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Abstract 18 

Background 19 

In 2015 the Zika virus spread from Brazil throughout the Americas, posing an 20 

unprecedented challenge to the public health community. During the epidemic, 21 

international public health officials lacked reliable predictions of the outbreak’s 22 

expected geographic scale and prevalence of cases, and were therefore unable to plan 23 

and allocate surveillance resources in a timely and effective manner. 24 

 25 

Methods 26 

In this work we present a dynamic neural network model to predict the geographic 27 

spread of outbreaks in real-time. The modeling framework is flexible in three main 28 

dimensions i) selection of the chosen risk indicator, i.e., case counts or incidence rate, 29 

ii) risk classification scheme, which defines the high risk group based on a relative or 30 

absolute threshold, and iii) prediction forecast window (one up to 12 weeks).  The 31 

proposed model can be applied dynamically throughout the course of an outbreak to 32 

identify the regions expected to be at greatest risk in the future. 33 

 34 

Results 35 

The model is applied to the recent Zika epidemic in the Americas at a weekly 36 

temporal resolution and country spatial resolution, using epidemiological data, 37 

passenger air travel volumes, vector habitat suitability, socioeconomic and population 38 

data for all affected countries and territories in the Americas. The model performance 39 

is quantitatively evaluated based on the predictive accuracy of the model. We show 40 

that the model can accurately predict the geographic expansion of Zika in the 41 
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Americas with the overall average accuracy remaining above 85% even for prediction 42 

windows of up to 12 weeks.  43 

 44 

Conclusions 45 

Sensitivity analysis illustrated the model performance to be robust across a range of 46 

features. Critically, the model performed consistently well at various stages 47 

throughout the course of the outbreak, indicating its potential value at any time during 48 

an epidemic. The predictive capability was superior for shorter forecast windows, and 49 

geographically isolated locations that are predominantly connected via air travel. 50 

The highly flexible nature of the proposed modeling framework enables policy 51 

makers to develop and plan vector control programs and case surveillance strategies 52 

which can be tailored to a range of objectives and resource constraints. 53 

 54 
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Background 61 

The Zika virus, which is primarily transmitted through the bite of infected Aedes 62 

aegypti mosquitoes (1), was first discovered in Uganda in 1947 (2) from where it 63 

spread to Asia in 1960s, where it since has caused small outbreaks. In 2007 ZIKV 64 

caused an island wide outbreak in Yap Island, Micronesia (3), followed by outbreaks 65 

in French Polynesia (4) and other Pacific islands between 2013 ̶ 2014 where attack 66 

rates where up to 70% (5-7). It reached Latin America between late 2013 and early 67 

2014, but was not detected by public health authorities until May 2015 (8) and since 68 

affected 48 countries and territories in the Americas (9-11). Since there is no 69 

vaccination or treatment available for Zika infections (12, 13), the control of Ae. 70 

aegypti mosquito populations remains the most important intervention to contain the 71 

spread of the virus (14). In order to optimally allocate resources to suppress vector 72 

populations, it is critical to accurately anticipate the occurrence and arrival time of 73 

arboviral infections to detect local transmission (15). 74 

 75 

Whereas for dengue, the most common arbovirus infection, prediction has attracted 76 

wide attention from researchers employing statistical modelling and machine learning 77 

methods to guide vector control (16-29), such real-time machine learning based 78 

models do not yet exist for Zika virus. Early warning systems for Thailand, Indonesia, 79 

Ecuador and Pakistan have been introduced and are currently in use (30-34). In 80 

addition to conventional predictions based on epidemiological and meteorological 81 

data (20, 35, 36), more recent models have successfully incorporated search engines 82 

(37, 38), land use (39), human mobility information (40, 41) and spatial dynamics 83 

(42-44), and various combinations of the above (45) to improve predictions. Whereas 84 
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local spread may be mediated by overland travel, continent wide spread is mostly 85 

driven by air passenger travel between climatically synchronous regions (46-52). 86 

 87 

The aims of our work are to 1) present recurrent neural networks for time ahead 88 

predictive modelling as a highly flexible tool for outbreak prediction, and 2) 89 

implement and evaluate the model performance for the Zika epidemic in the 90 

Americas. The application of neural networks for epidemic risk forecasting has 91 

previously been applied to dengue forecasting and risk classification (53-58), 92 

detection of mosquito presence (59), temporal modeling of the oviposition of Aedes 93 

aegypti mosquito (60), Aedes larva identification (61), and epidemiologic time-series 94 

modeling through fusion of neural networks, fuzzy systems and genetic algorithms 95 

(62). Recently, Jian et al (63) performed a comparison of different machine learning 96 

models to map the probability of Zika epidemic outbreak using publically available 97 

global Zika case data and other known covariates of transmission risk. Their study 98 

provides valuable insight into the potential role of machine learning models for 99 

understanding Zika transmission; however, it is static in nature, i.e., it does not 100 

account for time-series data, and did not account for human mobility, both of which 101 

are incorporated in our modelling framework. 102 

 103 

Here, we apply a dynamic neural network model for N-week ahead prediction for the 104 

2015-2016 Zika epidemic in the Americas. The model implemented in this work 105 

relies on multi-dimensional time-series data at the country (or territory) level, 106 

specifically epidemiological data, passenger air travel volumes, vector habitat 107 

suitability for the primary spreading vector Ae. aegypti, socioeconomic and 108 

population data. The modeling framework is flexible in three main dimensions: 1) the 109 
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preferred risk indictor can be chosen by the policy maker, e.g., we consider outbreak 110 

size and incidence rate as two primary indicators of risk for a region, 2) five risk 111 

classification schemes are defined, where each classification scheme varies in the 112 

(relative or absolute) threshold used to determine the set of countries deemed “high 113 

risk”, and 3) it can be applied for a range of forecast windows (1 – 12 weeks). Model 114 

performance and robustness is evaluated for various combinations of risk indicator, 115 

risk classification level, and forecasting windows. Thus, our work represents the first 116 

flexible framework of neural networks for epidemic risk forecasting, that allows 117 

policy makers to evaluate and weigh the trade-off in prediction accuracy between 118 

forecast window and risk classification schemes. Given the availability of the 119 

necessary data, the modelling framework proposed here can be applied in real time to 120 

future outbreaks of Zika, and other similar vector-borne outbreaks. 121 

 122 

Materials and Methods 123 

 124 

Data  125 

The model relies on socioeconomic, population, epidemiological, travel and mosquito 126 

vector suitability data. All data is aggregated to the country level and provided for all 127 

countries and territories in the Americas. Each data set and corresponding processing 128 

is described in detail below, and summarized in Table 1. All input data is available as  129 

Additional files 1-11. 130 

 131 

 132 

 133 
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Table 1. Summary of input data 134 

Description 

Original 

Temporal 

Resolution 

Spatial 

Resolution 

Temporal 

Disaggregation 
Reference 

Zika cases 

(2015) 
monthly 

country or 

territory 

level 

estimation, 

smoothing spline 

curve fitting 

(50, 51, 64) 

Zika cases 
(2016) 

weekly 

country or 

territory 

level 

- 

Pan American 

Health Organization 

(PAHO) (65) 

incidence rates weekly 
country or 
territory 

level 

(case 
counts/(population / 

100,000) 

(51) 

incoming and 
outgoing travel 

volumes 

(2015) 

monthly 

country or 

territory 
level 

smoothing spline 

curve fitting 

International Air 

Transport Associate 
(IATA), (64) 

incoming and 
outgoing travel 

volumes 

(2016) 

monthly 

country or 

territory 
level 

estimation, 

smoothing spline 
curve fitting 

as previously done 

(51, 66, 67), (64) 

Aedes vector 

suitability 
monthly 

country or 
territory 

level 

smoothing spline 

curve fitting 
(51, 64, 68, 69) 

gross domestic 

product (GDP) 
per capita 

annual 

country or 

territory 
level 

- 

World Bank (70), 
and U.S. Bureau of 

Economic Analysis 

(71) 

physicians per 

1000 people 
annual 

country or 
territory 

level 

- 
Centre of Disease 

Control and 

Prevention (CDC)  

(72), WHO World 
Health Statistics 

report (73), and the 

PAHO (74) 

beds per 1000 

people 
annual 

country or 

territory 

level 

- 

population 
densities 

(people per sq. 

km of land 
area) 

annual 

country or 

territory 

level 

- 

World Bank (75), 

and the U.S. Bureau 
of Economic 

Analysis (71) 

 135 

Epidemiological Data 136 

Weekly Zika infected cases for each country and territory in the Americas were 137 

extracted from the Pan American Health Organization (PAHO) (65), as described in 138 

previous studies (48, 51) (data available: github.com/andersen-lab/Zika-cases-139 

PAHO). The epidemiological weeks 1 - 78 are labeled herein as EPI weeks, 140 
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corresponding to the dates 29-Jun-2015 - 19-Dec-2016, respectively. Although Zika 141 

cases in Brazil were reported as early as May 2015, no case data is available for all of 142 

2015 from PAHO because the Brazil Ministry of Health did not declare the Zika cases 143 

and associated neurological and congenital syndrome as notifiable conditions until 17 144 

February of 2016 (65). The missing numbers of cases from July to December 2015 for 145 

Brazil were estimated based on the positive correlation between Ae. aegypti 146 

abundance (described below) and reported case counts as has been done previously 147 

(50, 51). We used smoothing spline (64) to estimate weekly case counts from the 148 

monthly reported counts. The weekly country level case counts (Figure 1A) were 149 

divided by the total population / 100,000, as previously described (51), to compute 150 

weekly incidence rates (Figure 1B). 151 

 152 

Travel Data 153 

Calibrated monthly passenger travel volumes for each airport-to-airport route in the 154 

world were provided by the International Air Transport Associate (IATA) (76), as 155 

previously used in (51, 66). The data includes origin, destination and stopover airport 156 

paths for 84% of global air traffic, and includes over 240 airlines and 3,400 airports. 157 

The airport level travel was aggregated to a regional level, to compute monthly 158 

movements between all countries and territories in the Americas. The incoming and 159 

outgoing travel volumes for each country and territory, originally available from 160 

IATA at a monthly temporal resolution, were curve fitted, again using smoothing 161 

spline method (64) to obtain corresponding weekly volumes to match with the 162 

temporal resolution of our model. In this study, data and estimates from 2015 were 163 

also used for 2016, as was done previously (51, 66, 67). 164 

 165 
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Mosquito Suitability Data 166 

The monthly vector suitability data sets were based on habitat suitability for the 167 

principal Zika virus species Ae. aegypti, previously used in (51), and initially 168 

estimated using original high resolution maps (68) and then enriched to account for 169 

seasonal variation in the geographical distribution of Ae. aegypti by using time-170 

varying covariate such as temperature persistence, relative humidity, and precipitation 171 

as well as static covariates such as urban versus rural areas. The monthly data was 172 

translated into weekly data using a smoothing spline (64). 173 

 174 

Socioeconomic and Human Population Data 175 

For a country, to prevent or manage an outbreak depends on their ability to implement 176 

a successful surveillance and vector control programs (77). Due to a lack of global 177 

data to quantify vector control at country level, we utilized alternative economic and 178 

health related country indicators which have previously been revealed to be critical 179 

risk factors for Zika spread (51). A country’s economic development can be measured 180 

by the gross domestic product (GDP) per capita at purchasing power parity (PPP), in 181 

international dollars. The figures from World Bank (70) and the U.S. Bureau of 182 

Economic Analysis (71) were used to collect GDP data for each country. The number 183 

of physicians and the number of hospital beds per 10,000 people were used to indicate 184 

the availability of health infrastructure in each country. These figures for U.S. and 185 

other regions in the Americas were obtained from the Centre of Disease Control and 186 

Prevention (CDC) (72), WHO World Health Statistics report (73), and the PAHO 187 

(74). Finally, the human population densities (people per sq. km of land area) for each 188 

region were collected from World Bank (75) and the U.S. Bureau of Economic 189 

Analysis (71). 190 
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Connectivity-risk Variables 191 

In addition to the raw input variables, novel connectivity-risk variables are defined and 192 

computed for inclusion in the model. These variables are intended to capture the risk 193 

posed by potentially infected travelers arriving at a given destination at a given point in 194 

time, and in doing so, explicitly capture the dynamic and heterogeneity of the air-traffic 195 

network in combination with real-time outbreak status. Two variables are chosen, 196 

hereafter referred to as case-weighted travel risk and incidence-weighted travel risk, as 197 

defined in equations (1.a) and (1.b), respectively. 198 

 199 

𝐶𝑅𝑗
𝑡 =   ∑ 𝐶𝑖

𝑡 . 𝑉𝑖,𝑗
𝑡

𝑖           ∀𝑡, ∀𝑗, 𝑖 ≠ 𝑗                       (1.a)    200 

                                     201 

𝐼𝑅𝑗
𝑡 =   ∑ 𝐼𝑖

𝑡 . 𝑉𝑖,𝑗
𝑡

𝑖             ∀𝑡, ∀𝑗, 𝑖 ≠ 𝑗                        (1.b)                                               202 

 203 

For each region j at time t, 𝐶𝑅𝑗
𝑡and 𝐼𝑅𝑗

𝑡 are computed as the sum of product between 204 

passenger volume traveling from origin i into destination j at time t (𝑉𝑖,𝑗
𝑡 ) and the state 205 

of the outbreak at origin i at time t, namely reported cases, 𝐶𝑖
𝑡 ,  or reported incidence 206 

rate, 𝐼𝑖
𝑡. Each of these two variables is computed for all 53 countries or territories for 207 

each of the 78 epidemiological weeks. The two dynamic variables, 𝐶𝑅𝑗
𝑡and 𝐼𝑅𝑗

𝑡,  are 208 

illustrated in Figure 1C and 1D, below the raw case counts and incidence rates, 209 

respectively.  210 

 211 
Neural Network Model 212 

A class of neural architectures based upon Nonlinear Auto Regressive models with 213 

eXogenous inputs (NARX) known as NARX neural networks (78-80) is employed 214 

herein due to its suitability for modeling of a range of nonlinear systems and 215 
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computational capabilities equivalent to Turing machines (81). The NARX networks, 216 

as compared to other recurrent neural network architectures, require limited feedback 217 

(i.e., feedback from the output neuron rather than from hidden states) and converge 218 

much faster with a better generalization (81, 82). The NARX model can be formalized 219 

as follows (81): 220 

𝑦(𝑡) = 𝑓 (𝑥(𝑡), 𝑥(𝑡 − 1),… , 𝑥(𝑡 − 𝑑𝑥); 𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑑𝑦))                     (2) 221 

where 𝑥(𝑡) and 𝑦(𝑡) denote, respectively, the input and output (or target that should 222 

be predicted) of the model at discrete time t, while 𝑑𝑥 and 𝑑𝑦 (with 𝑑𝑥 ≥ 1, 𝑑𝑦  ≥ 1, 223 

and 𝑑𝑥 ≤ 𝑑𝑦) are input and output delays called memory orders (Figure 2). In this 224 

work, a NARX model is implemented to provide N-step ahead prediction of a time 225 

series, as defined below:  226 

 227 

𝑦𝑘(𝑡 + 𝑁) =228 

𝑓 (
𝐱𝟏(𝑡), 𝐱𝟏(𝑡 − 1),… , 𝐱𝟏(𝑡 − 𝑑𝑥), … , 𝐱𝑴(𝑡), 𝐱𝑴(𝑡 − 1),… , 𝐱𝑴(𝑡 − 𝑑𝑥),

y𝑘(𝑡), y𝑘(𝑡 − 1),… ,  y𝑘(𝑡 − 𝑑𝑦)
)      (3)    229 

 230 

Here, 𝑦𝑘(𝑡 + 𝑁) is the risk classification predicted for the kth region N weeks ahead 231 

(of present time t), which is estimated as a function of 𝐱𝒎(𝑡) inputs from all 𝑚 =232 

1, 2, … ,𝑀 regions for 𝑑𝑥 previous weeks, and the previous risk classification state, 233 

𝑦𝑘(𝑡) for region k for 𝑑𝑦 previous weeks.  The prediction model is applied at time t, 234 

to predict for time t+N, and therefore relies on data available up until week t. That is, 235 

to predict outbreak risk for epidemiological week X, N-weeks ahead, the model is 236 

trained and tested using data available up until week (X – N). For example, 12-week 237 

ahead prediction for Epi week 40, is performed using data available up to week 28. 238 

The function 𝑓(∙) is an unknown nonlinear mapping function that is approximated by 239 
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a Multilayer Perceptron (MLP) to form the NARX recurrent neural network (79, 80). 240 

In this work, series-parallel NARX neural network architecture is implemented in 241 

Matlab R2018a (The MathWorks, Inc., Natick, Massachusetts, United States) (83). 242 

 243 

In the context of this work, the desired output, 𝑦𝑘(𝑡 + 𝑁), is a binary risk classifier, 244 

i.e., classifying a region k as high or low risk at time at time t+N, for each region, k, N 245 

weeks ahead (of t). The vector of input variables for region 𝑚 at time 𝑡 is 𝐱𝒎(𝑡), and 246 

includes both static and dynamic variables. We consider various relative (R) and 247 

absolute (A) thresholds to define the set of “high risk” countries at any point in time. 248 

We define relative risk thresholds that range uniformly between 10% and 50%, where 249 

the 10% scheme classifies the 10% of countries reporting the highest number of cases 250 

(or highest incidence rate) during a given week as high risk, and the other 90% as low 251 

risk, similar to (45). The relative risk schemes are referred herein as R=0.1, R=0.2, 252 

R=0.3, R=0.4, and R=0.5. It is worth noting, for a given percentile, e.g., R=0.1, the 253 

relative risk thresholds are dynamic and vary week to week as a function of the scale 254 

of the epidemic, while the size of the high risk group remains fixed over time, e.g., 255 

10% of all countries. We also consider absolute thresholds, which rely on case 256 

incidence rates to define the “high risk” group. Five absolute thresholds are selected 257 

based on the distribution of incidence values over all countries and the entire 258 

epidemic. Specifically, the 50th, 60th, 70th, 80th and 90th percentiles were chosen, 259 

and are referred herein as A=50, A=60, A=70, A=80, and A=90. These five thresholds 260 

correspond to weekly case incidence rates of 0.43, 1.47, 4.05, 9.5 and 32.35 (see 261 

Additional file 12: Figure S1), respectively. In contrast to the relative risk scheme, 262 

under the absolute risk scheme for a given percentile, e.g., A=90, the threshold 263 

remains fixed but the size of the high (and low) risk group varies week to week based 264 
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on the scale of the epidemic. The fluctuation in group size for each threshold is 265 

illustrated in Additional file 12: Figure S1 for each classification scheme, A=50 to 266 

A=90. Critically, our prediction approach differs from (45), in that our model is 267 

trained to predict the risk level directly, rather than predict the number of cases, which 268 

are post-processed into risk categories. The performance of the model is evaluated by 269 

comparing the estimated risk level (high or low) to the actual risk level for all 270 

locations at a specified time. The actual risk level is simply defined at each time 271 

period t during the outbreak by ranking the regions based on to the number of 272 

reported case counts (or incidence rates), and grouping them into high and low risk 273 

groups according to the specified threshold and classification scheme.  274 

 275 

The static variables used in the model include GDP PPP, population density, number 276 

of physicians, and number of hospital beds for each region. The dynamic variables 277 

include mosquito vector suitability, outbreak status (both reported case counts and 278 

reported incidence rates), total incoming travel volume, total outgoing travel volume, 279 

and the two connectivity-risk variables defined as in Equations (1.a) & (1.b), again for 280 

each region. Before applying to the NARX model, all data values are normalized to 281 

the range [0, 1]. 282 

 283 

A major contribution of this work is the flexible nature of the model, which allows 284 

policy makers to be more or less risk averse in their planning and decision making.   285 

Firstly, the risk indicator can be chosen by the modeler; in this work we consider two 286 

regional risk indicators, i) the number of reported cases and ii) incidence rate. Second, 287 

we consider a range of risk classification schemes, which define the set of high-risk 288 

countries based on either a relative or absolute threshold that can be chosen at the 289 
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discretion of the modeler, i.e., R=0.1, 0.2, 0.3, 0.4, 0.5, and A=90, 80, 70, 60, 50.  290 

Third, the forecast window, N, is defined to range from N = 1, 2, 4, 8 and 12 weeks. 291 

Subsequently, any combination of risk indicator, risk classification scheme and 292 

forecasting window can be modelled.  293 

 294 

In initial settings of the series-parallel NARX neural network, a variety numbers of 295 

hidden layer neurons and numbers of tapped delay lines (Eq. (2)) were explored for 296 

training and testing of the model. Sensitivity analysis revealed minimal difference in 297 

performance of the model under different settings. Therefore, for all experiments 298 

presented in this work, the numbers of neural network hidden layer neurons and 299 

tapped delay lines are kept constant as two and four, respectively. 300 

 301 

To train and test the model, the actual risk classification for each region at each week 302 

during the epidemic, 𝑦𝑘(𝑡), was used. For each model run, e.g., a specified risk 303 

indicator, risk classification scheme and forecasting window, the input and target 304 

vectors are randomly divided into three sets:  305 

 306 

1. 70% for training, to tune model parameters minimizing the mean square error 307 

between the outputs and targets,  308 

2. 15% for validation, to measure network generalization and to prevent 309 

overfitting, by halting training when generalization stops improving (i.e., 310 

mean square error of validation samples starts increasing), and  311 

3. 15% for testing, to provide an independent measure of network performance 312 

during and after training.  313 

 314 
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The performance of the model is measured using two metrics: 1) prediction accuracy 315 

(ACC) and 2) receiver operating characteristic (ROC) curves. Prediction accuracy is 316 

defined as ACC = (TP + TN) / (TP + FP + TN + FN), where true positive (TP) is the 317 

number of high risk locations correctly predicted as high risk, false negative (FN) is 318 

the number of high risk locations incorrectly predicted as low risk, true negative (TN) 319 

is the number of low risk locations correctly predicted as low risk, and false positive 320 

(FP) is the number of low risk locations incorrectly predicted as high risk. The second 321 

performance metric, ROC curve (84), explores the effects on TP and FP as the 322 

position of an arbitrary decision threshold is varied, which in the context of this 323 

prediction problem distinguished low and high risk locations. ROC curve  can be 324 

characterized as a single number using the area under the ROC curve (AUC), with 325 

larger areas having an AUC that approaches one indicating a more accurate detection 326 

method. In addition to quantifying model performance using these two metrics, we 327 

evaluate the robustness of the predictions by comparing the ACC across multiple runs 328 

that vary in their selection of testing and training sets (resulting from the randomized 329 

sampling).  330 

 331 

Results 332 

The model outcome reveals the set of locations expected to be at high risk at a 333 

specified date in the future, i.e., N weeks ahead of when the prediction is made. We 334 

apply the model for all epidemiological weeks throughout the epidemic, and evaluate 335 

performance under each combination of i) risk indicator, ii) classification scheme, and 336 

iii) forecast window. For each model run, both ACC and ROC AUC are computed.  337 

 338 

 339 
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Model Performance 340 

Figures 3 and 4 exemplify the output of the proposed model. Figure 3 illustrates the 341 

model predictions at a country-level for a 4-week prediction window, specifically for 342 

Epi week 40, i.e., using data available up until week 36. Figure 3A illustrates the 343 

actual risk percentile each country is assigned to in week 40, based on reported case 344 

counts. The results presented in the remaining panels of Figure 3 reveal the risk level 345 

(high or low) predicted for each country under the five relative risk classification 346 

schemes, namely (B) R=0.1, (C) R=0.2, (D) R=0.3, (E) R=0.4, and (F) R=0.5, and 347 

whether or not it was correct. For Panels (B)-(E), green indicates a correctly predicted 348 

low risk country (TN), light grey indicates an incorrectly predicted high risk country 349 

(FP), dark grey indicates an incorrectly predicted low risk country (FN), and the 350 

remaining color indicates a correctly predicted high risk country (TP). The inset 351 

highlights the results for the Caribbean islands. The figure also presents the average 352 

ACC over all regions and ACC for just the Caribbean region (grouped similar to (10)) 353 

for each classification scheme.  354 

 355 

Figure 4 illustrates the model predictions at a country-level for varying prediction 356 

windows, and a fixed classification scheme of R=0.2, again for Epi week 40.  Figure 357 

4A illustrates the actual risk classification (high or low) each country is assigned to in 358 

Epi week 40, based on reported case counts. The results presented in the remaining 359 

panels of Figure 4 reveal the risk level (high or low) predicted for each country under 360 

the five forecasting windows, specifically (B) N=1, (C) N=2, (D) N=4, (E) N=8, and 361 

(F) N=12, and whether or not it was correct. For Panels (B)-(E), red indicates a 362 

correctly predicted high risk country (TP), green indicates a correctly predicted low 363 

risk country (TN), light grey indicates an incorrectly predicted high risk country (FP), 364 
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dark grey indicates an incorrectly predicted low risk country (FN). The inset 365 

highlights the results for the Caribbean islands. Similar to Figure 3, for each forecast 366 

window, the reported ACC is averaged both over all regions and for just the 367 

Caribbean.  368 

 369 

The model’s performance and sensitivity to the complete range of input parameters is 370 

summarized in Additional file 13: Table S2. ACC is presented for each combination 371 

of risk indicator (case count and incidence rate), classification scheme (i.e., R = 0.1, 372 

0.2, 0.3, 0.4, 0.5 and A = 90, 80, 70, 60, 50) and forecast window (i.e., N = 1, 2, 4, 8 373 

and 12), for selected Epi weeks throughout the epidemic. ROC AUC (averaged over 374 

all locations and all EPI weeks) is computed for all combinations of risk indicator 375 

(case count and incidence rate), classification scheme (i.e., R = 0.1, 0.2, 0.3, 0.4, 0.5 376 

and A = 90, 80, 70, 60, 50) and forecast window (i.e., N = 1, 2, 4, 8 and 12). 377 

 378 
Figures 5 and 6 illustrate trends in the model performance as a function of 379 

classification scheme and forecast window, aggregated over space and time. 380 

Specifically, Figure 5 reveals the model performance (ACC, averaged over all 381 

locations and all EPI weeks) for each combination of risk classification scheme (i.e., 382 

R = 0.1, 0.2, 0.3, 0.4 and 0.5) and forecast window (i.e., N = 1, 2, 4, 8 and 12).  The 383 

aggregated ROC curves (averaged over all locations and all epidemiological weeks) 384 

for R=0.4 are presented in Figure 6, and reveal the (expected) increased accuracy of 385 

the model as the forecast window is reduced. The ROC AUC results are consistent 386 

with ACC results presented in Figure 5, highlighting the superior performance of the 387 

1 and 2 week ahead prediction capability of the model. The ROC AUC value remains 388 

above 0.91 for N=1, 2 and above 0.83 for N=4, both indicating high predictive 389 
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accuracy of the model. The ROC curves for the other relative risk classification 390 

schemes are presented in Additional file 14: Figure S2. 391 

 392 

Global and Regional Analysis 393 

We further explore the model’s performance at a regional level by dividing the 394 

countries and territories in the Americas into three groups, namely Caribbean, South 395 

America and Central America, as in (10), and compare with the Global performance, 396 

i.e., all countries. For each group the average performance of the model in terms of 397 

ACC was evaluated and presented for each combination of risk indicator (case count 398 

and incidence rate), classification scheme (i.e., R = 0.1, 0.2, 0.3, 0.4, 0.5 and A = 90, 399 

80, 70, 60, 50) and forecast window (i.e., N = 1, 2, 4, 8 and 12), aggregated over then 400 

entire epidemic period (Table 2). 401 

Table 2. Summary of Global and Regional Model Performance 402 

Relative Risk 

Classification 

Scheme  

Prediction 

Window 

Size 

(N in weeks) 

Overall Prediction Accuracy (ACC) 

Global Caribbean 
South 

America 

Central 

America 

Risk Indicator Risk Indicator Risk Indicator Risk Indicator 
incidence cases incidence cases incidence cases incidence cases 

R=0.1 

1 95.71 96.95 94.63 98.84 93.65 92.28 97.95 94.18 

2 94.29 96.12 92.90 98.86 91.68 90.78 97.01 90.67 

4 91.30 93.13 89.38 97.30 87.11 84.80 95.34 84.14 

8 86.34 90.63 85.72 95.70 74.58 81.97 91.74 76.69 

12 82.57 87.05 81.75 93.59 68.63 75.94 87.99 68.14 

R=0.2 

1 93.07 93.54 91.73 94.94 92.65 90.16 92.64 87.33 

2 90.01 92.27 88.30 93.93 89.37 88.60 89.26 84.68 

4 84.68 88.09 82.66 89.72 82.77 84.40 82.28 76.49 

8 75.22 81.87 71.58 83.96 69.34 76.27 73.73 65.25 

12 68.96 78.25 65.01 80.92 62.75 71.30 63.73 58.09 

R=0.3 

1 90.70 93.41 88.30 94.05 91.41 91.41 90.58 87.84 

2 86.74 89.82 85.27 91.06 86.68 86.68 84.15 80.46 

4 80.85 84.31 77.10 85.36 82.63 79.38 78.73 72.76 

8 70.10 76.46 64.73 77.31 69.34 71.34 66.31 58.05 

12 63.37 71.66 56.86 70.66 62.39 64.88 57.35 56.86 

R=0.4 

1 90.46 91.68 88.25 91.31 93.03 90.54 87.84 86.64 

2 86.79 88.52 84.62 88.24 89.76 86.30 83.10 81.51 

4 79.36 81.67 76.41 81.97 83.04 75.44 72.57 71.83 

8 68.47 72.85 61.67 71.12 73.19 71.19 62.29 54.66 

12 59.82 65.22 51.89 60.33 62.21 60.96 53.19 53.43 

R=0.5 

1 89.51 91.16 89.67 90.25 87.42 88.42 85.10 90.41 

2 86.21 86.90 84.83 86.13 85.15 82.84 83.10 84.15 

4 77.67 78.46 76.29 77.55 75.44 75.71 70.71 67.72 

8 66.42 68.05 61.99 65.78 69.80 68.26 53.60 47.46 

12 56.16 58.31 48.04 51.81 62.21 54.90 43.38 46.81 

 403 
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Model Robustness 404 

Figure 7A and 7B show how the ACC varies over 10 independent runs of the model. 405 

This sensitivity analysis was conducted for all combinations risk indicator, relative 406 

risk classification schemes, and selected epidemiological weeks (i.e., week number / 407 

starting date: 30 / 18-Jan-2016, 40 / 28-Mar-2016, 50 / 6-Jun-2016, 60 / 15-Aug-2016, 408 

and 70 / 24-Oct-2016). This time period represents a highly complex period of the 409 

outbreak with country level rankings fluctuating substantially, as evidenced in Figure 410 

1.  Due to computation time, the sensitivity analysis was evaluated for only the 4-411 

week forecast window.  The size of the error bars illustrates the robustness of the 412 

proposed modeling framework. 413 

 414 

NARX Feature Selection 415 

While the NARX framework does not provide assigned weights for each input feature 416 

as output, sensitivity analysis can be conducted to help identify the key predictive 417 

features. We tested the performance of the NARX framework under three different 418 

combinations of input features, with the particular objective of quantifying the role of 419 

travel data in our outbreak prediction model. We considered i) a simple ‘baseline’ 420 

model using only case count and incidence data, ii) an expanded baseline model that 421 

includes case and incidence data, and all non-travel related variables, and iii) the 422 

proposed model which includes all features listed in Table 1. The results comparing 423 

the performance of these three models with the detailed list of input features for each 424 

is provided in Additional file 15: Table S1.  The results reveal the case-related data 425 

(regional case counts and incidence rates) to be the dominant explanatory variables 426 

for predicting outbreak risk in a region, as would be expected. The inclusion of non-427 

travel related variables (regional suitability, regional GDP, regional physicians, 428 
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regional hospital beds, regional population density) is not shown to improve 429 

predictive capability over the baseline model, and in fact, sometime performs worse 430 

than the baseline model. In contrast, the inclusion of travel data (weekly case-431 

weighted travel risk, weekly incidence-weighted travel risk, weekly incoming travel 432 

volume, weekly outgoing travel volume) is revealed to improve the predictive 433 

capability, especially for the shorter prediction windows, with a higher AUC ROC for 434 

a majority (20 of the 25) of the scenarios tested.  These results support the inclusion 435 

of the dynamic travel-related variables, which substantially increase the complexity of 436 

the model (inputs), and thus, justifies the use of the NARX framework selected. 437 

 438 

Discussion 439 

Overall, the proposed model is shown to be accurate and robust, especially for shorter 440 

prediction windows and higher risk thresholds. As would be expected, the 441 

performance of the proposed model decreases as the prediction window increases 442 

because of the inherent uncertainty in outbreak evolution over long periods of time. 443 

Specifically, the model is almost 80% accurate for 4-week ahead prediction for all 444 

classification schemes, and almost 90% accurate for all 2-week ahead prediction 445 

scenarios, i.e., the correct risk category of 9 out of 10 locations can always be 446 

predicted, indicating strong performance. Although, when the objective is to identify 447 

the top 10% of at-risk regions, the average accuracy of the model remains above 87% 448 

for prediction up to 12-weeks in advance.  Generally, the model performance is 449 

shown to decrease as the risk threshold is reduced, e.g., the size of the high risk group 450 

is increased, representing a more risk averse policy. The decrease in performance is 451 

likely due to the increased size and fluctuation of the high risk country set over time 452 

for lower thresholds. For example, for the absolute risk threshold of A=50, the 453 
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number of countries classified as high risk fluctuates between 1 and 34 throughout the 454 

course of the epidemic, compared with A=90, where the set only ranges from 0 to 12 455 

(see Additional file 12: Figure S1). These results reveal the trade-off between desired 456 

forecast window and precision of the high risk group. The quantifiable trade-off 457 

between the two model inputs (classification scheme and forecast window) can be 458 

useful for policies which may vary in desired planning objectives.  459 

 460 

The results in Figures 3 and 4, as well as Table 2 reveal a similar trend at the regional 461 

level as was seen at the global level, with a decrease in predictive accuracy as the 462 

forecast window increases in length, and the and high risk group increases in size. 463 

As shown in Figure 3, the ACC remains above 90% for R < 0.3, indicating superior 464 

model performance. For example, at Epi week 40, R = 0.3 and N=4 (using outbreak 465 

data and other model variables up to Epi week 36), there were 16 total regions 466 

classified as high risk, of which the model correctly identified 13. Furthermore, of the 467 

16 high risk regions, 8 were in the Caribbean (i.e., Aruba, Curacao, Dominican 468 

Republic, Guadeloupe, Haiti, Jamaica, Martinique, and Puerto Rico), of which the 469 

model correctly identified 7. Aruba in the only Caribbean, and Honduras and Panama 470 

were the only regions incorrectly predicted as low risk in this scenario; accurately 471 

classifying low risk regions is also important (and assuring the model is not too risk 472 

averse). For the same scenario, i.e., Epi week 40, R = 0.3 and N=4, all 18 low risk 473 

Caribbean locations and 17 of the 19 low risk non-Caribbean locations were 474 

accurately classified by the model. Paraguay and Suriname were the only regions 475 

incorrectly predicted as high risk. These results are consistent with the high reported 476 

accuracy of the model, i.e., Overall ACC = 90.15%; Caribbean ACC = 96.15%.     477 

 478 
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Figure 4 reveals that the performance of model, expectedly, deteriorates as the 479 

forecast window increases; however, the average accuracy remains above 80% for 480 

prediction up to 8-weeks ahead, and well about 90% for up to 4-weeks ahead. The 481 

prediction accuracy for the Caribbean slightly lags the average performance in the 482 

Americas. Specifically, for R=0.2, 5 of the 11 Caribbean regions were designated as 483 

HIGH risk locations at Epi week 40, i.e., Dominican Republic, Guadeloupe, Jamaica, 484 

Martinique, Puerto Rico. For a one-week prediction window, N=1, the model was 485 

able to correctly predict 3 of the high risk regions (i.e., Jamaica, Martinique, Puerto 486 

Rico), for N=2 it correctly identified two (i.e., Martinique, Puerto Rico), and for N=4, 487 

it again correctly identified three (i.e., Guadeloupe, Martinique, Puerto Rico). 488 

However, the model did not correctly predict any high risk locations in the Caribbean 489 

at N=8 and N=12 window lengths. This error is due to the low and sporadic reporting 490 

of Zika cases in the region around week 30, and the high variability of the outbreak 491 

over the 8 and 12 week period. Similar prediction capability is illustrated for R=0.5 492 

(not shown in the figure), in which case out of the 13 Caribbean HIGH risk locations, 493 

the model correctly identifies all locations at N=1, 2 and 4, 10 of the 13 locations at 494 

N=8, and only 1 of the 13 at N=12.         495 

 496 

When comparing performance across regions (see Table 2) results reveal the 497 

predictive accuracy is best for the Caribbean region, while predictions for Central 498 

America were consistently the worst; the discrepancy in performance between these 499 

groups increases as the forecast window increases. The difference in performance 500 

across regions can be attributed to the high spatial heterogeneity of the outbreak 501 

patterns, the relative ability of air travel to accurately capture connectivity between 502 

locations, and errors in case reporting that may vary by region. For example, the 503 
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Caribbean, which consists of more than twice as many locations as any other group, 504 

first reported cases around week 25, and remained affected throughout the epidemic. 505 

In contrast, Central America experienced a slow start to the outbreak (at least 506 

according to case reports) with two exceptions, namely Honduras and El Salvador. 507 

The large number of affected region in the Caribbean, with more reported cases 508 

distributed over a longer time period contributed to the training of the model, thus 509 

improving the predictive capability for these regions. Additionally, the geographically 510 

isolated nature of Caribbean islands enables air travel to more accurately capture 511 

incoming travel risk, unlike countries in Central and South America, where 512 

individuals can also move about using alternative modes, which are not accounted for 513 

in this study. These factors combined explain the higher predictive accuracy of the 514 

model for the Caribbean region, and importantly, helps to identify the critical features 515 

and types of settings under which this model is expected to perform best. 516 

 517 

Finally, the robustness of the model predictions is illustrated by the short error bars in 518 

Figure 7. The model is also demonstrated to perform consistently throughout the 519 

course of the epidemic, with the exception of week 30, at which time there was 520 

limited information available to train the model, e.g., the outbreak was not yet 521 

reported in a majority of the affected countries. Comparing Figure 7A and 7B reveals 522 

relatively similar performance for both risk indicators, and Additional File 13: Table 2 523 

demonstrating the model’s flexibility and adaptability with respect to both the risk 524 

scheme chosen, i.e., relative or absolute, and the metric used to classify outbreak risk, 525 

i.e., number of cases or incidence rate in a region.  526 

 527 

 528 
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Limitations 529 

There are several limitations of this work. The underlying data on case reporting vary 530 

by country and may not represent the true transmission patterns (85). However, the 531 

framework presented was flexible enough to account for these biases and we 532 

anticipate will only be improved as data become more robust. Additionally, 2015 533 

travel data was used in place of 2016 data, as has been done previously (51, 66, 67), 534 

which may not be fully representative of travel behaviour. Furthermore, air travel is 535 

the only mode of travel accounted for, thus, additional person movements between 536 

country pairs that share land borders are unaccounted for, and as a result, the model 537 

likely underestimates the risk posed to some regions. This limitation may partially 538 

explain the increased model performance for the geographically isolated Caribbean 539 

Islands, which represent a large proportion of ZIKV affected regions. This study does 540 

not account for species of mosquitos other than Ae. Aegypti, such as Ae. Albopictus, 541 

which can also spread ZIKV; however, Ae. Aegypti are known to be the primary 542 

spreading vector, and responsible for the majority of the ZIKV epidemic in the 543 

Americas (86).  Additionally, alternative non-vector-borne mechanisms of 544 

transmission are ignored.  Lastly, due to the lack of spatial resolution of case reports, 545 

we were limited to make country to country spread estimates. We do however 546 

appreciate that there is considerable spatial variation within countries (i.e., northern 547 

vs. southern Brazil) and that this may influence the weekly covariates used in this 548 

study. We again hypothesise that models will become better as the spatial resolution 549 

of available data increases.  550 

 551 

 552 

 553 
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Conclusions 554 

We have introduced a flexible, predictive modelling framework to forecast outbreak 555 

risk in real-time that can be scaled and readily applied in future outbreaks. An 556 

application of the model was applied to the Zika epidemic in the Americas at a 557 

weekly temporal resolution, and country-level spatial resolution, using a combination 558 

of population, socioeconomic, epidemiological, travel patterns and vector suitability 559 

data. The model performance was evaluated for various risk classification schemes, 560 

forecast windows and risk indicators, and illustrated to be accurate and robust across a 561 

broad range of these features. First, the model is more accurate for shorter prediction 562 

windows and restrictive risk classification schemes. Secondly, regional analysis 563 

reveals superior predictive accuracy for the Caribbean, suggesting the model to be 564 

best suited to geographically isolated locations that are predominantly connected via 565 

air travel. Predicting the spread to areas that are relatively isolated has previously 566 

been shown to be difficult due to the stochastic nature of infectious disease spread 567 

(87). Thirdly, the model performed consistently well at various stages throughout the 568 

course of the outbreak, indicating its potential value at the early stages of an epidemic. 569 

The outcomes from the model can be used to better guide outbreak resource allocation 570 

decisions, and can be easily adapted to model other vector-borne epidemics.  571 

 572 

  573 
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Additional files 574 

Additional file 1: Data (cases). Country or territory level weekly Zika cases.  575 
 576 
Additional file 2: Data (incidence). Country or territory level weekly Zika incidence 577 
rates.  578 
 579 
Additional file 3: Data (incoming_travel). Country or territory level, weekly 580 
incoming travel volume.  581 
 582 
Additional file 4: Data (outgoing_travel). Country or territory level weekly 583 
outgoing travel volume.  584 
 585 
Additional file 5: Data (suitability). Country or territory level weekly Aedes vector 586 
suitability.  587 
 588 
Additional file 6: Data (gdp). Country or territory level GDP per capita.  589 
 590 
Additional file 7: Data (physicians). Country or territory level physicians per 1000 591 
people.  592 
 593 
Additional file 8: Data (beds). Country or territory level beds per 1000 people.  594 
 595 
Additional file 9: Data (pop_density). Country or territory level population densities 596 
(people per sq. km of land area). 597 
 598 
Additional file 10: Data (case_weighted_travel_risk). Country or territory level 599 
weekly case-weighted travel risk.  600 
 601 
Additional file 11: Data (incidence_weighted_travel_risk). Country or territory 602 
level weekly incidence-weighted travel risk.  603 
 604 
Additional file 12: Figure S1. Number of high risk countries each week under all 605 
absolute risk classification schemes. The number of countries classified as high risk 606 
each week for each absolute case incidence threshold, ranging from A=50 to A=90. In 607 
parentheses is the weekly incidence rate defining the high risk threshold based on the 608 
percentile (A) specified. 609 
 610 
Additional file 13: Table S2. Summary of model performance. ACC is presented 611 

for each combination of risk indicator (case count and incidence rate), classification 612 

scheme (i.e., R = 0.1, 0.2, 0.3, 0.4, 0.5 and A = 90, 80, 70, 60, 50) and forecast 613 

window (i.e., N = 1, 2, 4, 8 and 12), for selected Epi weeks throughout the epidemic. 614 

ROC AUC (averaged over all locations and all EPI weeks) is computed for all 615 

combinations of risk indicator (case count and incidence rate), classification scheme 616 

(i.e., R = 0.1, 0.2, 0.3, 0.4, 0.5 and A = 90, 80, 70, 60, 50) and forecast window (i.e., 617 

N = 1, 2, 4, 8 and 12). 618 

 619 
 620 
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Additional files 14: Figure S2. Aggregate model performance measured by ROC 621 
AUC. The ROC AUC is averaged over all locations and all weeks, for each relative 622 
risk classification scheme, i.e., R = 0.1, 0.2, 0.3, 0.4, 0.5 and forecast window i.e., N = 623 
1, 2, 4, 8 and 12. For the results shown the risk indicator is case counts. 624 
 625 
Additional file 15: Table S1. Summary of model sensitivity to feature selection. 626 
The ACC and ROC AUC performance of the model is computed and presented under 627 
different combinations of input data features. The proposed model is compared 628 
against two baseline models; one includes only case (and incidence) data, and the 629 
second includes case and all non-travel related data, while the final proposed model 630 
includes all features. The results presented are for the absolute risk classification 631 
scheme, where the risk indicator is incidence rate. 632 
 633 
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ACC: Prediction accuracy 635 

AUC: Area under the curve 636 

CDC: Centre of disease control and prevention 637 

FN: False negative 638 

FP: False positive 639 
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 931 
 932 
Fig 1. Weekly distribution of case and connectivity-risk variables. (A) Zika cases 933 
(B) incidence rates in the Americas, (C) case-weighted travel risk 𝐂𝐑𝐣

𝐭, and (D) 934 

incidence weighted travel risk 𝐈𝐑𝐣
𝐭, for top 10 ranked countries and territories in the 935 

Americas for each respective variable. 936 
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 943 

Fig 2. Schematic of NARX network with 𝐝𝐱 input and 𝐝𝐲 output delays: Each 944 

neuron produces a single output based on several real-valued inputs to that neuron by 945 
forming a linear combination using its input weights and sometimes passing the 946 
output through a nonlinear activation function: 𝐳 = 𝛗(∑ 𝐰𝐢𝐮𝐢 + 𝐛) = 𝛗(𝐰𝐓𝐱 +𝐧

𝐢=𝟏947 
𝐛), where 𝐰 denotes the vector of weights, 𝐮 is the vector of inputs, 𝐛 is the bias and 948 
𝛗 is a linear or nonlinear activation function (e.g., Linear, Sigmoid, and Hyperbolic 949 
tangent (88)). 950 
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 952 
Fig 3. Country prediction accuracy by relative risk level. Panel (A) illustrates the 953 
actual relative risk level assigned to each country at Epi week 40 for a fixed forecast 954 
window, N=4. Panels (B)-(E) each corresponds to a different classification scheme, 955 
specifically (B) R=0.1, (C) R=0.2, (D) R=0.3, (E) R=0.4, and (F) R=0.5. The inset 956 
shown by the small rectangle highlights the actual and predicted risk in Caribbean 957 
islands. For Panels (B)-(E), green indicates a correctly predicted low risk country, 958 
light grey indicates an incorrectly predicted high risk country, and dark grey indicates 959 
an incorrectly predicted low risk country. The risk indicator used is case counts.  960 
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 963 
Fig 4. Country prediction accuracy by forecast window. Panel (A) illustrates the 964 
actual relative risk level assigned to each country at Epi week 40 for a fixed 965 
classification scheme, R=0.2. Panels (B)-(E) each corresponds to different forecast 966 
windows, specifically (B) N=1, (C) N=2, (D) N=4, (E) N=8, and (F) N=12. The inset 967 
shown by the small rectangle highlights the actual and predicted risk in Caribbean 968 
islands. For Panels (B)-(E), the red indicates a correctly predicted high risk country 969 
and green indicates a correctly predicted low risk country. Light grey indicates an 970 
incorrectly predicted high risk country, and dark grey indicates an incorrectly 971 
predicted low risk country. The risk indicator used is case counts.  972 
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 975 
Fig 5. Aggregate model performance measured by ACC (averaged over all 976 
locations and all weeks) for all combinations of relative risk classification schemes 977 
(i.e., R = 0.1, 0.2, 0.3, 0.4 and 0.5) and forecast windows (i.e., N = 1, 2, 4, 8 and 12), 978 
where the risk indicator is case counts. 979 
 980 

 981 
Fig 6. Aggregate model performance measured by ROC AUC (averaged over all 982 
locations and all weeks) for a fixed relative risk classification scheme, i.e., R = 0.4, 983 
and forecast windows (i.e., N = 1, 2, 4, 8 and 12), where the risk indicator is case 984 
counts. 985 
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 987 
Fig 7.  Model performance and robustness. ACC is averaged over all locations for 988 
selected epidemiological weeks when risk indicator is (a) case counts and (b) 989 
incidence rate, and a fixed forecast windows (i.e., N = 4). The error bars represent the 990 
variability in expected ACC across ten runs for each combination.  991 
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