
Dynamic Graphical Models of Molecular

Kinetics

Simon Olsson∗ and Frank Noé∗

Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin,

Germany

E-mail: simon.olsson@fu-berlin.de; frank.noe@fu-berlin.de

Abstract

Most current molecular dynamics simulation and analysis methods rely on the idea

that the molecular system can be characterized by a single global state, e.g., a Markov

State in a Markov State Model (MSM). In this approach, molecules can be extensively

sampled and analyzed when they only possess a few metastable states, such as small to

medium-sized proteins. However this approach breaks down in frustrated systems and

in large protein assemblies, where the number of global meta-stable states may grow

exponentially with the system size. Here, we introduce Dynamic Graphical Models

(DGMs), which build upon the idea of Ising models, and describe molecules as assem-

blies of coupled subsystems. The switching of each sub-system state is only governed

by the states of itself and its neighbors. DGMs need many fewer parameters than

MSMs or other global-state models, in particular we do not need to observe all global

system configurations to estimate them. Therefore, DGMs can predict new, previously

unobserved, molecular configurations. Here, we demonstrate that DGMs can faithfully

describe molecular thermodynamics and kinetics and predict previously unobserved

metastable states for Ising models and protein simulations.
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Introduction

How many states does a macromolecule have? When is a molecular dynamics (MD) simula-

tion converged? State-based MD analysis methods such as Markov State Models (MSMs)1–5

and related MD simulation methods6–10 take a direct approach at these questions: The idea

of state-based methods is that each macromolecular configuration is mapped to a single

global state, typically such that the state distinguishes between metastable states – sets

of configurations that are separated by rare-event transitions. The number of states of a

macromolecule is then determined by the timescales one wants to resolve2, and an MD sim-

ulation can be considered converged when all these metastable states have been found and

the transitions between them have been sampled in both directions. This state-based view

has led to the extensive characterization of folding11–13, conformation changes14,15, ligand

binding16–19 and association/dissociation20 in small to medium-sized proteins. Although

seemingly conceptually different, reaction-coordinate (RC) based methods, such as umbrella

sampling21, flooding/metadynamics22,23 and related analyses are also state-based methods,

where the state is characterized by the values of the chosen RCs. Still, with such methods,

all rare events that are not statistically independent of the chosen RCs must be sampled,

and the corresponding metastable states resolved.

Even with massive simulation power and enhanced sampling methods, a converged anal-

ysis in the state-based picture fundamentally relies on the fact that there are relatively

few metastable states. This is the case for cooperative macromolecules, such as small to

medium-sized proteins, where the long-ranged interactions create relatively smooth free en-

ergy landscapes, explaining the success for these systems. However, almost all available

MD simulation and analysis methods will break down for systems with many metastable

states. The proliferation of metastable states can already be observed in nontrivial protein

systems24, but a more pathological example are nucleic acids where the possible ways to

pair bases whose number grows exponentially with system size creates highly rugged en-

ergy landscapes with many metastable states25,26. Even for protein systems, the ability to
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characterize the global system state by a single variable will break down at a certain size.

Beyond the size of a few nanometers, electrostatic interactions are weak, and thus large pro-

tein machines such as the ribosome, the spliceosome and neuronal active zones are expected

to consist of dozens to thousands of largely independently switchable units. Even if each

of these units only has two possible states, the total number of global system states grows

exponential with system size, and any simulation or analysis method that relies on all these

states to be sampled is doomed.

In this paper, we propose a change of perspective by introducing Dynamic Graphical

Models (DGMs) that characterize each molecular configuration by a vector of substate con-

figurations. DGMs then model how these substates evolve in time by a set of local rules,

each of which govern the dynamics of each substates in the field of the others. Although

conceptually less simple than models with a single global state, such as MSMs, the decision

to model a system by many coupled substates is key in reducing the computational complex-

ity for systems that have astronomically large numbers of states. In order to learn the rules

according to which each subsystem i switches its state, not all global system configurations

need to be sampled, but only the the states of those other subsystems j that are directly

coupled to i. This idea is conceptually similar to a recent Granger causality model which

captures the time-evolution of several binary random variables27. DGMs however build upon

the idea of Ising models which are graphical models used to model key phenomena in wide

array of disciplines28–30. The main difficulty in applying these ideas to macromolecular dy-

namics is that it is not a priori clear what the subsystems are and how they are coupled.

Estimating the structure of graphical models from data is an extensively studied machine

learning problem31–34. Here we take a first step towards estimating DGMs from simulation

data by employing a dynamical version of Ising model estimators35.

The property that not all global system configurations need to be sampled to parametrize

a DGM implies that DGMs are generative models. That means, that they should be able

to predict previously unobserved molecular configurations and thus promote the efficient
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discovery of conformation space. Here we demonstrate that DGMs can indeed predict previ-

ously unobserved protein conformations and that protein thermodynamics and kinetics can

be modeled in a similar way as with MSMs.

Dynamic Graphical Models

General Model Structure

Here, we propose Dynamic Graphical Models (DGM) as a new method to model molecular

kinetics and thermodynamics, inspired by Graphical Models, a classical Machine Learn-

ing approach to encode dependencies between random variables33. Instead of encoding the

global molecular configuration in a single state variable, DGMs characterize the molecular

configuration by a set of sub-systems S = {σi}Ni that encode the states of local molecular

features (Fig. 1). The coupling parameters Jij(τ) of a DGM then encode how each subsys-

tem switches in time as a result of the states of other subsystems at a previous time, i.e.

σi(t) → σj(t + τ). Like MSMs, DGMs are Markovian models in which the current configu-

ration only depends on the previous time step. In contrast to MSMs that encode transition

probabilities of global system configurations, DGMs encode the transition probabilities of

single subsystems, dependent on the settings of all the subsystems. In addition, each sub-

system does generally not depend on the all other subsystems, but on a local neighborhood

of subsystems – in other words the coupling parameters are generally sparse.

For illustration, consider a DGM of a one-dimensional Ising model36 (Fig. 2A) consist-

ing of N sub-systems on a ring, each of which adopt one of two configurations, 1 or −1.

Each sub-system (or spin) interacts directly only with its nearest neighbors, and possibly an

external field, resulting in three coupling parameters for each spin. Given a choice of the

dynamics used to flip the spins, such as Metropolis, Glauber (Gibbs) or Kawasaki dynam-

ics37–39, a DGM that describes the probability of each spin’s state at time t + τ given the

spin configuration at time t will thus require 3N parameters. A direct MSM, on the other
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hand, distinguishes all 2N global Markov states and needs to estimate an up to 2N × 2N

transition matrix from the data. More importantly, an MSM can only retrospectively de-

scribe the dynamics between states that have been observed in the simulation data. For

example, an MSM is unable to predict that “spins up” and “spins down” are two different

metastable states unless it has sampled transitions between them. A DGM can in principle

be parameterized only using the spin fluctuations in one of the two metastable states, and

the global thermodynamics and kinetics can still be predicted. We intend to exploit this

property for modeling biomolecular dynamics.

When using DGMs to model biomolecular dynamics, we are not given the definition of

subsystems and their couplings a priori, but we must rather estimate them from data. A

sub-system could be something as complex as a protein domain (Fig. 1A) with multiple

internal states, or something as simple as a torsion angle rotamer or a contact between two

chemical groups that each have only two settings, similar as spins. Once the sub-systems

are defined, it must be estimated which of them are coupled. Estimating the coupling graph

from data is a notoriously difficult problem for graphical models and the related Markov

Random Fields (MRF)31,32,40. However, we have the advantage that modeling the dynamics

via a DGM creates a directed dependency graph in time: the spin variables at time t + τ

only depend on the spin variables at time t (Fig. 1C). This makes the problem of estimating

the coupling between sub-systems tractable.

Dynamic Ising Models

Here we propose a first implementation of DGMs that is based on the idea of Ising models.

Ising models consist of a set of N spins with configuration s = {σi}Ni=1. Each spin can be

in one of two settings, σi ∈ {−1, 1}. The equilibrium probability of a spin configuration is

given by:
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Figure 1: Illustration of molecular representations in Markov state models (MSM) and dy-
namic graphical models (DGM). A: cartoon representation of protein conformational states
found along a trajectory. B: MSM with Markov states, Si, and transition probabilities
between states Si and Sj, pij. The number of different Markov states, Si, may grow expo-
nentially with the number of features, and only feature combinations that have been observed
can be encoded in Markov states. C: DGMs represents the current state of the system via
the states of its sub-systems, σi that are coupled by parameters Jij. The DGM can still
encode exponentially many states, but the number of model parameters grows much slower.
DGMs can predict system states that have not yet been observed.
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p(s) = Z−1 exp(
N∑
i=1

∑
j 6=i

Jijσiσj + hiσi) (1)

where the (unit-less) model parameters Jij = Jji and hi describe the coupling strength

between sub-systems i and j and the local field of sub-system i, respectively, and Z is the

partition function. The most common Ising models have spins arranged in a lattice and only

neighboring spins are coupled, however the general Ising model (1) allows arbitrary spin

couplings and does not prescribe a specific topology. For given parameters {Jij} and {hi},

the distribution (1) can be easily sampled37,38.

When modeling molecular kinetics our data consists of (possible short) time-series rather

than samples from the equilibrium distribution. Therefore, we employ Dynamic Ising Mod-

els (DIMs)35 that model the conditional distribution p(st | st−τ ) that governs how spin

configuration – and thus the configuration of our molecular system – changes in time. Note

that given a model p(st | st−τ ) we can simulate long trajectories and thus also predict the

equilibrium distribution, p(s). The DIM model is given by:

p(st | st−τ ) = Z−1 exp

{
N∑
i=1

σt,i(
N∑
j=1

Jij(τ)σt−τ,j + hi(τ))

}
= Z−1 exp {sᵀtJ(τ)st−τ + sᵀth(τ)} (2)

where J(τ) ∈ RN×N is a matrix of coupling parameters and h(τ) is a vector of local fields

and Z is the partition function. DIMs can readily be generalized more than two states per

subsystem σi (see SI for details)

Properties and Estimation of Dynamic Ising Models

Unlike in eq. (1), the self-couplings Jii(τ) may be nonzero and the coupling matrix J(τ) is

not necessarily symmetric (Jij(τ) = Jji(τ)).
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In Glauber dynamics only a single sub-system is allowed to change its state in some

infinitesimal time δt, in contrast, the DIM model samples the current state of all sub-systems

given their configuration at a time τ prior. Consequently, if we use a τ which is larger than

the characteristic time-scale of one or more of the sub-systems, the dynamics of these sub-

systems will not be resolved. This is analogous to how a lag-time defines the temporal

resolution in a Markov State Model. The relationship between DIM model parameters and

the macroscopic system properties, such as relaxation rates, are further analyzed in the

Supporting Information and Fig. S1.

The problem of estimating eq. (2) from time-series data has previously been investigated

in the context non-equilibrium network reconstruction35. We can exploit that the problem

of estimating Ising model parameters can be cast as a set of N logistic regression problems.

Here, we generalize this method by showing that a DIM with more than two states per sub-

system (which may be called a Dynamic Markov Random Field or Dynamic Potts Model)

can solved by softmax regression (SI for details).

In order to illustrate DIM estimation, consider the conditional probability of a single

sub-system σt,i , given st−τ

p(σt,i | st−τ ) = Z−1 exp

(
σt,i
∑
j

Jij(τ)σt−τ,j + hi(τ)

)
.

Recall, that σt,i can only take on two configurations in the Ising model {−1, 1}. This means

that we can evaluate the partition function Z analytically as it is the sum of the only two

outcome probabilities, p(σt,i = 1 | st−τ ) and p(σt,i = −1 | st−τ ). That is, the partition func-

tion for the single sub-system conditional transition probability is independent of the number

of global system configurations, in contrast to the equilibrium formulation of the Ising model

(eq. (1)) where computation of Z requires the summation of all global configurations of the

system. These observations make the DIMs computationally attractive as exact calculation

of Z is tractable even for systems with a large number of sub-systems. Using this we may
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realize that p(σt,i | st−τ ) follows a sigmoid in θt−τ,i =
∑

j Jij(τ)σt−τ,j + hi,

p(σt,i | st−τ ) =
exp[σt,iθt−τ,i]

exp[θt−τ,i] + exp[−θt−τ,i]

=
1

1 + exp[−2σt,iθt−τ,i]
.

Consequently, estimating {Jij(τ)}Nj=1 and hi corresponds to estimating the i’th row in the

coupling matrix J, and the i’th element of the field vector h.

Since the marginal probability distributions of the sub-systems of st are conditionally

independent given st−τ , the joint probability density is simply their product,

p(st | st−τ ) =
N∏
i

p(σt,i | st−τ ) =
N∏
i

1

1 + exp[−2σt,iθt−τ,i]
. (3)

which facilitates the DIM estimation to be solved by performing an independent logistic

regression problem for each sub-system.

Overall, given a time-series of state-configurations, S = {s0, sτ , . . . , sTτ}, the DIM pa-

rameters can be found by maximizing the likelihood function:

`(J(τ),h(τ) | S) =

τ(T−1)∏
t=τ

p(st | st−τ ), (4)

If we combine this likelihood with a Laplacian prior, maximizing the posterior

P(J(τ),h(τ) | S) =

(∏
i,j

γ

2
exp(−γ |Jij(τ)|)

)
`(J(τ),h(τ) | S), (5)

favors sparse solutions with some Jij = 0, where the regularization parameter γ controls the

degree of sparsity.
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Here, Eq. (5) is optimized using the SAGA optimization algorithm41, as implemented in

the scikit-learn python library42.

As part of this manuscript we have developed a library for estimation and analysis of

DGMs which along with example notebooks is available at: http://www.github.com/markovmodel/graphtime/

Results

Recovery of an unobserved phase, its thermodynamics and kinetics

in the Ising model from biased data

One of the most interesting properties for DGMs is that they make predictions for global

system configurations that have not been observed in the training data. Here we test whether

an Ising model DGM trained only from data with negative net magnetization can predict the

existence of configurations with positive net magnetization, their equilibrium probabilities

and the timescale of remagnetizing the system.

As a first test, we simulate a one-dimensional periodic Ising model with 9 spins using

Glauber dynamics which exhibits two metastable phases with negative and positive net

magnetization, 〈M〉. Non-equilibrium (NED) and equilibrium (ED) data sets are generated

by simulating 16 trajectories with all sub-systems initialized in state −1. NED simulations

are terminated before the net magnetization becomes larger than 0, i.e., the NED data set

has no configurations with more than 4 sub-systems in the +1 configuration. Consequently,

the entire metastable state with positive net magnetizations is missing. In the ED data

simulations are run with a length so as to match the sampling statistics of the NED data, but

trajectories are allowed to reach positive net magnetizations (Fig 2A). DGMs are estimated

by optimizing Eq. (5). We find that both the ED and NED DGMs converge to the correct

sub-system couplings (Fig 2B) regardless of whether we choose to estimate the external field

parameters, hi, or not (Fig S2). This means that the unbiased sub-system couplings can be

recovered from a biased data-set, in turn suggesting that global system characteristics can
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be estimated from incomplete data.

In order to compute the overall thermodynamics and kinetics of the system and the

estimated DGMs, we generate MSMs with all 29 states and compute their transition prob-

abilities using eq. (3). Indeed, the distribution of the net magnetizations, 〈M〉, predicted

by the DGMs closely resemble the true distribution (Fig 2C). In contrast, a MSM estimated

using the NED data only contains configurations contained in the data and therefore fails

to predict the existence of positive net magnetizations (Fig 2C).

Remarkably, DGMs can also predict the kinetics involving states that have not been

observed. The DGM predictions for the 29×29 transition probabilities between global system

configurations correlate well with their true values, albeit with some biases (Fig 2D). The true

global relaxation time-scales are recapitulated well by the DGM models (Fig 2E) – however,

for the NED DGM the time-scales are systematically overestimated, as some self-couplings

are over-estimated (Fig 2B). As expected, the NED MSM completely fails to capture the

slowest relaxation timescale as it corresponds to the inversion of net magnetization which

has not been observed in the training data.

DGMs as models of molecular dynamics

We now turn away from the “ideal” case of a discrete, Markovian system to Molecular Dy-

namics (MD), where DGMs are build upon a discretization of molecular features and hence

introduce a systematic modeling error. To this end, we model MD simulation data of a small

penta-peptide system (WLALL) and compare DGMs with MSMs that are well established

for peptide simulation data (Fig. 3A).

We model WLALL by seven sub-systems corresponding to its back-bone torsions (φ,ψ).

Each subsystem has two states, defined by splitting φ at 0◦ and ψ at 80◦ (SI), thus discretizing

the Ramachandran plane into four states (Fig. 3C). We estimate MSMs and DGMs using

this representation. For the MSMs, all 27 possible discrete angle configurations serve as

possible Markov states and the MSMs are estimated on the subset of observed Markov
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Figure 2: DGMs estimated for a one-dimensional Ising model from equilibrium simula-
tion data (ED) and from simulation data only containing configurations with negative net
magnetization (NED). A) Illustration of the 9-spin 1D Ising model with periodic boundary
conditions. B) Comparison of coupling parameters estimated using equilibrium and non-
equilibrium data sets. C) Analytic stationary distributions of 〈M〉 and empirical histograms
of ED and NED data sets. Shown DGM predictions are for models where the local fields
{hi} are not estimated. D) Comparison of global configurational state transition probabili-
ties predicted in DGM trained on non-equilibrium data set against the true reference values.
E) Implied time-scales of estimated models and the true reference.
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states. DGMs are estimated by maximizing eq. (5), and, for comparison, translated into

MSMs by enumerating all possible global state transitions. We find that the implied time-

scales computed from DGMs match those of the MSMs well at multiple lag-times, within

statistical error (Fig. 3B). Similarly, the stationary probabilities of the Markov states match

closely, in particular for high probability states (Fig. 3C).

The DGMs only use 72 + 7 = 72 parameters but predict equilibrium probabilities for all

27 = 128 possible states and all 214 = 16, 384 possible transitions. Thus, DGMs statistically

much more efficient than MSMs. MSMs directly estimate a transition matrix for all states

that have been observed – for WLALL 45 states (35.16%) and 337 state-to-state transitions

(2.06%) have been observed (τ = 2ns). Enumerating all possible system configurations is

not scalable to larger systems. For larger systems, MSMs are built by clustering states,

preferentially by grouping states that are quickly exchanging43–46. Still, this approach re-

quires all long-lived sets of configurations to be sampled in the data. Subsequently, we show

that DGMs can predict unobserved metastable states for larger biomolecules and therefore

systematically outperform MSM approaches to data analysis.

Prediction of unobserved meta-stable molecular configurations

To more systematically test the predictive power of DGMs in predicting meta-stable states

not observed in the simulation data we estimated several DGMs designed to be selectively

blind towards a particular meta-stable state. We used data of two fast-folding proteins

previously published, the α-helical protein villin and the α/β protein BBA47.

For villin and BBA we built a hidden Markov model (HMM)48 that resolves five and a

four metastable states, respectively (structures in Fig. 4A/E). We then estimated a DGM

using the same data and confirmed that it reproduces the equilibrium probabilities of the

HMM metastable states (Fig. 4B/F, last panels). Using the HMM assignments of MD data

to meta-stable states, we generate five and four sets of training data for the two proteins,

where each set is missing one of the metastable states. These sub-sampled data-sets are used
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Figure 3: Comparison of DGM and MSM describing back-bone torsion dynamics of the
pentapeptide Trp-Leu-Ala-Leu-Leu (WLALL). A) Molecular structure render of the WLALL
peptide in stick representation. B) Global state distribution computed according to DGM
and MSMs. C) Torsion angles serve as binary subsystems whose value indicate the rotamer.
Vertical and horizontal dotted lines indicate the boundaries of the -1 to 1 transition in the
φ and ψ torsions, respectively. Translucent reference density is a histogram of (φ,ψ) torsion
pairs in Leu-2 from the WLALL peptide simulation dataset. D) 95% confidence intervals of
MSM (orange) and DGM (blue) implied time-scales. Confidence intervals in B and D are
computed using bootstrap with replacement. Markov states shown in B are those observed
in all 24 trajectories; DGM state probabilities are renormalized to this set.
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for estimating “one-blind” DGMs that are each “blind” to one meta-stable configuration (see

SI for details). From the estimated DGMs we simulate synthetic trajectories of the time-

evolution of the sub-systems, in order to test whether these one-blind DGMs can recover the

unobserved states and their statistics.

We find that the one-blind DGMs generally sample the same configurational space as the

full MD simulations, although the predicted equilibrium distributions somewhat differ (Fig.

S3). This suggests that although the predicted thermodynamics in the one-blind DGMs

is not quantitatively accurate, they are able to predict relevant states that have not been

included in the training data. At a more microscopic level this is reflected by the fact that

statistical properties of the configurations sampled by the DGM closely agree with their MD

counterparts (Figs. S4, S5 and 4C/G).

Next we compare the macroscopic stationary and dynamics properties predicted by the

one-blind DGMs with the full-data HMMs (Fig. 4). This comparison confirms that all

one-blind DGMs are able to predict the existence of the state that has been missing in the

training data, and in most cases with a population comparable to the MD simulation (Fig.

4B/F). For visualization we have reconstructed molecular trajectories from the sub-system

trajectories simulated from a select set of one-blind DGMs (Suppl. Vids. 1,2).

Finally, we compare the kinetics predicted by the one-blind DGMs with those of the

original simulation. As an example, we compute the time-correlation function (TCF) of

the rotameric state of a backbone torsion angle in the reference simulations of villin and

BBA and compare them to corresponding TCFs from the DGM trajectories (Fig. 4D/H).

We find these generally agree well, although the DGMs tend to somewhat over-estimate the

relaxation rates, in particular the DGMs that were blind to the folded configurations (4th

(red) state in both cases).
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Meta-stability in one-blind DGMs

The analysis above shows that the conformational space sampled by the one-blind DGMs

is realistic and recapitulates the conformational space sampled in the full MD datasets.

However, whether meta-stable states predicted by the one-blind DGMs indeed recapitulate

the metastable states identified in the MD is not clear from this analysis alone. To more

quantitatively assess this, we estimated HMMs trained on data-sets generated using the one-

blind DGMs (SI). In half of the cases the number of meta-stable states identified from the

one-blind DGM datasets matches the corresponding numbers of from the full MD dataset

(Table S1). In most of the remaining cases one meta-stable state is missing, and in a single

case one extra meta-stable state is identified, closely resembling another meta-stable state

(SI).

To better understand the identity of the meta-stable states observed in the one-blind

DGMs we assigned them to corresponding meta-stable states from the MD dataset such as

to minimize the total assignment error (SI). We find that the meta-stable states sampled by

the one-blind DGMs can be unambiguously assigned to a corresponding meta-stable states

observed in the MD dataset, and their sampling statistics correlate well with their MD

counterparts (Fig. S7A,C). The average lifetimes of these meta-stable states qualitatively

correlate with those of the reference MD dataset, but generally are too short, as already

indicated above. (Fig. S7B,D).

Discussion and Conclusions

The ability to simulate a molecular system to convergence depends critically on how the

simulation is analyzed and how the quantities of interest are computed. Most current simu-

lation and analysis methods employ the idea that the molecule is a single global state – most

explicitly, MSMs make that assumption. However, this picture leads to a sampling problem

that does not scale to large molecular systems. A molecule with N independent subunits,
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Figure 4: Prediction of macroscopic stationary and dynamic properties of fast folding pro-
teins Villin and BBA with DGMs. Molecular renders of meta-stable configurations identified
by HMMs of villin (A) and BBA (E), using a ribbon representation. Color/meta-stable state
relationship: Blue/1, Orange/2, Green/3, Red/4 Purple/5. B/F) Meta-stable state distribu-
tions sampled by DGMs estimated leaving data from one of four meta-stable state out during
estimation and using the full data set (hatched). Reference distribution estimated using a
hidden Markov model (HMM) estimated with the full MD data-set (orange). C/G) Bar plots
of fraction incorrectly assigned sub-systems (ε) of atomistic models from sub-system encoded
trajectories sampled by DGMs, errorbars represent a 68% confidence interval. D) Normal-
ized auto-correlation function of the rotameric state of the φ torsion of Lys 71 in Villin as
sampled by the DGM models and in the simulation data. H) Normalized auto-correlation
function of the rotameric state of the φ torsion of Glu 17 in BBA as sampled by the DGM
models and in the simulation data.
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each with M metastable states each will have an exponential number, MN , of metastable

states.

In this paper, we introduce the concept of dynamic graphical models (DGM) and their use

to model molecular kinetics. In DGMs, the global configurational state is encoded as a vector

of states of its sub-systems. As DGMs only model the pair-wise interactions between sub-

systems an exponential number of global configurations can be represented with a quadratic

number of parameters. We illustrate dynamic graphical models using the Dynamic Ising

Model — and its generalization, the Dynamic Markov Random Field (DMRF, in SI).

In general, we find the DGMs, in spite of their compact parametric form can approxi-

mate well the dynamic behavior of several molecular systems. When gauged against MSMs,

DGMs predict similar characteristic time-scales and stationary distributions. Beyond the

capabilities of MSMs, DGM also allow for the prediction of transitions to and from unob-

served molecular conformations and their stationary probabilities. Specifically, we found

that DGMs can predict the predict the presence of meta-stable configurations which have

not been observed during model estimation, although their absolute probabilities are not

always accurately captured.

The new representation of a molecule in the DGM framework gives rise to new techni-

cal challenges that need to be addressed in future studies. (1) How can the sub-systems

of a molecule be learned from simulation data? Here we have defined these sub-systems a

priori, e.g., by choosing dihedral rotamers, but general optimization principles are needed,

e.g. by exploiting the variational approach for Markov processes (VAMP)49–51. (2) Going

from an encoded representation back to a molecular configuration (decoding) is generally

a difficult problem. (3) Although efficient regularized maximum likelihood estimators are

readily available, optimally choosing regularization factors remains heuristic. (4) The com-

pact parametric form of the DGMs comes with limited expressive power. It is specifically

assumed that the sub-system couplings are not a function of the global configuration – if

this is violated we cannot expect to obtain quantitatively predictive models using DGMs.
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(5) Unlike for MSMs52, the integration of experimental data into the estimation of DGMs

is currently not possible. While in MSMs, the experimental observable can be directly ex-

pressed in terms of transition matrix properties53,54, in DGMs it involves sampling which

could be both time-consuming and difficult, in particular when no sub-system decoding is

possible.

Machine learning, and in particular deep learning, has seen a surge in interest in the

sciences the past few years, including in the context of molecular kinetics55,56. A hallmark

of deep learning is its ability to learn complicated non-linear functions which fulfill a pre-

specified set of criteria given sufficient available data57. The identification of sub-systems

and their discretization is highly non-linear and akin to the featurization, projection and

discretization process whose success critically determines the success of Markov state mod-

eling. The VAMPnets approach recently illustrated how the featurization, projection and

discretization pipeline of MSM building could be replaced by a deep neutral network55. We

envision that a related approach can be taken in the context of identifying sub-systems in

molecular systems for DGMs and thereby possibly side-step this currently cumbersome and

manual process.

We anticipate DGMs and follow-up methods to be broadly applicable in biophysics. The

compact parametric form allows us to model molecular systems which are significantly larger

than what would be tractable using for example MSMs. Furthermore, a sparse sub-system

coupling matrix J(τ) could enable a spatial decomposition or large molecular systems into

conditionally independent fragments, more amenable for simulation. The ability of DGMs

to predict unobserved global configuration could further be used in an adaptive simulation

setting, where previously unobserved states are reconstructed and used to seed new molecular

simulations.

Synopsis Discovery of meta-stable configurational states of large biomolecules is an im-

portant problem in biophysics. We describe a procedure to speed up this discovery process
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by learning how local structural elements interact and how these interaction influence the

temporal behavior of the global configurational states.

Supporting Information Available

A detailed report of the practical estimation of models presented in the work including

hyper-parameter choices can be found in the supporting information. Further, a theoretical

generalization of DGM to cases where sub-system may adopt more than two discrete states

along with their constrained and unconstrained maximum likelihood estimators is available.

Finally auxiliary results including figures and movies illustrating properties of the estimated

models may are shown in the supporting material. This material is available free of charge

via the Internet at http://pubs.acs.org/.
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