitates on certain trials 334	
before taking action. 335	
 336	
Mouse Academy can be combined with chronic wireless recording43,44, to allow synchronized 337	
data acquisition of neural responses. Researchers can seek correlations between neural activity 338	
and the policy matrix or even the behavioral trajectories. This will open the door to a mechanistic 339	
understanding of how neural representations and dynamics change in the course of animal 340	
learning. 341	
 342	
ONLINE METHODS 343	
Animals 344	
Subjects were C57BL/6J male mice aged 8-12 weeks. All experiments were conducted in 345	
accordance with protocols approved by the Institutional Animal Care and Use Committee of the 346	
California Institute of Technology. 347	
 348	
Hardware setup 349	
The hardware setup comprises a behavioral training box, an engineered home cage, and a radio 350	
frequency identification (RFID) sorting system, which allows animals to move between the 351	
home cage and the training box. These components are coordinated by customized software. 352	
  353	
The design file for the behavior box was modified from that of Sanworks LLC 354	
(https://github.com/sanworks/Bpod-CAD) using Solid-Works computer-aided design software 355	
and the customized behavioral training box was manufactured in the lab. The behavior box is 356	
controlled by a Bpod state machine (r0.8, Sanworks LLC). To monitor the animal’s behavior, an 357	
IR webcam (Ailipu Technology or OpenMV Camera M7) is installed above the behavior box. 358	
The behavior box and the webcam are placed within a light- and sound-proof chamber. The 359	
chamber is made of particle board with walls covered by acoustic foam. A tunnel made of red 360	
plastic tubes connects the behavior box to a home cage (Supplementary Fig. 1b). 361	
 362	
For the RFID access control system, an Arduino Mega 2560 microcontroller is connected with 363	
three RFID readers (ID-12LA, Sparkfun) with custom antenna coils spaced along the access 364	
tunnel. The microcontroller controls two generic servo motors fitted with plastic gates to grant 365	
individual access to the training box (Supplementary Fig. 1a).  366	
 367	
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The microcontroller identifies each animal by its implanted RFID chip and permits only one 368	
animal to go through the tunnel connecting the home cage and the behavioral training box 369	
(Supplementary Fig. 1c). It also communicates the animal’s identity to a master program 370	
running on a PC or Raspberry Pi (Matlab or Python). The master program coordinates the 371	
following programs: Bpod (https://github.com/sanworks/Bpod), synchronized video recording, 372	
data management and logging. A repository containing the design files, the firmware code for the 373	
microcontroller, and the software can be found in 374	
https://github.com/muqiao0626/Mouse_Academy. 375	
 376	
Behavior training 377	
The training procedures of mice to perform a selective attention task are similar to those 378	
previously reported11,12. Mice were water restricted for seven days before training, and 379	
habituated in the automated training system to collect reward freely for several sessions. Then 380	
the mice were trained in sessions, each of which was made of 90 trials, to collect water rewards 381	
by performing two alternative forced choice tasks. Briefly, the animal had to nose-poke one of 382	
two choice ports based on the presented stimuli. If the decision was correct, 10% sucrose-383	
sweetened water (3 µL) was delivered to the animal. For incorrect responses, the animal was 384	
punished with a five-second timeout. Following an incorrect response, the animal was presented 385	
with the identical trial again; this simple shaping procedure helps counter-act biases in the 386	
behavior.  387	
Over 28 days of training the animals learned increasingly complex tasks, from visual 388	
discrimination to a two-modality cued attention switching task11,12. The training progressed 389	
through six stages (Supplementary Fig. 2): 390	

1. A simple visual task: In this task, the animal initiates a trial by poking the center port and 391	
holding the position for 100 ms. Then either the left or right side port light up briefly until 392	
the animal moves away from the center port. The animal must then poke one of the two 393	
side ports within the decision period of 10 s. Choice of the port flagged by the light leads 394	
to a water reward, and choice of the other port leads to a time-out period during which no 395	
trials can be initiated. Data presented in the main text are from this stage of training only. 396	

2. A simple auditory task: As Stage 1, except that the stimulus was white noise sound either 397	
the left or the right side to flag the reward port.  398	

3. A cued single-modality (visual or auditory) switching task: Blocks of 15 trials consisting 399	
of single-modality (visual or auditory) stimulus presentation. Each block was like stages 400	
1 or 2, except that the trial type was indicated by a 7 kHz (visual) or 18 kHz (auditory) 401	
pure tone.  402	

4. A cued single- and double-modality switching task: Like stage 3, but distracting trials 403	
were introduced in which both visual and auditory stimuli were present, but only one of 404	
the modalities was relevant to the decision. The relevant modality was again indicated by 405	
the pure tone cues. In repeating blocks, four types of trials were presented: a. five visual-406	
only trials; b. ten ‘attend to vision’ trials with auditory distractors; c. five auditory-only 407	
trials; d. ten ‘attend to audition’ trials with visual distractors. During the training, the time 408	
that the animal had to hold in the center port was gradually increased to 0.5 s, and the 409	
duration of the stimuli was gradually shortened to 0.2 s.  410	

5. A cued double-modality switching task: Like stage 4 except that the single-modality trials 411	
were removed, and the block length was gradually shortened to three trials. 412	
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6. A selective attention task: Like stage 5, but the block structure was abandoned and all 413	
eight possible trial types were randomized: (audition vs vision) x (sound left or right) x 414	
(light left or right).  415	

 416	
Iterative generalized linear model 417	
We modeled the animal’s choice probability by a logistic regression. At each trial number t, the 418	
choice probability is defined as 419	

   (1) 420	

 421	
where indicates the binary choice of the animal (1 = right, –1 = left),  is the vector of input 422	
factors on trial t, and  is the vector of weights for these factors obtained from fitting up to the 423	
preceding trial.  424	
The prediction  for the animal’s choice is simply that with the higher model probability: 425	

   (2) 426	

After observing the animal’s actual choice , the cross-entropy error  between the 427	
observation and model prediction is calculated as 428	
   (3) 429	

We weight the error term by a reward factor , and apply exponential temporal smoothing to 430	
get the loss function : 431	
   (4) 432	
where  is the smoothing discount factor accounting for the effect that distant trials have less 433	
impact on decision-making than immediately preceding trials, and  is defined as 434	

   (5) 435	

The values of  for rewarded and unrewarded trials may be different, accounting for the fact 436	
that rewards and punishments may have different effects on learning. For each time point, the 437	
weights in the model are determined by minimizing the loss function subject to L1 (lasso) 438	
regularization, namely 439	
   (6) 440	

Then  is used for prediction of the next trial. For subsequent analysis, we only used 441	
predictions starting at the 15th trial. The three hyperparameters for the temporal discount factor 442	

, the reward factor , and the regularization factor  were selected by grid search.  443	
 444	

   

p yt = 1 wt−1( ) = 1

1+ exp −wt−1
T xt( )

p yt = −1 wt−1( ) = 1− p yt = 1 wt−1( )

 yt   x t

   wt−1

 yt
∗

   
yt
∗ = argmax

y∈ –1,+1{ }
p y xt ,wt−1( )

 zt  Et

   
Et = − log p zt xt ,wt−1( )

 Rt

 Lt

  Lt = Rt Et +αLt−1
α

 Rt

  
Rt =

1, if the choice is rewarded
r,otherwise

⎧
⎨
⎪

⎩⎪

 Rt

   
wt = argmin

w
Lt + λ w

1( )
  wt

α  r λ
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To fit the decision-making sequences of the simple visual task, we included the following terms 445	
in the input vector : 446	

1. Visual_stimulus: +1 = light on right, –1 = light on left. 447	
2. Bias: A constant value of +1. The associated weight determines whether the animal 448	

favors the left (negative) or the right (positive) port. 449	
3. Choice_back_n: The choice the animal made n trials ago (+1 = right, –1 = left).  450	
4. Reward_back_n: The reward the animal received n trials ago (+1 = reward, –1 = 451	

punishment).  452	
5. Choice x Reward_back_n: The product of terms 4 and 5. This term corresponds to the 453	

win-stay-lose-switch (WSLS) strategy of repeating the last choice if it was rewarded and 454	
switching if it was punished. 455	

 456	
To determine the extent of history-dependence of the animal’s decisions, we fitted the model 457	
including terms 3-5 from up to three previous trials (n = 1, 2, 3), and found that only the 458	
immediately preceding trial had an appreciable effect on the model’s prediction accuracy. For the 459	
subsequent analysis, we therefore included terms 3-5 for the preceding trial (n = 1). 460	
 461	
We compared the iterative generalized linear model (GLM) with two other models. The first 462	
only captures the animal’s average performance over all trials. If the fraction of the correct 463	
responses is z, then the model simply predicts a correct response with probability z, and an error 464	
with probability 1–z. Thus, the fraction of trials where the prediction matches the observation is 465	

. 466	
 467	
The second model is a sliding window logistic regression. To make a prediction for trial t, we 468	
fitted the logistic model presented above (Eqns 1-2) to the preceding n trials. The loss function is 469	

   (7) 470	

and the weights are again optimized as in Eqn 6. 471	
 472	
Recovering policy matrices from simulated data 473	
To test the model’s ability in recovering policy matrices, we trained the model on data generated 474	
from pre-defined ground truth policies. The ground truth policies changed every 10 trials, 30 475	
trials, or 90 trials. Binary choices were simulated with different noise levels using the algorithm 476	
‘epsilon-greedy’: with a probability of epsilon, the simulator made a random choice and with a 477	
probability of 1-epsilon it chose the action indicated by the ground truth policy. The noise levels 478	
(epsilon values) ranged from 0 to 0.6. The similarity between the recovered policy and the 479	
ground truth policy was evaluated by the cosine between the recovered weight vector and the 480	
ground truth weight vector. 481	
 482	
Automated behavior assessment software 483	
In this section we describe each part of the software that constitutes the system we developed to 484	
track the mouse. The software is primarily made of two parts: mouse detection and pose 485	
estimation, each of which is implemented by a deep convolutional neural network (CNN) trained 486	
on annotated video data (Supplementary Fig. 7a). We collected a set of videos using red or IR 487	

  x t

  z
2 + 1− z( )2

   
Lt = − log p zt xt ,wt−1( )

i=t−n

t−1

∑
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light illumination from the top of the arena. From these videos we extracted randomly a set of 488	
15,000 frames and asked Amazon Mechanical Turk (AMT) workers to click on body landmarks 489	
which give a representation of the skeleton of the mouse (Supplementary Fig. 7b).   490	
 491	
Mouse detection 492	
The architecture used for detection is the multi-scale convolutional (MSC) Multibox network28, 493	
which computes a list of bounding boxes along with a single confidence score for each box, 494	
corresponding to its likelihood of containing the object of interest, in this case a mouse. Each 495	
bounding box is encoded by 4 scalars, representing the coordinates of the upper-left and lower-496	
right coordinates. The coordinates of each box are normalized with respect to image dimensions 497	
to deal with different image sizes, and their associated confidence score is encoded by an 498	
additional node (which ouputs a value from 0 to 1).  The loss function is the weighted sum of 499	
two losses: confidence and location28. We trained the MSC-Multibox deep CNN to predict 500	
bounding boxes that are spatially closest to the ground truth boxes while maximizing the 501	
confidence of containing the mouse. 502	
  503	
In order to reach better and faster detection, we used prior bounding boxes whose aspect ratios 504	
closely match the distribution of the ground truth. As proposed previously by Erhan et al28, these 505	
priors were selected because their Intersection over Union (IoU) with respect to the ground truth 506	
was over 0.5. In the following matching process, each ground truth box is best matched to a 507	
prior, and the algorithm learns a residual between the two. At inference time, 100 bounding 508	
boxes are proposed, from which the best one is selected based on the highest score and non-509	
maximum suppression. 510	
  511	
We split the dataset into 12,750 frames for training, 750 for validation and 1,500 for testing. 512	
During training, we augmented data with random cropping and color variation. Using the 513	
Inception-ResNet-V2 architecture initialized with ImageNet pre-trained weights45, we finetuned 514	
the network with our training samples by updating the weights using stochastic gradient descent. 515	
For the optimizer, we used RMPSProp, with the batch size set to 4, the initial learning rate set to 516	
0.01, and the momentum and the decay both set to 0.9946. Images were resized to 299 x 299. We 517	
trained the detector on a machine with a 8-core Intel i7-6700K CPU, 32GB of RAM, and a 8GB 518	
GTX 1080 GPU. The model was trained for 288k iterations. A single instance of the forward 519	
pass took on average 15 ms. 520	
  521	
We evaluated the models using the detection metric Intersection over Union (IoU). Thresholding 522	
the IoU defines matches between the ground truth and predicted boxes and allows computing 523	
precision-recall curves. The precision-recall curve at different threshold of IoU is shown in 524	
Supplementary Fig. 7d. In Supplementary Table 2, we report mean averaged precision (mAP) 525	
and recall (mAR). 526	
  527	
Pose estimation 528	
With the bounding box generated from the MSC-Multibox deep CNN, we wish to determine the 529	
precise pixel location of the keypoints that would describe the body features of the mouse. As a 530	
well established problem in computer vision, a good pose estimation system must be robust to 531	
occlusion, deformation, successful on rare and novel poses, invariant to changes in appearance 532	
from differences in lighting and backgrounds.  533	
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  534	
The keypoints we chose are the nose, the ears, the neck, the body sides, and the base of the tail 535	
(Supplementary Fig. 7b). These features were chosen because they are best recognized 536	
regardless of the size of the animal, and one can deduce from them secondary features, such as 537	
orientation of the animal. We used Stacked Hourglass Network29 to estimate the keypoints. This 538	
architecture has the capacity to learn all seven features and and output pixel-level predictions. 539	
The output of the network is a set of heatmaps, one for each keypoint, representing the 540	
probability of the keypoint’s presence every pixel (Supplementary Fig. 7a). We estimated the 541	
location of the keypoint by the maximum of its heatmap. A mean squared error (MSE) loss was 542	
used to compare the predicted heatmap to the ground truth. 543	
  544	
During training, cropped frames with the mouse centered in the bounding box were resized to a 545	
resolution of 256 x 256. We also augmented the training data as follows (p is the probability of 546	
applying a type of augmentation): 547	

● rotation with p = 1: angles were selected uniformly between 0° and 180° 548	
● translation 549	
● horizontal and vertical flips 550	
● scaling with p = 1: scaling factors were chosen from a pool of 0.10 to 0.65, uniformly 551	
● color variation: adjusted brightness/contrast/gamma with p = 0.5 in order to emulate the 552	

effects of poor lighting/setup 553	
● Gaussian blur with p = 0.15: frames were blurred either by a  or  (chosen 554	

uniformly). 555	
● Gaussian Noise added independently across image with p = 0.15 556	
● JPEG artifact with p = 0.15: added artifacts of JPEG compression onto the image  557	

Extreme augmentations (with multiple types of augmentations) were examined to make sure that 558	
the transformed data looked reasonable. Using original and augmented keypoint annotations, we 559	
trained a pose estimator from scratch. 560	
  561	
Training started from randomly initialized weights, and continued until validation accuracy 562	
plateaued, taking approximately 6 days. This training process was performed for 749k iterations. 563	
The network was trained using TensorFlow (Google) on a machine with 8-core Intel Xeon CPU, 564	
24GB of RAM, and a 12GB Titan XP GPU. For optimization, we used RMPSProp optimizer 565	
with momentum and decay both set to 0.99, batch size of 8 and a learning rate of 0.00025. We 566	
dropped the learning rate once by a factor of 5 after validation accuracy plateaus (after 33 567	
epochs). Batch normalization was used to improve training. 568	
  569	
Evaluation was done using the standard Percentage of Correct Keypoint (PCK) metric which 570	
reports the fraction of detections that fall within a distance of the ground truth29. More than 85% 571	
of the keypoints of the nose, ears, and neck are inferred within an error radius of 0.5 cm, and 572	
more than 80% of the keypoints of the body sides and tail lie within an error error radius of 1 cm 573	
(as a reference, the distance between two ears is ~3 cm). The averaged PCK of all the seven 574	
keypoints is ~80% within a radius of less than 0.5 cm  (Supplementary Fig. 7c). Overall the 575	
system's performance can be characterized as high-human, significantly exceeding the typical 576	
annotator, but less precise than the absolute best possible. 577	
 578	
Supervised and unsupervised analysis of behavioral trajectories 579	

 σ = 1  σ = 2
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From the pose estimation, we extracted two features to describe an animal’s behavioral 580	
trajectories: the centroid was defined as the average position of the seven body landmarks; and 581	
the angular orientation of the line from the centroid to the nose. For each trial, these two features 582	
were extracted for n frames (n = 30 (1 s) in most cases), thus the data dimension for each trial is 583	
3n (the two centroid coordinates and the orientation). 584	
 585	
To determine whether the behavioral trajectories contain information about the decision 586	
categories, a support vector machine (SVM) with a linear kernel was trained for each decision 587	
category. The training set was labelled with the decision category based on information about the 588	
visual stimulus and the animal’s choice (for example, “Stim: R, Choice: L” means that the light 589	
is on the right and the animal chooses the left port). Performance of the trained SVM was 590	
examined by prediction accuracy on the test set, and the F1 score, which is the harmonic mean of 591	
precision and recall: 592	

   (8) 593	

The performance was computed as the average across 10 repeated analyses (Supplementary 594	
Fig. 8). 595	
 596	
We performed a non-linear embedding method, t-distributed stochastic neighbor embedding (t-597	
SNE) analysis as previously described31,32. Briefly, the trajectory data of each trial were 598	
projected into a 2D t-SNE space. Point clouds on the t-SNE map represented candidate clusters. 599	
Density clustering identified these regions. We then plotted trajectories and reaction time 600	
distributions to confirm that the clusters were distinct from each other. A repository of the 601	
analysis scripts can be found in https://github.com/tonyzhang25/MouseAcademyBehavior. 602	
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Fig. 1: Components of Mouse Academy 741	
(a) An automated RFID sorting and animal training system. Mice implanted with RFID chips are 742	
group-housed in the home cage. The RFID sorting system identifies each mouse by its implanted 743	
chip. One animal at a time gains access to a behavioral training box. As the animal learns a task, 744	
its decision sequences and video recordings are acquired. (b) An iterative generalized linear 745	
model. For each trial, the model predicts the animal’s choice based on the relevant factors and 746	
then evaluates the difference from the actual choice. This difference, after temporal weighting, is 747	
fed back to the loss function, which gets minimized by updating the weights of the input factors. 748	
The model produces a policy matrix in which the rows indicate the weights of the relevant 749	
factors and the columns are the trials. (c) An automated behavior assessment program using deep 750	
convolutional neural networks to extract the location and pose information of an animal.  751	
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Fig. 2: Performance of the automated training system on a sample cohort  752	
(a) Fraction of time the behavior box was occupied by each of the four animals. (b) Activity 753	
trace of each animal in the behavior box for the entire training period of 28 days. Shadow 754	
indicates the dark cycle from 8pm to 8am. (c) Distribution of time intervals during which the 755	
behavior box is occupied or empty. (d) Box plot of intervals between each animal’s sessions 756	
(median, quartiles, and range). (e) Box plot of the time spent in a session for each animal. (f) 757	
Averaged daily water consumption of each animal. Error bars indicate standard errors. (g) 758	
Circadian histograms of each animal’s activity in the behavior box.  759	
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Fig. 3: Iterative generalized linear model and its prediction accuracy 760	
(a) Illustration of the GLM as applied to a visual discrimination task. The model’s prediction is 761	
based on the output of a logistic function whose input is the weighted sum of a visual stimulus 762	
term, a bias term, and three history-dependent terms. The stimulus can be on the left or right and 763	
the choice can be rewarded (consistent with the stimulus, indicated by a green dot) or 764	
unrewarded (opposite to the stimulus, indicated by a red dot). (b) Selection of the history-765	
dependent terms based on the model prediction accuracy. Error bars indicate standard errors. (c) 766	
Hyperparameters for each of the animals: reward factor, discount factor, and regularization factor. 767	
The optimal values are marked with a star. (d) The actual performance of each animal over time 768	
in the visual task. (e) Performance as predicted by the GLM. (f) Fraction of choices predicted 769	
correctly by the GLM. (g) Fraction of choices predicted correctly by a simple model based on the 770	
animal’s average performance in the task. (h) Fraction of predictions matched by the iterative 771	
GLM and the sliding window logistic regression model. Error bars indicate standard errors. **, * 772	
indicate P < 0.01, 0.05. Random prediction would give 50% match. 773	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/467878doi: bioRxiv preprint 

https://doi.org/10.1101/467878


0 180 360 540 720 900 1080 1260 1440 1620 1800 1980 2160 2340 2520 2700 2880 3060 3240 3420

Trial

Animal	1

Animal	2

Animal	3

Animal	4

Factor
A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

 
Figure 4

 
a

c

d

b

 ...

0 10 20 30 40 50 60 70 80

Factor

Ground	truth

From	model

Ground	truth

From	model

Trial

Frequency: 1
10	trials

Epsilon:	0

Frequency: 1
30	trials

Epsilon:	0.4

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

Animal	1

Animal	2

Animal	3

Animal	4

0 10 20 30 40 50 60 70 80
Trial

Session	1

Factor
A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

0 10 20 30 40 50 60 70 80
Trial

Session	N

**
**

e

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/467878doi: bioRxiv preprint 

https://doi.org/10.1101/467878


	 21	

Fig. 4: Interpretation of policies during learning 774	
(a) Policy vectors recovered by the iterative GLM capture the ground truth policies. The policy 775	
matrix plots in each trial (horizontal) the weights associated with each of 5 factors (vertical), 776	
encoded with a color scale (see panel c). The factors are: A = Visual_stimulus, B = 777	
Choice×Reward_back_1, C = Choice_back_1, D = Reward_back_1, E = Bias. Two examples 778	
are shown of ground truth policies used to simulate data and the corresponding trial-by-trial 779	
estimates from the GLM. Blanks in the ground truth matrix indicate instances where the 780	
simulated choice is opposite to the policy. (b) Similarity between the recovered policy and the 781	
ground truth, measured by the cosine between the two policy vectors. Error bars indicate 782	
standard deviation. (c) Policy matrices recovered for the four animals show distinct individual 783	
learning processes. Dashed rectangles highlight the first and last sessions of each animal, as 784	
enlarged in d. (d) Recovered policy matrices for the first and last sessions of each animal. (e) 785	
Fraction of trials explained by two candidate policies (win-stay-lose-switch and following the 786	
stimuli) in the first and last sessions. Error bars indicate standard errors. ** indicates P < 0.01. 787	
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Fig. 5: Supervised analysis using features extracted by automated behavior assessment 788	
(a) Two deep convolutional neural networks (CNNs) extract relevant features of mouse 789	
behavior. The first CNN generates for each video frame a bounding box that encloses the animal. 790	
The second CNN operates on the bounding box and generates seven body landmarks for nose, 791	
ears, neck, body sides, and tail. The centroid is the average of the seven body landmarks and the 792	
orientation is the angle between the horizontal axis and the line connecting the centroid and the 793	
nose. (b) Centroid distance along the left-right axis vs time during the movement, for animal 1. 794	
The starting position is set to zero, positive values indicate movement to the left, negative to the 795	
right. The 4 trial types are indicated by different colors. (c) Average centroid trajectory for each 796	
animal. Shaded region indicates standard error. (d-e) Orientation vs time, displayed as in panels 797	
b-c. Positive angle points to the left, negative to the right.  798	
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Fig. 6: Unsupervised analysis of the behavior trajectories 799	
(a) Principal component projections onto PC1 and PC2 of the centroid-vs-time trajectories from 800	
Fig 5. The 4 trial types are indicated by different colors. (b) The centroid trajectories 801	
corresponding to the first three principal components (PCs). The variance explained by each PC 802	
is shown in the plot legend. (c) Clustering trials by their trajectories using t-SNE analysis. 803	
Distinct clusters are marked with different colors for use in subsequent panels. (d) Averaged 804	
centroid distance vs time for each cluster, plotted as in Fig 5b. (e) Box plot of the reaction time 805	
for each cluster. (f) The error rate on the preceding trial for each cluster. Error bars indicate 806	
standard errors. 807	
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Supplementary Materials 1	
 2	
Supplementary Table 1. Cost Analysis of Mouse Academy Hardware 3	
PC version 4	
Parts 
 

Quantity Supplier Cost 

Bpod State Machine 1 Sanworks $495.00 
Custom behavior box 
(Plastic, ports with LEDs 
and photo-gates, valves, 
etc.) 

1 Port breakout boards from 
Sanworks 

$500.00 

IR Webcam 1 Ailipu Technology $47.99 
Custom light- and sound-
proof chamber 

1 NA $75.00 

Arduino Mega 2560 R3 1 Sparkfun $45.95 
RFID Reader ID-12LA 3 Sparkfun $29.95 
Servo - Generic 2 Sparkfun $8.95 
Custom tunnel (Plastic, 
holders, antennas etc.) 

1 NA $150.00 

Engineered home cage 1 Caltech animal facility $76.10 
PC 1 Hewlett-Packard $1000.00 
Total cost   $2428.94 

 5	
Raspberry Pi version 6	
Parts 
 

Quantity Supplier Cost 

Bpod State Machine 1 Sanworks $495.00 
Custom behavior box 
(Plastic, ports with LEDs 
and photo-gates, valves, 
etc.) 

1 Port breakout boards from 
Sanworks 

$500.00 

OpenMV Camera M7 1 OpenMV $65.00 
Custom light- and sound-
proof chamber 

1 NA $75.00 

Arduino Mega 2560 R3 1 Sparkfun $45.95 
RFID Reader ID-12LA 3 Sparkfun $29.95 
Servo - Generic 2 Sparkfun $8.95 
Custom tunnel (Plastic, 
holders, antennas etc.) 

1 NA $150.00 

Engineered home cage 1 Caltech animal facility $76.10 
Raspberry Pi 3 Model B 1 Raspberry Pi $35.10 
Total cost   $1481.05 

 7	
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	 2	

Supplementary Table 2: mean averaged precision (mAP) and recall (mAR) at different 8	
threshold of Intersection over Union (IoU) (related to mouse detection) 9	
 mAP mAR 

0.75 < 𝐼𝑜𝑈 < 0.95 0.81 0.82 

𝐼𝑜𝑈	 = 0.5 0.99 0.99 

𝐼𝑜𝑈 = 0.75 0.95 0.98 

 10	
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Supplementary Fig. 1: Technical details of the hardware design 11	
(a-b) Side view of the setup (a) packed into a light- and sound-proof box (b). (c) RFID sorting 12	
process. For an animal to enter the behavior box, only when the left and the middle detectors 13	
detect the same RFID chip, the left gate is closed and the right gate is open so that the animal can 14	
access the behavior box. For an animal to return to the home cage, only when the right and the 15	
middle detectors detect the same RFID chip, the right gate is closed and the left gate is open so 16	
that the animal can go back to the home cage. In the entry and the return processes, if the left and 17	
the middle detectors detect different RFID chips, the animals have to leave the tube and the 18	
detectors get reset afterwards. (d) Schematic of RFID access control circuit. (e) Schematic of the 19	
software controlling the devices. A master program receives input from the RFID sorting device 20	
and controls four other modules including Bpod, synchronized video recording, data 21	
management, and logging. (f) Top view of a Raspberry Pi version of the setup.  22	
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Supplementary Fig. 2: Illustration of training procedures 23	
Training proceeds through six stages (Online methods). The design, learning curves, and animal 24	
performance of the simple visual task (a, a’, a’’), the simple auditory task (b, b’, b’’), the cued 25	
single-modality (visual or auditory) switching task (c, c’, c’’), the cued single- (visual or 26	
auditory) and double-modality (attend to vision or audition) switching task (d, d’, d’’), the cued 27	
double-modality (attend to vision or audition) switching task (e’, e’’), and the final selective 28	
attention task (f, f’, f’’) are shown here. a’ displays performance data as in Fig. 3e. Brown and 29	
gray dashed lines indicate the performance thresholds for upgrading to the next stage and 30	
downgrading to the previous stage respectively. 31	
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Supplementary Fig. 3: Automated training system allows efficient use of the behavior box 32	
For a sample cohort of five animals, this shows the fraction of time each animal used the 33	
behavior box (a) and the activity trace of each animal throughout one month.  34	
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Supplementary Fig. 4: Additional analysis on the iterative generalized linear model’s 35	
prediction accuracy 36	
The actual performance and the performance predicted by the model, for each of the four 37	
animals. Note that the predictions recapitulate the more prominent fluctuations in the actual 38	
learning curves. Error bars indicate standard errors. 39	
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Supplementary Fig. 5: Iterative generalized linear model captures differences between 40	
individuals and policy changes 41	
(a-b) Hyperparameter selection for the GLMs fitted to the simulated data generated from the 42	
ground truth policies. Different values of policy change frequency and noise level (epsilon) lead 43	
to different landscapes of the hyperparameters. (c-e) Selected temporal discount factor (c), 44	
reward factor (d) and regularization factor (e) for different values of policy change frequency 45	
and noise level (epsilon). (f) Fraction of the trials explained by the two policies (win-stay-lose-46	
switch or WSLS, and following the stimuli) in the first and last sessions, for each of the four 47	
animals. 48	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/467878doi: bioRxiv preprint 

https://doi.org/10.1101/467878


Supplementary Figure 6

a

b

c

Animal1

Animal2

Animal3

Animal4

n.s.

Animal1 Animal2 Animal3 Animal4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/467878doi: bioRxiv preprint 

https://doi.org/10.1101/467878


	 8	

Supplementary Fig. 6: Additional analyses of policy changes during learning 49	
(a) Policy matrices over sessions of the four animals. Here the policy matrices are recovered 50	
from logistic regression using only the trials following a correct response. Because the reward of 51	
the last trial is always +1, the term Reward_back_1 is the same as Bias, and the term 52	
RewardxChoice_back_1 is equal to Choice_back_1, so we drop them to avoid redundancy. (b-c) 53	
Quantification of the error rate during the last session, comparing trials following a correct 54	
response to those following a mistake. Averaged over all four animals (b) and for each of the 55	
four animals (c). n.s. indicates not significant.  56	
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Supplementary Fig. 7: Technical details of the automated behavior assessment software 57	
(a) Detailed illustration of the automated behavior assessment software as presented in Fig. 5a. 58	
Video frames are first preprocessed (resized and normalized) and then passed through the MSC-59	
Multibox detector (the first deep neural network (DNN)) to generate bounding boxes covering 60	
the mouse body. Then images of the mouse around the bounding box are cropped, padded and 61	
normalized for pose estimation. Pose estimation is done by Stacked Hourglass Network (the 62	
second DNN), which produces seven keypoint coordinates for body landmarks as shown in b. 63	
(b) The seven body landmarks of the nose, the ears, the neck, the body sides, and the tail. (c) 64	
Percentage of Correct Keypoint (PCK) curves. The fraction of inferred keypoints that lie within a 65	
specified pixel radius of the true location (10 pixels = 0.25 cm). On average over all seven 66	
keypoints ~80% lie within an error radius of 0.5 cm. (d) Precision-Recall curves at different 67	
thresholds of Intersection over Union (IoU) w.r.t ground truth bounding box. An IoU of 75% 68	
already detects mice very effectively, with precision and recall above 95% . 69	
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Supplementary Fig. 8: Performance of the support vector machine to infer trial category 70	
from mouse trajectories 71	
(a) Prediction accuracy of the SVMs for individual animals. (b) F1 score of the SVM fitted for 72	
the decision categories of each animal. Shaded region denotes standard error. 73	
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Supplementary Fig. 9: Additional information on the unsupervised analysis of behavior 74	
trajectories 75	
(a) Projection of trajectories onto PC1 and PC3. Different decision categories are indicated by 76	
different colors, which is the same for b and c. (b) Scatter plot of starting positions along the left-77	
right axis against PC2 shows correlation between the two. Starting positions are normalized to 78	
range from 0 (the leftmost position) and 1 (the rightmost position). (c) t-SNE plots with colors 79	
indicating different decision categories. 80	
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Supplementary Video 1: 81	
https://drive.google.com/open?id=1Ng5s1UhlFRdV4mZ5b1Ot7EUpaEiUXN2_ 82	
 83	
Supplementary Video 2: 84	
https://drive.google.com/open?id=15qgqM5qOd30kajT-IQkCf8flcF80U2qV 85	
 86	
Supplementary Video 3: 87	
https://drive.google.com/open?id=1zqja6_3bA2jO9ap0EWd5t_Z_dVOA8FmA 88	
 89	
Supplementary Video 4: 90	
https://drive.google.com/open?id=1wiaaBD-sfZTudDbpRM0ByB2n9bTKyaid 91	
 92	
Supplementary Video 5: 93	
https://drive.google.com/open?id=1yjaZXDUS3TKzDR4YGHYUlbwbq0OfUmI4 94	
 95	
Supplementary Video 6: 96	
https://drive.google.com/open?id=1ISELpiyI0Yh_EoiGn7aX1GLSoUaFtjKa 97	
 98	
Supplementary Video 7: 99	
https://drive.google.com/open?id=1dILuZRlwAU48RwLEEkt1CBzmPQnqF95r 100	
	101	
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