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8

Abstract9

10

Cultural processes, as well as the selection pressures experienced by individuals in a population over11

time and space, are fundamentally stochastic. Phenotypic variability, together with imperfect phenotypic12

transmission between parents and offspring, has been previously shown to play an important role in13

evolutionary rescue and (epi)genetic adaptation of populations to fluctuating temporal environmental14

pressures. This type of evolutionary bet-hedging does not confer a direct benefit to a single individual,15

but instead increases the adaptability of the whole lineage.16

Here we develop a population-genetic model to explore cultural response strategies to temporally17

changing selection, as well as the role of local population structure, as exemplified by heterogeneity in18

the contact network between individuals, in shaping evolutionary dynamics. We use this model to study19

the evolutionary advantage of cultural bet-hedging, modeling the evolution of a variable cultural trait20

starting from one copy in a population of individuals with a fixed cultural strategy. We find that the21

probability of fixation of a cultural bet-hedger is a non-monotonic function of the probability of cultural22

memory between generations. Moreover, this probability increases for networks of higher mean degree23

but decreases with increasing heterogeneity of the contact network, tilting the balance of forces towards24

drift and against selection.25
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These results shed light on the interplay of temporal and spatial stochasticity in shaping cultural26

evolutionary dynamics and suggest that partly-heritable cultural phenotypic variability may constitute27

an important evolutionary bet-hedging strategy in response to changing selection pressures.28

Keywords:29

cultural evolution; cultural plasticity; spatial structure; temporally changing environments; contact network30

properties and evolutionary dynamics31

Introduction32

Many foundational models of social learning and cultural evolution are constructed within the framework of33

theoretical population genetics (Cavalli-Sforza and Feldman, 1981, 1973; Feldman and Cavalli-Sforza, 1976;34

Cavalli-Sforza et al., 1982; Feldman and Cavalli-Sforza, 1984). With genetic evolution as a starting point,35

models of cultural evolution emphasize that cultural traits—learned behaviors such as beliefs, practices, and36

tools—can be transmitted between individuals and are subject to evolutionary forces such as selection and37

drift (Cavalli-Sforza and Feldman, 1973; Creanza et al., 2012, 2017a). In addition, these population-genetic38

modeling frameworks facilitate the joint consideration of genetic and cultural traits, allowing researchers to39

track allele frequencies and cultural phenotypes within the same population and assess their evolutionary40

effects on one another (Feldman and Zhivotovsky, 1992; Laland et al., 1995, 2000; Odling-Smee et al., 2003).41

These models of cultural evolution have generally assumed a well-mixed population, meaning that any42

individual is equally likely to interact with and learn from any other individual in the population. In43

this scenario, researchers can use the frequency of cultural traits in the population to approximate the44

probabilities that individuals with those traits will interact with one another. However, humans often45

bias their interactions based on perceived cultural similarities to other individuals, showing preferences for46

learning from other individuals that are more similar to them in certain ways. This phenomenon, known47

as homophily or assortment, implies that rare traits in the population might be transmitted more often48

than predicted by their low frequency if the people with those traits preferentially interact with one another49

(Creanza and Feldman, 2014; Centola, 2010, 2011). In this sense, homophily acts to increase the perceived50

frequency of a trait in a subset of the population, even if its frequency is low in the population as a whole.51

In addition, homophily might bias the connections in a network, if links are formed between individuals who52

share certain existing beliefs and behaviors (Centola, 2011; McPherson et al., 2001).53
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Even in the absence of homophily, human interactions are unlikely to be ideally represented by a well-54

mixed population. Humans have complex contact networks, where interactions between some individuals55

are common and interactions between other individuals are rare or absent (Ohtsuki et al., 2006; Christakis56

and Fowler, 2008, 2013). Some of these differences in interaction might be due to the spatial distribution57

of individuals in a population; individuals located geographically more close to one another are more likely58

to interact. Other differences might be driven by social structure, with interactions on a social network59

more likely to occur between genetically related individuals and between individuals sharing social contexts60

(Henrich and Broesch, 2011; Apicella et al., 2012).61

Taken together, these studies hint at the potentially important role of local population structure in62

human cultural transmission and the necessity of theoretical treatments of cultural evolution that account63

for complex contact networks. However, few models explore how spatial or network structure can affect64

the spread of a cultural trait compared to well-mixed populations. Cavalli-Sforza and Feldman (1981) used65

reaction-diffusion dynamics to characterize the spread of information in a population, making the analogy66

between the spatial interactions of individuals and those of molecules in a chemical reaction. Derex and Boyd67

(2016) used theoretical and empirical research to demonstrate that certain types of network structure might68

facilitate human innovations: when people could observe all other members of a population attempting69

to solve a problem, the population often became “stuck” on a good solution to a problem but did not70

find the best possible solution. On the contrary, if subsets of the population worked separately and then71

compared their solutions, this partially connected network produced a diversity of perspectives that often72

produced better combined results than completely connected populations (Derex and Boyd, 2016). Creanza73

et al. (2017b) analyzed spatially structured populations from another perspective, modeling a set of separate74

populations with their own cultural repertoires and allowing these populations to interact through migration.75

These migration events between populations produced bursts of innovations that increased the cultural76

repertoires of populations that received migrants. Separately, it has been shown that network structure can77

act both as an amplifier and a suppressor of selection (Lieberman et al., 2005; Hindersin and Traulsen, 2015),78

underscoring the potential relevance of contact structure in shaping the evolution of cultural traits.79

In addition to homophily and network structure, previous research also suggests that fluctuating environ-80

ments can shape cultural evolutionary dynamics: some cultural traits—for example, behavioral adaptations81

to cold weather such as fur clothing—might be more useful in some environments than in others (McCart-82

ney, 1975; Gilligan, 2010). One sense in which cultural evolution is fundamentally different from genetic83

evolution is that environmental pressures can drive the innovation of new cultural traits: humans exposed84
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to cold weather can invent warmer clothing in response, whereas a bacterium exposed to antibiotics cannot85

invent a resistance mutant in direct response. Thus, cultural evolutionary patterns could differ in harsh86

environments compared to stable environments, particularly if the harsh environments provide challenges87

that can be ‘solved’ with new behaviors or technologies (Rendell et al., 2010; Smaldino et al., 2013; Fogarty88

et al., 2015; Fogarty and Creanza, 2017; Fogarty, 2018).89

Patterns of environmental change can also influence learning strategies (Borenstein et al., 2008; Aoki and90

Feldman, 2014). For example, if the environment fluctuates quickly, individuals are more likely to experience91

a different environment from their parents, which might decrease the fitness value of high-fidelity vertical92

(parent-to-offspring) transmission. Cultural evolution models by Fogarty (2018) have also demonstrated93

that the rate of cultural innovation in a population decreases with environmental stability and increases in94

unstable, periodically changing environments. These results suggest that, similar to (epi)genetic systems95

(Carja and Feldman, 2011; Carja et al., 2014a,b), partly heritable cultural trait variation can act as a96

phenotypic bet-hedging strategy, using dynamic regulation of cultural phenotypic variability to facilitate97

adaptation to changing environmental pressures. While cultural plasticity can cause phenotypes to differ98

widely within a cultural lineage, and fixed phenotypes only allow offspring with identical traits to the99

parents, the type of partly heritable cultural memory we explore here can produce cultural heterogeneity100

with familial correlations intermediate to these two extremes. In this context, cultural memory represents101

a different phenomenon than two related parameters that are often discussed in the cultural evolution102

literature: the cultural transmission probability, the likelihood that another individual adopts one’s traits,103

and the transmission fidelity, the likelihood that the other individual accurately reproduces the cultural trait104

that it was attempting to copy. Here, cultural memory applies to general traits that can take one of multiple105

specific forms: a child of an agriculturalist might be exceedingly likely to also become an agriculturalist, but106

the level of cultural memory would influence whether the child chooses to farm the specific crop of his parent107

versus choosing a different crop used by a neighbor, particularly when the neighbor appears to have an excess108

of food. With higher levels of cultural memory, the child is more likely to adopt the parent’s specific form109

of the trait.110

In sum, understanding the spatial and environmental dynamics of human cultural interactions could111

shed light on some of the fundamental aspects of human behavior, such as social learning, cooperation, and112

cumulative culture. Our paper studies cultural strategies in temporally varying environments by analyzing113

the evolutionary advantage of partly heritable cultural memory, and how this evolutionary advantage is114

shaped both by fluctuating environments and local population structure. It starts by specifying a Moran115
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death-birth model of cultural transmission for spatially structured populations, subject to periodic environ-116

mental change. Here, the spatial component is represented by a heterogeneous contact network between the117

individuals in the population: each node represents an individual, and the interactions between individuals118

are represented by connections between the nodes. The degree of a node is the number of its connections119

to other nodes (Wasserman and Faust, 1994); it follows that the mean degree of a network is the average120

number of connections across all nodes. When the degree distribution of the nodes of a network has a small121

standard deviation, the nodes of the network are generally similar in degree; however, when the standard122

deviation in degree is large, nodes with few or many connections are more common (Figure 1).123

Standard deviation in degree increases

Mean degree is held constant

Figure 1: Networks that differ by standard deviation in degree. The three networks have the same
mean degree; in other words, the nodes in each network have the same mean number of connections. However,
they differ in their standard deviation in degree: networks with high variance in degree have many small-
degree nodes and some large-degree nodes, also referred to as hubs. Here, the size of a node corresponds to
its degree and node color is arbitrary.

We pose our research question in terms of analyzing the probability of fixation of a mutant cultural trait124

that permits a range of expressible, partly heritable cultural phenotypes. This model builds on previous125

cultural evolutionary theory by incorporating essential, often neglected aspects of cultural transmission:126

spatial structure of transmission networks and partially heritable phenotypic variability (building on Carja127

and Plotkin (2017)). Similar to Carja and Plotkin (2017), we find that the evolutionary advantage of a128

phenotypically variable cultural trait critically depends on the cultural memory of individuals expressing the129

variable trait. When the population experiences multiple environmental changes, the probability of fixation130
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of a phenotypically variable trait depends non-monotonically on the probability of cultural memory. We also131

show that the population structure of interactions on a social network suppresses the probability of fixation132

of such a trait, compared to a well-mixed population. Further, this suppression is stronger for networks of133

increased standard deviation in degree. We provide intuition for the complex dependence of this evolutionary134

advantage on the degree of phenotypic memory and the heterogeneity of the contact network, and we discuss135

the interacting roles of population structure, environmental change, and phenotypic memory on the evolution136

of cultural variability.137

Model138

We use a death-birth Moran-type model to describe changes in the frequency of a cultural ‘allele’ in a finite139

population of fixed size N . Each individual is defined by a single biallelic cultural locus A/a, which controls140

its phenotypic range. Each individual has one allele, A or a, and there is uniparental inheritance. Initially,141

we assume that all individuals have the non-variable A allele, with one individual with the phenotypically142

variable a allele introduced at time t = 0. The A allele encodes a fixed phenotypic value, whereas individuals143

with the a allele may express a wider range of phenotypes. Here, the phenotypic distribution of the a allele144

is chosen from a discrete uniform distribution with probability mass on two points. In other words, the145

phenotype of individuals with the a allele can take one of two forms (Figure 2). In previous work, it was146

shown that this representation did not qualitatively differ from a scenario in which the variable phenotype147

was drawn from a continuous uniform distribution (Carja and Plotkin, 2016).148

Since the phenotype of an individual translates to its fitness, this system could usefully be applied to149

many types of cultural traits. Here, we use a hunting and gathering example to illustrate a cultural system150

that is influenced by environmental change, social network connections, and phenotypic cultural memory.151

Say that the A allele represents a generalist cultural phenotype of gathering food from the environment.152

The a allele could then be a cultural phenotype of hunting animals for food, with the added difference that153

there are multiple forms of the a allele, each representing different hunting specializations, including tools154

or techniques that are culturally transmitted. For example, individuals with the A allele have the cultural155

phenotype of gathering food, and individuals with the a allele have one of multiple cultural phenotypes156

with different fitness values, say, hunting either small game with traps or hunting large game with spears.157

Individuals with the a allele specialize in one type of hunting and the tools associated with it. For this158

modeling application, we make the simplifying assumption that fitness is closely linked to an individual’s159

6

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/466524doi: bioRxiv preprint 

https://doi.org/10.1101/466524
http://creativecommons.org/licenses/by-nc-nd/4.0/


food sources, which might not generalize to populations with the cultural practice of sharing all of their food160

with the group.161

We introduce two environments, E1 and E2. In these environments, individuals of the wild type A and162

mutant type a each give birth and die according to the following per-capita rates:163

Genotype A a

Phenotype ΦA Φa

Birth rate in environment E1 f1(ΦA) f1(Φa)

Birth rate in environment E2 f2(ΦA) f2(Φa) ,

Death rate in environment E1 1 1

Death rate in environment E2 1 1

164

where Φa denotes a random variable, and ΦA is a fixed value. The functions f i : R → R (i ∈ {1, 2}) map165

phenotype to birth rate in each of the two environments, and f1 is the identity function. We assume that both166

alleles have the same expected mean fitness in their optimal environment, and the same expected mean fitness167

in their unfavorable environment: E(f1(ΦA)) = E(f2(Φa)) and E(f2(ΦA)) = E(f1(Φa)). This condition168

also ensures that the average of two alleles’ mean fitnesses, which we denote M = E(f1(ΦA))+E(f1(Φa))
2 =169

E(f2(ΦA))+E(f2(Φa))
2 , is the same in both environments. The function f2 is defined as a reflection of f1 around170

M : f2(x) = 2M − f1(x). As a result, the variance in fitness of allele a with randomly drawn phenotype is171

the same in both environments: Var(f1(Φa))=Var(f2(Φa)) =Var(Φa) (as in Carja and Plotkin (2017)).172

In this model, there are also multiple epochs of environmental changes, occurring periodically. The173

mapping from phenotype to fitness depends on the environmental regime, and it is chosen so that both alleles174

have the same expected fitness across environments, so that the only difference between them is the possibility175

of (partly heritable) phenotypic variability. We choose phenotypic ranges and fitness functions so that the176

mean fitness expressed by each of the two genotypes are equal when averaged over the two environmental177

regimes. This setup allows us to focus on the evolutionary advantage of the phenotypic variance of a, Var(Φa),178

and to study population persistence without conflating this effect with any mean-fitness advantage. In our179

analysis of periodic environmental changes, we assume that the population experiences two different types of180

environments, E1 and E2, which alternate deterministically every n time steps, so that both environments181

are experienced every 2n time steps. We assume that one environment is more favorable to one allele, and182

the other environment to the other allele – that is, we study a model where the phenotypically variable allele183

a has lower expected fitness than the wild-type allele in one of the environmental regimes, and it has higher184

expected fitness than the wild-type in the other regime (as illustrated in Figure 2). In other words, the185
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cultural trait with highest fitness in the first environment has the lowest fitness in the second environment,186

and the trait with the lowest fitness in the first environment will have the highest fitness in the second187

environment.188

In the context of our hunting and gathering example, this scenario represents the notion that the repro-189

ductive fitness of individuals who gather different food sources can differ based on aspects of the environment,190

including differences in environment due to the population migrating to a new area. For example, during191

a high-rainfall environmental epoch, certain plants might grow well and be rich food sources for foragers,192

whereas during a low-rainfall epoch, the same types of plants have much lower yield. In contrast, perhaps193

it is easier to find and catch prey when foliage is less dense during a dry epoch, whereas dense foliage in-194

creases the difficulty of hunting and lowers yields. Thus, the fitness of individuals with a stable preference195

for a certain food type would change over time as the environment fluctuates. We can envision a similar196

fluctuation in hunting and gathering success if the population is nomadic and migrates through wetter and197

drier environments.198

The model essentially differs from Carja and Plotkin (2017) by the introduction of population structure:199

individuals are nodes of a graph, with links between them representing the contact structure. We generated200

networks for these simulations using the igraph package and the Barabasi-Albert model of preferential at-201

tachment. Each network starts with a single vertex and no edges, and nodes are added to reach population202

size N . Each new node is added to the network and connected to other individuals, each with a probability203

proportional to the individual’s current degree. This family of graphs allows us to easily vary the mean degree204

or the standard deviation in degree, while keeping the other constant, by varying the power of preferential205

attachment of the graphs.206

Once the network is generated, it remains fixed. We begin at time t = 0 with a population in which every207

node of the network contains individuals fixed for the non-variable A allele; on one randomly selected node,208

we introduce a phenotypically variable a allele. At every time step of the Moran model, one individual is209

chosen to die and a neighbor is chosen, with probability proportional to fitness in the current environment,210

to replace the empty node with an offspring. The network imposes population structure in the sense that any211

individual can only pass its A/a allele to another node if it is directly connected to that node. However, the212

connections between nodes do not differ in strength or distance: we consider all connections to be uniform,213

and an individual’s likelihood of passing on its allele to a connected node is proportional to its fitness in that214

environment. This is different from a well-mixed population, in which the new birth is chosen proportional215

to fitness among the entire population.216
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Most fit phenotype in environment E1 is least fit in environment E2 

A. Periodically changing selection pressure:

B. Phenotypic memory of a cultural trait: 

p
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Figure 2: Illustration of the model. Panel A: Periodically changing selection pressures. Time is shown
on the x-axis and fitness on the y-axis. Every n time steps, the environment changes, alternating between
E1 and E2. The phenotype with the highest fitness in E1 has the lowest fitness in E2 and vice versa. The
mean fitness of the a phenotypes in one environment equals the fitness of the A phenotype in the other
environment. Panel B: Phenotypic memory of a cultural trait. When an individual a gives birth, with
probability p (the probability of phenotypic memory), its offspring inherits the cultural trait of its parent,
and with probability 1−p, the offspring’s phenotype is resampled from the phenotypic distribution. Adapted
from Carja and Plotkin (2017).

When a birth occurs, we determine the phenotypic state of the offspring as follows (Figure 2). If the217

individual chosen to reproduce has genotype A, then the phenotypic state of the offspring always equals its218

parent’s (fixed) phenotypic value. For a reproducing individual with the a allele, however, there exists a219

probability of phenotypic cultural memory, denoted by the parameter p, between parent and offspring: with220

probability p the offspring retains the phenotypic cultural state of its parent, and with probability 1− p the221

offspring’s phenotype is redrawn independently from the random variable Φa. Thus, individuals of type a222

can express a range of cultural values, and their phenotype is partly heritable between time steps (provided223

p > 0). For our hunting and gathering example, this phenotypic memory represents the likelihood that224

an a offspring will copy the specific hunting tools and techniques of its parent (p) rather than sample the225

distribution of the a phenotypes, representing the food sources of the a individuals in the population. In226
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the case of periodic environments, we implement environmental changes (and re-calculate event rates) at227

deterministic times: n, 2n, 3n, etc.228

Depending on the timescale considered, this model can apply to multiple forms of cultural evolution. On229

between-generation timescales, we can consider the death-birth process to represent human reproduction,230

and the modeled process of cultural learning can represent parent-to-offspring (vertical) transmission of the231

cultural trait. On within-generation timescales, we can treat the death-birth process to represent a period232

of cultural sensitivity during which their previous cultural trait can be replaced based on a neighboring233

individual’s phenotype. This is akin to horizontal cultural transmission, or learning a new cultural trait234

from one’s peers. Thus, depending on the characteristics of the cultural trait and the relevant timescales235

represented by each time step, our model can usefully be applied to both vertical and horizontal cultural236

transmission of a trait on a network. The results of these two conceptions of the model might not be directly237

comparable with one another since the timescale considered is very different in relation to a human lifespan.238

In addition to the timescale, the parameters of the model can be tuned to apply to horizontal transmission;239

for example, the strength of cultural memory might be expected to be lower in horizontal transmission than240

in vertical transmission, based on empirical studies (Cavalli-Sforza et al., 1982).241

With this model, we study the possible long-term advantage of heritable phenotypic variability by ana-242

lyzing the ability of new phenotypically variable mutations a to invade an otherwise non-variable population243

(A) situated on these networks. We define the fixation probability as the proportion of simulations in which244

the new phenotypically variable allele a invades and drives the resident allele to extinction and study how245

this probability depends on the phenotypic variance, the environmental rate of change, the network structure246

of the population, and the phenotypic memory associated with the a allele. We determine these probabilities247

of fixation by Monte Carlo simulations, using an ensemble of at least 5,000 replicate populations. Each248

replicate population undergoes the death-birth process until either the A allele or the mutant a allele reaches249

fixation. For all simulations, the population reached fixation in one of the two alleles.250

Results251

For a heterogeneous contact network, increasing the number of connections for nodes in the network (in252

other words, increasing mean node degree) increases the probability of fixation of the a allele (Figure 3).253

The heterogeneous contact network acts as a suppressor of selection: the more connected the network, the254

higher the probabilities of fixation for the a allele, with the upper limit being the fixation probability of a255
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well-mixed population.256

We find that the fixation probability of a phenotypically variable a allele is most likely for an intermediate257

value of the phenotypic memory p. We have previously shown that, in well-mixed populations of both258

fixed and varying size N , the probability of fixation of a new plastic allele is a non-monotonic function259

of the probability of phenotypic memory (Carja and Plotkin, 2016, 2017) (Supplementary Figure 1).260

Moreover, slower rates of environmental change are correlated with larger probabilities of fixation and larger261

probabilities of phenotypic memory that maximize the probability of fixation of the new allele (Figure 4).262

These results are intuitive and easy to interpret: it is beneficial for the a allele to have some phenotypic263

memory within each environment, as this helps the high-fitness realizations of the allele, while having little264

effect on its low-fitness realizations. However, too much phenotypic memory can be detrimental, because the a265

lineage will be “stuck” with a potentially deleterious phenotype for longer. The optimal amount of phenotypic266

memory is larger for slower-changing environments, as this allows the rates of phenotypic switching to be267

tuned to the environmental stochasticity and creates the optimal amount of phenotypic diversity for the268

given environmental rate of change (Carja et al., 2014b). For comparison, we include the probability of269

fixation for a neutral trait with no fitness advantage (horizontal lines, Figure 4). A phenotypically variable270

?a? allele is advantageous over a wide range of phenotypic memory, and this advantage increases as the271

environmental rate of change increases.272

0.05
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0.0 0.2 0.4 0.6 0.8 1.0
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y 
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degree:
40
30
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Phenotypic memory, p

Figure 3: Probability of fixation for different values of the mean degree of the contact network.
The lines are splines, while the dots represent the ensemble average across 5000 replicate Monte Carlo
simulations. Here N = 500, ΦA,E1 = 0.8, ΦA,E2 = 0.6, Var(Φa)=0.04, the network standard deviation in
degree is kept constant at σ = 20, and the environment changes every 30 time steps (n = 30).
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As a network grows and evolves, more connections are formed. In real-life networks, it has been observed273

that nodes that are already well connected can be more likely to acquire new connections, a concept known274

as ‘preferential attachment’ (Barabási and Albert, 1999; Dorogovtsev et al., 2000; Yook et al., 2002; Jeong275

et al., 2003). As the power of preferential attachment increases, new connections are more concentrated276

at well-connected nodes (the hubs of the network), and the standard deviation in degree of the network277

increases. We next focus on the differences in spatial population structure that result when networks have278

different levels of preferential attachment, and we assess the effect of these differences on the evolutionary279

advantage of a phenotypically plastic allele a. Specifically, we analyzed networks for which we tuned the280

power of preferential attachment while keeping the mean degree constant, which translated to changes in281

the standard deviation in degree.282

We find that the fixation probability of a new phenotypically variable allele a depends highly on the283

heterogeneity of network structure, and that it can be markedly lower for networks with higher variance in284

degree, for a wide range of rates of environmental change (Figure 4 and Supplementary Figure 2). This285

effect of the standard deviation in degree is shown to be much stronger than the effect of the mean degree286

of the contact network.287
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Figure 4: Probability of fixation for different values of the standard deviation in degree of the
contact network. The lines are splines, while the dots represent the ensemble average across 5000 replicate
Monte Carlo simulations. N = 500, ΦA,E1 = 0.8, ΦA,E2 = 0.6, Var(Φa)=0.04, mean degree of the contact
network is fixed at 40. Panel A: Environmental rate of change n = 5. Panel B: Environmental rate of
change n = 30. The horizontal lines represent the probability of fixation for a neutral allele entering the
population, with colors as in the legend.

Figure 5 shows that, for a given value of the probability of phenotypic memory p, (in this figure288

p = 0.5), the probability of fixation of the a allele is maximized for well-mixed populations and decreases as289

the standard deviation of degree is increased, across a wide range of rates of environmental stochasticity. This290
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lower fixation probability for new mutations compared to well-mixed population points to slower adaptation291

as mutations become rare. Hence, population structure acts as a suppressor of selection, tilting the balance292

of forces towards drift and against selection and slowing down evolutionary dynamics.293
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Figure 5: Probability of fixation of a new phenotypically plastic allele as a function of standard
deviation of degree for the network for different rates of environmental change. The lines
are splines, while the dots represent the ensemble average across 5000 replicate Monte Carlo simulations.
N = 500, ΦA,E1 = 0.8, ΦA,E2 = 0.6, Var(Φa)=0.04, mean degree of the contact network is fixed at 40. Here
the phenotypic memory is fixed at p = 0.5. When the power of preferential attachment is 0, the results are
representative of a well-mixed population. The x-axis shows the power of preferential attachment, and a
secondary x-axis (below) shows the equivalent standard deviation in degree.

The intuition behind these results is simple. When a novel mutant arises in a random node of the network,294

it is much more likely to arise in a node of small degree for networks with high variance in degree (when the295

mean degree is kept constant). While the network does indeed contain bigger, higher-degree nodes, they are296

rare, and these hubs can only aid in the trait’s spread once they are reached. On average, however, when297

the power of preferential attachment is high the mutation is more likely to appear in nodes of small degree,298

and correlations in degree mean that these nodes of small degree are linked to other nodes of small degree.299

The architecture of this population structure constrains spread and increases the probability that the new300

mutation, even if beneficial, is lost from the population. The higher the variance, the stronger this effect,301

and the lower the average degree of most network nodes.302
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Discussion303

Human interactions are generally not random; they are often structured by geography, social networks,304

language, and other cultural factors. The aim of this study is to understand how network topology—in305

particular, heterogeneity in degree—shapes probabilities of fixation of phenotypically variable alleles, and306

thus to hint at how population structure shapes the rate of evolution in cultural systems. Studying the role307

of population structure is complicated by the fact that networks differ in many structural properties, and308

it is difficult to study one network feature independent of others. Degree distribution has been shown to309

be an essential characteristic of network structure (Maslov and Sneppen, 2002; Kossinets and Watts, 2006),310

and previous studies have identified network properties, such as individual variation in number of contacts,311

as an important determinant of disease spread (Newman, 2002; Bansal et al., 2007; Eames and Keeling,312

2002; Shirley and Rushton, 2005; Salathé et al., 2010). In addition, heterogeneity in degree influenced the313

cascading spread of a neutral trait, such as a cultural fad, in a threshold model: increased heterogeneity in314

degree decreased the likelihood that such a fad would sweep through the population (Watts, 2002)315

Throughout this paper, we have considered a model of cultural evolution taking into account two im-316

portant aspects: the fact that cultural traits have partially heritable phenotypic variation and the fact that317

individuals’ interactions are not random in a population, but instead structured in local contact networks.318

We have modeled a single new mutation that can increase cultural phenotypic variability; we introduce this319

new plastic mutant at time t = 0 on a random node on the network and study its probability of fixation.320

This allows us to ask questions about the rate of cultural evolution in structured populations and interrogate321

whether spatial population structure in this case is an amplifier or a suppressor of selection. We have found322

that the probability that this new mutant fixes in the population is linked to the properties of the network323

that describes the populations’s interactions. When we introduce a new cultural bet-hedging mutant with324

multiple possible phenotypic states, the probability that this mutant spreads to fixation in the population325

increases when the individuals on the network have more connections (increased mean degree, Figure 4)326

but decreases when these connections are more unevenly distributed (increased standard deviation in degree,327

Figure 5). In other words, the network structure acts to inhibit the spread of bet-hedging mutations com-328

pared to well-mixed populations, slowing down the dynamics and tilting the evolutionary balance away from329

selection and towards drift. Further, the spread of this phenotypically plastic trait is particularly hindered330

by an uneven social network in which some individuals are well-connected hubs of information but many331

individuals have few connections.332

The degree of cultural memory and the rate of environmental change also interact with network structure333
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to produce novel cultural evolutionary patterns. Stronger cultural memory (p) increases the likelihood of334

fixation of the phenotypically plastic mutant allele, but only to a point. If the fidelity of cultural transmission335

from parent to offspring is too high, the high-fitness phenotype can spread, but after the environment336

changes the lower-fitness phenotype will then be overrepresented in the a population. Thus, there is an337

intermediate optimum level of cultural memory that depends on the environmental rate of change; slower338

rates of environmental change favor higher levels of cultural memory than faster rates do. These slower rates339

of environmental change are also correlated with larger probability of fixation of the mutant allele (Figure340

4). Further, as the probability of fixation of the variable trait increases, it also spreads more quickly through341

the population (Figure S3), thus linking optimal levels of cultural memory to the rapid fixation of the342

phenotypically variable trait.343

Such a model could be applied to many cultural systems; here we have given the example of hunting344

and gathering skills as cultural traits that can be fully or partially heritable and can be affected by the345

environment. In our example, individuals with the cultural allele A have a fixed food-source preference, such346

as gathering edible plants from the environment, and the culturally transmitted knowledge about which347

foods are edible. In contrast, individuals with the a allele can learn one of multiple hunting techniques that348

might involve specialized tools. Descendants of a individuals learn their parent’s hunting technique with349

probability p, which represents the degree of cultural memory. When the environment changes, food sources350

(such as specific plants or animals) that were previously abundant could become scarce, so preferences for351

those food sources could shift in their benefit to the individual.352

Thus far, we have been considering environmental fluctuations as external changes that alter the fitnesses353

of the cultural traits in question. However, cultural traits can also alter their own environment, changing354

the selection pressures on both cultural and genetic traits, a process known as cultural niche construction355

(Laland et al., 2000; Odling-Smee et al., 2003; Creanza et al., 2012; Fogarty and Creanza, 2017). This356

is salient to our model: with the example of food-source choice as a cultural trait, we can envision that357

environmental factors such as rainfall or temperature can fluctuate over time, altering the fitness of the358

cultural practice of gathering or farming certain food sources. However, the cultural traits themselves can359

also act to facilitate changes to the environment. For example, gathering one type of food can lead to scarcity360

of that resource, reducing the fitness of utilizing that food source and increasing the fitness of shifting to361

another food source. Similarly, preferentially hunting large game might reduce their population sizes, possibly362

allowing the populations of smaller animals to increase and thus be a more abundant food source, increasing363

the fitness of other phenotypic variants of the hunting trait. From the perspective of food-producing societies,364
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this process is also evident: specific crops use subsets of soil nutrients, altering the environment by depleting365

those resources and thus increasing the fitness of cultural traits favoring other crops. This underscores the366

importance of considering environmental fluctuations in models of cultural evolution, since culture itself can367

induce such fluctuations. Thus, for cultural traits, both external environmental changes and culture-induced368

niche construction prove to be crucial factors in evolutionary dynamics; in this model, we can represent both369

of these situations by implementing fluctuating environments.370

We have based this model on a theoretical population-genetic framework, the death-birth Moran process,371

but when applied to cultural traits, it is not necessary to think of this process in literal terms of death372

and birth. In genetic models, an individual transmits its traits via reproduction; however, in the context373

of cultural evolution, this transmission can also occur between existing individuals. Thus, we can envision374

a Moran process for cultural traits such that, in every time step, an individual becomes culturally plastic375

and can learn from a neighbor. Thus, the death rate here can be conceptualized as a rate at which people376

become receptive to a new cultural model, at which point they could learn from a neighbor or sample from377

the distribution of phenotypes in the population. The process by which individuals reproduce in proportion378

to their fitness also has a cultural analogue: humans can show preferences for learning from individuals who379

have demonstrated success (Boyd and Richerson, 1988; Henrich and McElreath, 2003; McElreath et al., 2008;380

Mesoudi, 2011). Thus, in addition to representing vertical cultural transmission from parent to offspring,381

our model could also represent the spread of a behavior horizontally along a network of adults. For our382

hunting and gathering example, a randomly chosen individual in each time step could assess its neighbors to383

determine who has procured the most food recently and potentially copy the phenotype of that individual.384

To understand how our results may generalize to other representations of the spread of cultural traits,385

we discuss some of implications of the model assumptions. First, by considering the evolution of one trait386

in a population, we must make the simplifying assumption that a cultural trait affects fitness equally across387

individuals. In reality, individuals have different cultural repertoires that would modulate the benefit of any388

given trait. We can easily see this in our hunting and gathering example: a simple additional trait—for389

example, the ability to fish, or the practice of sharing food among the group—might dampen an individual’s390

fitness benefit from specialized hunting skills. Further, a useful extension to the horizontal transmission391

framing of the model could be the assessment of one’s own fitness in comparison to surrounding individuals.392

Currently, when an individual is chosen to adopt a new trait, it will do so even when all of the surrounding393

individuals have a lower-fitness variant. This has been observed in cultural systems: conformist-biased394

cultural transmission can lead to the propagation of common cultural traits even when they are maladaptive395
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or costly (Henrich, 2000). However, humans are also adept at assessing the prestige or success of an individual396

before deciding to learn from that individual, cultural phenomena termed prestige bias and success bias397

(Barnett and Pontikes, 2008; Reyes-Garcia et al., 2008); this could be modeled in our framework if individuals398

assessed the fitness of their potential tutors before deciding whether to alter their cultural trait. Success bias399

in horizontal transmission could thus potentially aid the spread of the phenotypically plastic allele, since the400

high-fitness forms of the trait would preferentially spread in a given environment.401

In addition, we have modeled population structure as a static, fixed network; interactions between in-402

dividuals in many real-world situations, however, are dynamic. For example, humans are mobile and their403

likelihood of interactions with other individuals can depend on their current geographic location. However,404

connections between certain individuals, such as genetic relatives, might be more stable over time. This405

modeling framework could usefully be applied both to real-world networks constructed from human inter-406

actions and to dynamic networks in which connections can form and break over time. Such rewiring of the407

network may dampen the effect of population structure if it alters the instantaneous degree distribution or408

maintains the degree distribution but changes which nodes are well connected. Finally, as with previous409

work in (epi)genetic systems, these models focus on a non-random, periodic environmental fluctuation (but410

see (Carja et al., 2014b)). There is considerable scope for extensions of this model to account for random411

fluctuations in environment as well as fluctuations with more than two possible environmental states.412

In conclusion, we show that network structure, cultural plasticity, and environmental fluctuations interact413

with one another to produce complex cultural evolutionary dynamics. In particular, heterogeneity in contact414

structure suppresses cultural evolution of a phenotypically varying trait by lowering the fixation probability415

a newly arising plastic mutation. This finding is surprising because social network research in other fields,416

such as marketing, indicates that hubs in a network could have an outsized impact on facilitating the417

spread of information (Goldenberg et al., 2009). These contrasting results might suggest a spectrum of418

influence for network hubs depending on the type of cultural transmission in a system, warranting further419

investigation. For example, certain cultural traits might be easily observed and adopted without close420

interpersonal interactions, facilitating one-to-many transmission and augmenting the importance of network421

hubs. In contrast, if other cultural traits are primarily passed through parent-to-offspring transmission or422

through extended teaching, then network hubs might be far less influential in, or even detrimental to, the423

spread of information.424

425
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List of Figures560

Figure 1. Networks that differ by standard deviation in degree. The three networks have the561

same mean degree; in other words, the nodes in each network have the same mean number of562

connections. However, they differ in their standard deviation in degree: networks with high563

variance in degree have many small-degree nodes and some large-degree nodes, also referred to564

as hubs. Here, the size of a node corresponds to its degree and node color is arbitrary.565

Figure 2. Illustration of the model. Panel A: Periodically changing selection pressures. Time is shown566

on the x-axis and fitness on the y-axis. Every n time steps, the environment changes, alternating567

between E1 and E2. The phenotype with the highest fitness in E1 has the lowest fitness in E2568

and vice versa. The mean fitness of the a phenotypes in one environment equals the fitness of569

the A phenotype in the other environment. Panel B: Phenotypic memory of a cultural trait.570

When an individual a gives birth, with probability p (the probability of phenotypic memory),571

its offspring inherits the cultural trait of its parent, and with probability 1 − p, the offspring’s572

phenotype is resampled from the phenotypic distribution. Adapted from Carja and Plotkin573

(2017).574

Figure 3. Probability of fixation for different values of the mean degree of the contact network.575

The lines are splines, while the dots represent the ensemble average across 5000 replicate Monte576

Carlo simulations. Here N = 500, ΦA,E1 = 0.8, ΦA,E2 = 0.6, Var(Φa)=0.04, the network577

standard deviation in degree is kept constant at σ = 20, and the environment changes every 30578

time steps (n = 30).579

Figure 4. Probability of fixation for different values of the standard deviation in degree of the580

contact network. The lines are splines, while the dots represent the ensemble average across581

5000 replicate Monte Carlo simulations. N = 500, ΦA,E1 = 0.8, ΦA,E2 = 0.6, Var(Φa)=0.04,582

mean degree of the contact network is fixed at 40. Panel A: Environmental rate of change583

n = 5. Panel B: Environmental rate of change n = 30. The horizontal lines represent the584

probability of fixation for a neutral allele entering the population, with colors as in the legend.585

Figure 5. Probability of fixation of a new phenotypically plastic allele as a function of standard586

deviation of degree for the network for different rates of environmental change. The587

lines are splines, while the dots represent the ensemble average across 5000 replicate Monte588

Carlo simulations. N = 500, ΦA,E1 = 0.8, ΦA,E2 = 0.6, Var(Φa)=0.04, mean degree of the589

contact network is fixed at 40. Here the phenotypic memory is fixed at p = 0.5. When the590
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power of preferential attachment is 0, the results are representative of a well-mixed population.591

The x-axis shows the power of preferential attachment, and a secondary x-axis (below) shows592

the equivalent standard deviation in degree.593

Figure S1. Probability of fixation of the a allele for well-mixed populations. The lines are splines,594

while the dots represent the ensemble average across 5000 replicate Monte Carlo simulations.595

Here N = 500, ΦA,E1 = 0.8, ΦA,E2 = 0.6, Var(Φa)=0.04 and the rate of environmental changes596

as presented in the legend.597

Figure S2. Probability of fixation for different values of the standard deviation in degree of598

the contact network. The lines are splines, while the dots represent the ensemble average599

across 5000 replicate Monte Carlo simulations. Here N = 500, ΦA,E1 = 0.8, ΦA,E2 = 0.6,600

Var(Φa)=0.01, mean degree of the contact network is fixed at 40. Panel A: Environmental rate601

of change n = 5. Panel B: Environmental rate of change n = 30.602

Figure S3. Time to fixation for different values of the standard deviation in degree of the con-603

tact network. The lines are splines, while the dots represent the ensemble average across 5000604

replicate Monte Carlo simulations. Here N = 500, ΦA,E1 = 0.8, ΦA,E2 = 0.6, Var(Φa)=0.04,605

mean degree of the contact network is fixed at 40. Environmental rate of change n = 5.606
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Figure S1: Probability of fixation of the a allele for well-mixed populations. The lines are splines,
while the dots represent the ensemble average across 5000 replicate Monte Carlo simulations. Here N = 500,
ΦA,E1 = 0.8, ΦA,E2 = 0.6, Var(Φa)=0.04 and the rate of environmental changes as presented in the legend.

26

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/466524doi: bioRxiv preprint 

https://doi.org/10.1101/466524
http://creativecommons.org/licenses/by-nc-nd/4.0/


●
●
●●●●●●●

●
●●
●

●

●●

●●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●

●
●
●
●●
●●

●●●

●

●

●

●

●

●

●●

●
●

●

●●●
●

●
●

●
●●
●

●

●
●●
●●●●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●
●

●
●

●●
●
●●

●

●

●●
●

●
●

●●
●

●●

●

●

●●

●

●

●
●
●
●
●
●

●

●
●
●

●

●

●

●

●
●
●

●●●
●
●
●

●
●
●

●
●
●●
●
●●
●

●●●

●

●●
●●●
●

●
●

●

●

●●
●
●●
●
●●●

●●
●
●
●

●

●

●

●

●
●●
●●

●●
●●

●
●
●
●
●
●

●

●
●

●●●
●
●
●

●

●
●

●

●
●
●

●

●

●
●
●
●●
●
●●

●●
●●
●●●●●●

●●

●
●
●●

●
●●
●
●
●●

●●
●●●
●●●
●
●●

●●●

●

●
●

●

●●

●
●

●

●
●●●

●

●
●
●
●
●
●
●●●

●

●
●
●
●

●●●
●
●
●●
●
●●●●●

●
●●●
●●●
●

●●●

●
●
●●●●●
●●●●●

●
●●

●●

●●
●
●
●●●

●
●●●
●
●
●

●●

●
●
●●
●

●
●●●

●

●
●
●
●●
●●●●●

●
●

●

●●
●

●
●
●
●
●
●
●

●

●●
●
●●
●●●●●
●●
●
●●

●
●●
●
●
●
●
●
●●●●●●●●●●●●

●●●●●●
●
●
●
●●
●
●

●●●
●●

●

●
●

●
●●
●

●
●●
●
●●●●●●●●●●●

●

●
●
●●

●

●●

●

●
●●
●
●

●
●

●

●

●●

●

●

●●●
●
●●●●●
●●●
●●●
●●●
●●
●●●●●●●●

●
●
●●●●●●●

●
●●
●

●

●●

●●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●

●
●
●
●●
●●

●●●

●

●

●

●

●

●

●●

●
●

●

●●●
●

●
●

●
●●
●

●

●
●●
●●●●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●
●

●
●

●●
●
●●

●

●

●●
●

●
●

●●
●

●●

●

●

●●

●

●

●
●
●
●
●
●

●

●
●
●

●

●

●

●

●
●
●

●●●
●
●
●

●
●
●

●
●
●●
●
●●
●

●●●

●

●●
●●●
●

●
●

●

●

●●
●
●●
●
●●●

●●
●
●
●

●

●

●

●

●
●●
●●

●●
●●

●
●
●
●
●
●

●

●
●

●●●
●
●
●

●

●
●

●

●
●
●

●

●

●
●
●
●●
●
●●

●●
●●
●●●●●●

●●

●
●
●●

●
●●
●
●
●●

●●
●●●
●●●
●
●●

●●●

●

●
●

●

●●

●
●

●

●
●●●

●

●
●
●
●
●
●
●●●

●

●
●
●
●

●●●
●
●
●●
●
●●●●●

●
●●●
●●●
●

●●●

●
●
●●●●●
●●●●●

●
●●

●●

●●
●
●
●●●

●
●●●
●
●
●

●●

●
●
●●
●

●
●●●

●

●
●
●
●●
●●●●●

●
●

●

●●
●

●
●
●
●
●
●
●

●

●●
●
●●
●●●●●
●●
●
●●

●
●●
●
●
●
●
●
●●●●●●●●●●●●

●●●●●●
●
●
●
●●
●
●

●●●
●●

●

●
●

●
●●
●

●
●●
●
●●●●●●●●●●●

●

●
●
●●

●

●●

●

●
●●
●
●

●
●

●

●

●●

●

●

●●●
●
●●●●●
●●●
●●●
●●●
●●
●●●●●●●●

0.01

0.02

0.03

0.0 0.2 0.4 0.6 0.8 1.0

●●●
●
●
●
●●●●●
●●●
●●●
●●●
●

●●

●

●
●
●
●●

●

●●

●
●

●
●
●

●
●
●
●

●
●●
●●●●●●

●●

●●

●
●●
●●●
●

●

●●
●●

●
●

●

●

●

●
●●

●●
●

●●●

●
●
●●
●

●
●●
●

●

●
●
●●
●

●●
●

●

●

●

●●
●
●●
●
●

●
●
●●●

●

●
●
●
●●●●●
●●●●●
●
●●
●

●
●
●●
●
●
●●
●
●

●●●
●●
●●●
●
●
●
●●
●●●
●●●
●

●
●
●●●●
●

●

●

●
●

●●

●

●

●●●●
●●

●●

●

●
●

●
●

●

●

●●

●

●

●
●
●
●

●
●

●

●●●
●
●
●
●
●●●
●
●

●
●●
●

●

●●
●
●●●●●
●●●●

●
●
●●●●●●●

●●
●

●

●
●
●●
●

●
●
●●
●
●

●●
●●
●●●●●●

●●
●●●●●●●

●
●
●
●
●●●

●
●●

●
●

●●●●
●●●

●

●

●

●●
●

●
●

●

●

●●●●●
●●
●
●
●
●●
●
●●●●●
●
●
●●

●
●
●●●
●

●
●
●
●●●●●
●
●●
●
●
●●
●
●
●
●●
●●
●

●

●
●●
●
●●
●
●●●
●●●●●●●

●
●●
●

●●●

●●
●●●
●
●
●●
●●
●

●

●
●
●●
●
●

●
●
●
●●
●

●●
●
●●
●
●
●●
●●
●●●
●●●●
●●●
●
●
●
●●
●
●
●
●
●●●●●
●●
●●
●
●●●
●●
●

●●
●●
●
●
●●
●●
●
●
●
●
●●●
●●●●
●
●●●
●●●
●●●●●
●●
●●
●●
●
●●
●●●
●●
●
●●
●

●●
●●

●●●
●
●
●
●●●●●
●●●
●●●
●●●
●

●●

●

●
●
●
●●

●

●●

●
●

●
●
●

●
●
●
●

●
●●
●●●●●●

●●

●●

●
●●
●●●
●

●

●●
●●

●
●

●

●

●

●
●●

●●
●

●●●

●
●
●●
●

●
●●
●

●

●
●
●●
●

●●
●

●

●

●

●●
●
●●
●
●

●
●
●●●

●

●
●
●
●●●●●
●●●●●
●
●●
●

●
●
●●
●
●
●●
●
●

●●●
●●
●●●
●
●
●
●●
●●●
●●●
●

●
●
●●●●
●

●

●

●
●

●●

●

●

●●●●
●●

●●

●

●
●

●
●

●

●

●●

●

●

●
●
●
●

●
●

●

●●●
●
●
●
●
●●●
●
●

●
●●
●

●

●●
●
●●●●●
●●●●

●
●
●●●●●●●

●●
●

●

●
●
●●
●

●
●
●●
●
●

●●
●●
●●●●●●

●●
●●●●●●●

●
●
●
●
●●●

●
●●

●
●

●●●●
●●●

●

●

●

●●
●

●
●

●

●

●●●●●
●●
●
●
●
●●
●
●●●●●
●
●
●●

●
●
●●●
●

●
●
●
●●●●●
●
●●
●
●
●●
●
●
●
●●
●●
●

●

●
●●
●
●●
●
●●●
●●●●●●●

●
●●
●

●●●

●●
●●●
●
●
●●
●●
●

●

●
●
●●
●
●

●
●
●
●●
●

●●
●
●●
●
●
●●
●●
●●●
●●●●
●●●
●
●
●
●●
●
●
●
●
●●●●●
●●
●●
●
●●●
●●
●

●●
●●
●
●
●●
●●
●
●
●
●
●●●
●●●●
●
●●●
●●●
●●●●●
●●
●●
●●
●
●●
●●●
●●
●
●●
●

●●
●●

0.02

0.04

0.06

0.0 0.2 0.4 0.6 0.8 1.0

Pr
ob

ab
ilit

y 
of

 fi
xa

tio
n

Phenotypic memory, p Phenotypic memory, p

Standard deviation in degree:
��

��

��

��

��

20
30
40
60
90

A B

Figure S2: Probability of fixation for different values of the standard deviation in degree of the
contact network. The lines are splines, while the dots represent the ensemble average across 5000 replicate
Monte Carlo simulations. Here N = 500, ΦA,E1 = 0.8, ΦA,E2 = 0.6, Var(Φa)=0.01, mean degree of the
contact network is fixed at 40. Panel A: Environmental rate of change n = 5. Panel B: Environmental
rate of change n = 30.
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Figure S3: Time to fixation for different values of the standard deviation in degree of the contact
network. The lines are splines, while the dots represent the ensemble average across 5000 replicate Monte
Carlo simulations. Here N = 500, ΦA,E1 = 0.8, ΦA,E2 = 0.6, Var(Φa)=0.04, mean degree of the contact
network is fixed at 40. Environmental rate of change n = 5.
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Mean degree Standard deviation in degree Average path length Clustering Coefficient
40 20 2.2 0.15
40 30 2.2 0.17
40 40 2.2 0.18
40 60 1.8 0.16
40 90 1 0.1

Table 1: Other network features for the degree distributions used in the manuscript.
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