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Abstract 1

Cells and organisms have developed homeostatic mechanisms to maintain internal 2

stabilities which protect them against a changing environment. How cellular growth and 3

homeostasis interact is still not well understood, but of increasing interest to the 4

synthetic and molecular biology community where molecular control circuits are sought 5

and tried to maintain homeostasis that opposes the diluting effects of cell growth. In 6

this paper we describe the performance of four negative feedback (inflow) controllers, 7

which, for different observed growth laws (time-dependent increase in the cellular 8

volume V ) are able to compensate for various time-dependent removals of the controlled 9

variable A. The four implementations of integral control are based on zero-order, 10

first-order autocatalytic, second-order (antithetic), and derepressing inhibition kinetics. 11

All controllers behave ideal in the sense that they for step-wise perturbations in V and 12

A are able to drive the controlled variable precisely back to the controller’s theoretical 13

set-point Atheor
set . The applied increase in cellular volume includes linear, exponential 14

and saturating growth and reflect experimentally observed growth laws of single cell 15

organisms and other cell types. During the increase in V , additional linear or 16

exponential time-dependent perturbations which remove A are applied, and controllers 17

are tested with respect to their ability to compensate for both the increase in volume V 18

and the applied perturbations removing A. Our results show that the way how integral 19

control is kinetically implemented and the structure of the negative feedback loop are 20

essential determinants of a controller’s performance. The results provide a ranking 21

between the four tested controller types. Considering exponential volume increases 22

together with an exponentially increasing removal rate of A controllers based on 23

derepression kinetics perform best, but break down when the control-inhibitor’s 24

concentration gets too low. The first-order autocatalytic controller is able to defend 25

time-dependent exponential growth and removals in A, but generally with a certain 26
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offset below its theoretical set-point Atheor
set . The controllers based on zero-order and 27

second-order (antithetic) integral feedback can only manage linear increases in V and 28

removals in A, in dependence of the controllers’ aggressiveness. Our results provide a 29

theoretical basis what controller kinetics are needed in order to compensate for different 30

growth laws. 31

Introduction 32

The term homeostasis was defined by Walter B. Cannon [1] to describe the coordinated 33

ability of organisms and cells to maintain an internal stability by keeping concentrations 34

of cellular components within certain tolerable limits [2]. Cannon’s emphasis on homeo 35

indicates that he considered the internal physiological state not as a constant, as 36

suggested earlier by Benard’s concept of a fixed ”milieu intérieur” [2, 3], but conceives 37

homeostasis as a dynamic adaptable system which allows variations within certain 38

limits. Dependent on the controlled components, the homeostatic limits in which one or 39

several controllers operate can vary considerably. For example, while the negative 40

feedback regulation of cellular sodium shows an apparently changing (rheostatic) and 41

less well-defined set-point [4, 5], the regulation of other metal ions including cytosolic 42

calcium have more strict limits [6–8]. 43

Growth, an essential aspect of all living beings is a highly regulated process. 44

Although the protective functions of homeostasis need to be in place during growth, the 45

interacting mechanisms between homeostasis and growth are not well understood. In 46

principle, there are two aspects to consider. The first aspect, which is considered in this 47

paper, is how homeostatic mechanisms can compensate for growth (and additional 48

perturbations) without influencing growth. The other aspect, considered in a following 49

paper, is how homeostatic mechanisms can influence growth. In this paper we consider 50

growth as an increase of the cellular volume. We investigate by testing four negative 51

feedback loop structures/motifs [7] with different kinetic implementations of integral 52

control how these controllers are capable to oppose the dilution effects of growth along 53

with additional perturbations (removals) in a controlled variable. Integral control is a 54

concept from control engineering [9] enabling robust control for step-wise perturbations, 55

and has been implicated to occur in a variety of homeostatic regulated systems [5,10–12] 56

The growth kinetics that will be considered include linear (constant) as well as 57

saturating and exponential growth laws. According to Bertalanffy [13, 14], the different 58

observed growth kinetics of organisms are related to the organisms’ metabolism. For 59

example, when respiration is proportional to the surface of the organism linear growth 60

kinetics are obtained. On the other hand, if respiration is proportional to the organism’s 61

weight/volume, exponential growth occurs. Growth kinetics of bacteria [15,16] appear 62

closely related to the bacterial form or shape. Rod-shaped bacteria show exponential 63

growth rates, i.e. 64

V̇ = κV ; κ > 0 (1)

whereas spherical bacteria increase their cellular volume by a rate law related to the 65

surface to volume ratio, i.e., 66

V̇ = η · V 2
3 − ξ · V (2)

where η and ξ are constants reflecting anabolism and catabolism, respectively [17]. 67

During growth the controllers have also been tested with respect to outflow 68

perturbations acting on a controlled variable A, i.e., by removing A in a time-dependent 69

(linear or exponential) manner. We focus here primarily on outflow perturbations, 70

because together with the diluting effects of the different growth laws these 71

perturbations represent the most severe conditions for testing the controllers. 72
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Materials, methods, and controllers tested 73

For the sake of simplicity we assume that compounds inside a growing cellular volume 74

V undergo ideal mixing. Computations were performed by using the Fortran subroutine 75

LSODE [18]. Plots were generated with gnuplot (www.gnuplot.info) and Adobe 76

Illustrator (adobe.com). To make notations simpler, concentrations of compounds are 77

denoted by compound names without square brackets. Time derivatives are indicated 78

by the ’dot’ notation. Concentrations and rate parameter values are given in arbitrary 79

units (au). Rate parameters are presented as ki’s (i=1, 2, 3, . . . ) irrespective of their 80

kinetic nature, i.e. whether they represent turnover numbers, Michaelis constants, or 81

inhibition constants. A set of MATLAB (mathworks.com) calculations with instructions 82

are provided in the Supporting Information as a combined zip-file (S1 Matlab). In 83

addition, the Supporting Information contains analytical expressions/estimates of 84

steady state values. 85

We have previously described eight different two-component negative feedback loop 86

arrangements (motifs) dependent on how the two components A (the controlled 87

variable) and E (controller variable) activate or inhibit each other [7]. Half of the motifs 88

describe inflow controllers, i.e., the compensatory flux adds A to the system from a 89

certain source, while the other half are outflow controllers in which the compensatory 90

flux removes A in order to maintain homeostasis in A. Since our interest here is to 91

study controller performances that compensate for the dilution effects of growth 92

together with (time-dependent) perturbations which remove A, we focus here entirely 93

on inflow controllers. From the four inflow controller motifs we have chosen two, one 94

based on only activation (motif 1, [7]), while the other is based on both activation and 95

inhibition/derepression (motif 2). The reason for this choice comes from an earlier 96

study [19] on time-dependent perturbations which indicated that a motif 1 controller 97

with an autocatalytic (positive feedback) implementation of integral control [6,9,20] and 98

a zero-order motif 2 controller with derepression kinetics showed good performances in 99

comparison with a zero-order based motif 1 controller. In addition, we have included a 100

motif 1 based controller with a second-order (antithetic, [21]) implementation of integral 101

control. 102

Figure 1. The controllers investigated in this study. Reaction orders are with respect
to E. The reaction between E1 and E2 in the antithetic controller is an overall
second-order process.

Fig. 1 gives an overview of the tested controller types. All controllers behave ideal in 103

the sense that they for step-wise removals in A, and in the absence of growth, are able 104

to keep A precisely at their defined theoretical set-points Atheor
set . The controllers were 105

investigated with respect to their capabilities to compensate for time-dependent outflow 106

perturbations in A and in the presence of different growth laws (increase in the reaction 107

volume V ) according to Bertalanffy’s classifications [13,14,17]. 108

Reaction kinetics during volume changes 109

To get a correct description of the cellular concentration changes during cell growth we 110

have to consider the concentration changes due to the increasing reaction volume V . If 111

A denotes the concentration of nA moles of compound A in volume V , the overall 112

change of concentration A is composed of two terms, one that describes the changes of 113

A while V is kept constant, (Ȧ)V , and of a second term, A(V̇ /V ), which describes the 114

influence of the volume changes on the concentration of A, i.e., 115
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Ȧ =
ṅA
V
−A

(
V̇

V

)
= (Ȧ)V −A

(
V̇

V

)
(3)

The structure of Eq. 3 will be used when formulating the rate equations of cellular 116

compounds in the presence of a changing V . Before we turn to the actual controller 117

examples we show how growth (V̇ ) affects the concentration of a given species A (which 118

will be later our controlled variable) when A is unreactive, being produced internally 119

within the cell, or being produced by a transporter-mediated process. 120

Unreactive A 121

In this example (Fig. 2) nA is kept constant, but the volume V increases with the rate 122

V̇ . 123

Figure 2. A is present inside the cell with a constant amount of nA moles, while the
cellular volume V increases with rate V̇ .

As V increases the concentration of A will decrease, i.e., 124

A =
nA
V
⇒ Ȧ =

ṅA
V

+ nA ·
(
d 1
V

)
dt

=
ṅA
V
− nA ·

V̇

V 2
=
ṅA
V
−A · V̇

V
(4)

Since we assume that nA is constant, we have that ṅA=0 and the concentration of A 125

decreases according to 126

Ȧ = −A · V̇
V
⇒ Ȧ

A
= − V̇

V
⇒ ˙log(A) = − ˙log V (5)

Integrating Eq. 5 leads to: 127

log(A(t))− log(A0)−
{

log V (t)− log V0

}
⇒ log

(
A(t)

A0

)
= log

(
V0
V (t)

)
(6)

which can be rewritten as 128

A(t) = A0

(
V0
V (t)

)
⇔ A(t)V (t) = A0V0 (7)

Eq. 7 can also be derived by noting that A0=nA/V0 and A(t)=nA/V (t). Solving for nA 129

from one of the equations and inserting it into the other leads to Eq. 7. 130

Cell internal generated A 131

Compensatory fluxes to counteract diminishing levels of a controlled compound A can 132

be generated by a cell internal compound (assumed here to be homogeneously 133

distributed inside V ) or by the help of transporters from stores outside of the cell or 134

from cell-internal (organelle) stores. We will investigate both ways to generate 135

compensatory fluxes. 136

To achieve a constant level of A from a cell internal source, despite increasing V , we 137

consider first a zero-order enzymatic reaction where enzyme E converts a species S 138

(assumed to be present in sufficiently high amounts) to A, where V is assumed to 139

increase by a constant rate (Fig. 3). 140

Figure 3. A is formed by zero-order kinetics within the cell while the cellular volume
increases with a constant rate V̇=k1.
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Let’s also assume that E is not subject to any synthesis, but that during the 141

increase of V , E remains always saturated with S and produces A by zero-order kinetics 142

with respect to A. The initial production rate of A at time t=0 is given as 143

Ȧ0 =
Vmax,0 · S0

KM + S0
(8)

Since E is considered to be saturated by S at all times we have that KM � S(t) 144

leading to 145

Ȧ0 = Vmax,0 = k2 · E0 (9)

where k2 is the turnover number of the enzymatic process generating A, and E0 is the 146

enzyme concentration at time t = 0. As V increases, the concentrations of E and A are 147

subject to dilution as described by the rate equations 148

Ė = −E · V̇
V

(10)

Ȧ = k2 · E −A ·
V̇

V
(11)

For V̇=k1=constant, E(t) and A(t) are described by the equations (S1 Text) 149

E(t) = E0 ·
α

t+ α
; α =

V0
k1

(12)

A(t) = k2·E0·α−
(
k2·E0·α−A0

)
· α

t+ α
(13)

From Eq. 13 we see that A will approach a final concentration Afinal = k2·E0·α even 150

when V continues to grow. The time needed of A to approach Afinal is determined by 151

the term α/(t+α). 152

Fig. 4 shows that Afinal is independent of the initial values of A. However, the 153

system is not stable against perturbations which remove A. In such a case A will go to 154

zero (S1 Text). 155

Figure 4. A approaches Afinal independent of the initial concentration of A. (a)
A0=8.0; (b) A0=0.0. All other rate parameters are: k1=V̇=1.0, k2=2.0,E0=0.1,
V0=20.0.

Transporter generated A 156

Alternatively, A may be imported into the cell by a transporter T (Fig. 5). 157

Figure 5. A is imported into the cell by transporter T .

Also here we consider that the transporter works under saturation (zero-order) 158

conditions adding ṅA moles of A per time unit into the cellular volume V 159

ṅA =
k2·T ·Aext

KT
M +Aext

' k2·T (14)

where T denotes the (surface/membrane) concentration of the transporter, KT
M is a 160

dissociation constant between external A (Aext) and T , and k2 is the turnover number 161

of the transporter-mediated uptake of A. 162
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The change in the concentration of A inside an expanding cell is given by (see Eq. 3) 163

Ȧ =
ṅA
V
−A

(
V̇

V

)
=
k2 · T
V
−A

(
V̇

V

)
(15)

For constant V̇ , k2, and T the steady state of A (Ȧ=0) is k2T/V̇ independent of the 164

initial concentration of A. However, also in the transporter-based inflow of A, the steady 165

state in A is not stable against perturbations removing A. Any reaction within the cell 166

removing A while growth occurs will drive A to zero (S2 Text). To get a steady state 167

that is stable against perturbations a negative feedback controller needs to be included. 168

Controllers with transporter-based compensatory 169

fluxes and linear time-dependent perturbations 170

In this section the four controller motifs (Fig. 1) use transporter-based compensatory 171

fluxes. The controllers’ performances are tested with respect to constant growth V̇=k1 172

and a linear increase in the outflow perturbation rate parameter k3. 173

Motif 1 zero-order controller 174

Fig. 6 shows the motif 1 controller with zero-order implementation of integral control [7]. 175

A is the controlled compound and E is the controller molecule which concentration (in 176

the ideal controller case) is proportional to the integrated error between A and Atheor
set . 177

M i a precursor/store or E, which when consumed limits the operational life time of the 178

controller. 179

Figure 6. Controller based on motif 1 zero-order integral control with transporter
generated compensatory flux. The controller species E is produced by an enzymatic
zero-order process from compound M . E is recycled by another zero-order process
(with respect to E) but the rate of E-removal is proportionally to the concentration of
A. Outflow perturbations are represented by the rate r3=k3·A, where k3 is either
constant or increases linearly with time.

The rate equations for this system are: 180

Ȧ =
ṅA
V
− k3 ·A−A

(
V̇

V

)
=
k2 · E · T

V

(
Aext

KT
M +Aext

)
− k3 ·A−A

(
V̇

V

)
(16)

Ė =
k4·M
k5+M

−
(
k6 · E
k7 + E

)
A− E

(
V̇

V

)
(17)

Ṁ = − k4·M
k5+M

+

(
k6 · E
k7 + E

)
A−M

(
V̇

V

)
(18)

For simplicity T and Aext/(K
T
M+Aext) are set to 1 leading to an inflow rate in A of 181

k2E/V . When k̇3=V̇=0, the set-point of the controller is (Ref. [7], S3 Text) 182

Atheor
set =

k4
k6

(19)
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independent of the inflow rate constant k2 and the perturbation strength parameter 183

k3. 184

When V̇=constant the zero-order controller maintains a steady state below Atheor
set 185

(S3 Text): 186

Ass =
k4

k6 + 2V̇ k3

k2

(20)

which becomes dependent of V̇ , and the rate constants k2 and k3. 187

Figure 7. Performance of the motif 1 zero-order controller with transporter mediated
compensatory flux (Eqs. 16-18). Phase 1: constant volume V and constant k3. Initial
concentrations and rate constant values: V0=25.0, V̇=0.0, A0=0.0, E0=0.0,
M0=4× 104, k2=1.0, k3=2.0, k̇3=0.0, k4=20.0, k5=1× 10−6, k6=10.0, k7=1× 10−6.
The controller keeps A to its theoretical set-point at Atheor

set =k4/k6=2.0 (Eq. 19).
Phase 2: rate constants remain the same as in phase 1, but V increases now linearly
with V̇=2.0, while k3 remains constant at k3=2.0. The controller shows an offset below
Atheor

set with Ass=1.11 in agreement with Eq. 20. Phase 3: V continues to increase with
the same speed while k3 now linearly increases with k̇3=1.0. As indicated by Eq. 20 the
controller breaks down, A goes to zero, as V̇ and k3 increase.

In testing the performance of this controller we consider three phases (see Fig. 7). 188

During the first phase the volume and the perturbation k3 are kept constant. The 189

controller is able to compensate for the perturbation rate k3·A and keeps A at its 190

theoretical set-point Atheor
set . In the second phase the volume increases linearly, while k3 191

remains constant. The zero-order controller is now no longer able to maintain 192

homeostasis at Atheor
set =k4/k6, but shows a V̇ -dependent offset below Atheor

set as 193

described by Eq. 20. When in phase 3 also k3 increases linearly the controller breaks 194

down and A goes to zero. 195

Motif 1 antithetic controller 196

The antithetic controller [21] uses two controller molecules, E1 and E2 (Fig. 8). 197

Compound E1 is activated by A but is removed by compound E2 by a second-order 198

process. E2 is formed by a zero-order process which acts as a constant reference rate. In 199

addition, E2 also acts as a signaling molecule, which closes the negative feedback loop 200

by activating the transporter-based compensatory inflow of A. 201

Figure 8. Motif 1 based controller with second-order (antithetic) integral control. The
controller species E2 is produced by an enzymatic zero-order process from compound O.
E2 activates the transporter-based compensatory flux of A and is removed by E1 using
second-order kinetics forming P .

Assuming, as in the previous two examples that T and Aext/(K
T
M+Aext) are both 1, 202

the rate equations are 203

Ȧ =
ṅA
V
− k3 ·A−A ·

V̇

V
=
k2·E2

V
− k3 ·A−A

(
V̇

V

)
(21)

Ė1 = A

(
k4·M
k5+M

)
− k6 · E1 · E2 − E1

(
V̇

V

)
(22)
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204

Ė2 =
k8·O
k9+O

− k6 · E1 · E2 − E2

(
V̇

V

)
(23)

Ṁ = −A
(
k4·M
k5+M

)
−M

(
V̇

V

)
(24)

Ȯ = − k8·O
k9+O

−O

(
V̇

V

)
(25)

Q̇ = k3 ·A−Q

(
V̇

V

)
(26)

Ṗ = k6 · E1 · E2 − P

(
V̇

V

)
(27)

where k5 �M and k9 � O such that the generation of E1 and E2 are zero-order 205

processes with respect to M and O. 206

Figure 9. Performance of the antithetic controller with transporter mediated
compensatory flux (Eqs. 21-27). Phase 1: constant volume V and constant k3. Initial
concentrations and rate constant values: V0=25.0, V̇=0.0, A0=0.0, E1,0=0.0, E2,0=0.0,

M0=1× 105, O0=1× 105, k2=1.0, k3=2.0, k̇3=0.0, k4=10.0, k5=1× 10−6, k6=20.0, k7
not used, k8=20.0, k9=1× 10−6. The controller keeps A at its theoretical set-point at
Atheor

set =k8/k4=2.0 (Eq. 28). Phase 2: rate constants remain the same as in phase 1, but
V increases linearly with V̇=2.0, while k3 remains constant at k3=2.0. The controller
shows an offset below Atheor

set with Ass=1.11 in agreement with Eq. 29. Phase 3: V
continues to increase while k3 increases linearly with k̇3=1.0. As indicated by Eq. 29
the controller breaks down and A goes to zero.

In case V̇=0 and k̇3=0 the set-point of the controller is given by setting Eq. 22 and 207

Eq. 23 to zero. Eliminating the second-order term k6·E1·E2 leads to 208

Atheor
set =

k8
k4

= 2.0 (28)

which is shown in phase 1 of Fig. 9. In phase 2 the volume increases linearly with 209

V̇=2.0 (Fig. 9, left panel) while k3 remains to be constant at k3=2.0. The controller is 210

no longer be able to keep A at its theoretical set-point (Eq. 28). When V̇ and k3 are 211

constant an analytical expression of Ass can be derived in good agreement with the 212

numerical calculations (S4 Text): 213

Ass =
k2k8

k2k4 + 2k3V̇
(29)

which is analogous to the Ass expression of the motif 1 zero-order controller (Eq. 20). 214

Finally, in phase 3 k3 increases linearly with k̇3=1 together with V̇=2.0. As indicated 215

by Eq. 29 and shown by the numerical calculations (Fig. 9) the antithetic controller, like 216

the zero-order controller, breaks down and A goes to zero (S4 Text). 217

Although not shown explicitly here, the following mass balances are obeyed: 218

nM,0 = nM (t) + nE1
(t) + nP (t) (30)
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nO,0 = nO(t) + nE2
(t) + nP (t) (31)

where ni,0 and ni are respectively the initial number of moles and the number of moles 219

at time t of compound i. 220

221

As described above, when using a transporter mediated compensation in A the 222

antithetic and the motif 1 zero-order controller have to increase their controller 223

variables E2 or E in order to keep Ass constant, as indicated by the equation 224

Ȧ = 0 ⇒
k2·E(2)(t)

V (t)
= k3 ·Ass (32)

where E(2) represents E2 or E. 225

Motif 1 autocatalytic controller 226

Similar to controllers based on double integral action [22] an autocatalytic design [20] is 227

able to keep the controlled species at its set-point even when perturbations become 228

linearly time dependent and rapid [19]. However, in contrast to double integral action 229

the autocatalytic controller is able to compensate for time-dependent perturbations of 230

the form a·tn where n is larger than 1. 231

Figure 10. Controller design based on motif 1 autocatalytic integral control. The
controller species E is produced by an enzymatic zero-order process from compound M ,
but E activates its own production and the transporter-based compensatory flux. The
negative feedback is due to an inflow activation of A by E through transporter T , while
A activates the recycling of E to M . Outflow perturbation in A is described by the rate
k3·A, where k3 is either a constant or increases linearly with time.

Fig. 10 shows the reaction scheme. The controller compound E is produced 232

autocatalytically, i.e., its rate is proportionally to the concentration of E, while M , 233

present in relative large amounts, produces E by an enzyme-catalyzed reaction which is 234

zero-order with respect to M . E increases the activity of transporter T and leads to an 235

increased import of external A into the cell. The negative feedback is closed by an 236

A-induced recycling of E to M . Rate constant k3 represents a variable perturbation 237

which removes A by a first-order process with respect to A. The rate equations are: 238

Ȧ =
ṅA
V
− k3 ·A−A

(
V̇

V

)
=
k2 · E · T

V

(
Aext

KT
M +Aext

)
− k3 ·A−A

(
V̇

V

)
(33)

Ė = E

(
k4·M
k5+M

)
− k6 · E ·A− E

(
V̇

V

)
+ 1× 10−5 − 1× 10−5 · E (34)

Ṁ = −E
(
k4·M
k5+M

)
+ k6 · E ·A−M

(
V̇

V

)
(35)

For simplicity, in Eq. 33, T and Aext/(K
T
M+Aext) are set to 1. The last two terms in 239

Eq. 34, 1× 10−5 − 1× 10−5 · E, represent small background reactions keeping E at a 240

sufficiently high level such that the autocatalysis in E can start out from zero initial E 241

concentrations (see also Ref. [19]). 242
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To determine the controller’s set-point at constant V and k3 we set Eq. 34 to zero. 243

Neglecting the 1× 10−5 − 1× 10−5 · E term and setting V̇=0, we can solve for the 244

steady state value of A, which defines the controller’s theoretical set-point Atheor
set . 245

Ė = Ess

(
k4·M
k5+M

)
− k6 · Ess ·Ass = Ess

[(
k4·M
k5+M

)
− k6 ·Ass

]
= 0 (36)

Since M/(k5+M)=1 (ideal zero-order conditions), we get from Eq. 36 246

k4 − k6 ·Ass = 0 ⇒ Ass = Atheor
set =

k4
k6

(37)

In the case both V̇ and k̇3 are nonzero and constant, an (analytical) estimation of 247

the steady state in A requires to consider Ä (”acceleration” in A). For constant V̇ and 248

k̇3 values the set-point is calculated to be (S5 Text) 249

Ass =
k4
k6
− k̇3
k6·k3

→ k4
k6

= Atheor
set as t→∞ (38)

According to previous findings on the autocatalytic controller [19], any 250

time-dependent function k3(t) = k3,0 + a·tn where a, n>0 will lead to the set-point 251

conditions described by Eq. 38 (S5 Text). 252

253

The recycling scheme between E and M implies that E and M obey a mass balance 254

of the form 255

nE(t) + nM (t) = nE,0 + nM,0 (39)

with nE(t)=E(t)·V (t), nM (t)=M(t)·V (t), and where nE,0 and nM,0 are the initial 256

number of moles of respectively E and M . The rates how nE and nM change at a given 257

time t are given as (S5 Text) 258

ṅE =

[
Ė + E

(
V̇

V

)]
· V = − ˙nM = −

[
Ṁ +M

(
V̇

V

)]
· V (40)

Fig. 11 shows the results. During the first phase no volume change occurs and k3 is 259

a constant. The controller keeps A at Atheor
set =2.0 as described by Eq. 37. During the 260

second phase both V and k3 increase linearly and the controller still keeps A at 261

Atheor
set =2.0 according to Eq. 38. To keep A at its set-point during increasing V and/or 262

k3 the concentration of E has to increase in order to maintain the steady state 263

condition given by Eq. 33 when Ȧ=0 and V̇ /V → 0, i.e., 264

E(t) =
k3(t) · V (t) ·Ass

k2
(41)

From the initial conditions (see legend of Fig. 11) we have that nE(t)+nM (t) = 265

V0 ·M0=2.5× 107. 266

Figure 11. Performance of the motif 1 autocatalytic controller (Eqs. 33-35). Phase 1:
constant volume V and constant k3. Initial concentrations and rate constant values:
V0=25.0, V̇=0.0, A0=2.0, E0=100.0, M0=1× 106, k2=1.0, k3=2.0, k̇3=0.0, k4=20.0,
k5=1× 10−6, k6=10.0. The controller moves A to its set-point at Atheor

set =k4/k6=2.0.
Phase 2: rate constants remain the same as in phase 1, but V increases linearly with
V̇=1.0. Phase 3: V continues to decrease with the same rate and k3 increases with rate
k̇3=1.0. The controller moves A towards Atheor

set in both phase 2 and phase 3, but breaks
down when no additional E becomes available by M (indicated by the arrow in the
right panel).
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Motif 2 zero-order controller 267

The reaction scheme of this controller is shown in Fig. 12. The transporter-based 268

compensatory flux is regulated by E through repression or derepression and E is 269

removed by a zero-order reaction. 270

Figure 12. Motif 2 based controller with zero-order integral control. An increase of the
compensatory flux occurs by a decrease of E (derepression of the compensatory flux).

The rate equations are 271

Ȧ =
ṅA
V
− k3 ·A−A

(
V̇

V

)
=

k2k4
k4 + E

(
T ·Aext

KT
M +Aext

)
· 1

V
− k3 ·A−A

(
V̇

V

)
(42)

272

Ė =

(
k8·M
k11+M

)
·A− k9·E

k10+E
− E

(
V̇

V

)
(43)

Ṁ = −
(

k8·M
k11+M

)
·A+

k9·E
k10+E

−M

(
V̇

V

)
(44)

Ṗ = k3·A− P

(
V̇

V

)
(45)

Also here we keep, for the sake of simplicity, T ·Aext/(K
T
M+Aext)=1. In presence of 273

growing V and k3 the motif 2 zero-order controller successfully defends its theoretical 274

set-point given by (S6 Text) 275

Atheor
set =

k9
k8

(46)

However, since an increase of the compensatory flux is based on derepression by E 276

(decreasing E), the controller will break down when E � k4 and k4/(k4+E)≈1. 277

Neglecting the A·V̇ /V term, the point when the breakdown occurs can be estimated by 278

setting Eq. 42 to zero 279

Ȧ =
k2
V
− k3 ·Atheor

set = 0 ⇒ k3 · V =
k2

Atheor
set

(47)

Fig. 13 shows that the motif 2 based controller is able to defend successfully against 280

linear growth in both V and k3 and keeping A at Atheor
set . Prolonged time intervals with 281

increasing V and k3 will lead to controller breakdown when the condition of Eq. 47 is 282

met. 283

Figure 13. Performance of the motif 2 zero-order based controller with respect to
linear increases in V and k3. The controller is able to defend Atheor

set successfully, but
breaks down when k3V reaches k2/A

theor
set (Eq. 47). Rate parameters: k2 = 1× 105, k4

= 1× 10−3, k8 = 1.0, k9 = 2.0, k10 = k11 = 1× 10−6. Initial conditions: A0 = Atheor
set

= 2.0, E0 = 1.0, M0 = 1× 106, P0 = 0.0, V0 = 25.0, k3,0 = 2.0. V̇ =2.0 (phase 2 and

phase 3), k̇3 = 1.0 (phase 3).
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Controllers with transporter-based compensatory 284

fluxes and exponential time-dependent perturbations 285

Here we describe the performance of the four controller motifs (Fig. 1) with 286

transporter-based compensatory fluxes when exposed to exponential growth, V̇=k1·V , 287

and an exponential increase in the outflow perturbation rate parameter k3 (Fig. 14). 288

Figure 14. The perturbation profile with exponential growth of V and k3.

There are three phases the controllers are exposed to. During the first phase the 289

controllers are at their steady states and V and k3 are kept constant at respectively 25.0 290

and 2.0. During the second phase V increases exponentially according to V̇=k1V 291

(k1=0.1), while k3 is kept constant at 2.0. During phase 3, V continues to grow 292

exponentially and k3 starts to increase according to 293

k3(t) = k3,p3 + 0.2
(

e0.2(t−tp3) − 1
)

(48)

where k3,p3 and tp3 are the values of respectively k3 and time t at the beginning of 294

phase 3. 295

Figure 15. Performance of the (a) motif 1-zero-order, (b) -antithetic, (c) -autocatalytic,
and (d) motif 2 zero-order controllers with transporter-based compensatory fluxes in
relation to the perturbation profile of Fig. 14. For rate equations of the individual
controllers, see the descriptions in the previous sections dealing with linear
time-dependent perturbations. Rate parameters and initial conditions: (a) see legend of
Fig. 7, (b) see Fig. 9, (c) see Fig. 11, but using M0=1×1010, and (d) see Fig. 13.

Fig. 15 shows that only the motif 2 based controller with de-repression kinetics 296

(panel d) is able to counteract both exponential increases in V and k3. However, due to 297

the de-repression kinetics and due to the transporter based kinetics (see Eq. 47) the 298

controller breaks down when the product of the perturbations, k3V reaches k6/A
theor
set . 299

The motif 1 autocatalytical controller (panel c) shows slight constant offsets below 300

Atheor
set , as expected [19], both for the exponential increase of V and when both V and 301

k3 increase exponentially. Since E increases with increasing perturbation strengths the 302

controller is limited by the supply for E via M as indicated in Fig 11. Neither the 303

motif 1 based zero-order controller (panel a) nor the antithetic controller based on 304

motif 1 (panel b) are able to compensate for exponentially increasing perturbation 305

strengths. They behave very similar, as already seen in Figs. 7 and 9 for linear 306

time-dependent perturbations. 307

Controllers with a cell-internal compensatory fluxes 308

and linear time-dependent perturbations 309

We consider here the four controllers, but the compensatory fluxes are now generated 310

from cell-internal and homogeneously distributed sources. 311

Motif 1 zero-order controller 312

Fig. 16 shows the motif 1 zero-order controller using a cell-internal compensatory flux. 313

The homogenously distributed compound N serves as a source for A, which is activated 314
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by E. Compound M serves as a source for E, while by the activation of A, M is 315

recycled from E. 316

Figure 16. Motif 1 zero-order controller with a cell-internal compensatory flux.

The rate equations are 317

Ȧ = k2·E
(

N

k7 +N

)
− k3 ·A−A

(
V̇

V

)
(49)

Ė =
k4·M
k5+M

−
(
k6 · E
k8 + E

)
A− E

(
V̇

V

)
(50)

Ṁ = − k4·M
k5+M

+

(
k6 · E
k8 + E

)
A−M

(
V̇

V

)
(51)

Ṅ = −
(
k2 ·N
k7 +N

)
E −N

(
V̇

V

)
(52)

Ṗ = −k3 ·A− P

(
V̇

V

)
(53)

The steady state of A when both V̇ and k̇3 are constant is given by the following 318

expression (S3 Text) 319

Ass =
k2k4

k2k6 + k̇3
(54)

When k̇3=0 and V̇=constant Ass becomes Atheor
set =k4/k6 and the motif 1 zero-order 320

controller is able to compensate for a constant growth rate (Fig. 17, phases 1 and 2). 321

However, when k3 increases linearly, Ass is below Atheor
set and remains constant as long 322

as sufficient M and N are present (Fig. 17, phase 3). Thus, in comparison with a 323

transporter-mediated compensatory fluxes, the motif 1 zero-order controller with an 324

internally generated compensatory flux shows an improved performance by being able 325

to compensate for a constant growth rate in the absence of other outflow perturbations 326

in A. 327

Figure 17. Performance of the motif 1 zero-order controller with internally generated
compensatory flux (Fig. 16; Eqs. 49-53). Phase 1: constant volume V and constant k3.
Initial volume, concentrations, and rate constants: V0=25.0, V̇=0.0, A0=0.0, E0=0.0,
M0=4× 104, N0=1× 105, P0=0.0, k2=1.0, k3=2.0, k̇3=0.0, k4=20.0, k5=1× 10−6,
k6=10.0, k7=1× 10−6, k8=1× 10−6. The controller moves A to its set-point at
Atheor

set =(k4/k6)=2.0 (Eq. 54). Phase 2: rate constants remain the same as in phase 1,
but V increases linearly with V̇=2.0, while k3 remains constant at k3=2.0. The
controller is able to keep A at Atheor

set =(k4/k6)=2.0 in agreement with Eq. 54. Phase 3:
V continues to increase with the same speed while k3 now linearly increases with
k̇3=1.0. As indicated by Eq. 54 Ass leads to a constant offset below Atheor

set .
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Motif 1 antithetic controller 328

When the antithetic integral controller is equipped with an internally generated 329

compensatory flux (Fig. 18) its performance towards constant growth and linearly 330

increasing outflow perturbations k3 is significantly improved in comparison with a 331

controller having a transporter generated compensatory flux (Fig. 9). The rate equation 332

for A is now changed to 333

Ȧ =

(
k2·N
k7 +N

)
E2 − k3 ·A−A

(
V̇

V

)
(55)

while the other rate equations (Eqs. 22-27) remain the same. 334

When V̇ is constant Ass becomes (S4 Text) 335

Ass =
k2k8

k2k4 + k̇3
(56)

Figure 18. The antithetic controller with internal generated compensatory flux.

As indicated by Eq. 56 numerical results show (Fig. 19, phase 2) that the antithetic 336

controller is now able to compensate for linear volume increases by moving A to 337

Atheor
set =(k8/k4). However, an offset in Ass below Atheor

set is observed when, in addition, 338

k3 increases linearly with time, i.e., when k3 is constant. 339

Figure 19. Performance of the antithetic controller when the compensatory flux is
homogeneously generated within the cellular volume (Eqs. 55 and 22-27). Phase 1:
constant volume V and constant k3. Initial concentrations and rate constant values:
V0=25.0, V̇=0.0, A0=0.0, E1,0=0.0, E2,0=0.0, M0=2× 105, N0=1× 106, O0=2× 105,

k2=1.0, k3=2.0, k̇3=0.0, k4=10.0, k5=1× 10−6, k6=20.0, k7=1× 10−5, k8=20.0,
k9=1× 10−5. The controller moves A to Atheor

set =(k8/k4)=2.0 (Eq. 56 when k̇3=0).
Phase 2: rate constants remain the same as in phase 1, but V increases linearly with
V̇=2.0, while k3 remains constant at k3=2.0. The controller is able to maintain A at
Atheor

set =k4/k6=2.0 in agreement with Eq. 56. Phase 3: V continues to increase with the
same speed while k3 now linearly increases with k̇3=1.0. As indicated by Eq. 56 the
controller is no longer able to keep A at Atheor

set but shows a constant Ass below the
theoretical set-point.

Although not explicitly shown here, during the volume increase, the mass (mole) 340

balances described by Eqs. 30-31 are obeyed in addition to the mass balance connecting 341

N , A, and Q 342

nN,0 = nN (t) + nA(t) + nQ(t) (57)

where nN,0 is the number of moles of initial N at t = 0 with nA,0=nQ,0=0. 343

Motif 1 autocatalytic controller 344

Fig. 20 shows the autocatalytic controller but now with an internally generated 345

compensatory flux. As for the motif 1 zero-order controller the compensatory flux 346

originates from compound N , which is present in high concentration and forms A by a 347

zero-order process with respect to N and activated by E. 348

Figure 20. Scheme of autocatalytic controller with an internally generated
compensatory flux from compound N . Otherwise the controller has the same structure
as shown in Fig. 10.
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The rate equation for the controlled variable A is 349

Ȧ = k2 · E
(

N

k7 +N

)
− k3 ·A−A

(
V̇

V

)
(58)

while the rate equations for E and M remain the same as Eqs. 34 and 35. Species P is 350

included with the rate equation 351

Ṗ = k3 ·A− P

(
V̇

V

)
(59)

to test that the mass (mole) balance between N , A, and P is preserved. 352

The controller’s steady state in A, Ass, and its theoretical set-point Atheor
set is also in 353

case of a cell internal compensatory flux described by Eq. 38 (S5 Text). In contrast to 354

the other controllers, even when V̇ and k̇3 are constant the autocatalytic controller is 355

able to move A to Atheor
set =(k4/k6) (Fig. 21). 356

Figure 21. Performance of the autocatalytic controller when the compensatory flux is
generated within the cellular volume (Eqs. 34-35 and 58-59). Phase 1: constant volume
V and constant k3. Initial concentrations and rate constant values: V0=25.0, V̇=0.0,
A0=0.0, E0=0.0, M0=4× 104, N0=1× 106, k2=1.0, k3=2.0, k̇3=0.0, k4=20.0,
k5=1× 10−6, k6=10.0, k7=1× 10−6. The controller moves A to its theoretical set-point
at Atheor

set =(k4/k6)=2.0 (Eq. 37). Phase 2: rate constants remain the same as in phase 1,
but V increases linearly with V̇=2.0, while k3 remains constant at k3=2.0. The
controller is able to maintain A at Atheor

set in agreement with Eq. 37. Phase 3: V
continues to increase with the same speed while k3 now linearly increases with k̇3=1.0.
As indicated by Eq. 38 the controller keeps A at Atheor

set as k3 increases.

Motif 2 zero-order controller 357

Figure 22. Motif 2 type controller with integral control based on zero-order kinetics
and a cell-internally generated compensatory flux from compound N .

The rate equations for the motif 2 based controller are 358

Ȧ =

(
k4·k6
k4+E

)
·
(

N

k7+N

)
− k3 ·A−A

(
V̇

V

)
(60)

Ė =

(
k8·M
k11+M

)
·A− k9·E

k10+E
− E

(
V̇

V

)
(61)

Ṁ = −
(

k8·M
k11+M

)
·A+

k9·E
k10+E

−M

(
V̇

V

)
(62)

Ṅ = −
(
k4·k6
k4+E

)
·
(

N

k7+N

)
−N

(
V̇

V

)
(63)

Ṗ = k3·A− P

(
V̇

V

)
(64)
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Fig. 23 shows the performance of the motif 2 controller with zero-order integral control. 359

The controller is able to successfully defend Atheor
set against a linear increase in V 360

(phase 2) as well as against linear increase in V and a simultaneous linear increase in k3 361

(phase 3). For both cases the controller will move A precisely to Atheor
set =k9/k8 without 362

any offset (see S6 Text for details). 363

Figure 23. Performance of the motif 2 type of controller with zero-order based integral
control. Rate constants and initial conditions: k3=2.0, k4=1× 10−3, k6=1× 105,
k7=1× 10−6, k8=1.0, k9=2.0, k10=k11= 1× 10−6, A0=2.0, E0=V0=25.0, M0=1× 106,
N0=3× 106. Phase 1: V and k3 remain unchanged. Phase 2: V increases linearly with
V̇=2.0, while k3 remains constant. Phase 3: V continues to increase and k3 increases
linearly with k̇3=1.0.

Controllers with cell-internal compensatory fluxes 364

and exponential time-dependent perturbations 365

The controllers are exposed to the exponential perturbation profiles as shown in Fig. 14. 366

The exponential growth of V is written as V̇ = κ · V , where κ (>0) is a constant. 367

Fig. 24a shows the performance of the motif 1 zero-order controller while Fig. 24b 368

shows the responses of the motif 1 antithetic controller. During exponential growth and 369

constant k3 the motif 1 zero-order and the antithetic controller show slight offsets from 370

the theoretical set-point Atheor
set , while during phase 3 when both V and k3 increase 371

exponentially, both controllers break down. Besides their different kinetic 372

implementation of integral control both the motif 1 zero-order and the modtif 1 373

antithetic controller show similar responses due to analogous steady stae expressions in 374

A (for details, see S3 Text and S4 Text). Fig. 24c shows the response of the 375

autocatalytic controller, which is able to keep A at Atheor
set during exponential growth 376

while k3 is kept constant. Only when V and k3 both increase exponentially then there is 377

an offset from Atheor
set , which can be estimated analytically from the steady state 378

condition for A 379

Ass =
k4
k6
− κ

k6
− ζ

k6
(65)

where the theoretical set-point Atheor
set =k4/k6 and κ and ζ describe the doubling times 380

ln 2/κ and ln 2/ζ of the exponential increases for V and k3, respectively (see S5 Text). 381

The motif 2 based controller shows in phase 2 a significant overcompensation from 382

Atheor
set when exposed to exponential growth only. The overcompensated steady state in 383

A at constant k3 and exponential growth can be expressed as 384

Ass = Atheor
set +

κ

k8
Ess (66)

where Atheor
set =k9/k8 and (κ/k8)Ess is the overcompensated offset (S6 Text). 385

The response kinetics of the motif 2 based controller is mostly determined by k4, 386

which reflects the derepression property by E. For large k4 the derepression by E is 387

slow and less effective. 388

Remarkable, when both k3 and V increase exponentially in phase 3 the controller is 389

able to move A close to Atheor
set . For this case Ass can be written as (S6 Text) 390

Ass =

(
γ0

1 + γ0

)
Aapp

set (67)

where 391

γ0 =
k4k6k8

k̇3(k4 + E(t))2
(68)
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and 392

Aapp
set = Atheor

set +
κ

k8
E(t) (69)

Note that during phase 3 E is not in a steady state, but decreases due to the 393

controller’s derepression, while k̇3 increases exponentially. However, the derepression 394

kinetics by E is faster than the exponential increase of k̇3 (Eq. 68), such that γ0 395

increases and Aapp
set and Ass approach Atheor

set (S6 Text). A disadvantage of 396

compensating by derepression is that during rapidly increasing V and k3 E becomes 397

eventually so low that the negative feedback loop cannot be maintained and the 398

controller breaks down even when sufficient N and M are available. 399

Growth related to the surface to volume ratio 400

Here we investigate how the four controllers having cell internal compensatory fluxes 401

perform with respect to a surface to volume ratio related growth law as found for 402

spherical bacteria ( [13,14,17], Eq. 2). We consider again three phases as in the 403

previous sections, but with the difference that V now grows according to Eq. 2 with 404

η=1 and ξ=0.2 (Fig. 25a). The values of η and ξ are arbitrarily chosen. The outflow 405

perturbation, described by k3, is kept constant during phases 2 and 3, but increases 406

during phase 3. The response behaviors of the controllers towards increasing volume (k3 407

is kept constant) is initially very similar to that when V increases linearly. However, the 408

controllers gain control more and more control with decreasing V̇ , provided that there is 409

sufficient material in the cell to generate enough E’ (for the motif 1 controllers) or that 410

there is still sufficient E left (for the motif 2 controller) to keep the negative feedback 411

loop operating. 412

Figure 24. Behaviors of the motif 1 zero-order, antithetic, autocatalytic and motif 2
zero-order controllers with internal compensatory fluxes in response to an exponential
increase in V and k3. All controllers have internal compensatory fluxes.
Time/perturbation profiles of V and k3 are the same as in Fig. 14. (a) Behavior of the
motif 1 zero-order controller. Rate constant values as in Fig. 17. Initial concentrations:
A0=2.0, E0=4.0, V0=25.0, M0=4× 109, N0=1× 106. (b) Behavior of the antithetic
controller. Rate constants as in Fig. 19. Initial concentrations: A0=2.0, E1,0=0.25,
E2,0=4.0, V0=25.0, M0 = N0 = O0 = 1× 106, Q0 = P0=0.0. During phase 2 the
controller shows a slight but constant offset below Atheor

set . During phase 3 the controller
breaks down when both V and k3 increase exponentially. (c) Behavior of the
autocatalytic controller. Rate constants are as described in Fig. 21. Initial
concentrations: A0=2.0, E0=4.0, V0=25.0, M0=4× 109, N0=1× 107. During
autocatalytic growth only (phase 2) the autocatalytic controller is able to move Ass

precisely to Atheor
set , but shows an offset from Atheor

set when both k3 and V increase
exponentially). (d) Behavior of the motif 2 based controller (Eqs. 60-64). Rate
constants and initial conditions as in Fig. 23. Note the significant overcompensation
(offset above Atheor

set ) during phase 2, but the return to Atheor
set (=k9/k8) when k3 starts

to grow exponentially.

As an example Fig. 25 shows the behavior of the motif 1 antithetic and autocatalytic 413

controllers and the motif 2 zero-order controller when k3 in phase 3 increases 414

exponentially as described by Eq. 14 and compensatory fluxes are generated cell 415

internally. The motif 1 zero-order controller’s behavior (not shown) is again very similar 416

in comparison with the motif 1 antithetic controller. 417
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Figure 25. Performance of the antithetic, autocatalytic and motif 2 based controllers
towards surface/volume related growth in V and exponentially increasing outflow
perturbation k3. Rate constant values and initial conditions as in Fig. 24.

Overview of results 418

Table 1 and Table 2 gives an overview of controller performances. Performances are 419

described by the four categories perfect adaptation, partial adaptation, over-adaptation, 420

and breakdown. Perfect adaptation means that the controller is able to keep A at Atheor
set . 421

A controller with partial adaptation can maintain a constant A value during an applied 422

outflow perturbation, but below Atheor
set . A controller showing over-adaptation keeps A 423

above Atheor
set even when the perturbation should lead to a decrease in A. Controller 424

breakdown means that the controller is unable to withstand the perturbation and A 425

goes to zero. 426

Clearly, the motif 1 controllers when integral control is based on zero-order or a 427

bimolecular (antithetic) mechanism cannot oppose an exponential volume increase or an 428

additional exponential increase in k3. The motif 1 autocatalytic controller shows good 429

performances with a constant offset in A below Atheor
set . The motif 2 controller using 430

zero-order based integral control shows best performance, is able to maintain A at 431

Atheor
set even when V and k3 increase exponentially. However, the drawback of the 432

motif 2 controller is that it is based on derepression by decreasing E and that the 433

controller breaks down when E becomes too low. 434

Table 1. Performance of controllers based on internal generated compensatory fluxes

controller
type

linear V
only

linear V
and k3

exponential
V only

exponential V
and k3

m1 - zero-order
perfect

adaptation
partial

adaptation
breakdown breakdown

m1 - antithetic
perfect

adaptation
partial

adaptation
breakdown breakdown

m1- autocatalytic
perfect

adaptation
perfect

adaptation
perfect

adaptation
partial

adaptation

m2 - zero-order
perfect

adaptation
perfect

adaptation
over-

adaptation
perfect

adaptation

Table 2. Performance of controllers based on transporter based compensatory fluxes

controller
type

linear V
only

linear V
and k3

exponential
V only

exponential V
and k3

m1 - zero-order
partial

adaptation
breakdown breakdown breakdown

m1 - antithetic
partial

adaptation
breakdown breakdown breakdown

m1- autocatalytic
perfect

adaptation
perfect

adaptation
partial

adaptation
partial

adaptation

m2 - zero-order
perfect

adaptation
perfect

adaptation
perfect

adaptation
perfect

adaptation

Discussion 435

From Tables 1 and 2 it is seen that the motif 2 controller outperforms the other 436

controllers. This has already been observed in a previous study [19], where 437
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time-dependent inflow and outflow perturbations for A at constant V were applied. 438

However, a clear disadvantage of the motif 2 controller is its breakdown at low E values. 439

A somewhat surprising behavior of the motif 2 controller is its over-compensation when 440

growth increases exponentially at constant k3 (see phase 2 in Fig. 24). The 441

over-compensation can be described analytically (Eq. 69). Its origin appears to be due 442

to the rapid derepression kinetics. Previous results showed that the derepression 443

kinetics are hyperbolic in nature, i.e., they can oppose growth processes with an 444

exponentially increasing doubling time [19]. 445

Performance improvement by increased controller 446

aggressiveness 447

Although the motif 1 zero-order and the antithetic controllers break down when exposed 448

to exponential growth and perturbations (Figs. 15 and 24), their performance can be 449

significantly improved at constant V̇ by increasing of what can be described as the 450

controllers’ aggressiveness. By aggressiveness of a controller we mean loosely the 451

controller’s response to a perturbation in terms of (mainly) quickness and precision. 452

Increasing the aggressiveness of a controller will generally lead to a quicker controller 453

response and an improved controller precision. 454

The aggressiveness of an integral controller can be varied by the controller’s gain. 455

The gain is a factor in front of the error integral. For an ideal motif 1 zero-order 456

integral controller (working at constant V and k3) Ė is proportional to the error 457

e=(Atheor
set −A) [7], i.e., 458

Ė = k6

(
k4
k6
−A

)
(70)

where k6 is the controller gain and k4/k6 is the controller’s theoretical set-point, Atheor
set . 459

As indicated by Eq. 70 the concentration of E is proportional to the integrated error 460

with respect to time. By increasing k6 and k4 such that Atheor
set remains unchanged the 461

gain of the controller is increased and the controller becomes more aggressive. 462

For constant V̇ and k3 the steady state of A for the motif 1 zero-order controller is 463

given by Eq. 20 464

Ass =
k4

k6 + 2V̇ k3

k2

(20)

where the offset in Ass below Atheor
set is due to the term 2V̇ k3/k2. This term indicates 465

that for increasing V̇ and/or increasing k3 values the controller will break down and A 466

will go to zero as observed in Fig. 15. There are two ways the controller’s aggressiveness 467

can be increased. One way, as indicated above, is by increasing k4 and k6 such that 468

Atheor
set =k4/k6 is preserved with k6 becoming much larger than 2V̇ k3/k2. As a result the 469

controller’s response kinetics become quicker and Ass moves closer to Atheor
set =k4/k6. 470

The other way is to increase k2, which means to increase the activity of the transporter. 471

This could be done by over-expressing the genes which code for the transporter. 472
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Figure 26. Increased transporter activity (k2 values) lead to increased aggressiveness
and improved controller precision for transporter-based motif 1 zero-order controller
(left panel) and motif 1 antithetic controller (right panel) during constant growth (see
Figs. 6 and 8). Phase 1: controllers are at their steady state, no growth, k2=1.0.
Phase 2: constant growth (V̇=1.0) and k2=1.0. Both controllers show an offset in Ass

below Atheor
set . Phase 3: constant growth continues but k2 is increased to 1× 103. Both

controllers show improved precision and have their Ass close to Atheor
set , but show

different adaptation kinetics during the transition from phase 2 to phase 3. Rate
parameters and initial concentrations, zero-order controller: k3=2.0, k4=20.0,
k5=1× 10−6, k6=10.0, k7=1× 10−6, A0=2.0, E0=100.0, V0=25.0, M0=1× 107. Rate
parameters and initial concentrations, antithetic controller: k3=2.0, k4=10.0,
k5=1× 10−6, k6=10.0, k8=20.0, k9=1× 10−6, A0=2.0, E1,0=1× 10−2, E2,0=1× 102,
V0=25.0, M0=O0=1× 108.

Similar arguments apply also for the antithetic controller. Qian et al. [23] have 473

shown that when the controller dynamics become faster than growth this leads to an 474

improved controller performance. 475

Fig. 26 shows the results of increasing the aggressiveness of the motif 1 zero-order 476

and antithetic controllers by increasing k2 from 1.0 to 1× 103. The perturbation is 477

divided into three phases. During the first phase the volume V is kept constant at 25.0 478

and the controllers are at their set-points. In phase 2 the volume increases with a 479

constant rate (V̇ = 1.0). Finally, in phase 3 V continues to grow with V̇ = 1.0 but k2 is 480

increased to 1× 103. Both controllers show improved precisions, but show different 481

kinetics in their way to reach Atheor
set . 482

Similar is the situation when the compensatory flux is internally generated. Eq. 54 483

shows the steady state in A for the motif 1 zero-order controller. Also here increasing k2 484

values will move Ass towards the theoretical set-point Atheor
set =k4/k6. 485

Roles of kinetic implementations of integral control and 486

negative feedback structures 487

The increased aggressiveness of the motif 1 zero-order and antithetic controllers allows 488

them to defend their theoretical set-points as long as 489

k6 � 2V̇

(
k3
k2

)
(71)

However, for exponentially increasing V and V̇ this can be achieved only for a 490

certain (often short) time period. The motif 1 zero-order controller will break down 491

when Eq. 71 is no longer fulfilled. On the other hand, as shown above, the autocatalytic 492

motif 1 controller is able to maintain a stable steady state in A, although with an offset 493

from Atheor
set , when V and k3 increase exponentially. As Eq. 38 (for the 494

transporter-based compensatory flux) indicates, any time-dependent perturbation of the 495

type k3(t) = k3,0 + a·t (a > 0) will be successfully defended by the autocatalytic 496

controller, because k̇3/k3 → 0 and thereby restoring the controller’s theoretical 497

set-point. However, breakdown may occur if no sufficient supply of E (for example via 498

M , Fig. 11) can be maintained. 499

Our results indicate that the type of kinetics realizing integral control (for example 500

by autocatalysis) and the structure of the negative feedback loop (motifs 1-8, [7]) play 501

essential roles in how a controller will perform. For example, the occurrence of 502

autocatalytic steps/positive feedback loops in signaling and within homeostatic 503

regulated feedback loops are becoming recognized [24–27]. As an illustration, in cortisol 504

homeostasis ACTH signaling from the brain-pituitary system to the cortisol producing 505
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adrenals occurs by autocatalysis/positive feedback. In blood sugar homeostasis at low 506

insulin concentrations insulin acts on its own secretion and leads to an autocatalytic 507

production of insulin [27]. These examples indicate the importance of additional ”helper 508

kinetics” (such as autocatalysis/positive feedback) to obtain a homeostatic regulation 509

with optimum response and precision properties. 510

In control engineering the Internal Model Principle [28–30] states that in order to 511

adapt to an environmental perturbation the controller needs to have the capability to 512

generate that type of perturbation internally. For synthetic biology, this indicates that 513

knowledge about controller kinetics and controller structure (single or combined 514

controller motifs) will be important for succeeding in the design and implementation of 515

artificial regulatory units in order to oppose the dilution effect of growth or other 516

time-dependent perturbations. 517
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