Villagra et al 1

1 Title: Evidence of a noncoding transcript of the *RIPK2* gene overexpressed in head and

- 2 neck tumor
- 3
- 4
- 5 Authors:
- 6 Ulises M. M. Villagra^{1,&}; Bianca R. da Cunha^{2,3,&}; Giovana M. Polachini²; Tiago Henrique²;
- 7 Carlos H. T. P. da Silva⁴; Olavo A. Feitosa⁴; Erica E. Fukuyama⁵; Rossana V. M. López⁶;
- 8 Emmanuel Dias-Neto^{7,8}; Fabio D. Nunes⁹; Patricia Severino¹⁰ and Eloiza H. Tajara^{2,3*}
- 9
- 10

11 Affiliations:

- ¹Faculty of Exact Sciences, Biotechnology and Molecular Biology Institute (IBBM), National
 University of La Plata-CCT, CONICET, La Plata, Argentina
- ²Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP,
 São José do Rio Preto, SP, Brazil
- ³Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São
 Paulo/USP, São Paulo, SP, Brazil
- ⁴Computational Laboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences
 of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
- ⁵Head and Neck Surgery Department, Arnaldo Vieira de Carvalho Cancer Institute, São Paulo,
 SP, Brazil
- ⁶State of São Paulo Cancer Institute ICESP, SP, São Paulo, Brazil
- ²³ ⁷Laboratory of Medical Genomics, A. C. Camargo Cancer Center, São Paulo, SP, Brazil
- ⁸Laboratory of Neurosciences, Institute of Psychiatry, University of São Paulo/USP, São
 Paulo, SP, Brazil
- ⁹Department of Stomatology, School of Dentistry, University of São Paulo/USP, São Paulo,
 SP, Brazil.
- ¹⁰Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São
 Paulo, SP, Brazil
- 30
- 31
- 32
- 33 ***Corresponding author:**
- 34 E-mail: <u>tajara@famerp.br</u> (EHT)
- 35
- ³⁶ [&]These authors contributed equally to this work.

Villagra et al 2

38 ABSTRACT

Receptor-interacting proteins are a family of serine/threonine kinases, which integrate 39 extra and intracellular stress signals caused by different factors, including infections, 40 inflammation and DNA damage. Receptor-interacting serine/threonine-protein kinase 2 (RIP-41 42 2) is a member of this family and an important component of the nuclear factor NF-kappa-B 43 signaling pathway. The corresponding human gene *RIPK2* generates two transcripts by 44 alternative splicing, the full-length and a short transcript. The short transcript has a truncated 45 5' sequence, which results in a predicted isoform with a partial kinase domain but able to transduce signals through its caspase recruitment domain. In this study, the expression of 46 *RIPK2* was investigated in human tissue samples and, in order to determine if both transcripts 47 48 are similarly regulated at the transcriptional level, cancer cell lines were submitted to temperature and acid stresses. We observed that both transcripts are expressed in all tissues 49 analyzed, with higher expression of the short one in tumor samples, and they are differentially 50 regulated following temperature stress. Despite transcription, no corresponding protein for the 51 52 short transcript was detected in tissues and cell lines analyzed. We propose that the shorter transcript is a noncoding RNA and that its presence in the cell may play regulatory roles and 53 affect inflammation and other biological processes related to the kinase activity of RIP-2. 54

Villagra et al 3

56 Introduction

57	Unicellular and multicellular organisms are constantly exposed to stressful
58	environments. Chemical and physical stimuli trigger different adaptive responses, which will
59	determine the capability of the organism to maintain internal homeostasis [1].
60	Receptor-interacting proteins (RIP) are a family of serine/threonine kinases, which
61	integrate extra- and intracellular stress signals and share a homologous kinase domain at the
62	N-terminus, but have different C-terminal functional domains [2-4]; RIP-2 (receptor-
63	interacting serine/threonine-protein kinase 2) is a member of the RIP family, which has
64	received attention in the recent years for its role in modulating immune and inflammatory
65	processes [5], and as a sensor of cellular stress [6]. It is expressed at high levels in several
66	normal human tissues [7], as well as in pathological conditions, for example ulcerative colitis
67	[8], triple-negative breast cancers [9,10] and in stressful conditions, such as after
68	hypoxic/ischemic insults [11]. Conversely, lower levels of RIP-2 have been correlated with
69	tumor progression in squamous cell carcinoma (SCC) of the oral cavity [12].
70	RIP-2 is the only member of the RIP family that besides phosphorylating serines and
71	threonines is able to autophosphorylate tyrosine residues [13,14]. Its ATP- and substrate
72	binding sites spread over much of the N-terminal kinase domain, and a caspase recruitment
73	domain (CARD) is present in the C-terminal region [15] (isoform 1, Fig 1A). CARD
74	specifically interacts with the nucleotide-binding oligomerization domain-containing protein 1
75	(NOD1) and NOD2 (also called CARD-4 and CARD-5, respectively), which are intracellular
76	receptors for innate immunity and involved in sensing the presence of pathogens. After
77	activation by bacterial peptidoglycans, NOD1 and NOD2 associate with RIP-2 via CARD-
78	CARD interaction and promote the expression of immune response and inflammatory genes

Villagra et al 4

79	through the nuclear factor-kappa B (NFKB) signaling [16]. NOD1 and NOD2 also cooperate
80	and share redundant roles with Toll-like receptors (TLRs) in detecting bacteria, but there's no
81	consensus on the participation of RIP-2 in TLR signaling (reviewed by [3]). Recently, it has
82	been demonstrated that RIPK2 kinase activity and auto-phosphorylation are not required for
83	NOD2 inflammatory signaling. In fact, NOD2 pathway activation and cytokine production
84	depends on RIP-2 polyubiquitination at several lysines, a process relied on the ubiquitin
85	ligases:RIP-2 kinase domain interaction. Thus, although the kinase domain is not functionally
86	important for NOD2 signaling, it is correlated with NOD2 activation since RIP-2 auto-
87	phosphorylation creates a substrate for ubiquitin ligase binding [17].
88	
89	Fig 1. Diagrams of RIPK2 splice transcripts. (A) The transcript 1 encodes the longer
90	isoform and (\mathbf{B}) the transcript 2 presents skipping of exon 2 and encodes a very short isoform
91	2 [18] and a predicted isoform 3. Arrowheads indicate the positions of the forward primer A
92	and reverse primer B for RT-PCR expression analysis, and horizontal bars below the isoform
93	1 and 2 indicate the epitope region for anti-RIP-2 ab8428, ab57954 and sc8611 used in the
94	present study. (C) 5'UTR (lower case) and codons (capital letters) of exons 1, 3 (gray) and 2
95	(white). Kozak sequences in boxes. First ATGs of full-length isoform and predicted isoform 3
96	in bold. Premature stop codons generated by the frameshift due to exon 2 skipping=dark gray.
97	Kinase/K=protein kinase domain; CARD=caspase recruitment domain; activation loop; ATP
98	binding site; substrate binding site; according to Batch Conserved Domain-Search at NCBI.
99	
100	The full-length human <i>RIPK2</i> transcript (GenBank accession number NM_003821.5),
101	here named transcript 1 (Fig 1A), has 2588 bps and is composed of 12 exons spanning 33-kb

of genomic sequence on chromosome 8q21. In 2004, we suggested an alternative splicing for

103	RIPK2 transcribing a short variant (AY562996, currently included within the predicted
104	transcript XM_005251092.3) [19], as depicted in Fig 1B. This variant, here named transcript
105	2, has 2389 bps and derives from the skipping of exon 2 (154 bps), which alters the reading
106	frame producing several premature stop codons. However, a potential translation initiation
107	codon AUG (nucleotides 85-87 of exon 3) is in-frame with the downstream <i>RIPK2</i> sequence,
108	hence with no subsequent premature termination codon (Fig 1C). Translation from this codon
109	may give rise to an amino-terminal truncated protein (XP_005251149.1, isoform 3 in this
110	study, with 403 residues, predicted molecular weight of 45,582 Da) lacking the first 137
111	amino acids of RIP-2 isoform 1 (NP_003812.1).
112	Alternatively spliced transcript 2 was also studied by Krieg and collaborators [18], who
113	reported a protein product (isoform 2, Fig 1B, top) with extensive truncation of the N-terminal
114	kinase domain and a complete lack of the intermediate domain and CARD due to a frame shift
115	generating a premature stop codon. Krieg et al. also reported that this isoform of RIP-2 lacks
116	the biological effects described for the isoform 1. We here investigated if the use of the
117	downstream alternative translation initiation site may generate an isoform 3 that would keep
118	the original C-terminal structure including CARD, but would present a truncated kinase
119	domain (Fig 1B, bottom), with potential consequences for protein function, and cellular
120	localization if the localization signals were also deleted.
121	Since RIP-2 kinase integrates extra and intracellular stress signals and modulates
122	immune responses [5], we reasoned that physiological and environmental changes, such as
123	hyperthermia and acid stress caused by infections and inflammatory processes, might affect
124	the expression of their transcripts and, therefore, could lead to changes in levels of the
125	isoforms depicted in Fig 1. The use of alternative splicing sites may differ among cell types

and phases of development [20-23], or be associated with stress conditions, such as

temperature stress [24] and oxidative stress [25].

In the present study, the expression of *RIPK2* transcripts and protein products was evaluated in normal human tissues and in SSC samples and, in order to investigate if they are regulated in response to stress conditions, we analyzed their expression upon heat/cold and acid stress in human cancer-derived cell lines.

132

Material and methods

134 Samples and cell lines

Nine samples of normal human tissues removed at autopsy (brain, testis, heart, lung, stomach, kidney, larynx, liver and tongue) and 16 matched tumor/resection margin samples of oral SCC were used to evaluate the expression of the two transcripts of the *RIPK2* gene. RIP-2 protein levels were analyzed in another set of 19 matched tumor/resection margin of oral and laryngeal SCC.

For the stress experiments, we used the human cell lines FaDu (HTB-43, derived from 140 SCC of the hypopharynx), and SiHa (HTB-35, derived from cervix SCC). The cell lines were 141 cultured in Minimum Essential Medium (MEM, 552, Cultilab), supplemented with 10% fetal 142 bovine serum (FBS, 63, Cultilab), 10 mM non-essential amino acids (M7145, Sigma), 2 mM 143 144 L-glutamine (687, Cultilab), 1 mM sodium pyruvate (P5280, Sigma), 1.5 g/L sodium bicarbonate (S5761, Sigma), penicillin (100 units/mL) and streptomycin (90 µg/mL) (1012, 145 Cultilab), in a humidified atmosphere with 5% CO₂ at 37°C. The study protocol was approved 146 147 by the National Committee of Ethics in Research (CONEP 1763/05, 18/05/2005, and CONEP 128/12, 02/03/2012) and informed consent was obtained from all patients enrolled. 148

Villagra et al 7

149

150 **Temperature and acid stresses**

151	Prior to stress experiments, cell lines were grown to 80-90% confluence and cell cycle
152	synchronized in serum-free medium for 24 h. For temperature stress, cells were maintained in
153	medium plus 10% FBS at 40°C, 17°C or 5°C for 3 h (eight replicates for each condition). Six
154	control replicas were also cultured in medium plus 10% FBS at 37°C for 3 h. Acidic shock
155	was performed by maintaining the cultures (four replicas) in an atmosphere with elevated CO_2
156	(10% CO ₂) for 24 h or 72 h. Four control replicas were cultured in a humidified atmosphere
157	with 5% CO ₂ at 37°C for the same time period. After the incubation period, cells were
158	immediately lysed by adding TRIzol (15596026, ThermoFisher), and stored at -80°C until
159	RNA extraction.
160	
161	RNA extraction and cDNA synthesis
162	Total RNA from tissue samples and cell lines was obtained following the TRIzol
163	protocol. Integrity of the RNA was confirmed by agarose gel electrophoresis, and the purity
163 164	protocol. Integrity of the RNA was confirmed by agarose gel electrophoresis, and the purity and concentration were determined using the NanoDrop ND-1000 spectrophotometer (Thermo
164	and concentration were determined using the NanoDrop ND-1000 spectrophotometer (Thermo
164 165	and concentration were determined using the NanoDrop ND-1000 spectrophotometer (Thermo Fisher). One microgram of total RNA was converted to cDNA using the High Capacity cDNA
164 165 166	and concentration were determined using the NanoDrop ND-1000 spectrophotometer (Thermo Fisher). One microgram of total RNA was converted to cDNA using the High Capacity cDNA Reverse Transcription kit (4368813, Thermo Fisher), according to the manufacturer's
164 165 166 167	and concentration were determined using the NanoDrop ND-1000 spectrophotometer (Thermo Fisher). One microgram of total RNA was converted to cDNA using the High Capacity cDNA Reverse Transcription kit (4368813, Thermo Fisher), according to the manufacturer's
164 165 166 167 168	and concentration were determined using the NanoDrop ND-1000 spectrophotometer (Thermo Fisher). One microgram of total RNA was converted to cDNA using the High Capacity cDNA Reverse Transcription kit (4368813, Thermo Fisher), according to the manufacturer's instructions.

172 CGTGACTGTGAGAGGGACAT-3' (reverse primer B). The PCR reaction was carried out in

Villagra et al 8

173	a total volume of 25 μ L containing 1X PCR buffer, 1 mM MgCl ₂ , 2 μ M of each <i>RIPK2</i>
174	primer, 2 µM GAPDH primers, 5 mM dNTPs mix, 1 U Taq DNA polymerase (EP0402,
175	ThermoFisher) and 50 ng of cDNA. After pre-incubation for 5 min at 94°C (initial
176	denaturation), the amplification was carried out through 35 cycles at 94°C for 50 s, 58°C for
177	40 s, 72°C for 50 s, and 72°C for 10 min, using a thermal cycler (9700 GeneAmp PCR
178	System, Applied Biosystems). PCR primers for the endogenous control gene GAPDH were
179	GAPDHF (5'-ACCCACTCCTCCACCTTTGA-3') and GAPDHR (5'-
180	CTGTTGCTGTAGCCAAATTCGT-3'). The expected lengths for PCR amplicons were 101
181	base pairs (bps) for GAPDH and 456 or 302 bps for RIPK2 transcripts. Amplicons were
182	separated on 2% agarose gels, bands were quantified by densitometry using Image J software,
183	and sequenced in both directions after being isolated from the gels. The sequences were
184	analyzed using BLAST similarity search against the non-redundant database available from
185	the National Center for Biotechnology Information (NCBI) [26].
186	
187	Evaluation of RIPK2 transcripts by relative quantification using RT-qPCR
188	The expression of <i>RIPK2</i> transcripts in matched tumor/resection margin samples and in
189	cell lines following stress treatment was investigated by quantitative PCR (qPCR). Reactions
190	were performed in triplicate using an ABI Prism 7500 Sequence Detection System (Applied
191	Biosystems). The primers were manually designed and optimized for RT-qPCR using basic
192	parameters for PCR primer design. The final sequences were 19-24-bp long, with 30-70% GC
193	content and producing a short amplicon size (66-104 bps), as follows: RIPK2 transcript 1
194	forward 5'- AGAAGCTGAAATTTTACACAAAGC-3' and reverse 5'-

195 CCATTTGGCATGTATTCAGTAAC-3'; *RIPK2* transcript 2 forward 5'-

196 TGCTCGACAGAAAACTGAATATC-3' and reverse 5'-

Villagra et al 9

214	Protein sequence alignment and homology modeling procedures
213	
212	above 1 represented up-regulation in test samples compared with control samples.
211	transformed and those below -1 indicated down-regulation in gene expression while values
210	two-tailed unpaired t test using GraphPad Prism (GraphPad Software). Values were Log2
209	target genes was calculated according to Pfaffl [28]. Statistical analysis was carried out by a
208	(tumor/margin samples) were selected. The relative expression ratio (fold-change) of the
207	selected using the geNorm algorithm [27] and TUBA1C (stress assays) and ACTB
206	performed to confirm the single gene product. Adequate internal control reference genes were
205	15 s, 58°C for 10 s, 60°C for 1 min. Following PCR, dissociation curve analyses were
204	The PCR conditions were 50°C for 2 min, 95°C for 10 min, followed by 40 cycles of 95°C for
203	Green PCR Master Mix (4385612, ThermoFisher), 250 nM of each primer and 20 ng cDNA.
202	Invitrogen. Briefly, reactions were carried out in a total volume of 20 μ L, with 10 μ L SYBR
201	and reverse 5'-CCGATCCACACGGAGTACTTG-3'. All primers were purchased from
200	AGTGCCAGTGCGAACTTCATC-3'; ACTB forward 5'-GGCACCCAGCACAATGAAG-3'
199	TUBA1C forward 5'- TCAACACCTTCTTCAGTGAAACG-3' and reverse 5'-
198	ACCCACTCCTCCACCTTTGA-3' and reverse 5'-CTGTTGCTGTAGCCAAATTCGT-3';
197	AAGGAGGAGTCATATTGTGCAG-3'; GAPDH forward 5'-

Homology modeling of RIP-2 isoforms 1 and 3 was carried out using the MODELLER software that performs modeling by satisfaction of spatial restraints [29]. Six homologues with structures available in the Protein Data Bank (codes 2GSF, 1JPA, 1K2P, 1U59, 1UWH,

218 2EVA) used as templates were selected through a non-redundant BLASTp search [26]. Two

- 219 putative conserved domains with statistical significance were detected: TyrKc and S_TKc,
- which correspond, respectively, to the catalytic domains of tyrosine and serine/threonine

Villagra et al 10

221	protein kinases, and include the leucine L10-threonine T296 sequence. These six templates
222	share sequence identities of 27.1% (Eph receptor tyrosine kinase, PDB code 1JPA) to 30%
223	[Transforming growth factor-beta (TGF-beta)-activated kinase 1 - TAK1, PDB code 2EVA]
224	with RIP-2. Analyses were performed using pairwise alignments via the AMPS (Alignment of
225	Multiple Protein Sequences) package [30]. Previous to the modeling, a final multiple
226	alignment was obtained by analyzing the superposition of the six structures regarding the
227	alpha-carbons of the residues, using the INSIGHT II program, version 2005 (Accelrys Inc,
228	San Diego, CA, USA), which allowed refine the previous alignment obtained from the AMPS
229	MULTALIGN module. The information of secondary structure in the template sequence was
230	incorporated into this previous alignment using the MULTALIGN module of the AMPS
231	package, with the restriction that all insertions and deletions were limited to regions outside
232	the common core of alpha-helices and beta-sheets. A gap penalty of 1000 was fixed to any
233	deletion or insertion inside a secondary structure element. The alignment obtained was edited,
234	investigating and considering the aligned residues, which were close in the space, as
235	visualized in the structural superposition. This procedure resulted in a final alignment that is
236	different from the one based on the Dayhoff matrix (PAM 250) used in AMPS.
237	NetPhosK 1.0 server [31] was used for phosphorylation site analyses. The algorithm
238	produces neural network predictions of kinase-specific eukaryotic protein phosphorylation
239	sites. Currently, NetPhosK covers the following kinases: PKA, PKC, PKG, CKII, Cdc2, CaM-
240	II, ATM, DNA PK, Cdk5, p38 MAPK, GSK3, CKI, PKB, RSK, INSR, EGFR, and Src.
241	
242	Western blot

Western blot analysis aimed at detecting isoforms 1 and 3. The antibodies used were: (a)
polyclonal anti-RIP2 (ab8428, Abcam), immunogenic peptide corresponding to amino acids

245	11/30 of human RIP-2 (which are only present in isoform 1), N-terminal domain, diluted
246	2:1000 or 3:1000; (b) monoclonal anti-RIP2 (ab57954; Abcam), immunogenic peptide
247	corresponding to amino acids 431-541, C-terminal domain, 3 µg/mL; (c) polyclonal anti-
248	RICK (C-19) (sc8611, Santa Cruz), immunogenic peptide corresponding to C-terminal
249	domain according to the manufacturer's datasheet, diluted 1:200; (d) monoclonal anti-beta-
250	actin (A5441, Sigma-Aldrich) diluted 1:5000. The antibodies mapping at C- and N-terminus
251	of RIP-2 are depicted in Fig 1 (isoforms 1 and 3).

In brief, protein samples (30 µg) were loaded onto 12% resolving gel with 5% stacking 252 gel (SDS-PAGE) in denaturing conditions at 120V for 80 min. The molecular weight ladder 253 used was the PageRuler Prestained Protein Ladder (#26616; Thermo Scientific). The proteins 254 were then transferred electrophoretically (162.5 mA per blot 70 min; Mini Protean 3 Cell, 255 BioRad) to polyvinylidene fluoride (PVDF) membrane (IPVH00010, Immobilon-P, Millipore) 256 with transfer buffer (25 mM Tris, 0.2 M glycine, 20% v/v methanol; Merck, Germany). 257 Western blotting was performed using the Amersham ECL Select Western Blotting Detection 258 Reagent (RPN2235, GE Healthcare, Life Sciences), according to the manufacturer's protocol. 259 The immunoreactive proteins were visualized using horseradish peroxidase-coupled secondary 260 antibody (074-1506, 074-1806, KPL, Kirkegaard & Perry Laboratories Inc., Gaithsburg, MD, 261 262 USA) and enhanced chemiluminescence reagent (Amersham ECL Select kit, RPN2235, GE Healthcare). The Fusion FX5 system (Vilber Lourmat) was used for the acquisition of the 263 signal. The PVDF membranes were also submitted to chromogenic staining using the Western 264 Breeze kit (Invitrogen). The blots were then scanned and analyzed (Gel Logic HP 2200 265 imaging system; Carestream Health Inc./Kodak Health Group, Rochester, NY, USA). 266

267

Villagra et al 12

268 **Results**

269 Identification and expression patterns of *RIPK2* transcripts

270	Alternatively spliced transcripts 1 and 2 of RIPK2 were co-expressed in normal tissue
271	samples from brain, testis, heart, lung, stomach, kidney, larynx, liver and tongue (Fig 2A).
272	Both transcripts were also detected in tumor and tumor free surgical resection samples from
273	patients with oral SCC as illustrated by 5 matched tumor/surgical margin samples in Fig 2B.
274	Quantitative real time PCR showed no difference in expression between full length transcript
275	1 and their respective surgical margins, whereas a significant higher level of shorter transcript
276	2 was observed (p=0.03) (as illustrated by 11 paired samples in Fig 2C).
277	
278	Fig 2. <i>RIPK2</i> mRNA expression in normal tissues, oral SCC samples and cell lines under
279	stress conditions. (A-B) Conventional PCR products from RIPK2 transcript 1 (456 bps),
280	transcript 2 (302 bps), and GAPDH (101 bps) in: (A) normal human tissues: 1=brain, 2=testis,
281	3=heart, 4=lung, 5=stomach, 6=kidney, 7=larynx, 8=liver, 9=tongue; (B) samples from
282	patients with oral cancer: T=tumor; M=resection margin; L=100-bp fragment size marker. (C-
283	E) RT-qPCR products. (C) Log2 fold-change of <i>RIPK2</i> transcripts showing that transcript 2
284	has a higher expression than transcript 1 in tumors normalized with matched resection margins
285	(p=0.03, unpaired t test). ACTB was used as the expression reference. (D) Expression of
286	<i>RIPK2</i> transcript 1 and (E) of transcript 2 in FaDu cells maintained at 5°C, 17°C or 40°C for 3
287	h, normalized with control cells at 37°C (calibrator sample). Temperature stress induced a
288	significant increase in transcript 2 expression level at lower temperatures and a decrease at a
289	higher temperature (p<0.0001, unpaired t test), but no effect on transcript 1 expression.
290	TUBA1C was used as the expression reference. Values were log2 transformed (y-axis) so that

Villagra et al 13

291	all values below -1 indicate down-regulation in gene expression while values above 1
292	represent up-regulation. The error bar represents the mean \pm S.E.M (standard error of the
293	mean). Significant differences: p<0.05.
294	
295	Splicing patterns of <i>RIPK2</i> under stress conditions
296	To investigate whether alternative splicing of <i>RIPK2</i> is induced or inhibited by stress
297	conditions, two cell lines (FaDu and SiHa) were exposed to severe temperature stress (40°C,
298	17°C and 5°C), and acid stress (atmosphere of 10% CO ₂). Acid stress resulted in no effect on
299	the expression of both transcripts (data not shown), whereas heat/cold stress induced a
300	significant increase in shorter transcript 2 expression level at lower temperatures and a
301	decrease at a higher temperature (p<0.0001), but no effect on full-length transcript 1
302	expression. This result was only observed in FaDu cells and suggests that distinct regulatory
303	mechanisms may interfere in the alternative splicing of <i>RIPK2</i> and that this may be tissue or

304 context dependent.

305

306 Protein sequence alignment and homology modeling procedures

The model built for the catalytic domain of isoforms 1 and 3 showed good 307 stereochemical quality (Fig 3 – kinase domain present only in isoform 1 inside dashed-box; 308 superposition of the isoform 1 and 3 models outside the box). Despite overall low sequence 309 identity among the complex structures of the homologue RIP-2 proteins, the active sites are 310 structurally similar and reasonably well conserved. The model built for the isoform 1 is 137 311 residues larger than the one obtained for the isoform 3, and includes leucine L10 to threonine 312 T296 of the overall sequence. Regarding the phosphorylation sites predicted for the isoform 1, 313 the NetPhosK 1.0 server pointed out 10 sites, which are absent in the isoform 3 sequence: 314

Villagra et al 14

serines at positions 8, 25, 29, 33, 58, 76, 102, and threonines at positions 12, 31, 95. The study
of Dorsch's group [32] suggested that serine S176 is an important autophosphorylation site for
RIP-2, and this phosphorylation can be used to monitor the activation state of RIP-2. Fig 3
shows the superposition of the two models, as well as the localization of serine S176, which
seems to be conveniently accessible to the solvent and to phosphorylation. The lysine K47 in
the conserved ATP-binding site and the critical polyubiquitination site lysine K209 are also
shown in Fig 3.

322

Fig 3. Homology modeling of the catalytic domain of RIP-2 isoforms. Superposition of the 323 models built for the RIP-2 isoforms 1 and 3 (ribbon diagram colored in magenta and green, 324 respectively), with the kinase domain highlighted by the dashed-box (present only in isoform 325 1), and the superposition of the isoform 1 and 3 models outside the box. Isoform 3 lacks the 326 first 137 amino acids of RIP-2 and, consequently, the residue critical for kinase activity of 327 RIP-2 (lysine K47). Ten phosphorylation sites (serine and threonine residues, respectively) 328 predicted for isoform 1 and absent in isoform 3 sequence are indicated in blue and cyan inside 329 the dashed box. Serine S176 is shown in yellow stick, and is indicated to be conveniently 330 accessible to the solvent and to phosphorylation. Lysines K47 and K209 are also shown in 331 332 colored sticks.

333

334 Immunodetection of RIP-2 isoforms

Western blot analysis detected RIP-2 protein in extracts derived from FaDu cell line and from human tumors and their resection margins (Fig 4). The best results were obtained with the N-terminal domain anti-RIP2 ab8428 and C-terminal anti-RICK sc8611 antibodies, whereas ab57954 antibody yielded weak or non-specific bands. In cell line samples, Western

blot demonstrated a single immunoreactive band at ~61 kDa, consistent with the molecular

339

Villagra et al 15

340	weight of the isoform 1 (61,195 Da). When cells were exposed to heat/cold stress, a lower
341	expression of the RIP-2 isoform 1 was observed in FaDu cells maintained at low temperatures
342	compared with control cells at 37°C (Fig 4A).
343	Isoform 3 (predicted molecular weight of 45,582 Da) was not detected both in cell
344	lines and normal or neoplastic tissue samples (Fig 4A, 4B), even after mass spectrometry
345	analysis of Western blot band corresponding to the region around 45 kDa (data not shown).
346	The result indicates that, despite the detection of transcripts 1 and 2 and the proteins predicted
347	in silico for the isoforms, alternatively spliced transcript 2 does not seem to be translated into
348	protein in normal human tissues, cancer samples or cell lines analyzed.
349	
350	Fig 4. RIP-2 expression in cell lines under stress conditions and in oral SCC samples.
351	Western blot illustrating (A) lower expression of the RIP-2 isoform 1 (~61 kDa) in FaDu cells
352	maintained at low temperatures compared with control cells at 37°C (anti-RIP-2 ab8428
353	against N-terminus); and (B) an apparent decreased expression of the RIP-2 isoform 1 in
354	tumor (T) than in resection margin (M) samples (anti-RIP-2 sc8611 against C-terminus). (A-
355	B) No band that corresponds to isoform 3 was observed. Data were normalized by beta-actin.
356	L = Protein Ladder.
357	
358	Discussion
359	In the present study, RIPK2 transcripts 1 and 2 were co-expressed in normal tissue
360	samples from brain, testis, heart, lung, stomach, kidney, larynx, liver and tongue. Our stress
361	experiments showed that one of the transcripts (transcript 2) is up-regulated at low

Villagra et al 16

temperatures compared with the control group (at 37°C), whereas the opposite occurs at 40°C. 362 We tested two distinct SCC-derived cell lines, but this effect was seen only in FaDu cell line. 363 This finding may be tissue/context dependent. In fact, literature has already referred that a 364 mild hypothermic condition appears to induce or to inhibit synthesis of specific proteins when 365 compared with control cells, an effect that is cell line dependent (reviewed by [33]. It's well 366 known that both prokaryotic and eukaryotic organisms respond to cold stress reducing 367 transcription, translation, and metabolic processes, except in the case of cold-shock proteins 368 [34]. 369

Many studies are available on alternative splicing regulation by temperature and other extrinsic agents. For example, Gemignani and collaborators [35] also observed a shift in splicing of a mutated human b-globin gene affected by temperature *in vitro*, which led the authors to propose temperature changes as a treatment for β -thalassemia. More recently, Farashahi Yazd's group [24] described a novel spliced variant of *OCT4* gene significantly elevated under heat-stress conditions, and proposed a potential role of OCT4B1 transcript and protein in mediating temperature response.

Yan and collaborators [36] found evidence that hyperthermia induces Toll-like receptors expression and TLR signaling-mediated activation of NFKB and MAPK pathways, resulting in increased synthesis of pro- and anti-inflammatory cytokines. These data suggest that fever may modulate innate immune responses by TLR pathway and, although the role of *RIPK2* in this signaling remains controversial [37-40], they provide a possible link to *RIPK2* expression changes depending on the temperature variation.

Considering these data, we hypothesize that, under stress conditions, a putative mechanism may induce higher or lower expression of the exon 2-containing transcript of

Villagra et al 17

RIPK2. Since the presumed isoform 3 has a truncated kinase domain but is potentially able to 385 mediate NFKB activation via CARD, the balance of isoforms 1 and 3 might affect signaling 386 pathways related to its kinase activity. For instance, hyperthermia may increase the alternative 387 splicing kinetics or alter transcript stability and affect ERK pathways. A dominant-negative 388 mechanism by the truncated isoform should not be excluded [41]. DNA-damaging or altered 389 expression/subcellular distribution of RNA processing regulators [42] caused by temperature 390 changes may also be responsible for the abnormal accumulation of alternatively spliced 391 transcripts. These hypotheses obviously require experimental confirmation. 392 In the present study, *RIPK2* transcripts also showed a different expression pattern in 393 samples from head and neck squamous cell carcinoma patients, with alternatively spliced 394 transcript 2 exhibiting higher expression in tumors compared to their respective surgical 395 margins. Differences in alternative splicing between tumor and normal samples have been 396 described in the literature. For example, Gracio et al. [43], using ExonArray analysis of breast 397 cancer and normal breast tissue samples, identified more than 200 genes with splicing 398 differences associated with clinical outcome. Bjørklund et al. [44] obtained similar results by 399 RNA-seq analysis in primary breast tumors for five genes. The large study of Kahles et al. 400 analyzed 32 cancer types, including head and neck cancers, using RNA and whole-exome 401 402 sequencing data and observed many differences in alternative splicing events in cancer compared with normal cells [45]. Specifically in regard to head and neck cancer, several other 403 groups have described genes with differential expression of spliced variants [46-50]; among 404 others). However, as far as we know, this is the first report showing differential expression of 405 spliced transcripts of *RIPK2* gene between tumor and normal tissues. 406 At the protein level, decreased expression of the RIP-2 isoform 1 (immunoreactive band 407

408 at ~61 kDa) was detected at low temperatures, disagreeing with our findings for full-length

Villagra et al 18

409	transcript 1, which showed no change at the same condition compared to the control. A
410	divergent pattern was also observed for transcript 1 and the corresponding isoform 1 in
411	neoplastic tissues, the former showing higher and the second lower levels in tumor samples
412	compared with resection margins. This apparent discordance can be explained by the fact that
413	protein abundance may differ from mRNA expression profile, mainly due to post-
414	transcriptional control of gene expression or protein half-lives [51,52]. In addition, confirming
415	our results from immunodetection assays, Wang and collaborators [12] also found reduced
416	levels of RIP-2 in oral SCCs using immunohistochemical techniques.
417	In spite of using three distinct antibodies, another divergent result between RNA and
418	protein expression was the absence of isoform 3, which suggests that translation of RIPK2 into
419	isoform 3 may not happen, at least in cell and tissue types analyzed in this study.
420	If the predicted alternative isoform 3 of RIP-2 is present in other conditions and tissue,
421	then it should exhibit some impaired functions related to its kinase domain, including NFKB
422	activation [5] [15,17,53], regulation of ERKs, p38 kinases, and own degradation [5,17,37,54].
423	Recently, Brady et al. identified a dominant-negative isoform of the translation initiation
424	factor eIF-2B created by a hypoxia-mediated intron retention that inhibits translation and
425	increases survival of neoplastic cells [50]. Dasgupta and collaborators [55] also described a C-
426	terminal fragment of a member of RIP family, RIP-1, which can activate signaling events
427	including NFKB and TNF pathways. They concluded that short RIP-1 with an aberrant N-
428	terminal affects the long isoform levels and may represent a new regulation mechanism.
429	Albeit exhibiting some differences, RIP-1 and -2 participate in the same regulatory pathway
430	and therefore RIP-2 isoform also may have a similar function and modulate full-length RIP-2
431	under different conditions.

Villagra et al 19

432	It is tempting to speculate that the Krieg ORF [18] could act as an uORF (upstream
433	ORF) and repress translation of the downstream isoform 3 ORF, as cited for several stress
434	response mRNAs by the literature [56,57]. The short intercistronic region between both ORFs
435	should not be favorable for translation reinitiation due to an insufficient ribosomal scanning
436	time necessary for reacquisition of the ternary complex (eIF2-GTP-Met-tRNAi) and for the
437	downstream AUG recognition [58]. Translation reinitiation also depends on the Kozak
438	context. Using numeric scores based on translation initiation site efficiencies determined in
439	mammalian cells by Noderer et al.[59], both full-length and short RIP-2 transcripts have good
440	efficiency values (90 and 107, respectively), but the predicted ratio of the initiation occurring
441	at the second site compared to the first one is low (< 0.005), which may justify the absence of
442	isoform 3.

As RIP kinases play a critical role in integrating stress signals, the elucidation of the factors that take part in the regulation of these proteins is of major importance. The alternative transcripts and protein isoforms may be tissue and context dependent and related to important disease responses [41].

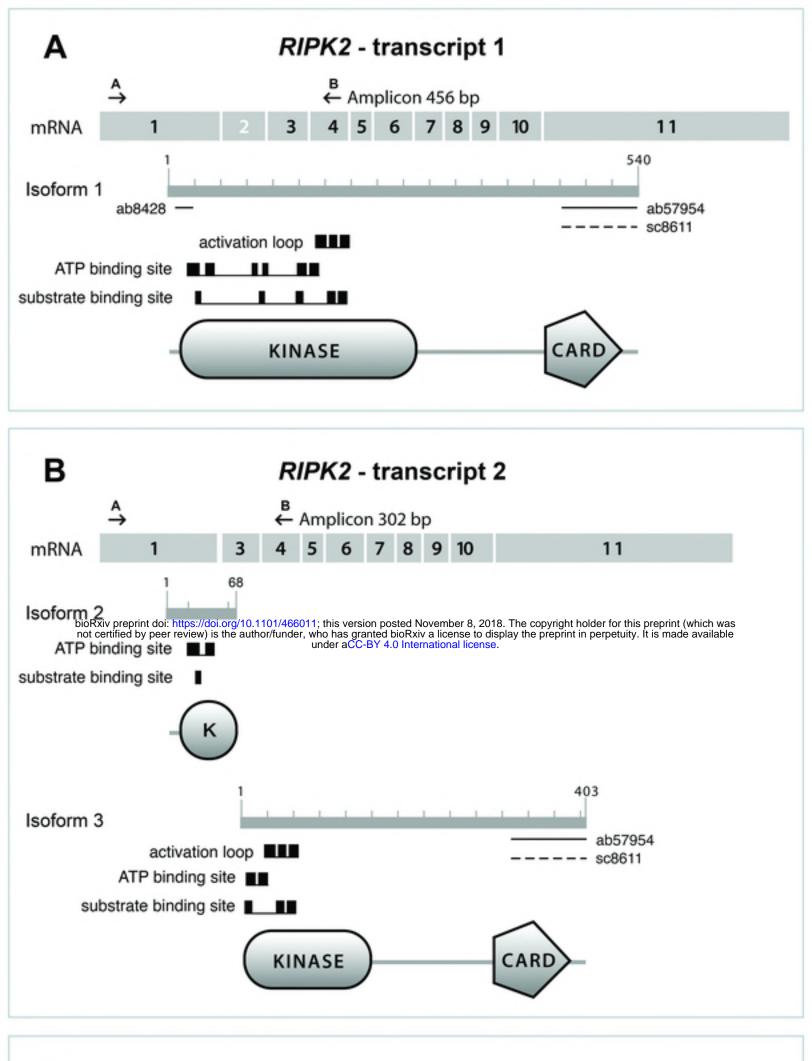
Although the *RIPK2* transcript 2 has a coding potential, at present there is no direct
evidence that it is translated in the isoform 3 or that it regulates biological processes, by
competing with other molecules or modulating stress responses. Even without clarifying these
issues, the present study raises many questions about RNA biology that may stimulate further
functional investigation on the molecular mechanisms underlying *RIPK2* splicing regulation
and their links to physiological and environmental changes.

453

454 **Conclusions**

455	In conclusion, <i>RIPK2</i> transcripts 1 and 2 are expressed in different tissues and
456	modulated by temperature, as determined by quantitative PCR assays. As far as we know, this
457	is the first report showing splicing imbalances between tumor and normal samples of RIPK2
458	gene, an important immune and inflammatory modulator. Despite transcription, no
459	corresponding protein for the short isoform was detected in tissues and cell lines analyzed,
460	which suggests that the balance of both transcripts may play regulatory roles and affect
461	inflammation and other biological processes related to the activity of RIP-2.
462	
463	Acknowledgements
464	The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo/FAPESP
465	(FAPESP grant numbers 04/12054-9 and 10/51168-0) and Conselho Nacional de
466	Pesquisas/CNPq (CNPq grant number 308904/2014-1) for financial support and fellowships.
467	They are also grateful to Mauro Golin and Edilson Solim for artwork preparation, and to
468	GENCAPO (Head and Neck Genome Project- <u>http://www.gencapo.famerp.br/</u>) team for the
469	valuable discussions that motivated the present study.
470	

471 **References**


- 472 1. de Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat
 473 Rev Genet 12: 833-845.
- 2. Zhang D, Lin J, Han J (2010) Receptor-interacting protein (RIP) kinase family. Cell Mol
 Immunol 7: 243-249.
- 476 3. Humphries F, Yang S, Wang B, Moynagh PN (2015) RIP kinases: key decision makers in cell
 477 death and innate immunity. Cell Death Differ 22: 225-236.
- 4. He S, Wang X (2018) RIP kinases as modulators of inflammation and immunity. Nat Immunol
 19: 912-922.
- 5. Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, et al. (2008) A critical role of
 RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J 27: 373-383.

483 484	 Meylan E, Tschopp J (2005) The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci 30: 151-159.
485	7. McCarthy JV, Ni J, Dixit VM (1998) RIP2 is a novel NF-kappaB-activating and cell death-
486	inducing kinase. J Biol Chem 273: 16968-16975.
487	8. Stronati L, Negroni A, Pierdomenico M, D'Ottavio C, Tirindelli D, et al. (2010) Altered
488	expression of innate immunity genes in different intestinal sites of children with
489	ulcerative colitis. Dig Liver Dis 42: 848-853.
490	9. Singel SM, Batten K, Cornelius C, Jia G, Fasciani G, et al. (2014) Receptor-interacting protein
491	kinase 2 promotes triple-negative breast cancer cell migration and invasion via activation
492	of nuclear factor-kappaB and c-Jun N-terminal kinase pathways. Breast Cancer Res 16:
493	R28.
494	10. Jaafar R, Mnich K, Dolan S, Hillis J, Almanza A, et al. (2018) RIP2 enhances cell survival by
495	activation of NF-kB in triple negative breast cancer cells. Biochem Biophys Res Commun
496	497: 115-121.
497	11. Zhang WH, Wang X, Narayanan M, Zhang Y, Huo C, et al. (2003) Fundamental role of the
498	Rip2/caspase-1 pathway in hypoxia and ischemia-induced neuronal cell death. Proc Natl
499	Acad Sci U S A 100: 16012-16017.
500	12. Wang X, Jiang W, Duan N, Qian Y, Zhou Q, et al. (2014) NOD1, RIP2 and Caspase12 are
501	potentially novel biomarkers for oral squamous cell carcinoma development and
502	progression. Int J Clin Exp Pathol 7: 1677-1686.
503	13. Tigno-Aranjuez JT, Asara JM, Abbott DW (2010) Inhibition of RIP2's tyrosine kinase
504	activity limits NOD2-driven cytokine responses. Genes Dev 24: 2666-2677.
505	14. Chirieleison SM, Kertesy SB, Abbott DW (2016) Synthetic Biology Reveals the Uniqueness
506	of the RIP Kinase Domain. J Immunol 196: 4291-4297.
507	15. Inohara N, del Peso L, Koseki T, Chen S, Nunez G (1998) RICK, a novel protein kinase
508	containing a caspase recruitment domain, interacts with CLARP and regulates CD95- mediated apoptosis. J Biol Chem 273: 12296-12300.
509 510	16. Inohara N, Nunez G (2003) NODs: intracellular proteins involved in inflammation and
510	apoptosis. Nat Rev Immunol 3: 371-382.
511	17. Goncharov T, Hedayati S, Mulvihill MM, Izrael-Tomasevic A, Zobel K, et al. (2018)
512	Disruption of XIAP-RIP2 Association Blocks NOD2-Mediated Inflammatory Signaling.
514	Mol Cell 69: 551-565 e557.
515	18. Krieg A, Le Negrate G, Reed JC (2009) RIP2-beta: a novel alternative mRNA splice variant
516	of the receptor interacting protein kinase RIP2. Mol Immunol 46: 1163-1170.
517	19. Mancini U, Tajara E (2004) Transcript variant of RIPK2 gene in tumoral cell lines (FaDu,
518	HEp2, HeLa, Siha). In: Information NCfB, editor.
519	20. Zeng Z, Sharpe CR, Simons JP, Gorecki DC (2006) The expression and alternative splicing
520	of alpha-neurexins during Xenopus development. Int J Dev Biol 50: 39-46.
521	21. Szafranski K, Kramer M (2015) It's a bit over, is that ok? The subtle surplus from tandem
522	alternative splicing. RNA Biol 12: 115-122.
523	22. Gutierrez-Arcelus M, Ongen H, Lappalainen T, Montgomery SB, Buil A, et al. (2015)
524	Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing.
525	PLoS Genet 11: e1004958.
526	23. Reber S, Stettler J, Filosa G, Colombo M, Jutzi D, et al. (2016) Minor intron splicing is
527	regulated by FUS and affected by ALS-associated FUS mutants. EMBO J 35: 1504-1521.

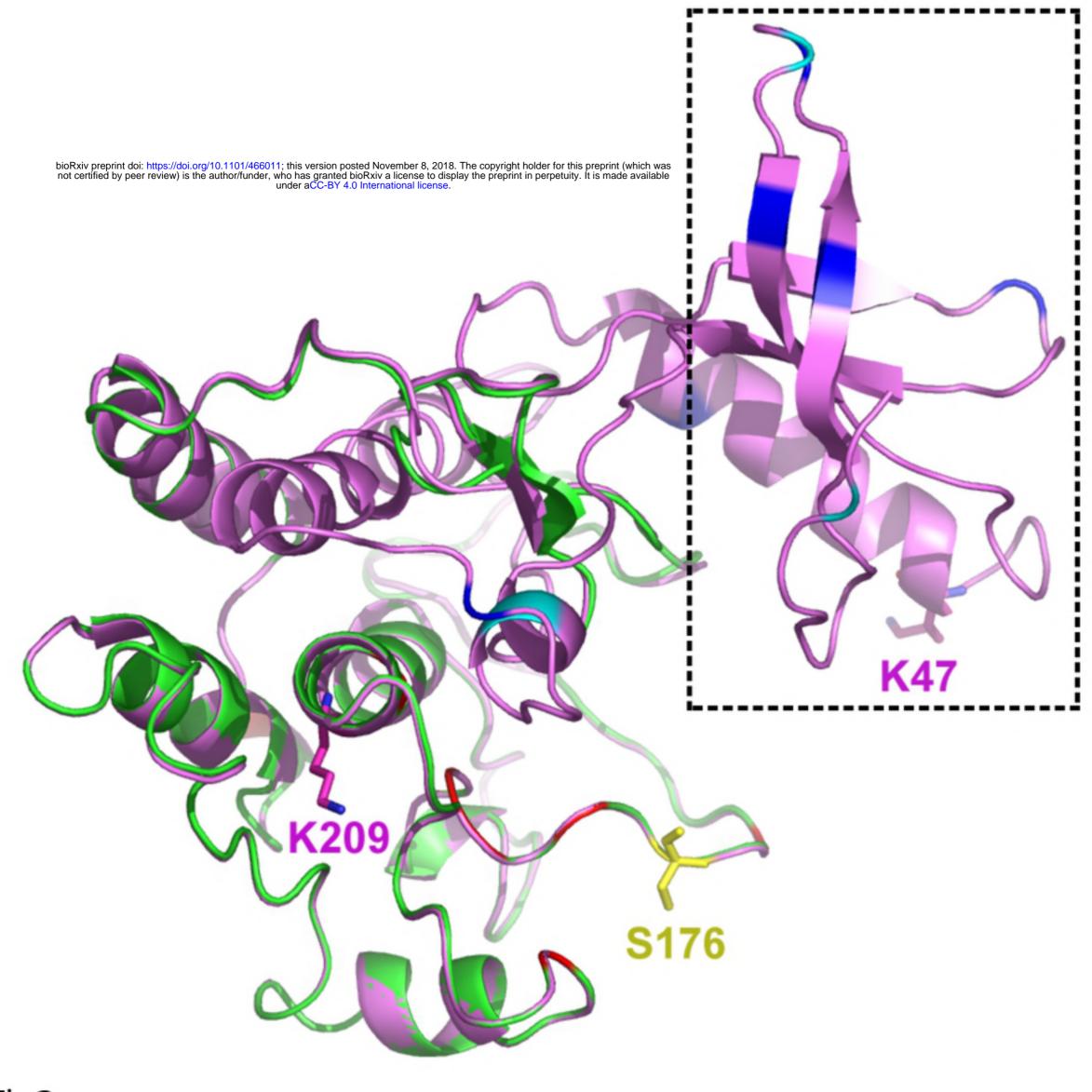
528	24. Farashahi Yazd E, Rafiee MR, Soleimani M, Tavallaei M, Salmani MK, et al. (2011)
529	OCT4B1, a novel spliced variant of OCT4, generates a stable truncated protein with a
530	potential role in stress response. Cancer Lett 309: 170-175.
531	25. Cote GJ, Zhu W, Thomas A, Martin E, Murad F, et al. (2012) Hydrogen peroxide alters
532	splicing of soluble guanylyl cyclase and selectively modulates expression of splicing
533	regulators in human cancer cells. PLoS One 7: e41099.
534	26. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, et al. (2008) NCBI BLAST:
535	a better web interface. Nucleic Acids Res 36: W5-9.
536	27. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate
537	normalization of real-time quantitative RT-PCR data by geometric averaging of multiple
538	internal control genes. Genome Biol 3: RESEARCH0034.
539	28. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-
540	PCR. Nucleic Acids Res 29: e45.
541	29. Sali A, Blundell TL (1990) Definition of general topological equivalence in protein
542	structures. A procedure involving comparison of properties and relationships through
543	simulated annealing and dynamic programming. J Mol Biol 212: 403-428.
544	30. Barton GJ, Sternberg MJ (1987) A strategy for the rapid multiple alignment of protein
545	sequences. Confidence levels from tertiary structure comparisons. J Mol Biol 198: 327-
546	337.
547	31. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-
548	translational glycosylation and phosphorylation of proteins from the amino acid sequence.
549	Proteomics 4: 1633-1649.
550	32. Dorsch M, Wang A, Cheng H, Lu C, Bielecki A, et al. (2006) Identification of a regulatory
551	autophosphorylation site in the serine-threonine kinase RIP2. Cell Signal 18: 2223-2229.
552	33. Tait AS, Tarrant RD, Velez-Suberbie ML, Spencer DI, Bracewell DG (2013) Differential
553	response in downstream processing of CHO cells grown under mild hypothermic
554	conditions. Biotechnol Prog 29: 688-696.
555	34. Hrdinka M, Schlicher L, Dai B, Pinkas DM, Bufton JC, et al. (2018) Small molecule
556	inhibitors reveal an indispensable scaffolding role of RIPK2 in NOD2 signaling. EMBO J
557	37.
558	35. Gemignani F, Sazani P, Morcos P, Kole R (2002) Temperature-dependent splicing of beta-
559	globin pre-mRNA. Nucleic Acids Res 30: 4592-4598.
560	36. Yan X, Xiu F, An H, Wang X, Wang J, et al. (2007) Fever range temperature promotes TLR4
561	expression and signaling in dendritic cells. Life Sci 80: 307-313.
562	37. Chin AI, Dempsey PW, Bruhn K, Miller JF, Xu Y, et al. (2002) Involvement of receptor-
563	interacting protein 2 in innate and adaptive immune responses. Nature 416: 190-194.
564	38. Kobayashi K, Inohara N, Hernandez LD, Galan JE, Nunez G, et al. (2002)
565	RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive
566	immune systems. Nature 416: 194-199.
567	39. Park JH, Kim YG, McDonald C, Kanneganti TD, Hasegawa M, et al. (2007) RICK/RIP2
568	mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J
569	Immunol 178: 2380-2386.
570	40. Hall HT, Wilhelm MT, Saibil SD, Mak TW, Flavell RA, et al. (2008) RIP2 contributes to
571	Nod signaling but is not essential for T cell proliferation, T helper differentiation or TLR
572	responses. Eur J Immunol 38: 64-72.
573	41. Barrie ES, Smith RM, Sanford JC, Sadee W (2012) mRNA transcript diversity creates new
574	opportunities for pharmacological intervention. Mol Pharmacol 81: 620-630.

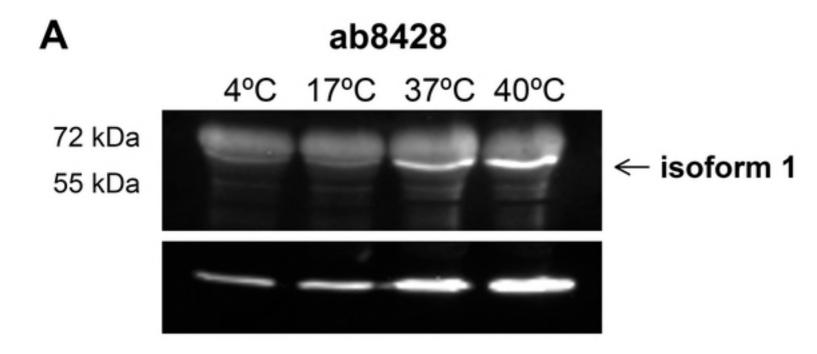
575	42. Busa R, Geremia R, Sette C (2010) Genotoxic stress causes the accumulation of the splicing
576	regulator Sam68 in nuclear foci of transcriptionally active chromatin. Nucleic Acids Res
577	38: 3005-3018.
578	43. Gracio F, Burford B, Gazinska P, Mera A, Mohd Noor A, et al. (2017) Splicing imbalances in
579	basal-like breast cancer underpin perturbation of cell surface and oncogenic pathways and
580	are associated with patients' survival. Sci Rep 7: 40177.
581	44. Bjorklund SS, Panda A, Kumar S, Seiler M, Robinson D, et al. (2017) Widespread alternative
582	exon usage in clinically distinct subtypes of Invasive Ductal Carcinoma. Sci Rep 7: 5568.
583	45. Kahles A, Lehmann KV, Toussaint NC, Huser M, Stark SG, et al. (2018) Comprehensive
584	Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell 34:
585	211-224 e216.
586	46. Sam KK, Gan CP, Yee PS, Chong CE, Lim KP, et al. (2012) Novel MDM2 splice variants
587	identified from oral squamous cell carcinoma. Oral Oncol 48: 1128-1135.
588	47. Liborio TN, Ferreira EN, Aquino Xavier FC, Carraro DM, Kowalski LP, et al. (2013) TGIF1
589	splicing variant 8 is overexpressed in oral squamous cell carcinoma and is related to
590	pathologic and clinical behavior. Oral Surg Oral Med Oral Pathol Oral Radiol 116: 614-
591	625.
592	48. Palve V, Mallick S, Ghaisas G, Kannan S, Teni T (2014) Overexpression of Mcl-1L splice
593	variant is associated with poor prognosis and chemoresistance in oral cancers. PLoS One
594	9: e111927.
595	49. Radhakrishnan A, Nanjappa V, Raja R, Sathe G, Chavan S, et al. (2016) Dysregulation of
596	splicing proteins in head and neck squamous cell carcinoma. Cancer Biol Ther 17: 219-
597	229.
598	50. Brady LK, Wang H, Radens CM, Bi Y, Radovich M, et al. (2017) Transcriptome analysis of
599	hypoxic cancer cells uncovers intron retention in EIF2B5 as a mechanism to inhibit
600	translation. PLoS Biol 15: e2002623.
601	51. Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance
602	and mRNA expression levels on a genomic scale. Genome Biol 4: 117.
603	52. Kuchta K, Towpik J, Biernacka A, Kutner J, Kudlicki A, et al. (2018) Predicting proteome
604	dynamics using gene expression data. Sci Rep 8: 13866.
605	53. Inohara N, Koseki T, Lin J, del Peso L, Lucas PC, et al. (2000) An induced proximity model
606	for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem
607	275: 27823-27831.
608	54. Navas TA, Baldwin DT, Stewart TA (1999) RIP2 is a Raf1-activated mitogen-activated
609	protein kinase kinase. J Biol Chem 274: 33684-33690.
610	55. Dasgupta M, Agarwal MK, Varley P, Lu T, Stark GR, et al. (2008) Transposon-based
611	mutagenesis identifies short RIP1 as an activator of NFkappaB. Cell Cycle 7: 2249-2256.
612	56. Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during
	conditions of cell stress. Mol Cell 40: 228-237.
613	
614	57. Andreev DE, Arnold M, Kiniry SJ, Loughran G, Michel AM, et al. (2018) TASEP modelling
615	provides a parsimonious explanation for the ability of a single uORF to derepress
616	translation during the integrated stress response. Elife 7. 58. Kazal M (1987) Effects of intersistencia length on the officiency of minitiation by exponentia
617	58. Kozak M (1987) Effects of intercistronic length on the efficiency of reinitiation by eucaryotic
618	ribosomes. Mol Cell Biol 7: 3438-3445.
619	59. Noderer WL, Flockhart RJ, Bhaduri A, Diaz de Arce AJ, Zhang J, et al. (2014) Quantitative
620	analysis of mammalian translation initiation sites by FACS-seq. Mol Syst Biol 10: 748.
621	

Villagra et al 24

С

Exon 1


Exon 2


T GAA AGA AAG GAT GTC TTA AGA GAA GCT GAA ATT TTA CAC AAA GCT AGA TTT AGT TAC ATT CTT CCA ATT TTG GGA ATT TGC AAT GAG CCT GAA TTT TTG GGA ATA GTT ACT GAA TAC ATG CCA AAT GGA TCA TTA AAT GAA CTC CTA CAT AGG

Exon 3

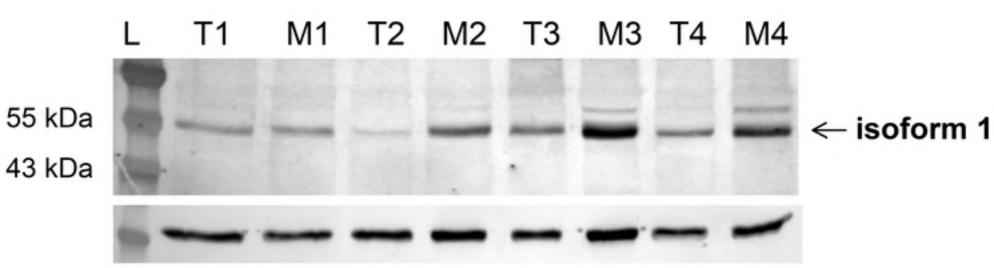
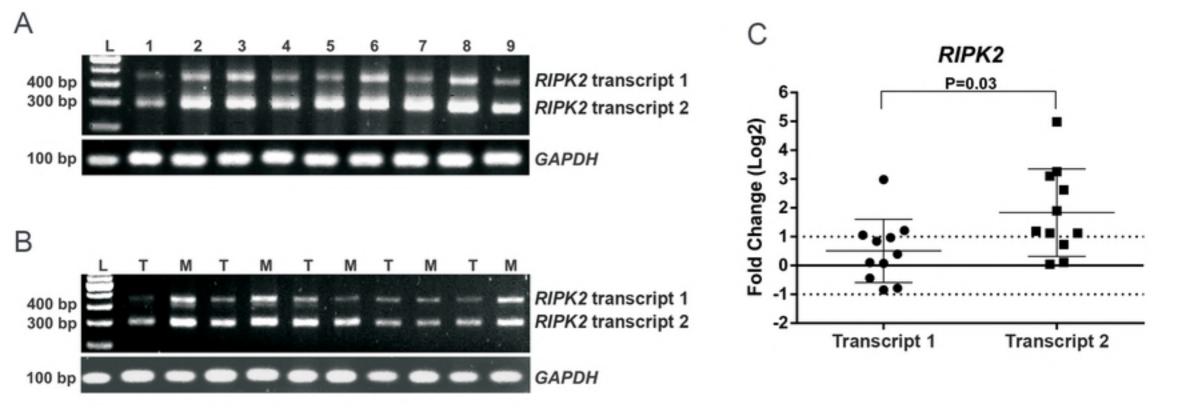
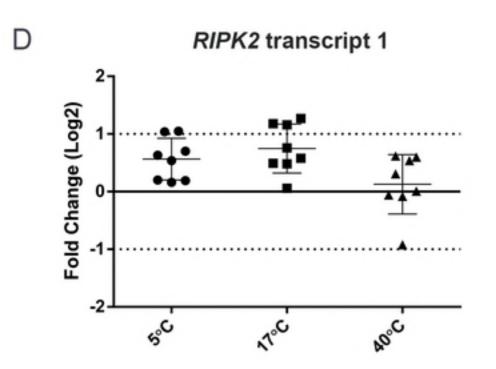

AAA ACT GAA TAT CCT GAT GTT GCT TGG CCA TTG AGA TTT CGC ATC CTG CAT GAA ATT GCC CTT GGT GTA AAT TAC CTG CAC AAT **ATG** ACT CCT CCT TTA CTT CAT CAT GAC TTG AAG ACT CAG AAT ATC TTA TTG GAC AAT GAA TTT CAT GTT AAG

Fig1





sc8611

Fig4

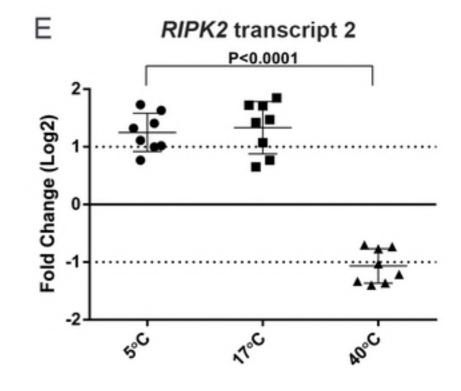


Fig2