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Abstract

ChIP-seq (Chromatin Immunoprecipitation followed by sequencing) is a high-throughput technique
to identify genomic regions that are bound in vivo by a particular protein, e.g., a transcription fac-
tor (TF). Biological factors, such as chromatin state, indirect and cooperative binding, as well as
experimental factors, such as antibody quality, cross-linking, and PCR biases, are known to affect
the outcome of ChIP-seq experiments. However, the relative impact of these factors on inferences
made from ChIP-seq data is not entirely clear. Here, via a detailed ChIP-seq simulation pipeline,
ChIPulate, we assess the impact of various biological and experimental sources of variation on sev-
eral outcomes of a ChIP-seq experiment, viz., the recoverability of the TF binding motif, accuracy
of TF-DNA binding detection, the sensitivity of inferred TF-DNA binding strength, and number of
replicates needed to confidently infer binding strength. We find that the TF motif can be recovered
despite poor and non-uniform extraction and PCR amplification efficiencies. The recovery of the
motif is however affected to a larger extent by the fraction of sites that are either cooperatively
or indirectly bound. Importantly, our simulations reveal that the number of ChIP-seq replicates
needed to accurately measure in vivo occupancy at high-affinity sites is larger than the recom-
mended community standards. Our results establish statistical limits on the accuracy of inferences
of protein-DNA binding from ChIP-seq and suggest that increasing the mean extraction efficiency,
rather than amplification efficiency, would better improve sensitivity. The source code and instruc-
tions for running ChIPulate can be found at https://github.com/vishakad/chipulate.

Introduction

ChIP-seq (Chromatin immunoprecipitation and sequencing) is a popular high-throughput exper-
imental technique to find locations that are bound in vivo by a single transcription factor (TF)
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[1]. Upon mapping of the DNA fragments bound by the TF to the reference genome, the genomic
loci bound by the TF are identified as high density mapped regions or peaks, where each peak is
associated with an intensity based on the number of sequenced fragments arising from it. The
intensity reflects the in vivo occupancy of the TF at that locus.

Several studies of ChIP-seq data have focussed on the biological factors distinguishing the loci
bound by the TF. It has been shown that in addition to the affinities of binding sites present
at a locus, nucleosome positioning is a strong determinant of TF binding in vivo [2, 3, 4, 5].
Other studies have shown that the concentration of the target TF [6, 7], short-range cooperative
interactions between the target TF and other TFs [8], and variation in chromatin accessibility [5, 7]
explain the variation in intensities across peaks. Some of the variation can arise due to indirect
binding, where the target TF binds DNA indirectly via a second DNA-bound TF [9, 10, 11]. The
intensity of such peaks is then no longer directly dependent on the affinity of the target TF to
sequence at the bound locus.

Since the distribution of ChIP-seq peaks and their intensities depend on factors other than the
affinity of the target TF towards sequence at a locus, it impacts two kinds of inferences often made
from ChIP-seq data. First, the highest intensity peaks are used to infer position weight matrix
(PWM) or motif models of the target TF [12]. While it is known that changes in the concentration
of the target TF can distort the inferred PWM [13, 14], the extent to which cooperative and indirect
interactions distort the PWM is unclear. Second, along with variations in chromatin accessibility,
these interactions weaken the statistical dependence of peak intensity on target TF binding site
affinity, which means that a peak with a higher intensity need not necessarily contain a higher
affinity target TF binding site.

In addition to these biological factors, ChIP-seq peaks are affected by purely experimental
sources of noise. The ChIP-seq protocol broadly consists of three key steps [1, 15, 16] — (i)
the extraction of fragments that are bound by the target TF (ii) PCR amplification of these
extracted fragments, and (iii) sequencing of these fragments. It is known that fragments can
be extracted more easily at some genomic regions than others due to differences in chromatin
structure and cross-linking efficiency across the genome [17, 18, 19]. Similarly, certain fragments
are more efficiently amplified by PCR than others due to differences in GC content or the presence
of nucleotide repeats [20, 21, 22]. The extent to which these factors distort peak intensities and
make otherwise identical genomic regions appear differentially occupied has not been quantified.
Multiple biological replicates of ChIP-seq are recommended [23] to overcome these issues, but the
quantitative improvement in accuracy as more replicates are performed has not been ascertained.

To evaluate the influence of the aforementioned biological and experimental sources of variation
on ChIP-seq peak intensities, we have developed a comprehensive pipeline to simulate a ChIP-
seq experiment called ChIPulate. In particular, we simulate genome-wide TF-DNA binding based
on established biophysical models of binding and also simulate the extraction, amplification and
sequencing steps of the ChIP-seq protocol. Our simulation thus associates a set of read counts at
each genomic locus with its occupancy by the target TF. Whereas existing statistical models [24, 25,
26, 14] assume that read counts follow a prescribed probability distribution and treat the ChIP-seq
protocol as a black box, we explicitly model key steps of the ChIP-seq protocol. Our approach allows
us to individually evaluate the impact of variation in extraction and PCR amplification efficiencies,
as well as chromatin accessibility, indirect binding, and cooperative binding, on peak intensities and
PWM inference. We are also able to quantify the extent to which additional replicates of ChIP-seq
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improve its ability to robustly measure the occupancy of a genomic region.

We find that biological factors such as indirectly and cooperatively bound sequences distort
inferred PWMs more than experimental sources of variation. Variations in extraction efficiency
across the genome distort peak intensities and lower their ability to distinguish between occupied
loci. Poor extraction efficiency also increases the number of false positive peaks, which are peak
calls that do not contain a binding site for the target TF. In contrast to the effect of variations
in extraction efficiency, even drastic variations in PCR amplification efficiency have little impact
on peak intensities, and hence do not affect the inferred PWM or increase the number of false
positive peaks. Finally, we found that at least two biological replicates of ChIP-seq read counts are
necessary to reliably infer the binding energy of a genomic region.

Our work provides a general framework and a software tool for simulating ChIP-seq read counts
through a realistic model of TF-DNA binding and the steps of the ChIP-seq protocol. Improve-
ments in the protocol to lower variation in extraction efficiency, rather than PCR amplification
efficiency, are more likely to improve our ability to distinguish between genomic regions of differing
occupancy. Further, changes in the protocol that allow multiple biological ChIP-seq replicates to
be performed, or computational approaches that can reliably combine read counts from ChIP-seq
experiments, would allow more accurate inferences of TF-DNA occupancy, especially in regions
containing multiple binding sites.
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Results

A framework to simulate read counts from TF binding sites in a ChIP-seq ex-

periment
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Figure 1: ChIP-seq simulation procedure. (A) Procedure overview. Each of n genomic regions contains
a binding site with a binding energy ǫ(i) (in units of kBT ), where a lower value represents a higher affinity binding
site. In the ChIP sample, the binding energy at the i-th location, and the chemical potential, set the probability
of occupancy (p

(i)
b ) of the target TF. The probability of occupancy determines the number of cells (out of a total

of C cells) where the i-th location is bound. In Step 1 of the simulation, a total of F
(i)
e fragments are extracted

at the i-th location from a binomial distribution with mean Cp
(i)
e . p

(i)
e is the extraction efficiency that represents

the probability of successfully extracting a bound fragment. All of these fragments are unique (in red) since each
fragment originates from a different cell. In Step 2, the extracted fragments are amplified through ncy cycles of

PCR to give F
(i)
a amplified fragments ( duplicate fragments in black) with the probability of amplification of each

fragment, or PCR efficiency, being p
(i)
a in every cycle. The average number of amplified fragments A obtained from

each extracted fragment is A = (1 + p
(i)
a )ncy , which we refer to as the amplification ratio. In Step 3, R(i) reads are

obtained from the i-th location after sampling r = cn fragments from all
∑n

i=1 F
(i)
a amplified fragments, where r is

the total read count and c is the sequencing depth. The number of unique reads at each location is the final output
of the simulation. For the control input sample, read counts are simulated as for the foreground ChIP sample, except
that the probability of occupancy is assumed to be constant at all n locations and the number of cells is assumed
to be 0.1C. (B) Sample output from the simulation. The top panel shows the distribution of binding energies
employed in the simulation, which by default is a truncated power law between 0 and 10kBT with an exponent of
0.5. The middle panel shows the number of unique reads from each genomic region in the ChIP (black) and input
(gray) experiments. The bottom panel is the read count ratio between the ChIP and input samples at each location.
The simulation parameters are n = 1000, µ = 3kBT , ǫbg = 1kBT , C = 105, ncy = 15, and A = 1000. The extraction
efficiencies in the ChIP and input samples follow a truncated normal distribution between 0 and 1, with a mean of
0.5 and standard deviation of 0.05 across the genome.
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A schematic of our ChIP-seq simulation framework is shown in Figure 1A, with details in Methods.
Broadly, the goal of our simulation is to take as an input the occupancy of a TF at multiple
locations across a genome and output a set of read counts in both ChIP and input experiments
at each location. A single TF’s occupancy at a genomic location is determined by its site-specific
binding energy, and its chemical potential, which depends on the logarithm of the concentration of
the TF [27].

Each genomic location is associated with two experimental parameters — its extraction effi-
ciency and PCR efficiency. The extraction efficiency, which determines how many bound fragments
are successfully extracted in Step 1 in Figure 1A, can vary between different genomic locations. The
extracted fragments are then subjected to a number of PCR amplification cycles in Step 2. The
average number of amplified fragments obtained at each location depends on the PCR efficiency
associated with the locus, which can also vary between different locations. Step 3 represents the
sequencing step where the amplified fragments from all locations are sequenced. The number of
sequenced fragments is the total read count of the experiment. Since unique and duplicate frag-
ments (red and black in Fig. 1A) are tracked through the simulation, the exact number of unique
reads at each location is known.

In addition to the ChIP experiment, we simulate the sequencing of a genomic control input
sample. This simulation differs from the ChIP experiment in two ways. First, the background
binding energy at each occupied genomic locus is set to a fixed value of 3kBT for all locations (see
Methods for justification). Second, we set the number of cells to be only 10% of the number of cells
employed in the ChIP simulation. A larger number of cells are used in the ChIP simulation since, in
practice, DNA is less efficiently extracted in the ChIP sample due to the use of an antibody whereas
no antibody is used in the input sample. Thus, to extract a given amount of DNA, fewer cells are
employed in the input sample than in the ChIP sample. In the event that the number of extracted
fragments in the input is more than the number of extracted fragments in the ChIP sample, we
down-sample the input fragments such that the total number of extracted fragments is identical
in both ChIP and input samples before the PCR amplification step. Similarly, we down-sample
the ChIP fragments if the number of extracted fragments in the ChIP sample is more than than
that in the input sample. At each locus, the extraction and PCR efficiencies in the input are kept
identical to the values used in the ChIP simulation.

After simulating both ChIP and input experiments, we compute the ratio of the read counts
obtained from the ChIP sample to that of the input sample at each genomic locus. The read count
ratio at a location is equivalent to peak intensity computed by commonly used peak callers from
ChIP-seq reads [24]. The read counts obtained from our simulations are shown in Figure 1B with
the values of the simulation parameters set to the default values described in Methods.

Key assumptions

When simulating genome-wide TF-DNA binding before Step 1 in Figure 1A, we assume that there
is a single TF and a single binding site in each genomic region. We relax this assumption in later
sections when simulating indirect and cooperative binding. We assume that binding in different
genomic locations are independent of each other.

The extraction efficiency parameter in Step 1 aggregates the effect of the many steps of fragmen-
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tation, cross-linking, pull down and size selection that occur in a ChIP-seq experimental protocol.
We show in Methods that this parameter takes all these steps into account when modeling the
extraction of DNA fragments from cells. In the PCR amplification step, we assume the amplifi-
cation process to be in the exponential phase of amplification [28] where increasing the number
of PCR cycles exponentially increases the number of amplified fragments. We assume that any
potential PCR mutational errors do not change the amplification ratio at any genomic location. In
the sequencing step 3, we assume that the sequencing and mapping are error-free, i.e., reads are
uniquely and correctly mapped, and they can be perfectly de-duplicated at each location.

Motif inference is not affected by extraction and PCR efficiency whereas fidelity

at locations with low read count ratios is affected by a low extraction efficiency
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Figure 2: Impact of genome-wide heterogeneity in extraction and PCR efficiency on motif inference
and ChIP-seq fidelity. (A) To simulate motif inference, 1000 binding energies were sampled from the default
binding energy distribution. A binding site sequence of transcription factor Tye7 was assigned to each binding energy
(Methods). After simulating ChIP-seq in the absence of extraction and amplification ratio heterogeneity, binding
sites from locations with the 100 highest read count ratios were used to construct a baseline PWM of Tye7 (shown
inset). (B) The mean K-L distance between the baseline PWM and the motif inferred in the presence of
heterogeneity in extraction efficiency (right) and amplification ratio (left). The heterogeneity in extraction
and amplification ratio is assumed to follow a truncated normal distribution, with the mean increasing from left to
right on the x-axis in both panels. The coefficient of variation of the truncated normal varies from 0 (no variation, in
blue) to 0.5 (green) and 1.0 (brown). The error bars are the standard deviation in the mean K-L distance computed
after PWM was estimated in 10 replicates of ChIP-seq for each mean and coefficient of variation. (C) ChIP-seq
fidelity captures the monotonicity of the relationship between read count ratio and binding energy.
Fidelity is defined as the probability that if a location i has a read count ratio at least 10% higher than location j,
then it implies that i has a lower binding energy than j. Fidelity is calculated by sampling 1000 pairs of locations,
where each pair could be from anywhere in the genome or top 25th, 25-50th,50-75th, or bottom 25th percentiles of
the read count ratio. Read count ratios falling in each percentile bin are marked in different colors in the scatter plot,
where the y-axis is plotted on a logarithmic scale. The fidelity values in each of these bins is shown in the plot legend,
along with the fidelity computed across all regions. (D) Variation in ChIP-seq fidelity with heterogeneity in
extraction efficiency (right) and PCR amplification ratio (left). The x-axis and the three plot colors are
defined identically to (B). The error bars are the standard deviation in the estimate of fidelity, which are computed
from 10 replicates of simulation for a given mean and coefficient of variation.
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We evaluated the impact of heterogeneity in extraction and PCR efficiencies on two outcomes of
ChIP-seq. One is the recoverability of TF motif based on the top genomic locations in terms of
their read count ratios. The second is fidelity, defined as the probability (frequency) with which a
site X with a read count ratio that is at least 10% higher than site Y in fact contains a sequence
with a higher affinity (or lower binding energy).

We simulated the process of inferring the motif of an arbitrarily chosen S. cerevisiae transcrip-
tion factor (Tye7) from ChIP-seq (Figure 2A). We assigned binding energies for 1000 genomic
regions from our default binding energy distribution, which is a power law distribution (with an
exponent of 0.5) between 0 and 10kBT (see Methods). By using the Tye7 binding energy matrix
estimated by BEEML from protein binding microarray measurements [29, 13], we found the 10 bp
sequence whose binding energy was closest to this assigned value, and virtually planted it at each
location. We simulated a ChIP-seq experiment with a fixed extraction and PCR efficiency across
the genome, following which we selected sites having the top 100 read count ratios and constructed
the PWM of Tye7. This PWM, which we refer to as the baseline PWM, is used to compute the
extent to which heterogeneity in extraction and PCR efficiency changes the derived PWM.

Ideally, one would use a PWM of Tye7 published in a database as the baseline motif against
which to make these comparisons. However, these motifs can differ between databases due to
differences not only in the experimental assay used to measure TF-DNA binding but also the
underlying binding energy distribution of the bound sequences. This means that the baseline
Tye7 PWM derived from the simulation may differ from that present in the ScerTF database
[30]. However, our goal is to specifically assess the effect of extraction and PCR amplification
heterogeneity on motif recoverability. For this purpose, it suffices to compare the motif derived in
the presence of heterogeneity with the baseline motif derived in the absence of heterogeneity.

Figure 2B shows the difference between the baseline PWM and the Tye7 PWM that is derived
in the presence of extraction or PCR amplification heterogeneity, respectively, when the efficiencies
follow a truncated normal distribution. This difference is measured in terms of the mean Kullback-
Leibler (K-L) distance, measured in bits (Methods), between the two PWMs. The impact of
heterogeneity in these parameters on the inferred motif is small as the highest K-L distance from
the baseline motif is about 0.045 bits. The effect of PCR amplification and extraction heterogeneity
on motif inference is more pronounced when the heterogeneity follows a power law distribution
(Supplementary Figure 1A) than when it follows a truncated normal distribution. The distortion
of the PWM is still relatively low, however, with the highest K-L distance from the baseline motif
being less than 0.1 bits per position. We also evaluated the impact of varying the chemical potential
between 1kBT and 6kBT on the inferred motif when the baseline motif is derived at µ = 3kBT .
Examples of the effect of a different chemical potential on the read count ratios obtained across the
genome are shown in Supplementary Figure 2A. We found that the inferred motif deviates up to
0.08 bits per position from the baseline motif (Supplementary Figure 2B). This is within the same
order of magnitude as the effect of a low mean extraction efficiency on the inferred motif.

Results shown in Figure 2C show that ChIP-seq fidelity is generally higher for sites with inter-
mediate read count ratios (50th percentile to 75th percentile) and deteriorates at lower and higher
read count ratios. This is partly due to the value of the chemical potential of 3kBT employed
in our simulation. When the chemical potential is varied between 1kBT and 6kBT , the fidelity
amongst the top 25th percentile of read count ratios noticeably decreases and reaches close to 0.5
at µ = 6kBT (Supplementary Figure 2C). The fidelity amongst read count ratios of the bottom
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25%, however, increases over the same range of the chemical potential. This is due to the fact that
the occupancy of locations whose binding energies are much lower than the chemical potential are
close to 1 while locations with binding energies above the chemical potential are close to zero. As
the chemical potential increases, the increase in occupancy at locations with high binding energies
is sufficiently large for their read count ratios to differ from one another. On the other hand, the
occupancies of locations with low binding energies rapidly tend to one, which results in similar read
count ratios between sites that possess different binding energies.

Figure 2D shows the impact of heterogeneity in extraction efficiency and PCR amplification
ratio on fidelity. Changes in the mean and variance in the amplification ratio have little impact on
fidelity, both overall as well as in each read count ratio bin. The fidelity across all regions is also not
substantially affected by the mean and variance in extraction efficiencies, but the fidelity is markedly
lowered for sites with the lowest read count ratios. When PCR amplification heterogeneity is power-
law distributed, its impact on fidelity is still quite low (Supplementary Figure 1B). In contrast, when
the extraction efficiency is power-law distributed across the genome, its impact on fidelity is more
drastic than when it is normally distributed.

A low mean extraction efficiency increases the probability of false positive peak

calls but the PCR efficiency has no impact

We tested the effect of heterogeneity in extraction and PCR efficiencies on the ability of ChIP-seq
to distinguish peak calls that contain a binding site for the target TF (true positive) from those
peak calls that do not contain a binding site for the target TF (false positive). Figure 3A shows a
simulation where genomic locations that do not harbor a binding site for the target TF give rise
to sequence reads. We refer to such locations as false positive peaks. This differs from indirectly
bound peaks, where the target TF is part of the complex of TFs that binds DNA. In practice, a
false positive peak can arise due to poor antibody quality, where the antibody binds epitopes on
TFs other than the target TF. We assign binding energies to these false positives locations from a
truncated power law such that the mean occupancy ratio between true and false positive sites are
fixed while the variance in binding energies amongst false positive sites and true positive sites are
equal. Figure 3B shows the receiver operating characteristic (ROC) curve for the simulation shown
in Figure 3A. The ROC curve shows the change in the number of true positives and false positives
when the read count ratio threshold at which a location is declared as a peak is changed. The area
under the ROC curve (auROC) provides an overall measure of the accuracy of using ChIP-seq read
count ratios in distinguishing between locations with target TF binding sites from those without
these sites.
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Figure 3: The impact of experimental and biological sources of variation on the sensitivity of ChIP-
seq. (A) Simulating false positive binding sites. The binding energies of false positive genomic locations,
which do not contain a target TF binding site, are distributed according to a truncated power law with exponent 0.76
in the range [0, 6.78kBT ]. Binding energies of true positive genomic locations, which contain a target TF binding
site, are sampled from a truncated power law with exponent 0.5 in the range [0, 6kBT ]. (B) Receiver operating
characteristic (ROC) curve corresponding to the simulation shown in A. (C,D) Variation in auROC
with the extraction efficiency and PCR amplification ratio. The mean extraction efficiency in (C) and the
mean amplification efficiency (after 15 cycles of PCR) in (D) increases along the x-axis. The efficiencies vary according
to a truncated normal distribution with the blue, green and brown lines corresponding to a coefficient of variation
of 0, 0.5 and 1.0, respectively. The solid and dashed lines are the auROC when the ratio of the mean occupancy of
true positive binding sites to the mean occupancy of false positive binding sites is 2 (solid) and 10 (dashed) lines.
(E) Variation in auROC with the ratio of mean occupancy between true positive and false positive
binding sites. (F) Variation in auROC with sequencing depth. The ratio of the mean occupancy of true
positive binding sites to the mean occupancy of false positive binding sites is set at 2 (solid line) and 10 (dashed line).
In (C)-(F), the error bars are the standard deviation computed from ten replicates.

Figures 3C and 3D show the impact of heterogeneity in extraction efficiency and PCR efficiency,
respectively, on the auROC of ChIP-seq read count ratios. We found that increases in the mean
PCR efficiency did not appreciably increase the auROC. Similarly, an increase in the heterogeneity
of PCR efficiency, in terms of its coefficient of variation across the genome, did not decrease the
auROC. In contrast, an increase in the mean extraction efficiency, and a decrease in its heterogene-
ity, led to a higher auROC. Thus, much like in the case of ChIP-seq fidelity, extraction efficiency
has a greater impact on the auROC of ChIP-seq read count ratios than PCR efficiency.

Figure 3E shows that as expected, the auROC increases with the ratio of the mean occupancy
of true and false positive binding sites. We illustrate in Methods that this mean occupancy ratio
can be considered as a proxy for the specificity of the ChIP antibody used, where a higher mean
occupancy ratio translates to a higher antibody specificity. A mean occupancy ratio of ∼ 10 gives
an auROC of around 0.9, which translates to a true positive rate of 0.8 at a false positive rate of
0.07. For a fixed mean occupancy ratio, an increase in the sequencing depth of both ChIP and
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input samples leads to an increase in the auROC (Figure 3F). We further evaluated the impact of
variation in chromatin accessibility across true and false positive binding sites and found that it
had a low impact on the auROC when the mean accessibility is at least 0.2 (Supplementary Figure
3).

Indirect binding affects motif inference and lowers sensitivity more than coop-

erative binding

The target TF (say, A) of a ChIP-seq experiment is said to be indirectly bound to DNA if it does
not bind DNA directly but instead binds a second TF (say, B) that in turn directly binds DNA.
Thus, an indirectly bound locus lacks a binding site for the target TF, and the number of reads
mapped to this location do not depend on the binding energy of A. This can be seen in the top panel
of Figure 4A, where the read count ratios of locations directly bound by A depend on the binding
energy of A (R2 = −0.73,p < 10−115) whereas the read counts from indirectly bound regions do
not (R2 = 0.004,p = 0.933).
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Figure 4: The relative impact of the inclusion of indirectly bound and cooperatively bound locations
on motif inference and ChIP-seq fidelity. (A) Indirect binding and cooperative binding between TFs A and
B are simulated as described in Methods. The scatter plots show the read counts from simulations where 30% of
genomic locations are indirectly bound (top panel) or cooperatively bound (bottom panel, interaction energy (∆) set
to −6kBT ). In the top panel, the binding energy of A shown on the x-axis refers to the energy with which A would
bind a location if it were in direct contact with DNA. The binding energies of A and B are sampled from a power
law (with exponent 0.5) over a range of [0, 10kBT ]. (B) Inclusion of indirectly bound locations [left] distorts
the inferred motif more than the inclusion of cooperatively bound locations [right panel]. The change
in the average K-L distance per base between the baseline motif and inferred motif (y-axis) is plotted against the
fraction of indirectly bound regions [left] or cooperatively bound regions [right] on the x-axis. In the right panel, the
cooperative interaction energy with the second TF is varied between −6kBT (black) and −2kBT (blue) (orange).
The error bars are the standard deviation obtained from ten replicates of simulation. (C) Indirect binding has a
greater impact on ChIP-seq fidelity than cooperative binding. The variation with fidelity and the fraction of
indirectly bound [left] or cooperatively bound [right] locations is shown. The fidelity is calculated across all genomic
locations (black), the top 25th percentile (blue) and the bottom 25th percentile (orange) of binding sites. The error
bars are the standard deviation obtained from ten replicates of simulation.
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In contrast to indirect binding, genomic locations that are cooperatively bound by the target
TF and the second TF contain a binding site for each TF. The magnitude of the cooperative
effect is represented by the interaction energy (∆, in units of kBT ). Lower (negative) values of ∆
represent a larger cooperative effect, with ∆ = 0 representing independent binding (see equation
(4)). In the bottom panel of Figure 4A, read count ratios of some cooperatively bound locations
(∆ = −6kBT ) are higher than independently bound regions. Unlike in the case of indirect binding,
however, read count ratios from cooperatively bound regions depend on the binding energy of the
target TF (R2 = −0.66, p < 10−38), in addition to depending on the binding energy of the second
TF and the interaction energy between both TFs.

In Figure 4B, we separately evaluated the impact of indirect and cooperative binding on the
inferred PWM of the target TF. A detailed description of PWM inference in the presence of indirect
and cooperative binding is given in Methods. The baseline PWM of the TF Tye7 is first computed
with direct binding alone. We then computed the mean K-L distance between this baseline PWM
and the PWM inferred in the presence of either cooperative binding or indirect binding with a
second TF. We found that the inclusion of a given fraction of indirectly bound sequences distorted
the inferred PWM more than the inclusion of the same fraction of cooperatively bound sequences.
The divergence of the inferred PWM from the baseline depended both on the binding energy range
of the indirectly or cooperatively binding second TF, as well as the strength of the cooperative
effect.

Similarly, we found that a given fraction of indirectly bound locations had a greater impact
on ChIP-seq fidelity than the same fraction of cooperatively bound locations (Figure 4C). This
was true even though the cooperativity is high (∆ = −6kBT ). Indirect and cooperative binding
particularly affected the fidelity of read count ratios from the strongest binding sites (the top 25th
percentile of read count ratios).

More than two ChIP-seq replicates are needed to reliably estimate binding en-

ergies of low affinity sites from read counts

Next, we assessed the accuracy with which the binding energy at a locus can be estimated using
ChIP-seq read count ratios, and the impact of replicates on this accuracy. If we denote the true
binding energy of the i-th locus as ǫ(i) and the estimate of the binding energy as ǫ(i), we expect ǫ(i)

to move closer to ǫ(i), on average, as more replicates of ChIP-seq are performed. The first step to
quantifying the accuracy of ǫ(i) is to compute its posterior probability after having observed read
count ratios R(1), R(2), . . . , R(n) from n biological replicates, which is the conditional probability
P (ǫ(i) = ǫ|R(1), R(2), . . . , R(n)). We define the absolute uncertainty or uncertainty of the binding
energy estimate to be the 95% Bayesian credible interval of this posterior distribution [31], which
we take to be the difference between its 97.5th and 2.5th quantiles. The posterior probability,
and hence, the uncertainty of ǫ(i) after n + 1 replicates are performed, can be computed from
P (ǫ(i) = ǫ|R(1), R(2), . . . , R(n)) using Bayes’ rule, as shown in Methods.
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Figure 5: Impact of multiple biological replicates on errors in binding energy estimates. (A) Posterior estimate
of the binding energy at a single genomic locus after 1-4 replicates. The true binding energy of the locus is
2kBT , indicated by the vertical dashed line. Four replicates of ChIP-seq were simulated, with the posterior density
after each replicate, with the prior distribution set to be the default binding energy distribution employed in all our
simulations (Methods). The blue lines indicate the absolute uncertainty of the binding energy estimate, which we
define as the 95% Bayesian credible interval of the binding energy. This is calculated as the difference between the
2.5th and 97.5th quantiles of the posterior density. (B) The reduction in absolute uncertainty of posterior
binding energy estimates of five locations, each with a different binding energy, after three replicates
of ChIP-seq. The error bars are the standard deviation in estimates of the absolute uncertainty calculated after
100 trials; the filled circles represent the mean absolute uncertainty from these trials. The dashed red lines represent
the values of absolute uncertainty required to distinguish between binding sites sequences that are a single mutation
apart at least 50% of the time (upper,0.71kBT ) and at least 75% of the time (lower,0.24kBT ).

The expected decrease in the uncertainty of ǫ(i) as more replicates are performed can be seen in
Figure 5A, where the area under posterior probability of ǫ(i) becomes more concentrated around ǫ(i)

with each additional replicate. We repeated this procedure to calculate the reduction in uncertainty
at locations with binding energies between 2kBT and 6kBT in Figure 5C, and found that the
uncertainty is high at sites with the lowest binding energies even after five replicates are performed.
At the lowest binding energies, we also checked if the uncertainty after five replicates sufficed to
distinguish between two binding sites that differ by one base pair from each other. From an analysis
of binding energy matrices of 368 TFs in the BEEML database [13], we estimated that 75% of single
mutations change the binding energy of a site by at least 0.24kBT , while 50% of single mutations
change the energy by at least 0.71kBT . Thus, even three replicates of ChIP-seq would allow us to
distinguish between two binding sites that are a single mutation apart with a probability between
50% and 75% at only the relatively high energy binding sites.

Discussion

ChIPulate substantially and qualitatively extends previous statistical models of read counts ob-
tained in a ChIP-seq experiment. Early work by Zhang et. al assumed a distribution of binding
affinities across the genome and computed occupancy using a similar biophysical model to ours [24],
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but did not simulate extraction and amplification. Bao et. al explicitly accounted for the effect of
extraction efficiency on read counts [26], but did not model the underlying biophysical occupancy
of genomic loci based on their binding energies. More recent work by Ruan et. al, accounted for the
effect of chemical potential on TF-DNA occupancy and its impact on motif inference [14]. However,
the authors evaluated the impact of experimental noise by adding Gaussian noise to the energies
of binding sites rather than modeling the downstream processes of the ChIP-seq protocol.

Our pipeline combines a biophysical model of TF-DNA binding with a detailed simulation
of fragment extraction, amplification and sequencing. This allows us to analyze the impact of
heterogeneity in fragment extraction and PCR amplification on the motif inferred from bound
genomic loci, and the fidelity of read count ratios in discriminating relatively close binding energies.
We also evaluated how these factors, along with chromatin accessibility and sequencing depth, affect
the false positive peak detection rate. The role of biological factors such as indirect binding and
cooperative binding, which are frequent occurrences in ChIP-seq datasets, were also evaluated for
their impact on motif inference and fidelity. Finally, we measured the accuracy of using read count
ratios to infer the energy of a binding site and calculated the improvement in this accuracy after
several biological replicates are performed.

Our motif inference was based on Tye7. However we note that our conclusions apply to the
ChIP-seq of any TF. This is because our simulation computed a location’s occupancy based on
its pre-assigned binding energy, as opposed to pre-assigning a 10 bp sequence to the location and
then computing its energy using an matrix. The latter choice would have made the assigned
binding energies dependent on the binding energy matrix chosen for simulation. Further, since
our remaining results deal solely with binding energies and do not rely on an energy matrix, their
conclusions also apply to any TF.

In our simulations, fragment extraction encapsulates multiple steps in the ChIP-seq protocol,
namely, cross-linking TF-DNA bound complex, antibody-mediated pull down of fragments bound
by the TF, and the removal of cross-links. In addition to the mean efficiency, the nature of the
extraction heterogeneity dictates the magnitude of its impact on motif inference and fidelity, with
power law distributions having a greater impact than normally distributed heterogeneity. However,
it is unclear as to which of these distributions better capture experimental variation in extraction
efficiency across the genome. Previous reports suggest that variation in chromatin accessibility
alone imposes a power-law distribution on extraction efficiency variation [18]. The development
of alternate protocols that reduce the number of extraction steps [32, 33, 34] would improve the
fidelity of read count ratios and reduce the number of false positive peak calls. In contrast to
extraction efficiency, variation in PCR amplification efficiency had a much lower impact on motif
inference and the fidelity of read count ratios. However, in the presence of sequencing errors during
amplification (which our model does not currently include) and imperfect mappability, a large mean
amplification ratio in practice would increase false positive peak calls [35] and likely affects fidelity
more than indicated by our simulations.

Extraction of DNA fragments due to indirect binding is believed to be frequent in ChIP-seq
experiments [36, 10]. We find that the inclusion of indirectly bound regions has a more adverse
effect on motif inference and fidelity than even strongly cooperatively bound regions. The extent
of indirect binding in a dataset depends both on antibody quality [23, 11] and the cross-linking
protocol employed [37] except when the ChIP-seq target protein is a co-factor which, by definition,
is always indirectly bound. When antibody quality leads to indirect binding, we note that indirectly
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bound peaks and false positive peaks are hard to distinguish. Our work suggests that minimizing
the extent of indirect binding and developing computational methods to detect them may provide
a potent avenue to improving the fidelity of ChIP-seq experiments. For instance, protocols such as
ChIP-exo [38, 11, 39] allow indirectly bound regions to be more easily detected through the peak
shapes obtained after alignment and represent an important direction for further improvement of
the ChIP-seq protocol.

Our results shows that several replicates of ChIP-seq are required if the energy of a binding site
is to be inferred through read count ratios within a certain confidence interval. Since our simulation
assumes a single site per peak, it should be noted that a single replicate of ChIP-seq can suffice to
accurately infer a PWM for the TF [40], which in turn reliably estimates the energy of the binding
site [41, 42, 43]. However, in the more general case where a peak may harbor multiple TF binding
sites, the mapping between the binding energies of sites and the read count ratios in such a region is
far more complex than in our simulation. This means that reliably inferring the occupancy at such
a locus through read count ratios is likely to involve more replicates than we have estimated here.
Since our simulations in this calculation assumed relatively low heterogeneity in extraction and PCR
efficiency, further improvement in these steps of the protocol may not be the most effective avenue
to reduce the number of replicates required to infer occupancy. Instead, reduction in sequencing
cost to obtain multiple biological replicates of ChIP-seq will yield an accurate inference of in vivo

occupancy at a genomic locus.

There is considerable scope for extending ChIPulate. We assumed that amplified fragments can
be de-duplicated after sequencing in our simulation, which is possible with paired-end sequencing
and unique molecular identifier (UMI) based methods of PCR amplification [44, 45, 46]. Most
ChIP-seq libraries are, however, subjected to single-end sequencing. It might be of interest to
investigate the effect of imperfect de-duplication with single read sequencing. Furthermore, we did
not take into account differences in mappability across the genome or sequencing errors, which can
cause reads originating from a genomic locus to not map back to the same region [47]. Ultimately,
these are relatively easy to account for in our simulation since it keeps track of individual fragments
when they are extracted, amplified and sequenced.

Overall we have presented a detailed ChIP-seq simulation model and software pipeline that can
be extended in various ways, including other bulk and single-cell sequencing protocols.
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Methods

ChIP-seq simulation framework

Genome-wide TF-DNA binding model

In the most basic version of our simulation, we consider the genome to be a set of n locations. Each
of these locations contains a single binding site for the ChIP-seq target TF. We follow an approach
similar to [27], where, at a given point in time, the i-th locus can be in one of two states — bound
by the target TF or unbound. We assign a binding energy ǫu to the unbound state and a binding
energy ǫ(i) to the bound state. The Boltzmann weights of both these states are then exp(−ǫu/kBT )
and exp(−(ǫ(i) − µ)/kBT ), respectively. kB is the Boltzmann constant T is the temperature at
which the binding occurs, and µ is the chemical potential of the TF, which is proportional to the
logarithm of the concentration of the TF [27]. The probability of finding the i-th locus in the bound
state is then

p
(i)
b =

exp(−(ǫ(i) − µ)/kBT )

Z
, (1)

where Z = exp(−(ǫ(i) − µ)/kBT ) + exp(−ǫu/kBT ). This can be re-written as

p
(i)
b =

1

1 + exp((ǫ(i) − ǫu − µ)/kBT )
, (2)

Thus, the occupancy at a location is determined by the three quantities ǫ(i), ǫu, µ. In the convention
followed in this paper, the scale of ǫ(i) is chosen such that the highest affinity binding site has a
binding energy of 0, with more positive values representing weaker binding sites. We set µ = 3kBT ,
which is within the range of values suggested by an earlier calculation in [27]. Finally, we set
ǫu = 1.59kBT , which ensures that at the location with the highest affinity site i.e., when ǫ(i) = 0,

the occupancy probability p
(i)
b is 0.99.

ǫ(i) can be thought of as a mismatch binding energy, where mutations that change the bind-
ing site sequence away from the highest affinity sequence increase its energy and thus lower the
probability that it is occupied. This is in line with the convention followed in the binding energy
matrices in the BEEML database.

To compute the probabilities of binding at all n locations, p
(1)
b , p

(2)
b , . . . , p

(n)
b , using equation (1),

we assign a binding energy to each locus. We sample binding energies from a power law that is
truncated to a specified range. We define the probability density function f of this truncated power
law, with parameters 1 ¿ α > 0, Emax > 0, as

f(ǫ) =

{
1−α

E1−α
max

1
(Emax−ǫ)α , 0 < ǫ < Emax

0, otherwise.
(3)

Our choice of such a power law is motivated by the analysis of binding energies of sites that are
occupied by the TFs CRP and FNR in the E. coli genome [48]. Unless stated otherwise, we set
α = 0.5 and Emax = 10kBT . This corresponds to a situation where most of the binding sites in the
genome have a low affinity (or high energy) for the target TF. Emax = 10kBT typically corresponds
to a binding site that is 3-4 mutations away from the strongest binding site, since each mutation
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to the strongest sequence typically adds an energy 1 − 3kBT to it for most TFs [27]. We set the
chemical potential of the target TF, µ, to be 3kBT by default in all our simulations in the main
text.

In a population of C cells, when the i-th locus has a probability p
(i)
b of being bound, then the

number of bound fragments extracted from the i-th locus, denoted F
(i)
b , follows a Binomial(C, p

(i)
b )

distribution, with the mean number of bound fragments is Cp
(i)
b .

Input sample: In most ChIP-seq experiments, a small number of cells are used to carry out a
control, or input, experiment where fragments from cells are extracted without the use of antibody
specific to the target TF. The read counts obtained in the input experiment are used to normalize,
in a region or locus-specific manner, the read counts obtained from the ChIP sample. The input
sample helps take into account heterogeneity that may arise in the extraction, amplification and
sequencing of fragments from different genomic locations. The difference between the input and
ChIP samples is in the number of cells employed and the probability of occupancy employed for
each location. We assume that 10% of the number of cells used in the ChIP experiment are used in
the input sample. The occupancy of genomic regions in the background sample consists of the non-
specific binding of all the TFs in the cell, along with different sets of TFs that may be specifically
bound at each genomic location. We phenomenologically model this scenario by assigning a fixed
background binding energy ǫbg to each of the n genomic locations, from which we use equation (1)
to compute the probability of occupancy p̄b. We set µ = 0 in equation (1) for the input sample and
keep ǫ0 = 1.59kBT .

If the number of cells used in the input sample is C ′, then the number of bound fragments
at each location follows a Binomial(C ′, p̄b) distribution. Unless stated otherwise, we set ǫbg to
1kBT in simulations where we do not model false positive binding sites in the ChIP sample. When
we simulate false positive binding sites, we set ǫbg to a value where the ratio between the mean
probability of occupancy in the ChIP sample to the mean probability of occupancy in the input
sample is 10.

Aside from these differences in the TF-DNA binding model in the input and ChIP samples, the
simulation procedures used in the description of the extraction, amplification and sequencing steps
are common to both samples.

Cooperative binding

Consider TFs A and B, where A is the target of the ChIP-seq experiment, however, its binding
depends on nearby binding of TF B. To simulate such cooperative binding between A and B, we
have each of the n genomic locations in our simulation to contain a single binding site each for A

and B, with binding energies ǫ
(i)
A and ǫ

(i)
B and an interaction energy ∆ between them.

A given genomic locus can be in one of four states — unbound, bound by A, bound by B, or
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bound by both A and B. The probabilities of the locus being in each of these four states is [49]

P(unbound) = exp(−ǫu/kBT )/Z,

P(bound by A only) = exp((−ǫ
(i)
A + µA)/kBT )/Z,

P(bound by B only) = exp((−ǫ
(i)
B + µB)/kBT )/Z,

P(bound by A and B) = exp((−ǫ
(i)
A − ǫ

(i)
B + µA + µB −∆)/kBT )/Z,

where Z = exp(−ǫu/kBT )+exp((−ǫ
(i)
A +µA)/kBT )+exp((−ǫ

(i)
B +µB)/kBT )+exp((−ǫ

(i)
A −ǫ

(i)
B −∆+

µA + µB)/kBT ). ∆ = 0 corresponds to independent binding between A and B, ∆ < 0 corresponds
to cooperative binding between A and B and ∆ > 0 represents competitive binding between A and
B.

Since the ChIP experiment involves extracting fragments that are bound by A, the probability
of a location being bound by A is the sum of the probability of the location being bound only by
A and the probability of being bound by A and B. Thus, the occupancy probability of the i-th

location, p
(i)
b , as seen in the ChIP-seq of A is :

p
(i)
b = exp((−ǫ

(i)
A + µA)/kBT ) + exp((−ǫ

(i)
A − ǫ

(i)
B −∆+ µA + µB)/kBT )/Z (4)

We assume here that the binding site of A is not occupied by B, and vice versa. Further, we
assume that there is no cooperativity between two distinct genomic locations i and j. We do not
take the chemical potential of individual TFs into account, and thus implicitly assume that the
concentrations of both TFs are similar.

Indirect binding

Consider TFs A and B, where A is the target of the ChIP-seq experiment. We say that A indirectly
binds DNA if A binds to B which in turn binds DNA. To simulate indirect binding, we assume that

the probability of occupancy p
(i)
b is proportional to the binding energy of B at the i-th location, ǫ

(i)
B

as

p
(i)
b =

1

1 + exp
(
(ǫ

(i)
B − ǫu − µB)/kBT

) . (5)

On the other hand, at locations directly bound by A, p
(i)
b is dependent on ǫ

(i)
A according to

equation (1). We set the chemical potential of A and B to zero and assume that B cannot occupy
binding sites of A, and vice versa.

False positive binding sites

We consider a detected binding site to be false positive if it is bound by a TF (or TFs) other
than the target TF of a ChIP-seq, or not bound by any TF at all, but fragments from which are
nonetheless extracted in Step 2 of simulation. This differs from indirect binding, where the target
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TF is part of the complex of TFs that is bound to DNA. False positives reflect antibody quality or
specificity.

In our simulations of false positive binding sites in Figure 3, we set the number of false positive
binding sites to be equal to the number of true positive binding sites. We note that the area under
the ROC curve is independent of the number of false positive binding sites simulated.

We set the binding energy distribution of true positive binding sites to be a power law between
0 and 6kBT with α = 0.5. This differs from the default power law distribution employed for true
positive binding energies in our other simulations. This change was made to ensure that the ROC
curve obtained from the simulation was smooth, which in turn ensures that the auROC remains
an accurate measure of detection performance.

We set the binding energies of the false positive sites to follow a power law distribution where
the minimum binding site energy was 0kBT . The maximum binding energy (Efp

max) and αfp was
set such that the ratio of the means of true and false positive binding energies could be fixed at
a constant value while the variances were kept equal. Suppose the true positive binding energy
distribution follows a power law over the energy range [0, Etp

max] and exponent αtp such that its

mean is m and variance is v. Then, setting αfp and Efp
max as

αfp = 3 + 2/(r − 2),

Efp
max = fm(2− αtp),

(6)

where r = v/(g2m2) + 1, sets the mean false positive binding energy to be fm while the variance
remains at v.

Once the true and false positive binding energies are sampled, we compute the ratio between
the mean occupancy of the true positive sites to that of the false positive binding sites. This is
calculated as

mocc =

∑Ntp

i=1 p
(i)
b,tp/Ntp

∑Nfp

j=1 p
(j)
b,fp/Nfp

(7)

where Nfp and Ntp are the number of false and true positive binding sites, respectively, and p
(i)
b,tp

and p
(i)
b,fp are occupancies at true and false binding sites respectively.

In Figure 3, we set αfp = 0.76 and Efp
max = 6.78kBT , which corresponds to a mean occupancy

ratio of ∼ 2. This is in line with the antibody recommendations of the ENCODE consortium [23],
whose recommendation for antibody quality is that the primary reactive band should be at least
50% of the signal on the blot, which we interpret to represent a mean occupancy ratio between true
positive and false positive sites in the ChIP sample to be at least 2.

Finally, we set the background binding energy, which determines the occupancy of fragments in
the input sample, to a value of 4.96kBT . This sets the ratio of the mean occupancy of true positive
sites in the ChIP sample to the mean occupancy of the same sites in the input sample to 10. This
is in line with the 5− to 13− fold-enrichment observed in read counts of ChIP-seq peaks between
the ChIP and input samples in the ENCODE project [23].
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Chromatin accessibility

We modeled chromatin accessibility using a sigmoidal prior based on DNAse-seq hypersensitivity
data following [50, 3]. Briefly, the occupancy probability calculated based on the binding energies
in equation (1) is multiplied by the sigmoidal function—

pacc =
1

1 + exp(−βd)
, (8)

where d is the DNAse-seq read count density, which is average per-base DNASe-seq read coverage
within a 150 bp window.

Thus, for a genomic locus whose occupancy probability is pb, the probability that it is bound in
Step 1 of our simulation is the product pbpacc. Thus, the occupancy probability essentially provides
a scaling factor for binding probability.

Instead of simulating a profile of DNAse-seq read counts across the genome, we used read counts
from DNAse-seq data of the M. musculus DBA/2 cell line (accession number ENCFF871YIT, lab
of John Stamatoyannopoulos), available from the ENCODE Consortium [51, 52]. We used the
filtered binary alignment map (BAM) files, which were aligned to the mm10 genome assembly
using the ENCODE data processing pipeline. We chose the DNAseq-seq profile of this cell line
as a reference DNAse-seq profile since it cleared all quality audit error categories laid out by the
ENCODE Consortium for DNAse-seq data.

In order to consider only regions with accessible chromatin, we counted the number of reads
falling into non-overlapping 100 kb windows of the genome and retained the top 10% of windows
that had the highest read counts. We finally counted the reads falling into non-overlapping 150 bp
windows and stored these read counts. In each ChIP-seq simulation, we uniformly sampled read
counts of n of these regions, where n is the number of binding locations being simulated, and plugged
them into equation (8) (after dividing the counts by 150) to compute chromatin accessibility.

The extraction process

Given the number of bound fragments F
(1)
b , . . . , F

(n)
b , each fragment needs to be extracted from

the cell population. This extraction process involves several steps that include the lysing of cells to
extract DNA, cross-linking of bound proteins to DNA, the size selection of sheared fragments, etc.
After each of these steps, the number of bound fragments either stays the same or reduces. Our
model of fragment loss during these steps tracks the reduction in fragment numbers prior to PCR
amplification step.

We assume that the number of extracted fragments from the i-th genomic locus, denoted F
(i)
e ,

follows a Binomial(F
(i)
b , p

(i)
e ) distribution. p

(i)
e is the probability of a bound fragment from the i-th

region being successfully extracted and present in the pre-PCR fragment pool. pe can vary across
the genome [53, 54] and is also dependent on the extraction procedure employed [55]. Unless stated
otherwise, we assume that pe follows a normal distribution truncated to lie between 0 and 1, with
a mean of 0.5 and a standard deviation of 0.05.

Since we assume that F
(i)
e is a binomial sample of F

(i)
b fragments, the addition of more extraction
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steps into the simulation only changes the value of p
(i)
e without necessarily violating the binomial

assumption. Suppose we add an additional extraction step with efficiency ei into the simulation

such that F
(i)
e ∼ Binomial(Xi, ei), where Xi ∼ Binomial(F

(i)
b , p

(i)
e ). Then, by the laws of total

variance and total expectation, the mean of F
(i)
e , for a fixed value of F

(i)
b , is F

(i)
b p

(i)
e ei and its

variance is F
(i)
b p

(i)
e ei(1 − p

(i)
e ei). By setting p∗i = p

(i)
e ei, we see that F

(i)
e (conditioned on F

(i)
b )

follows a Binomial(F
(i)
b , p∗i ) distribution up to the first two moments. Thus, the parameter p

(i)
e can

be thought to implicitly take into account a variety of steps employed in the extraction process.

As stated in the previous section, we employ the same values of p
(i)
e in both ChIP and input

samples. In a single run of the simulation, it can happen that the number of fragments extracted
in the ChIP sample exceeds that of the input sample, or vice versa. In practice, since fragments are
typically more efficiently extracted in the input sample than in the ChIP sample, DNA extracted
from the input library is diluted such that the number of fragments in both ChIP and input samples
are equalized before amplification.

In our simulation, we compute a down-sampling factor D =
∑n

i=1 F
(i,ChIP)
e /

∑n
i=1 F

(i,input)
e ,

which is the ratio of the total number of extracted fragments in the ChIP sample to that in the
input sample. If D < 1, we down-sample extracted fragments in the input sample by replacing

F
(i,input)
e with the sample Xi ∼ Binomial(F

(i,input)
e , D). If D > 1, we similarly down-sample the

fragments from the ChIP sample instead of the input sample.

Mean occupancy ratio as a measure of antibody specificity

In equation (7), we defined the mean occupancy ratio as the ratio between the mean occupancy of
true positive binding sites to that of false positive binding sites. This ratio can also be interpreted
as a measure of antibody specificity in the following way.

Consider a genome with n true positive binding sites and m false positive binding sites. Suppose

the extraction efficiency is t
(1)
e , . . . , t

(n)
e at true positive binding sites and f

(1)
e , . . . , f

(m)
e at false

positive binding sites. Then, the average number of fragments extracted from the i-th true positive

binding site in the ChIP sample is Cp
(i)
b t

(i)
e , and the average number extracted from the j-th false

positive binding site is Cp
(j)
b f

(j)
e , where {p

(i)
b } are occupancies at each location. The ratio (re)

between the average number of fragments extracted from true positive binding sites to that from
false positive binding sites is then

re =
Cm

∑n
i=1 p

(i)
b t

(i)
e

Cn
∑m

j=1 p
(j)
b f

(j)
e

.

This is the ratio that determines the accuracy of ChIP-seq in distinguishing between true and false
positive binding sites. If re is large, true positive binding sites will give rise to more fragments than
false positive binding sites, leading to true positive sites having larger read count ratios. A high

value of re is achieved if, for t
(i)
e = f

(j)
e = pe across the genome, true positive sites have a larger

mean occupancy than at false positive sites. Setting t
(i)
e = f

(j)
e = pe in the above equation reduces

re to the mean occupancy ratio defined in equation (7).
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Conversely, if p
(1)
b , p

(2)
b , . . . , p

(n+m)
b = pb across the genome, then re reduces to the ratio

re =
m

∑n
i=1 t

(i)
e

n
∑m

j=1 f
(j)
e

,

which is merely the ratio between the mean extraction efficiency at true positive binding sites to
that at false positive binding sites. This constitutes a measure of the specificity of the antibody
employed against the target TF of the ChIP-seq. Thus, ensuring that the average extraction
efficiency at true positive sites is higher than at false positive sites ensures that the former give rise
to higher read count ratios.

PCR amplification

We simulate PCR amplification using the model in [56] which we briefly explain below. In this
model, each DNA fragment has a probability pa of being amplified in a cycle of PCR and gives rise
to two fragments. The fragment fails to undergo amplification and remains as a single fragment
with probability 1− pa.

Suppose Sncy is a random variable that represents the number of amplified fragments after ncy

cycles of PCR. Sncy can assume values between 1 and 2ncy .

Sncy = Sncy−1 +X, (9)

where X ∼ Binomial(Sncy−1, pa). If we represent Sncy−1 as a vector of length 2ncy−1, the probability

distribution of Sncy can then be calculated from Sncy−1 in terms of an updating matrix M (ncy) (of

dimension 2ncy × 2ncy−1) by setting Sncy = M (ncy)Sncy−1 where

M
(ncy)
i,j =

(
i

j

)
pja(1− pa)

i−j . (10)

Thus, for a given value of pa, the distribution of Sncy can be computed recursively from
Sncy−1, Sncy−2, . . . , S1 when we start from a single DNA fragment. For computational efficiency,
for values of ncy between 10 and 15, we precomputed and stored the distributions of Sncy for values
of pa between 0.01 and 0.99 in steps of 0.01. In order to simulate ncy cycles of PCR amplifica-

tion for F
(i)
e fragments, we draw F ≡ F

(i)
e samples S

(i)
1 , S

(i)
2 , . . . , S

(i)
F from the distribution Sncy

corresponding to the value of p
(i)
a at that locus.

The mean and variance in the number of amplified fragments, F
(i)
a , starting with a single

fragment at the first cycle and an amplification efficiency of pa, can be calculated from branching
process theory [57]. After a single cycle of PCR, the mean (m1) and variance (v1) are

m1 = (2pa) + (1− pa) = 1 + pa

v1 = 1 + 3pa −m2
1 = pa(1− pa).

After ncy cycles of amplification, mncy and vncy are given by —

mncy = m
ncy

1

vncy =
vncym

ncy

1 (1−m
ncy

1 )

m1(1−m1)
(m1 6= 1)
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Substituting the expressions for m1 and v1 into the above equation, we have

mncy = (1 + pa)
ncy

vncy = (1− pa)(1 + pa)
ncy−1 ((1 + pa)

ncy − 1)
(11)

We refer to A ≡ mncy = (1 + pa)
ncy as amplification ratio of PCR at that location.

We assume that the PCR efficiencies at a locus remains constant across all cycles of amplifica-
tion. We also assume that the number of amplified fragments obtained from each starting DNA
fragment is statistically independent of amplifications at other fragments. This implies that start-

ing with F
(i)
e fragments, the mean number of amplified fragments after ncy cycles of PCR is AF

(i)
e .

The expressions in equation (11) are valid only when PCR has not yet reached a saturation of am-
plification where the concentration of PCR primers, polymerase, etc. relative to the concentration
of the amplified fragments is enough to ensure that pa does not decrease as ncy is increased.

By default, we set A = 1000 and ncy = 15 across the genome in all our simulations unless stated
otherwise. This corresponds to a value of pa that is ≈ 0.58.

Sequencing

At the end of the PCR amplification step, there are
∑n

i=1 F
(i)
a amplified fragments from all n

genomic locations. In this set of amplified fragments, there are
∑n

i=1 F
(i)
e unique fragments, each

of which come from different cells, and the remaining
∑n

i=1

(
F

(i)
a − F

(i)
e

)
fragments are duplicates

obtained through PCR. During the sequencing step, a total of r = cn fragments are sampled from
this amplified pool and sequenced. r denotes the total read count of the experiment and c is the
sequencing depth.

Since each fragment has an equal probability of being sampled, the read count sample r1, r2, . . . , rn
from amplified fragment pools F

(1)
a , F

(2)
a , . . . , F

(n)
a , where r =

∑n
i=1 ri, follows a multivariate hyper-

geometric distribution. To draw a sample from this distribution, we implemented the following
procedure [58]—

Given two pools of fragments of pool sizes A and B from which r reads are to be sampled, the
probability that k reads come from the first pool is

P (k) =

(
A

k

)(
B

r − k

)/(
A+B

r

)
.

We extend this distribution to sampling from n pools of fragments, each of size F
(1)
a , F

(2)
a , . . . , F

(n)
a

by first drawing r reads from two pools of size A1 = F
(1)
a and B1 =

∑n
i=2 F

(i)
a . The probability of

observing r1 reads from the first locus (i.e. pool A1) is

P (r1) =

(
A1

r1

)(
B1

r − r1

)/(
A1 +B1

r

)
. (12)

To draw reads for the second locus , we draw a sample of size r−r1 from two pools of size A2 = F
(2)
a

and B2 =
∑n

i=3 F
(i)
a .

P (r2) =

(
A2

r2

)(
B2

r − r1 − r2

)/(
A2 +B2

r − r1

)
. (13)
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We continue this sampling process till all r reads have been sampled.

The read count at the i-th location, ri, consists of a mixture of ui unique reads and di duplicate
reads such that ri = ui + di. We keep track of the fragments that were obtained via amplification
versus those obtained in extraction step, and therefore, by simulation design, the ui reads can be
perfectly separated out from the di reads, which is detailed below.

As stated in the earlier section, F ≡ F
(i)
e fragments extracted from the i-th location undergo

PCR amplification to give F
(i)
a =

∑F
j=1 S

(i)
j fragments, where S

(i)
1 , S

(i)
2 , . . . , S

(i)
F are the number of

amplified fragments obtained from each of the F
(i)
e fragments. To sample ui we first draw samples

r
(i)
1 , r

(i)
2 , . . . , r

(i)
F from the fragments pools S

(i)
1 , S

(i)
2 , . . . , S

(i)
F such that ri =

∑F
j=1 r

(i)
j . We can write

r
(i)
j = u

(i)
j + d

(i)
j , where u

(i)
j and d

(i)
j are the numbers of unique and duplicate fragments sampled

from S
(i)
j . Since we assume that each of the

∑F
j=1 S

(i)
j fragments has an equal probability of being

sampled, r
(i)
1 , r

(i)
2 , . . . , r

(i)
F is a multivariate hyper-geometric sample of S

(i)
1 , S

(i)
2 , . . . , S

(i)
j , which we

generate using the same procedure outlined for sampling r1, r2, . . . , rn reads from F
(1)
a , F

(2)
a , . . . , F

(n)
a

fragments.

We then compute ui for each location as follows. If r
(i)
j = 1, then u

(i)
j = 1 and d

(i)
j = 0. Since

only one fragment in S
(i)
j is unique, u

(i)
j cannot exceed 1, which means that if r

(i)
j > 1, then, u

(i)
j = 1

and d
(i)
j = r

(i)
j − 1. We can then obtain ui by setting ui =

∑F
i=1 u

(i)
j .

In the process of simulating read counts, We do not account for mutations than can cause
alignment errors in actual ChIP-seq reads, which in turn can change read counts at a genomic
locus.

Default values

Unless stated otherwise, we use the following values by default—
Genome-wide TF-DNA binding model: n = 1000, ǫ1, . . . , ǫn are sampled from a power law
(with α = 0.5) between 0 and 10kBT , ǫbg = 1kBT , C = 105(ChIP sample), µ = 3kBT , C =
104(input sample)

Extraction process: p
(1)
e , . . . , p

(n)
e are sampled from a N(0.5, 0.025) distribution that is truncated

to lie in [0, 1]. Further, at each location, the extraction efficiency is set to be the same in both
ChIP and input samples.
Amplification process: A = 1000, ncy = 15
Sequencing: c = 100

Motif estimation

To simulate motif estimation, we first sample binding energies ǫ1, ǫ2, . . . , ǫn from a binding energy
distribution. We associate each binding energy ǫ(i) with a binding site sequence of the target TF
whose energy ǫ′i is closest to this assigned value. The sampled energy ǫ(i) is then replaced with ǫ′i,
and the set of energies ǫ′1, ǫ

′

2, . . . , ǫ
′

n are used for all occupancy calculations in the TF-DNA binding
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simulation. In the simulations shown here, the energies ǫ′i for each binding site sequence were taken
from BEEML binding energy matrices (BEMs) that were fit to in vitro protein-binding microarray
affinity measurements of different TFs [13].

Once ChIP-seq is simulated based on these binding energies, the top 10% of locations based
on their read count ratios are chosen and the binding sites in each of them are used to construct
the PWM of the target TF of the ChIP-seq. Since the BEMs we employed were for 10 bp long
sequences, the PWMs we estimated were also 10 base pairs in length. Each term of the W was
computed using the formula [59]

Wij = log2

(
Nij + bi
bi(N + 1)

)
, (14)

where Nij is the number of sequences with the i-th base at the j-th position, bi is the background
frequency of the i-th sequence and N is the number of sequences used to estimated W. The
background frequencies are added as pseudo-counts to deal with positions where Nij is 0.

Motif estimation in the presence of indirect binding and cooperative binding

As stated in Methods, in indirect binding, a fraction of genomic locations are bound by the ChIP
target TF A while the remaining locations are bound by a second TF B, which is in turn bound to
A. The binding site sequences of A are assigned to each genomic locus based on the BEM of A but
we do not utilize any BEM of B to assign a binding site sequence for it. Instead, we associate with
each binding energy of B a 10 bp sequence generated from a dinucleotide model of the S. cerevisiae
genome. We chose a dinucleotide model to generate indirectly bound sequences since this has been
shown to closely approximate background genomic DNA that is not bound by the target TF [48].

After ChIP-seq is simulated in the presence of indirect binding, the top 10% of genomic locations
are chosen according to their read count ratio to estimate the PWM of A. The sequences used for
PWM estimation are the binding sites of A from directly bound locations that fall in the top
10% and the randomly generated binding site sequences of B from the remaining indirectly bound
locations.

In the case of cooperative binding, a fraction of locations is bound cooperatively by A and
B while the remaining locations are independently bound by both TFs. At each genomic locus,
binding sites of A and B are associated with the binding energies of each location based on their
respective BEMs. When the top 10% of locations are chosen for PWM estimation, the binding
sites of A from both cooperatively and independently bound locations are chosen.

Posterior density estimation

We drew samples from the posterior binding energy distribution P (ǫ1 = ǫ|r(1), r(2), . . . , r(k)) using
a combination of kernel density estimation and the Metropolis-Hastings algorithm [60]. Here,
r(1), r(2), . . . , r(k) are read count ratios observed in k sequential replicates from a genomic locus
whose true binding energy is ǫT .
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We first compute the posterior distribution when k = 1. From Bayes’ rule, we have

P (ǫ1 = ǫ|R(1) = r(1)) = P (R(1) = r(1)|ǫ1 = ǫ)π(ǫ1 = ǫ)/C1, (15)

where C1 is the normalization constant C1 =
∫
P (R(1) = r(1)|ǫ1 = ǫ)π(ǫ1 = ǫ)dǫ and π is a prior

distribution, which we set to be the default binding energy distribution.

P (R(1) = r(1)|ǫ1 = ǫ) ≡ p(ǫ1) represents the probability density of read count ratios from a
locus containing a single binding site with energy ǫ. To compute this distribution, we simulated
103 replicates of ChIP-seq across n = 1000 locations whose binding energies ǫ1, ǫ2, . . . , ǫn were
sampled from the default binding energy distribution. The remaining simulation parameters of
the ChIP-seq were set to their default values. This gave us 103 replicates of read count ratios for
each of the binding energies ǫ1, ǫ2, . . . , ǫn. We used these read count ratios to compute Gaussian
kernel density estimators (KDE) of p(ǫ1), p(ǫ2), . . . , p(ǫn), which we denote as p̂(ǫ1), p̂(ǫ2), . . . , p̂(ǫn).
The KDE estimators were computed using the gaussian kde method in the Python scipy library
(v0.19.1) [61]. Given this set of KDE estimators, we can compute p̂ at any arbitrary ǫ in the range
[min ǫ(i),max ǫ(i)] using a linear interpolation between values ǫj and ǫj+1 as

p̂(ǫ) = λp̂(ǫj) + (1− λ)p̂(ǫj+1), (16)

where ǫj < ǫ < ǫj+1 and λ = (ǫ− ǫj)/(ǫj+1 − ǫj). Substituting this into equation (15), we get

P (ǫ1 = ǫ|R(1) = r(1)) ≈ p̂(ǫ1)π(ǫ1 = ǫ)/C1, (17)

where C1 =
∫
p̂(ǫ1)(r

(1))π(ǫ1 = ǫ)dǫ. To sample from P (ǫ1 = ǫ|R(1) = r(1)), we implemented the
Metropolis-Hastings algorithm [60], which is an algorithm that draws samples from a Markov chain
whose stationary distribution is the posterior density from which we wish to sample.

Using the same ChIP-seq simulation parameters as used in generating the 103 replicates, but
with the binding energy of the first locus ǫ1 set to ǫT , we simulated k replicates of ChIP-seq and
store the sequence of read count ratios r(1), r(2), . . . r(k) from the first locus. These are the read
count ratios that are used to sequentially update the posterior binding energy estimate in equation
(15).

Metropolis-Hastings algorithm

The output of the Metropolis-Hastings algorithm is a set of samples ǫ
(0)
k , ǫ

(1)
k , . . . , ǫ

(m)
k that follows

a target distribution, which in this case is the posterior distribution P (ǫ1 = ǫ|R(1) = r(1), R(2) =
r(2), . . . , R(k) = r(k)). We explain the algorithm for the case when k = 1. .

We first sample ǫ from a Uniform[0, 10] distribution and set ǫ
(0)
1 = ǫ, and compute f(ǫ0) ≡

P (ǫ0|R
(1) = r(1)) = p̂ǫπ(ǫ

(i)). ǫ
(0)
1 is the initial state of the Markov chain. We then sample ǫ′

from a proposal distribution, which we denote as g(ǫ′|ǫ
(0)
1 ), and then compute f(ǫ′) = p̂(ǫ′)π(ǫ′)

using equation (16). If f(ǫ′) > f(ǫ
(0)
1 ), we update the current state of the sampler to ǫ

(1)
1 = ǫ′. If

f(ǫ′) < f(ǫ
(0)
1 ), we compute a ratio

r =
f(ǫ′)g(ǫ′|ǫ

(0)
1 )

f(ǫ
(0)
1 )g(ǫ

(0)
1 |ǫ′)

, (18)
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and sample a random number u from a Uniform[0, 1] distribution. If u < r, we set the current state

of the sampler to ǫ
(1)
1 or leave it unchanged at ǫ

(0)
1 if u > r. If ǫ

(0)
1 takes on values close to the values 0

or 10kBT , then the probability density g(ǫ′|ǫ
(0)
1 ) must be 0 when ǫ′ < 0 and ǫ′ > 10kBT . The choice

of g which we use for the proposal distribution is a truncated normal distribution. The forward

proposal distribution g(ǫ′|ǫ
(i)
1 ), where ǫ

(i)
1 is the i-th sample drawn, is a normal distribution with

mean ǫ
(i)
1 and standard deviation 0.02ǫ

(i)
1 that is truncated to lie within [0, 10kBT ]. The backward

proposal distribution, g(ǫ
(i)
1 |ǫ′) is a normal distribution with mean ǫ′ and standard deviation 0.2ǫ′

that is truncated to lie within [0, 10kBT ].

We repeat this process and store the states of the sampler ǫ
(0)
1 , ǫ

(1)
1 , . . . , ǫ

(b+tm)
1 , where t is a

thinning factor that we fix at 100, b is the burn-in period that is set to 10000 and m is the number
of samples to be retained, which we set at 10000. We then retain only every t-th sample beginning

from the b-th sample i.e. ǫ
(1)
b , ǫ

(1)
b+t, . . . , ǫb+tm, and use it to construct a Gaussian kernel density

estimator of P (ǫ1 = ǫ|R(1) = r(1)), which we denote as P̂ (ǫ1 = ǫ|R(1) = r(1)). Note that in this
process, the normalization constant C1 in equation (15) need not be computed.

When the read count ratio r(2) is observed after the second replicate of ChIP-seq, we substitute
P̂ (ǫ1 = ǫ|R(1) = r(1)) in place of the prior π in equation (15) and update the posterior P (ǫ1|R

(1) =
r(1), R(2) = r(2))—

P (ǫ1 = ǫ|R(1) = r(1), R(2) = r(2)) = P (R(1) = r(1), R(2) = r(2)|ǫ1 = ǫ)P̂ (ǫ1 = ǫ|R(1) = r(1))/C2

= P (R(2) = r(2)|ǫ1 = ǫ)P (R(1) = r(1)|ǫ1 = ǫ)P̂ (ǫ1 = ǫ|R(1) = r(1))/C2

≈ P̂ (R(2) = r(2)|ǫ1 = ǫ)P̂ (R(1) = r(1)|ǫ1 = ǫ)P̂ (ǫ1 = ǫ|R(1) = r(1))/C2

where C2 is a normalization constant. This process is repeated k times in order to sample from the
posterior binding energy distributions P (ǫ1 = ǫ|R(1) = r(1)), . . . , P (ǫ1 = ǫ|R(1) = r(1), . . . , R(k) =
r(k))

Change in binding energy due to a single nucleotide change in a binding site

We obtained BEMmodels of 368 TFs from the BEEML database (http://stormo.wustl.edu/beeml/)
[13]. These matrices follow the convention where the highest affinity sequence is assigned an en-
ergy of 0, with all other sequences being assigned a positive binding energy. The matrices in this
database were calculated by fits of binding energy models to protein binding microarray data [13]
which measured the affinity of TFs for different 10 bp long sequences. For each TF, there were two
BEMs (each of dimension 4× 10) available since the matrices were fit individually to replicates of
microarray measurements, with the quality of the fit being determined by the R2 value of predic-
tions from the matrix with measurements. For each TF, we chose the BEM that had the higher
R2 value for further analysis.

For each TF, we picked the sequence whose energy was closest in value to a baseline energy
that were in the range 2− 6kBT in steps of 1kBT . For a given baseline energy, we then computed
the binding energy of each of the 30 sequences that were a single mutation away from this sequence
and stored the absolute values of the energy differences. We repeated this process for every TF in
the database and computed the 50-th and 25-th quantiles of binding energy differences. The 50-th
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quantiles for the baseline energies from 2− 6kBT were (in units of kBT ) 0.24, 0.24, 0.23, 0.24, 0.24
and the 25-th quantiles were 0.76, 0.72, 0.7, 0.7, 0.71.
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