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Abstract	

Spatial	 navigation	 can	 depend	 on	 path	 integration	 or	 environmental	 cues	 (e.g.,	

landmarks),	 which	 are	 thought	 to	 be	 integrated	 in	 hippocampal	 and	 entorhinal	

circuits.	 This	 study	 investigates	 the	 anatomical	 basis	 of	 path	 integration	 and	

navigation	based	on	a	single	local	landmark	using	an	individual	differences	approach,	

since	people	vary	substantially	in	their	ability	to	navigate	with	path	integration	cues	

and	landmarks.	In	two	experiments,	we	dissociated	the	use	of	path	integration	and	a	

local	landmark	in	the	same	navigation	task,	and	investigated	whether	morphological	

variability	 in	 the	 hippocampus	 and	 entorhinal	 cortex	 could	 explain	 behavioral	

variability	in	young	healthy	humans.	In	Experiment	1,	participants	navigated	in	a	fully	

immersive	 virtual	 reality	 environment,	 with	 body-based	 cues	 available	 for	 path	

integration.	The	participants	first	walked	through	a	series	of	posts	before	attempting	

to	 walk	 back	 to	 the	 remembered	 location	 of	 the	 first	 post.	 We	 found	 that	 gray	

matter	 volume	 of	 the	 hippocampus	 positively	 predicted	 behavioral	 accuracy	 of	

retrieving	the	target’s	distance	 in	relation	to	the	 local	 landmark.	Hippocampus	also	

positively	 predicted	 path	 integration	 performance	 in	 terms	 of	 walking-distance	 to	

the	target	 location.	Experiment	2	was	conducted	 in	a	desktop	virtual	environment,	

with	no	body-based	cues	available.	Optic	flow	served	as	path	 integration	cues,	and	

participants	were	tested	on	their	memory	of	a	learned	target	location	along	a	linear	

track.	 Consistent	with	 Experiment	 1,	 the	 results	 showed	 that	 hippocampal	 volume	

positively	 predicted	 performance	 on	 the	 target’s	 distance	 in	 relation	 to	 the	 local	

landmark.	 In	 contrast	 to	 Experiment	 1,	 there	 was	 no	 correlation	 between	

hippocampal	 volume	 and	 path	 integration	 performance.	 Together,	 our	 two	

experiments	provide	novel	and	converging	evidence	that	the	hippocampus	plays	an	
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important	 role	 in	 encoding	 egocentric	 distance	 to	 a	 single	 local	 landmark	 during	

navigation,	 and	 they	 suggest	 a	 stronger	 hippocampal	 involvement	 when	 path	

integration	is	based	on	body-based	compared	to	optic	flow	cues.	

	

Keywords:	 spatial	 cognition,	 hippocampus,	 entorhinal	 cortex,	 landmark,	 path	

integration	
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1	INTRODUCTION	

One	cannot	survive	without	the	ability	to	navigate	our	complex	environments,	which	

can	be	based	either	on	self-motion	cues	or	on	environmental	cues.	Navigating	with	

self-motion	cues	requires	continuous	integration	of	self-motion	inputs	over	distance,	

a	process	referred	to	as	path	integration	(Mittelstaedt	&	Mittelstaedt,	1980).	On	the	

contrary,	 navigation	with	 environmental	 cues	 is	 a	 relatively	 discrete	process,	 since	

environmental	 cues	 are	 directly	 informative	 of	 the	 navigator’s	 position	 and	

orientation.	During	navigation,	both	 cue	 types	 typically	 compensate	each	other,	 in	

that	environmental	cues	can	help	correct	errors	accumulated	during	path	integration	

(Etienne,	 Maurer,	 &	 Seguinot,	 1996),	 while	 path	 integration	 can	 be	 used	 to	

distinguish	 between	 ambiguous	 environmental	 cues	 (Etienne	 et	 al.,	 1996)	 and	 to	

judge	 the	 reliability	 of	 environmental	 cues	 (Zhao	 &	 Warren,	 2015).	 Importantly,	

environmental-cue-navigation	 and	 path	 integration	 appear	 to	 involve	 distinct	

cognitive	 processes	 (Chen,	 McNamara,	 Kelly,	 &	 Wolbers,	 2017)	 and	 differential	

neural	 mechanisms	 (Connor	 &	 Knierim,	 2017;	 Knierim,	 Neunuebel,	 &	 Deshmukh,	

2014).	Given	that	people	differ	substantially	on	the	efficiency	of	utilizing	the	two	cue	

types	 (Chen	 et	 al.,	 2017),	 it	 is	 possible	 to	 infer	 neural	 mechanisms	 of	

environmental-cue-navigation	 and	 path	 integration	 by	 examining	 how	 brain	

morphology	correlates	with	navigational	performance	from	an	individual	differences	

approach.	

	

Previous	studies	have	examined	anatomical	correlates	of	different	aspects	of	spatial	

navigation	 performance	 from	 an	 individual	 differences	 perspective.	 For	 example,	

studies	 on	 topographical	 memory	 of	 complex	 landmark	 layouts	 have	 found	 that	
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anatomical	 variability	 in	 the	 hippocampus	 (HPC)	 correlates	 with	 navigation	

performance	 (Bohbot,	 Lerch,	 Thorndycraft,	 Iaria,	 &	 Zijdenbos,	 2007;	 Hartley	 &	

Harlow,	 2012;	 Iaria,	 Lanyon,	 Fox,	 Giaschi,	 &	 Barton,	 2008;	 Maguire	 et	 al.,	 2000;	

Woollett	 &	Maguire,	 2011).	 However,	 in	 many	 of	 these	 studies,	 path	 integration,	

which	contributes	to	topographical	memory	(Gallistel,	1990;	Wang,	2016),	might	also	

have	 contributed	 to	 task	 performance,	 because	 landmarks	were	 not	 isolated	 from	

path	integration.	Chrastil	and	colleagues	recently	reported	that	gray	matter	volume	

in	 the	 retrosplenial	 cortex,	 HPC,	 and	medial	 prefrontal	 cortex	 positively	 predicted	

individual	 differences	 in	 path	 integration	 abilities	 (Chrastil,	 Sherrill,	 Aselcioglu,	

Hasselmo,	 &	 Stern,	 2017).	 However,	 no	 studies	 have	 compared	

environmental-cue-navigation	and	path	 integration	 in	the	same	spatial	context	and	

on	the	same	participant	sample.	Such	direct	comparisons	are	crucial	for	controlling	

confounds	like	task	demand,	attentional	engagement,	 individual	 idiosyncrasies,	etc.	

Therefore,	 the	 anatomical	 correlates	 of	 path	 integration	 and	

environmental-cue-navigation	–	when	the	two	processes	are	operating	in	the	same	

spatial	context	–	are	not	well	understood	at	present.	

	

HPC	and	entorhinal	cortex	(ERC)	are	essential	to	spatial	navigation	(Moser,	Kropff,	&	

Moser,	 2008).	 These	 two	 brain	 structures	 seem	 to	 participate	 in	 both	 path	

integration	 and	 environmental-cue-navigation.	 For	 path	 integration,	 human	 fMRI	

studies	have	shown	that	HPC	is	recruited	in	this	process	(Chrastil,	Sherrill,	Hasselmo,	

&	Stern,	2015;	Wolbers,	Wiener,	Mallot,	&	Büchel,	2007),	and	 that	 the	strength	of	

grid-cell-like	activity	 in	ERC	 is	correlated	with	path	 integration	ability	 in	 the	elderly	

(Stangl	et	al.,	2018).	Consistently,	animal	studies	have	shown	that	self-motion	cues	
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influence	 both	 hippocampal	 place	 cells	 (Gothard,	 Skaggs,	 &	 McNaughton,	 1996;	

Quirk,	 Muller,	 &	 Kubie,	 1990)	 and	 entorhinal	 grid	 cells	 (Hafting,	 Fyhn,	 Molden,	

Moser,	 &	Moser,	 2005),	 and	 that	 lesions	 to	 HPC	 and	 ERC	 impair	 path	 integration	

performance	(Parron	&	Save,	2004;	Whishaw,	McKenna,	&	Maaswinkel,	1997).		

	

As	to	environmental-cue-navigation,	evidence	is	relatively	clear	on	the	involvement	

of	HPC	and	ERC	when	distal	landmarks	or	geometric	cues	are	concerned.	Distal	cues	

are	 usually	 positioned	 at	 a	 distance	 from	 the	 navigation	 space	 and	 are	 useful	 for	

providing	directional	 information	but	not	distance	 information	 (Lew,	2011).	Animal	

studies	 have	 shown	 that	 hippocampal	 place	 cells	 and	 entorhinal	 grid	 cells	 are	

influenced	 by	 distal	 landmarks,	 in	 that	 their	 firing	 patterns	 closely	 followed	 the	

rotations	 of	 distal	 landmarks	 (Cressant,	 Muller,	 &	 Poucet,	 1997;	 Hafting,	 Fyhn,	

Molden,	 Moser,	 &	 Moser,	 2005;	 Muller	 &	 Kubie,	 1987).	 Geometric	 cues	 refer	 to	

geometric	 boundaries,	 e.g.,	 a	 square	 enclosure,	 or	 object	 arrays	 forming	 implicit	

geometric	shapes	(Cheng	&	Newcombe,	2005).	Human	MRI	studies	have	shown	that	

HPC	 is	 involved	 in	 topographical	memory	 of	 complex	 landmark	 layouts	 (Hartley	&	

Harlow,	2012;	Maguire	et	al.,	2000;	Wolbers	&	Büchel,	2005),	and	that	grid-cell-like	

activity	 in	 ERC	 is	 aligned	with	 geometric	 boundary	 in	 visual	 space	 (Julian,	 Keinath,	

Frazzetta,	 &	 Epstein,	 2018).	 Furthermore,	 rodent	 studies	 have	 shown	 that	

hippocampal	place	cells	are	controlled	by	enclosure	shapes	(Keinath,	Julian,	Epstein,	

&	 Muzzio,	 2017),	 and	 that	 firing	 patterns	 of	 entorhinal	 grid	 cells	 are	 oriented	 to	

geometric	boundaries	 in	navigation	space	(Krupic,	Bauza,	Burton,	Barry,	&	O’Keefe,	

2015).		
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In	 contrast,	 evidence	 is	 controversial	 as	 to	 the	 neural	 basis	 of	 navigating	 with	

isolated	local	landmarks.	In	contrast	to	distal	landmarks,	local	landmarks	are	usually	

positioned	 in	 or	 near	 the	 navigation	 space	 and	 can	 provide	 information	 on	 both	

direction	and	distance	 (Lew,	2011).	When	considered	 in	 isolation,	a	 local	 landmark	

does	 not	 form	 any	 configural	 shape;	 hence,	 local	 landmarks	 are	 considered	 as	

featural	 cues,	 as	 opposed	 to	 geometric	 cues	 (Cheng	 &	 Newcombe,	 2005).	 While	

some	studies	 found	that	the	processing	of	 local	 landmarks,	especially	a	single	 local	

landmark,	was	associative	and	was	not	related	to	hippocampal	activity,	compared	to	

geometric	and	configural	cues	 (Doeller,	King,	&	Burgess,	2008;	McDonald	&	White,	

1994;	 Packard	 &	McGaugh,	 1992;	Wegman,	 Tyborowska,	 &	 Janzen,	 2014),	 rodent	

studies	showed	that	hippocampal	place	cells	respond	to	manipulations	of	an	isolated	

landmark	 (Bjerknes,	 Dagslott,	 Moser,	 &	 Moser,	 2018;	 Gothard	 et	 al.,	 1996)	 and	

display	spatial	modulations	relative	to	local	landmarks	(Deshmukh	&	Knierim,	2013).	

These	mixed	findings	suggest	that	navigation	using	local	 landmarks	may	depend	on	

HPC.	 Moreover,	 rodent	 studies	 found	 that	 neurons	 in	 the	 lateral	 ERC	 displayed	

spatial	 specificity	 to	 local	 landmarks	 (Deshmukh	&	 Knierim,	 2011),	 suggesting	 that	

navigation	using	local	landmarks	might	also	recruit	ERC.	

	

Given	 the	 existing	 evidence	 for	 the	 involvement	 of	 HPC	 and	 ERC	 in	

environmental-cue-navigation	 and	 path	 integration,	 we	 hypothesized	 that	

anatomical	variability,	in	particular	gray	matter	volume,	of	these	structures	might	be	

correlated	 with	 individual	 abilities	 to	 navigating	 with	 environmental	 cues	 and	

self-motion	 cues.	 To	 address	 these	 important	 questions,	 we	 used	 an	 individual	

differences	 approach,	 which	 allows	 for	 in-depth	 investigation	 of	 brain-behavior	
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relationships	 by	 exploiting	 intersubject	 variability	 (Seghier	 &	 Price,	 2018).	 In	 two	

experiments,	we	 dissociated	 environmental-cue-navigation	 and	 path	 integration	 in	

the	same	navigation	task	and	correlated	performance	with	morphological	variations.	

Given	 the	 existing	 ambiguous	 evidence	 on	 the	 involvement	 of	 HPC	 and	 ERC	 in	

local-landmark-navigation,	we	hoped	to	shed	more	light	on	this	question	by	using	a	

single	isolated	object	as	the	local	landmark	in	the	navigation	task.		

	

2	EXPERIMENT	1	

2.1	Methods	

2.1.1	Participants	

The	 behavioral	 data	 of	 this	 experiment	 have	 been	 reported	 in	 a	 previous	 paper	

(Chen	 et	 al.,	 2017).	 Therefore,	 the	 method	 is	 only	 briefly	 described	 here.	

Twenty-four	 young	 healthy	 adults	 (12	 female)	 from	 the	 local	 community	 of	

Magdeburg	participated	in	the	experiment.	They	ranged	in	age	from	20	to	34	years	

old,	with	a	mean	of	25.	All	participants	were	right-handed,	had	normal	or	corrected-

to-normal	vision,	and	had	no	history	of	neurological	diseases.	Participants	completed	

a	 navigation	 task	 in	 an	 immersive	 virtual	 reality	 environment	 on	 two	 consecutive	

days	and	underwent	MRI	structural	scanning	afterward	on	the	third	day.	Participants	

also	 completed	 a	 battery	 of	 cognitive	 tests,	 the	 results	 of	which	were	 reported	 in	

Chen	et	al.	 (2017).	Two	participants	were	dropped	 from	the	analysis	because	 they	

did	not	 return	 for	MRI	 scanning.	This	 resulted	 in	22	participants	 (11	 female,	mean	

age	=	25)	in	the	analysis.	All	participants	gave	written	informed	consent	and	received	

monetary	 compensation.	 The	 experiment	 was	 approved	 by	 the	 local	 ethics	

committee	of	Otto-von-Guericke	University,	Magdeburg,	Germany.		
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2.1.2	Stimuli	and	task	

The	 virtual	 environment	was	displayed	 via	 a	Head	Mounted	Display	 (HMD,	Oculus	

Rift	 Development	 Kit	 2,	 Oculus	 VR	 LLC,	 http://www.oculus.com).	 Graphics	 were	

rendered	 using	 Vizard	 software	 (WorldViz,	 version	 5,	 Santa	 Barbara,	 CA).	 The	

participant’s	 position	 was	 tracked	 using	 a	 Vicon	 motion	 tracking	 system	

(https://www.vicon.com)	 and	 the	 participant’s	 orientation	 was	 tracked	 via	 the	

inertial	sensor	of	the	HMD.	Figure	1a	and	Figure	1b	depict	the	virtual	environment.	

The	 flag	 served	 as	 the	 local	 landmark.	 The	 navigation	 task	was	 to	walk	 through	 a	

series	of	three	posts	(outbound	path)	and	attempt	to	walk	back	to	the	remembered	

location	of	the	first	post	(inbound	path)	(Figure	1b).	After	participants	had	reached	

the	 third	 post,	 the	 environment	 disappeared,	 and	 participants	 counted	 backward	

from	 a	 number	 ranging	 from	 100	 to	 200	 in	 steps	 of	 3	 for	 20	 seconds.	 Next,	

participants	 were	 asked	 to	 walk	 back	 to	 the	 location	 of	 the	 first	 post.	 Finally,	

participants	 rated	 their	 confidence	on	navigation	 accuracy	on	a	 scale	 from	1	 (very	

unconfident)	to	10	(very	confident),	with	intervals	of	1.		

	

The	 task	 could	 be	 completed	 with	 the	 landmark	 alone	 (landmark	 condition),	

self-motion	cues	 alone	 (self-motion	 condition),	with	 both	 cue	 types	 in	 congruence	

(combination	condition),	or	with	both	cue	types	in	incongruence	(conflict	condition).	

Importantly,	the	four	conditions	were	identical	during	the	outbound	path	–	with	the	

environment	visible	–,	but	they	differed	during	the	inbound	path.	Specifically,	in	the	

landmark	condition,	to	eliminate	the	self-motion	cues,	participants	were	spun	while	

sitting	 in	 a	 chair	 during	 the	 backward	 counting	 period.	 The	 visual	 world	 became	

visible	during	the	inbound	path,	so	that	participants	could	rely	on	the	landmark	for	
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localization.	In	the	self-motion	condition,	participants	stood	still	during	counting,	but	

the	visual	world	and	the	landmark	became	invisible	in	the	inbound	path.	Participants	

had	to	walk	back	in	total	darkness,	relying	on	self-motion	cues	for	localization.	In	the	

combination	 condition,	 participants	 remained	 oriented	 during	 counting,	 and	 the	

visual	 world	 became	 visible	 during	 the	 inbound	 path,	 so	 both	 landmark	 cues	 and	

self-motion	 cues	were	available	 for	 response.	The	 conflict	 condition	was	 similar	 to	

the	combination	condition,	except	that	the	landmark	was	located	in	a	new	position,	

which	 was	 15°	 clockwise	 to	 its	 original	 location	 around	 the	 third	 post’s	 location.	

Since	 we	 were	 interested	 in	 contrasting	 landmark	 processing	 and	 self-motion	

processing,	 the	 analyses	 reported	 here	 focused	 on	 navigation	 performance	 in	 the	

two	single-cue	conditions.	The	behavioral	task	was	administered	on	two	consecutive	

days.	 On	 each	 day,	 there	 were	 40	 trials	 in	 total,	 each	 condition	 with	 10	 trials.	

Participants	 completed	 4	 practice	 trials	 at	 the	 beginning	 of	 each	 session.	 The	 task	

lasted	about	1.5	hours	each	day.		

	

2.1.3	Behavioral	analysis	

In	 both	 the	 landmark	 condition	 and	 the	 self-motion	 condition,	 responses	 from	

different	 target	 posts	were	 transformed	 into	 a	 common	 spatial	 coordinate.	 In	 the	

landmark	 condition,	because	participants	 relied	on	 the	 landmark	 for	 response,	 the	

common	 spatial	 coordinate	was	defined	 in	 relation	 to	 the	 landmark	 location,	with	

the	 target	 post’s	 location	 as	 the	 origin	 (0,0)	 and	 the	 direction	 from	 the	 target	

location	to	the	landmark	location	as	the	y-axis	(Figure	1c,	left	panel).	Given	previous	

studies	 suggesting	 differential	 mechanisms	 for	 distance	 and	 angular	 estimation	
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(Allen,	Kirasic,	Rashotte,	&	Haun,	2004;	Berthoz	et	al.,	1999;	Chrastil	et	al.,	2017),	we	

decomposed	the	2-dimensional	(2d)	distance	error	 into	 landmark-angle	error	along	

the	x-axis	and	landmark-distance	error	along	the	y-axis	(Figure	1c,	left	panel).	This	is	

consistent	with	 the	 idea	of	 landmark-vector	 representation,	with	 the	distance	 and	

angle	 components	 defined	 relative	 to	 the	 landmark	 (Collett,	 Cartwright,	 &	 Smith,	

1986;	Deshmukh	&	Knierim,	2013;	McNaughton,	Knierim,	&	Wilson,	1995).	Although	

landmark-angle	 error	 was	 not	 directly	 measured	 as	 angles,	 it	 indicates	 how	

accurately	 participants	 retrieved	 the	 target’s	 orientation	 relative	 to	 the	 landmark.	

Landmark-distance	error	indicates	how	accurately	participants	retrieved	the	target’s	

distance	 to	 the	 landmark.	 Landmark-angle	error	and	 landmark-distance	error	were	

then	correlated	with	brain	morphology.			

	

In	 the	 self-motion	 condition,	 because	 the	 landmark	was	 invisible,	 and	 participants	

performed	 path	 integration,	which	 started	 at	 the	 3rd	 post’s	 location,	 the	 common	

spatial	coordinate	was	defined	in	relation	to	the	3rd	post’s	 location,	with	the	target	

location	as	the	origin	and	with	the	correct	walking	direction	from	the	3rd	post	to	the	

target	 location	 as	 the	 y-axis	 (Figure	 1c,	 right	 panel).	 Analogous	 to	 the	 landmark	

condition,	we	decomposed	the	2d	distance	error	into	heading-direction	error	along	

the	 x-axis	 and	 walking-distance	 error	 along	 the	 y-axis	 (Figure	 1c,	 right	 panel).	

Although	 heading-direction	 error	 along	 the	 x-axis	 was	 not	 directly	 measured	 as	

angles,	 it	 is	 informative	 about	 how	 accurately	 participants	 retrieved	 the	 correct	

walking	 direction	 to	 the	 target	 location.	 Walking-distance	 error	 indicates	 how	

accurately	 participants	 retrieved	 the	 correct	 distance	 to	 walk	 to	 reach	 the	 target	

location.	 Heading-direction	 error	 and	 walking-distance	 error	 were	 then	 correlated	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 8, 2018. ; https://doi.org/10.1101/465997doi: bioRxiv preprint 

https://doi.org/10.1101/465997
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

with	brain	morphology.	Therefore,	in	both	coordinates	in	Figure	1c,	x-axis	and	y-axis	

correspond	 to	 the	 angular	 component	 and	 distance	 component	 of	 the	 response	

error.		

	

In	 both	 the	 landmark	 condition	 and	 the	 self-motion	 cue	 condition,	 trials	 from	 the	

two	days	were	pooled	together.	To	exclude	outlier	trials	for	each	participant,	in	each	

condition,	responses	were	excluded	from	the	analysis	 if	the	2d	distance	error	were	

higher	than	the	3rd	quartile	by	more	than	3	interquartile	ranges.		

	

2.1.4	Image	acquisition	and	pre-processing	

After	the	participant	had	completed	the	navigation	task,	MR	images	were	acquired	

in	 a	 3T	 Siemens	 Prisma	 scanner	 on	 a	 separate	 day.	 A	 high-resolution	whole-brain	

T1-weighted	structural	scan	was	acquired	with	the	following	MP-RAGE	sequence:	TR	

=	2500	ms,	TE	=	2.82	ms,	flip	angle	=	7°,	slices	=192,	orientation	=	sagittal,	resolution	

=	 1	 mm	 isotropic.	 Since	 HPC	 and	 ERC	 can	 be	 clearly	 identified	 on	 T2-weighted	

images,	 a	 partial-volume	high-resolution	 T2-weighted	 structural	 scan	was	 acquired	

with	the	following	MP-RAGE	sequence:	TR	=	7930	ms,	TE	=	44	ms,	flip	angle	=	180°,	

slices	=	56,	slice	thickness	=	1.1	mm,	resolution	=	0.4*	0.4*1.1	mm.	The	slices	were	

acquired	perpendicular	to	the	long	axis	of	HPC.	If	the	T2-weighted	structural	scan	did	

not	have	sufficient	quality	due	to	head	motion,	it	was	acquired	for	the	second	time.	

The	 scanning	 session	 took	 about	 20-30	 min.	 The	 T1-weighted	 image	 was	

bias-corrected	in	SPM12.	
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2.1.5	Volumetry	

To	 identify	 potential	 relationships	 between	 variability	 in	 brain	 morphology	 and	

navigational	performance,	we	conducted	volumetry	analyses.	In	this	analysis,	regions	

of	interest	(ROIs),	HPC	and	ERC,	were	manually	segmented	on	coronal	planes	of	the	

T2-weighted	structural	scan	 in	 ITK-SNAP	(Version	3.4;	www.itksnap.org;	Yushkevich	

et	 al.,	 2006),	 using	 the	 segmentation	 protocol	 developed	 by	 Berron,	 Vieweg	 and	

colleagues	(Berron	et	al.,	2017).	The	full	HPC	and	ERC	were	segmented	from	anterior	

to	 posterior.	 Anteriorly,	 the	 segmentation	 of	 ERC	 started	 four	 slices	 prior	 to	 the	

appearance	of	 the	hippocampal	head;	posteriorly,	 it	ended	2	slices	after	 the	uncus	

had	disappeared.	The	number	of	voxels	of	HPC	and	ERC	was	counted	 in	 ITK-SNAP,	

and	their	volumes	were	calculated	as	the	number	of	voxels	in	the	segmented	region	

multiplied	by	the	spatial	resolution	of	the	T2-weighted	structural	scan.	The	manual	

segmentation	was	performed	by	author	XC,	which	was	then	checked	and	corrected	

by	author	PV.	Both	authors	were	blind	to	participants’	navigation	performance.	An	

example	of	manual	segmentation	is	shown	in	Figure	2.		

	

We	 then	 calculated	 total	 intra-cranial	 volume.	 In	 SPM12,	 we	 segmented	 the	

T1-weighted	 structural	 image	 into	 probabilistic	 tissue	 class	 images	 of	 gray	matter,	

white	matter,	and	cerebrospinal	fluid	(CSF).	Total	intra-cranial	volume	was	equal	to	

the	sum	of	gray	matter,	white	matter,	and	CSF.	The	‘modulated’	non-linearly	warped	

images	were	 used	 (Malone	 et	 al.,	 2015).	 Total	 intra-cranial	 volume	was	 used	 as	 a	

proxy	of	head	size	in	the	data	analysis.		
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Finally,	 to	 determine	 whether	 anatomical	 variability	 was	 related	 to	 behavioral	

performance,	we	 performed	multivariate	 linear	 regression	 analyses,	 separately	 for	

the	 landmark	condition	and	 the	self-motion	condition,	and	separately	 for	different	

dimensions	 of	 response	 errors.	 Because	 previous	 studies	 have	 shown	 hemispheric	

specificity	 of	 hippocampal	 and	 entorhinal	 functions	 (Kennepohl,	 Sziklas,	 Garver,	

Wagner,	&	Jones-Gotman,	2007;	Maguire,	Woollett,	&	Spiers,	2006;	Schinazi,	Nardi,	

Newcombe,	 Shipley,	 &	 Epstein,	 2013;	 Shipton	 et	 al.,	 2014),	 the	 two	 hemispheres	

were	analyzed	 separately.	Covariates	 included	 in	 the	 regression	analysis	were	HPC	

volume,	 ERC	 volume,	 head	 size	 (i.e.,	 total	 intra-cranial	 volume),	 age,	 and	 sex,	

because	we	were	 interested	in	whether	HPC	volume	or	ERC	volume	contributed	to	

individual	differences	in	navigation	performance,	while	controlling	for	head	size,	age,	

and	sex.	Response	errors	along	different	dimensions	were	the	dependent	variables.	

	

2.2	Results	

2.2.1	Behavioral	results	

Response	 errors	were	 analyzed	 in	 a	 2	 x	 2	 repeated-measures	 analysis	 of	 variance	

(ANOVA),	with	cue	type	(landmark	vs.	self-motion)	and	axis	(angular	vs.	distance)	as	

independent	 factors.	Results	 are	depicted	 in	 Figure	3.	 The	main	effect	of	 cue	 type	

was	 not	 significant	 (F(1,21)	 =	 0.395,	 p	 =	 0.536,	 ŋ2	 =	 0.018),	 meaning	 that	 overall	

response	 error	 did	 not	 differ	 between	 cue	 types.	 The	 main	 effect	 of	 axis	 was	

significant	(F(1,21)	=	4.697,	p	=	0.042,	ŋ2	=	0.183),	meaning	that	overall	participants	

committed	 larger	angular	errors	 than	distance	errors.	The	 interaction	between	cue	

type	 and	 axis	 was	 significant	 (F(1,21)	 =	 20.295,	 p	 <	 0.001,	 	 ŋ2	=	 0.491).	 Follow-up	

paired	t	 tests	showed	that	participants	tended	to	commit	 larger	 landmark-distance	
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error	 than	 landmark-angle	error	 in	 the	 landmark	condition,	but	 the	difference	was	

not	significant	(t(21)	=	1.675,	p	=	0.109,	Cohen’s	d	=	0.357);	participants	committed	

larger	 heading-direction	 error	 than	 walking-distance	 error	 in	 the	 self-motion	

condition	 (t(21)	 =	 5.836,	 p	 <	 0.001,	 Cohen’s	 d	 =	 1.244).	 Response	 errors	 in	 the	

self-motion	 condition	 were	 not	 correlated	 with	 response	 errors	 in	 the	 landmark	

condition	(|rs|	<	0.200,	ps	>	0.400),	indicating	a	relative	independence	of	landmark	

navigation	 and	 path	 integration.	 Women	 and	 men	 did	 not	 differ	 in	 any	 of	 the	

behavioral	measurements	(|ts|	<	2.000,	ps	>	0.050).	Age	was	not	correlated	with	any	

of	the	behavioral	measurements	(|rs|	<	0.100,	ps	>	0.750).		

	

2.2.2	MRI	results	

Table	1	lists	bivariate	correlations	among	predictors	in	multivariate	linear	regression	

models.	 To	 reiterate,	 analyses	 were	 conducted	 separately	 for	 each	 hemisphere,	

because	 previous	 studies	 have	 shown	 hemispheric	 specificity	 of	 hippocampal	 and	

entorhinal	 functions	 (Kennepohl	 et	 al.,	 2007;	Maguire	 et	 al.,	 2006;	 Schinazi	 et	 al.,	

2013;	Shipton	et	al.,	2014).	In	each	hemisphere,	HPC	volume	and	ERC	volume	were	

included	 as	 covariates	 of	 interest,	 and	 sex,	 age,	 head	 size	 were	 included	 as	

covariates	of	no	interest	in	the	multivariate	linear	regression	model.	Given	that	the	

correlation	between	ERC	volume	and	HPC	volume	in	the	right	hemisphere	was	very	

high	(r	=	0.809)	and	that	HPC	volume	and	ERC	volume	were	of	primary	interest	to	us,	

for	the	right	hemisphere,	additional	multivariate	linear	regression	models	were	run	

with	either	HPC	volume	or	ERC	volume	 included	(together	with	sex,	age,	and	head	

size),	to	avoid	a	potential	multicollinearity	problem.	
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2.2.2.1	Predicting	performance	in	the	landmark	condition	

To	reiterate,	in	the	landmark	condition,	the	2d	distance	error	was	decomposed	into	

landmark-distance	error	and	landmark-angle	error.	Results	are	summarized	in	Table	

2.	

	

For	landmark-angle	error,	in	the	left	hemisphere,	when	HPC	volume	and	ERC	volume	

were	analyzed	together,	there	were	no	significant	correlations	of	either	HPC	volume	

(beta	=	 -0.169,	p	=	0.560)	or	ERC	volume	(beta	=	0.169,	p	=	0.545).	The	analysis	on	

the	 right	 hemisphere	 revealed	 similar	 results	 when	 HPC	 volume	 and	 ERC	 volume	

were	analyzed	together	(HPC,	beta	=	0.032,	p	=	0.947;	ERC,	beta	=	-0.364,	p	=	0.434).	

As	mentioned	previously,	due	to	the	high	correlation	between	HPC	volume	and	ERC	

volume	 in	 the	 right	 hemisphere,	 we	 did	 the	 same	 multivariate	 linear	 regression	

analyses	 for	 HPC	 and	 ERC	 in	 the	 right	 hemisphere	 separately,	 and	 the	 results	

remained	unchanged	(HPC,	beta	=	-0.266,	p	=	0.374;	ERC,	beta	=	-	0.340,	p	=	0.231).	

	

For	 landmark-distance	 error,	 in	 the	 left	 hemisphere,	 when	 HPC	 volume	 and	 ERC	

volume	were	 analyzed	 together	 in	 the	 same	multivariate	 linear	 regression	model,	

HPC	volume	was	negatively	correlated	with	landmark-distance	error	(beta	=	-0.658,	p	

=	0.014),	meaning	the	larger	the	HPC,	the	smaller	the	error	(Figure	4a);	ERC	volume	

was	 not	 correlated	with	 landmark-distance	 error	 (beta	 =	 0.285,	 p	 =	 0.234).	 In	 the	

right	hemisphere,	when	HPC	volume	and	ERC	volume	were	analyzed	together,	there	

were	 no	 significant	 correlations	 of	 HPC	 volume	 (beta	 =	 -0.501,	 p	 =	 0.303)	 or	 ERC	

volume	(beta	=	0.112,	p	=	0.806).	When	HPC	and	ERC	in	the	right	hemisphere	were	
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analyzed	 separately,	 similar	 results	were	 obtained	 (HPC,	 beta	 =	 -0.409,	 p	 =	 0.168;	

ERC,	beta	=	-0.264,	p	=	0.361).	

	

To	 summarize,	 we	 found	 that	 in	 the	 landmark	 condition,	 HPC	 volume	 in	 the	 left	

hemisphere	 contributed	 positively	 to	 navigation	 performance.	 Specifically,	

participants	 with	 larger	 hippocampi	 performance	 better	 in	 terms	 of	

target-to-landmark	 distance.	 In	 contrast,	 ERC	 volume	 was	 not	 correlated	 with	

landmark	 navigation	 performance.	 We	 compared	 left	 HPC	 volume	 and	 left	 ERC	

volume	in	the	analysis	of	landmark-distance	error	by	looking	at	the	95%	confidence	

intervals	 of	 beta	 weights	 (Cumming,	 2009),	 and	 found	 beta	 weight	 differed	

significantly	between	the	 left	HPC	volume	and	the	 left	ERC	volume	(p	<	0.05).	This	

suggests	that	the	left	HPC	volume	contributed	to	landmark	navigation	performance	

more	substantially	than	the	left	ERC	volume.	

	

2.2.2.2	Predicting	performance	in	the	self-motion	condition		

As	 described	 earlier,	 in	 the	 self-motion	 condition,	 the	 2d	 distance	 error	 was	

decomposed	 into	 heading-direction	 error	 and	 walking-distance	 error.	 Results	 are	

shown	in	Table	3.	

	

For	 heading-direction	 error,	 analysis	 on	 the	 left	 hemisphere	 showed	no	 significant	

correlations	of	HPC	(beta	=	-0.226,	p	=	0.423)	or	ERC	volume	(beta	=	0.003,	p	=	0.992)	

when	the	two	were	analyzed	together	in	the	same	regression	model.	Similar	results	

were	 obtained	 in	 the	 right	 hemisphere	 when	 HPC	 volume	 and	 ERC	 volume	 were	

analyzed	together	(HPC,	beta	=	-0.377,	p	=	0.437;	ERC,	beta	=	0.343,	p	=	0.460).	The	
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results	 remained	 the	 same	 when	 HPC	 and	 ERC	 in	 the	 right	 hemisphere	 were	

analyzed	in	separate	regression	models	(HPC,	beta	=	-0.097,	p	=	0.763;	ERC,	beta	=	

0.060,	p	=	0.833).	

	

For	walking-distance	error,	analysis	on	the	left	hemisphere	revealed	no	correlations	

of	HPC	(beta	=	-0.339,	p	=	0.180)	or	ERC	volume	(beta	=	0.026,	p	=	0.912)	when	the	

two	 were	 analyzed	 together	 in	 the	 same	 regression	 model.	 Similar	 results	 were	

obtained	on	the	right	hemisphere	(HPC,	beta	=	-0.531,	p	=	0.184;	ERC,	beta	=	-0.014,	

p	 =	 0.970).	 However,	 when	 HPC	 and	 ERC	 in	 the	 right	 hemisphere	 were	 analyzed	

separately,	 HPC	 volume	 negatively	 correlated	 with	 walking-distance	 error	 (beta	

=	-0.542,	p	=	0.031),	meaning	that	the	larger	the	HPC,	the	smaller	the	error	(Figure	

4b).	 Notably,	 this	 regression	 model	 significantly	 predicted	 walking-distance	 error	

(adjusted	 R2	 =	 0.300,	 F(4,17)	 =	 3.245,	 p	 =	 0.038).	 Regression	 coefficient	 of	 ERC	

volume	remained	non-significant	when	it	was	analyzed	separately	from	HPC	volume	

(beta	=	-0.412,	p	=	0.095).	This	suggests	that	the	significant	contribution	of	the	right	

HPC	volume	to	walking-distance	error	was	obscured	by	its	high	correlation	with	the	

right	ERC	volume	when	both	were	included	in	the	same	regression	model	(variance	

inflation	factors	>	3.7).		

	

To	 summarize,	 in	 the	 self-motion	 condition,	 HPC	 volume	 in	 the	 right	 hemisphere	

positively	 predicted	 navigation	 performance	 in	 terms	 of	 walking-distance	 to	 the	

target,	 meaning	 that	 participants	 with	 larger	 hippocampi	 retrieved	 the	

walking-distance	 to	 the	 target	more	 correctly	 from	 a	 fixed	 location	 (the	 3rd	 post).	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 8, 2018. ; https://doi.org/10.1101/465997doi: bioRxiv preprint 

https://doi.org/10.1101/465997
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

Heading-direction	 error	 was	 not	 predicted	 by	 HPC	 volume.	 ERC	 volume	 did	 not	

predict	any	performance	measurements	in	the	self-motion	condition.	

	

2.3	Discussion	

In	Experiment	1,	we	found	that	hippocampal	volume	positively	predicted	navigation	

performance	 using	 both	 a	 local	 landmark	 and	 self-motion	 cues,	 but	 on	 different	

dimensions	 of	 responses.	 In	 the	 landmark	 condition,	 hippocampal	 volume	 was	

related	 to	 the	accuracy	of	 retrieving	 the	 target’s	distance	 to	 the	 landmark	but	not	

the	 target’s	 orientation	 relative	 to	 the	 landmark.	 Different	 results	 on	 different	

dimensions	could	not	be	explained	by	statistical	artifacts,	such	as	range	restriction,	

since	 the	data	were	more	dispersed	along	 the	dimension	on	which	 the	correlation	

was	absent	 (e.g.,	 standard	deviation	was	0.153	m	 for	 landmark-distance	error	 and	

0.308	m	 for	 landmark-angle	 error).	We	 also	 found	 that	 hippocampal	 volume	 was	

positively	 related	 to	 how	 accurately	 participants	 retrieved	 the	walking	 distance	 to	

the	 target	 from	a	 fixed	 location	 (i.e.,	 the	3rd	post)	 in	path	 integration	 trials.	Again,	

statistical	 artifacts	 could	 not	 explain	 these	 results,	 since	 data	 dispersion	 was	 only	

slightly	different	between	the	two	dimensions	(standard	deviation	was	0.175	m	for	

heading-direction	 error	 and	 0.212	m	 for	 walking-distance	 error	 in	 the	 self-motion	

condition).	 Significant	 correlations	 between	 hippocampal	 volume	 and	 navigation	

performance	were	 not	 observed	 in	 every	 dimension	 of	 behavioral	measurements,	

indicating	that	our	 findings	are	unlikely	to	reflect	general	cognitive	factors,	such	as	

memory	capacity	(Squire	&	Zola-Morgan,	1991)	and	attentional	engagement.	Rather,	

our	 findings	 suggest	 that	 hippocampal	 contribution	 to	 navigation	 performance	 is	

specific	to	the	combination	of	cue	type	and	response	dimension.		
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The	 decomposition	 of	 the	 2d	 distance	 error	 in	 the	 landmark	 condition	 into	

landmark-distance	 error	 and	 landmark-angle	 error	 rests	 on	 the	 assumption	 that	

participants	 localized	 the	 target	 location	 by	 extracting	 distance	 and	 angular	

information	from	visual	features	of	the	landmark,	e.g.,	judging	distance	based	on	the	

visual	 size	 of	 the	 landmark	 (Gillam,	 1995;	 Sedgwick,	 1986).	 This	 corresponds	 to	 a	

view-based	matching	strategy	(Collett	et	al.,	1986).	However,	an	alternative	strategy	

available	 to	 participants	 was	 a	 reference	 orientation	 strategy:	 After	 the	

chair-spinning	 disorientation	 stage,	 participants	 could	 establish	 a	 reference	

orientation	 from	 self-position	 to	 the	 landmark,	 judge	 the	orientation	of	 the	 target	

location	 relative	 to	 the	 reference	 orientation,	 and	 then	 walk	 along	 the	 judged	

orientation.	This	strategy	indicates	that	the	response	error	in	the	landmark	condition	

is	 better	 characterized	 by	 the	 spatial	 coordinate	 depicted	 in	 the	 Figure	 1c,	 right	

panel,	in	which	the	2d	distance	error	is	decomposed	into	heading-direction	error	and	

walking-distance	 error.	 Indeed,	 when	 applying	 this	 decomposition	 scheme	 to	 the	

landmark	 condition,	 we	 found	 that	 the	 left	 HPC	 negatively	 predicted	

heading-direction	error	 (beta	=	 -0.673,	p	=	0.004).	 This	 is	 not	 surprising	 given	 that	

geometrically,	 x-axis	 and	 y-axis	 are	 roughly	 switched	 between	 the	 two	 different	

coordinates	in	Figure	1c.	This	suggests	that	the	correlation	between	HPC	volume	and	

landmark-distance	 error	 could	 actually	 be	 caused	 by	 the	 correlation	 between	HPC	

volume	and	heading-direction	error.		

	

To	 analyze	 the	 possibility	 of	 the	 reference	 orientation	 strategy,	 we	 examined	

participants’	walking	trajectories	during	response	(i.e.,	the	inbound	path),	when	the	

participant’s	 instantaneous	position	was	recorded	every	0.1	seconds.	We	reasoned	
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that	 if	 the	 reference	 orientation	 strategy	 was	 adopted	 throughout	 the	 response	

stage,	 the	 heading	 direction	 should	 be	 determined	 at	 the	 very	 early	 stage	 of	 the	

response,	and	the	participant	would	then	walk	along	the	initially	judged	orientation	

until	the	response	was	made.	Figure	5	shows	a	representative	response	trajectory.	In	

this	example,	 the	participant’s	heading	direction	was	changed	 in	 the	middle	of	 the	

trajectory,	 indicating	a	change	 in	strategy.	The	circuitousness	of	 the	2nd	half	of	 the	

trajectory	 indicates	 that	 the	 participant	 was	 finely	 adjusting	 self-position	 in	 an	

attempt	 to	 acquire	 a	 view	 of	 the	 landmark	 matched	 to	 the	 remembered	 visual	

snapshot	taken	during	the	outbound	path.	This	 implies	that	during	response,	 if	 the	

participant	adopted	 the	 reference	orientation	strategy,	 the	participant	did	not	 rely	

on	it	exclusively.	Instead,	the	participant	also	used	the	view-based	matching	strategy,	

especially	in	the	later	stage	of	response.	

	

To	analyze	the	response	trajectories	quantitatively,	for	each	trajectory,	we	obtained	

the	 middle	 position	 and	 the	 last	 position	 within	 the	 response	 time	 window	 and	

calculated	 their	 orientations	 relative	 to	 the	 3rd	 post.	 We	 found	 that	 the	 two	

orientations	were	only	moderately	correlated	with	each	other	across	participants	(r	

=	 0.463,	 p	 =	 0.030),	 suggesting	 that	 if	 participants	 initially	 used	 the	 landmark	 as	 a	

reference	 to	 specify	 the	 direction	 to	 walk	 along,	 they	 did	 not	 use	 this	 strategy	

throughout	the	entire	response	stage.	We	regressed	heading-direction	error	at	 the	

middle	position	against	HPC	volume	and	ERC	volume,	with	sex,	age,	and	head	size	as	

covariates	of	no	 interest,	and	found	that	HPC	volume	in	either	hemisphere	did	not	

predict	this	behavioral	measurement	(ps	>	0.150),	suggesting	that	HPC	volume	was	

not	 related	 to	how	accurately	people	 judged	 the	 target	orientation	 relative	 to	 the	
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reference	 orientation	 in	 the	 initial	 stage	 of	 response.	 We	 also	 added	

heading-direction	 error	 at	 the	 middle	 position	 as	 an	 additional	 predictor	 in	 the	

multivariate	 linear	 regression	 model	 for	 landmark-distance	 error;	 that	 is,	

landmark-distance	error	was	regressed	against	heading-direction	error	at	the	middle	

position,	in	addition	to	HPC	volume	and	ERC	volume,	with	sex,	age,	and	head	size	as	

covariates	 of	 no	 interest.	 The	 unique	 contribution	 of	 the	 left	 HPC	 volume	 to	

landmark-distance	error	 remained	significant	 (beta	=	 -0.584,	p	=	0.022),	 suggesting	

that	 the	 correlation	 between	 HPC	 volume	 and	 landmark-distance	 error	 cannot	 be	

accounted	 for	 by	 the	 reference	 orientation	 strategy	 used	 in	 the	 initial	 stage	 of	

response.	Finally,	we	simulated	 landmark-distance	error	assuming	that	participants	

had	not	changed	the	walking	direction	after	the	middle	position	and	had	walked	the	

same	distance	 from	 the	3rd	post	 to	 the	 response	 location.	We	did	 the	 same	set	of	

control	analyses	as	we	did	for	heading-direction	error	at	the	middle	position.	When	

the	simulated	 landmark-distance	error	was	 regressed	against	HPC	volume	and	ERC	

volume,	 with	 sex,	 age,	 and	 head	 size	 as	 covariates	 of	 no	 interest,	 HPC	 volume	 in	

either	 hemisphere	 did	 not	 predict	 the	 simulated	 landmark-distance	 error	 (ps	 >	

0.290),	 indicating	again	that	HPC	volume	was	not	related	to	how	accurately	people	

judged	the	target	orientation	relative	to	the	reference	orientation	in	the	initial	stage	

of	response.	When	the	simulated	error	was	added	as	a	predictor,	in	addition	to	HPC	

volume,	 ERC	 volume,	 sex,	 age,	 head	 size,	 into	 the	 multivariate	 linear	 regression	

model	to	predict	landmark-distance	error,	the	left	HPC	volume	remained	negatively	

correlated	with	 landmark-distance	error	(beta	=	-0.551,	p	=	0.032),	 indicating	again	

that	 the	 correlation	 between	 HPC	 volume	 and	 landmark-distance	 error	 cannot	 be	

accounted	 for	 by	 the	 reference	 orientation	 strategy	 used	 in	 the	 initial	 stage	 of	
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response.	 Taken	 together,	 these	 results	 indicate	 that	 HPC	 volume	 was	 related	 to	

how	accurately	participants	retrieved	the	target-to-landmark	distance,	which	cannot	

be	 accounted	 for	 by	 the	 possible	 reference	 orientation	 strategy	 based	 on	 the	

landmark	in	the	initial	response	stage.	

	

Experiment	 1	 was	 conducted	 in	 an	 immersive	 virtual	 reality	 setup,	 in	 which	 full	

body-based	cues	were	available.	On	the	contrary,	most	previous	studies	 looking	at	

the	 anatomical	 or	 functional	 correlates	 of	 spatial	 navigation	 in	 humans	 were	

conducted	in	desktop	virtual	environments	(e.g.,	Bohbot	et	al.,	2007;	Chrastil	et	al.,	

2017,	2015;	Wolbers	et	al.,	2007).	We	wondered	whether	the	results	of	Experiment	

1	could	be	replicated	in	a	desktop	virtual	environment,	in	which	body-based	cues	are	

absent	and	the	sense	of	immersion	is	reduced.	Therefore,	in	Experiment	2,	we	tried	

to	conceptually	replicate	Experiment	1	in	a	desktop	virtual	reality	setup.	In	addition,	

a	 different	 navigation	 task	 was	 used	 to	 further	 test	 the	 generalizability	 of	 the	

observations	made	in	Experiment	1.	

	

3	EXPERIMENT	2		

While	 again	 dissociating	 the	 use	 of	 landmark	 vs.	 self-motion	 cues,	 we	 used	 a	

different	navigation	task	in	Experiment	2	and	a	desktop	virtual	reality	setup.	A	single	

local	landmark	was	used	in	a	given	trial	in	the	landmark	condition.	In	the	self-motion	

condition,	no	 landmarks	were	visible	and	optic	 flow	served	as	self-motion	cues	 for	

path	 integration,	 because	physical	 translations	 and	 rotations	were	not	 possible.	 In	

both	 conditions,	 participants	 were	 required	 to	memorize	 the	 location	 of	 a	 target,	

and	 they	 subsequently	 judged	 positions	 of	 test	 locations	 relative	 to	 the	 target	
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location.	 Participants’	memory	 of	 the	 target	 location	was	 tested	 on	 a	 linear	 track,	

with	the	local	landmarks	positioned	on	the	linear	track.	Therefore,	response	error	in	

the	 landmark	 condition	 reflected	 behavioral	 accuracy	 of	 retrieving	 the	 target’s	

distance	 to	 the	 landmark.	 This	measurement	was	 equivalent	 to	 landmark-distance	

error	 in	 the	 same	 condition	 in	 Experiment	 1	 (Figure	 1c,	 left	 panel),	 in	 which	

significant	 correlation	 with	 hippocampal	 volume	 was	 observed.	 Response	 error	 in	

the	self-motion	condition	was	informative	of	behavioral	accuracy	of	representing	the	

target	location	in	relation	to	the	starting	location	where	the	movement	started.	This	

measurement	was	equivalent	to	walking-distance	error	in	the	self-motion	condition	

in	 Experiment	 1	 (Figure	 1c,	 right	 panel),	 in	 which	 significant	 correlation	 with	

hippocampal	volume	was	observed.	Therefore,	Experiment	2	served	as	a	conceptual	

replication	of	the	effects	observed	in	Experiment	1.	

	

3.1	Method	

3.1.1	Participants	

Twenty-four	 young	 healthy	 adults	 from	 the	 local	 community	 of	 Magdeburg	

participated	 in	 the	 experiment	 (15	 male).	 These	 participants	 aged	 from	 22	 to	 37	

years	 old	 (mean	 =	 27.9),	 were	 right-handed,	 had	 normal	 or	 corrected-to-normal	

vision,	and	had	no	history	of	neurological	diseases.	Two	participants	were	excluded	

from	 the	 analysis	 because	 of	 low-quality	 T2-weighted	 structural	 scans	 caused	 by	

excessive	head	motion.	This	 resulted	 in	22	participants	 in	 total	 in	 the	data	analysis	

(13	male,	mean	age	=	27.9).	All	 participants	 received	monetary	 compensation	and	

gave	 written	 informed	 consent	 to	 participate	 in	 the	 experiment.	 This	 experiment	
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was	 approved	 by	 the	 local	 ethics	 committee	 of	 Otto-von-Guericke	 University,	

Magdeburg,	Germany.		

	

3.1.2	Stimuli	and	task	

Participants	performed	a	relative	 location	 judgment	task	while	 lying	 inside	the	MRI	

scanner.	Graphics	were	rendered	using	Vizard	software	(WorldViz,	version	5,	Santa	

Barbara,	CA).	The	image	was	projected	onto	a	screen	mounted	at	the	end	of	the	MRI	

bed	and	reflected	via	an	IR-reflecting	first	surface	mirror.	The	display	size	was	22.9	

cm	in	width	and	12.9	cm	in	height.	The	distance	from	participants’	eyes	to	the	screen	

was	100	cm.	

	

Figure	6	shows	the	schematic	of	the	environment	layout.	The	task	was	to	learn	the	

location	of	a	penguin,	which	was	 fixed	 in	 the	environment.	As	 shown	 in	Figure	6a,	

two	different	 trees	were	 included,	with	one	positioned	closer	 to	 the	penguin	 than	

the	other.	The	distance	from	the	close	tree	to	the	penguin	was	9	m,	and	the	distance	

from	the	distant	tree	to	the	penguin	was	27	m.	The	close	tree	was	1.5	m	tall,	and	the	

distant	tree	was	4.5	m	tall.	When	standing	at	the	penguin’s	location,	the	vertical	and	

horizontal	 visual	 angles	 subtended	 by	 the	 two	 trees	 were	 the	 same.	 There	 were	

three	fixed	starting	points	(position	and	orientation	indicated	by	red	arrows	in	Figure	

6a).	The	distances	from	the	penguin	to	each	starting	point	was	8	m,	and	all	the	three	

arrows	 pointed	 to	 the	 penguin.	 In	 some	 trials,	 there	 was	 a	 collection	 of	 limited	

lifetime	white	dots	(lifetime	=	1	s)	on	the	ground	to	provide	optic	flow	information,	

as	self-motion	cues,	during	self-movement	(Figure	6b,	right	&	6c,	lower).	In	order	to	

enhance	 the	 sense	 of	 spatial	 immersion,	 this	 layout	 was	 situated	 in	 a	 rich	
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background	 environment,	 which	 was	 visible	 occasionally	 (Figure	 6a,	 right).	 The	

background	 environment	 was	 an	 open-field	 area	 surrounded	 by	 mountains	 and	

trees.	A	lodge	and	a	waterwheel	were	situated	on	the	mountain.	

	

The	 task	 consisted	 of	 active	 trials	 and	 passive	 trials.	 In	 active	 trials	 (Figure	 6b),	

participants	learned	the	location	of	a	target	(a	penguin,	Figure	6a),	and	they	‘moved’	

actively	 along	 a	 linear	 path	 by	 pressing	 appropriate	 buttons	 on	 a	 joystick.	 The	

participant	 first	 ‘moved’	 to	 a	 location	 where	 they	 think	 the	 target	 was	 located,	

placing	 a	 cage	 at	 the	 location.	 Then,	 the	 target	 appeared	 at	 its	 correct	 location,	

providing	 feedback	 (Figure	6b).	Finally,	participants	 ‘moved’	 to	the	correct	 location	

to	 correct	 the	 error.	 The	 movement	 could	 start	 from	 all	 three	 different	 starting	

points	 (red	 arrows	 in	 Figure	 6a).	 The	 background	 environment	 was	 visible	

occasionally	(Figure	6a).	The	sole	purpose	of	active	trials	was	to	allow	participants	to	

learn	the	target	location,	and	hence	they	were	not	analyzed	further.		

	

Passive	 trials	 tested	 participants’	 memory	 of	 the	 target	 location.	 Passive	 trials	

represent	 the	 main	 part	 of	 the	 experiment	 and	 were	 analyzed.	 In	 passive	 trials	

(Figure	 6c),	 participants	 were	 transported	 passively	 to	 a	 test	 location	 around	 the	

target,	where	the	camera	turned	down	and	fixed	at	a	 large	black	dot	on	the	blank	

ground	 for	4	 s.	Afterward,	participants	 judged	whether	 the	penguin’s	 location	was	

ahead	or	 behind	within	 2	 s.	 Feedback	was	provided	 afterward.	 The	 transportation	

always	 started	 from	 the	 0°	 perspective,	 aligned	with	 the	 pointing	 direction	 of	 the	

middle	 arrow	 (Figure	 6a).	 Four	 different	 test	 locations	 were	 selected	 and	 were	

evenly	 spaced	 around	 the	 penguin’s	 location	 along	 the	 0°	 perspective	 (Figure	 6a).	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 8, 2018. ; https://doi.org/10.1101/465997doi: bioRxiv preprint 

https://doi.org/10.1101/465997
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

The	penguin	 remained	 invisible	 throughout	 the	 trial.	 The	background	environment	

was	never	visible.	

	

In	 both	 active	 trials	 and	 passive	 trials,	 the	 use	 of	 landmarks	 and	 the	 use	 of	

self-motion	cues	were	dissociated.	In	the	landmark	condition	(Figure	6b,	left	column	

&	Figure	6c,	upper	row),	the	starting	position	of	active	movement	in	active	trials	and	

passive	movement	in	passive	trials	was	variable	on	a	trial-by-trial	basis.	The	starting	

position	in	each	trial	was	randomly	sampled	from	a	uniform	distribution	[-4.5	m,	4.5	

m]	 around	 the	positions	 of	 the	 three	 fixed	 red	 arrows	 (Figure	 6a).	 The	movement	

was	 aligned	 with	 the	 pointing	 direction	 of	 the	 red	 arrow.	 The	 red	 arrows	 were	

invisible	throughout	the	trial.	In	this	way,	participants	would	not	have	the	knowledge	

of	 the	 distance	 they	 needed	 to	 travel	 to	 the	 target	 location	 and	 thus	 could	 not	

perform	path	integration	to	solve	the	task.	In	addition,	the	ground	remained	blank,	

and	hence	participants	were	forced	to	only	rely	on	the	landmark.	The	noise	level	of	

landmark	cues	was	manipulated.	Only	the	close	tree	was	displayed	in	the	landmark	

low-noise	condition,	and	only	the	tree	distant	from	the	target	was	displayed	in	the	

landmark	 high-noise	 condition.	 Therefore,	 only	 one	 landmark	 was	 displayed	 in	 a	

given	trial.	Although	the	distant	tree	was	farther	away	from	the	target	location,	it	is	

still	 considered	 as	 a	 local	 landmark,	 since	 it	 was	 close	 enough	 to	 provide	 some	

degree	of	distance	 information,	on	which	participants	had	 to	 rely	 to	 complete	 the	

task.	 In	 passive	 trials,	 response	 error	 (=	 number	 of	wrong	 trials	 /	 total	 number	 of	

trials;	chance	level	=	0.5)	was	averaged	across	the	two	noise	levels	to	get	an	estimate	

of	how	well	participants	utilized	landmark	cues	for	spatial	localization	overall.		
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In	the	self-motion	condition,	only	self-motion	cues	were	available	(Figure	6b,	right	&	

Figure	6c,	lower),	while	landmarks	were	invisible.	The	starting	position	of	movement	

was	 fixed	 at	 one	 of	 the	 three	 red	 arrows	 in	 each	 trial,	 so	 participants	 knew	 in	

advance	how	far	they	needed	to	travel	to	reach	the	target.	The	movement	direction	

was	 aligned	 with	 the	 pointing	 direction	 of	 the	 arrow,	 which	 was	 visible	 at	 the	

beginning	of	the	trial.	White	limited	lifetime	dots	(lifetime	=	1	s)	were	displayed	on	

the	ground,	providing	optic	flow	information.	The	dots	were	moving	along	or	against	

the	 moving	 direction	 of	 the	 participant.	 The	 noise	 level	 of	 self-motion	 cues	 was	

manipulated.	 In	 the	self-motion	 low-noise	condition,	 the	movement	speed	of	each	

dot	was	 randomly	 sampled	 from	 a	 normal	 distribution	with	 a	mean	 of	 0	m	 and	 a	

standard	 deviation	 of	 0.2	 m	 in	 the	 self-motion	 high	 condition.	 In	 the	 self-motion	

high-noise	 condition,	 the	 normal	 distribution	 had	 a	 mean	 of	 0	 m	 and	 a	 standard	

deviation	of	6	m.	Therefore,	the	white	dots	appeared	to	move	considerably	more	in	

the	self-motion	high-noise	condition	than	in	the	self-motion	low-noise	condition.	As	

in	 the	 landmark	 conditions,	 in	 passive	 trials,	 response	 error	 was	 averaged	 across	

both	noise	levels	to	get	an	overall	estimate	of	how	well	participant	used	self-motion	

cues	 for	 navigation.	 Distance	 judgment	 is	 considered	 a	 form	 of	 path	 integration	

(Chrastil	 et	 al.,	 2017;	 Jacob	 et	 al.,	 2017),	 since	 self-motion	 inputs	 need	 to	 be	

continuously	integrated	during	the	linear	movement.	

	

Finally,	 the	 experiment	 also	 comprised	 a	 compound	 condition,	 in	 which	 both	 cue	

types	were	available	for	self-localization.	However,	since	our	primary	interest	was	to	

contrast	 landmark	cues	and	path	 integration	cues,	 this	 condition	was	not	analyzed	

here.	
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3.1.3	Procedure		

First,	participants	were	familiarized	with	the	task	and	joystick	operations	outside	of	

the	scanner.	While	 inside	the	scanner,	participants	 first	completed	a	practice	block	

consisting	of	active	trials	and	passive	trials.	Then	they	completed	a	test	stage,	which	

consisted	 of	 two	 runs.	 Each	 run	 had	 5	 blocks,	 corresponding	 to	 the	 compound	

condition,	landmark	low-noise	condition,	landmark	high-noise	condition,	self-motion	

low-noise	 condition,	 and	 self-motion	high-noise	 condition,	 randomized	 in	order.	 In	

each	 block	 (except	 the	 compound	 condition	 block),	 participants	 first	 completed	 5	

active	 trials,	 followed	by	20	passive	 trials.	Each	 test	 location	was	visited	5	 times	 in	

each	block	 in	passive	trials.	As	mentioned	above,	only	passive	trials	 from	landmark	

low-noise,	 landmark	 high-noise,	 self-motion	 low-noise,	 and	 self-motion	 high-noise	

conditions	 in	 the	 test	 stage	were	 analyzed;	 response	 errors	were	 averaged	 across	

the	 two	noise	 levels	 as	 an	 index	of	 overall	 navigational	 performance	 for	 landmark	

cues	and	self-motion	cues	separately.	

	

3.1.4	MRI	data	acquisition	and	preprocessing	

Structural	scans	were	acquired	in	a	7T	MRI	scanner	(Siemens,	Erlangen,	Germany)	at	

the	 Leibniz	 Institute	 for	 Neurobiology	 in	 Magdeburg	 with	 a	 32-channel	 head	 coil	

(Nova	 Medical,	 Wilmington,	 MA).	 A	 high-resolution	 whole-brain	 T1-weighted	

structural	scan	was	acquired	with	the	following	MP-RAGE	sequence:	TR	=	1700	ms;	

TE	=	2.01	ms;	flip	angle	=	5°;	slices	=	176;	orientation	=	sagittal;	resolution	=	1	mm	

isotropic.	 A	 partial-volume	 turbo	 spin	 echo	 high-resolution	 T2-weighted	 structural	

scan	 was	 acquired	 perpendicular	 to	 the	 long	 axis	 of	 the	 hippocampus	 with	 the	

following	 sequence:	 TR	 =	 8000	ms;	 TE	 =	 76	ms;	 flip	 angle	 =	 60°;	 slices	 =	 55;	 slice	
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thickness	 =	 1mm;	 distance	 factor	 =	 10%;	 in-plane	 resolution	 =	 0.4×0.4	 mm;	 echo	

spacing	=	15.1	ms,	turbo	factor	=	9,	echo	trains	per	slice	=	57.	Structural	scans	were	

acquired	 while	 participants	 were	 performing	 the	 practice	 block.	 BOLD	 fMRI	 data	

were	acquired	while	participants	were	performing	the	task	in	the	test	stage,	but	the	

results	are	not	reported	here.	The	T1-weighted	structural	scan	was	bias-corrected	in	

SPM12.	

	

3.1.5	Volumetry	

Following	the	same	procedure	as	in	Experiment	1	(section	2.1.5),	HPC	and	ERC	were	

manually	 segmented	 on	 T2-weighted	 structural	 scans,	 and	 their	 volumes	 were	

calculated	 and	 analyzed	 in	 multivariate	 linear	 regression	 models	 to	 predict	

navigation	performance.		

	

3.2	Results	

3.2.1	Behavioral	results	

Behavioral	results	are	shown	in	Figure	6d.	Similar	to	Experiment	1,	response	errors	

were	 not	 correlated	 between	 landmark	 cues	 and	 self-motion	 cues	 (r	 =	 0.198,	 p	 =	

0.376),	indicating	that	navigation	with	these	two	different	types	of	spatial	cues	might	

involve	relatively	 independent	mechanisms.	Paired	t-tests	showed	that	participants	

performed	better	with	landmark	cues	than	self-motion	cues	(t(21)	=	4.067,	p	=	0.001,	

Cohen’s	 d	 =	 0.867).	 This	 was	 expected	 considering	 that	 human	 navigators	 are	

generally	poor	 in	path	 integration	and	 that	body-based	 cues,	which	are	 critical	 for	

path	integration,	were	absent	in	the	current	experiment.	Independent-sample	t	tests	

showed	 that	 women	 and	 men	 did	 not	 differ	 on	 navigation	 performance	 with	
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landmark	cues	(t(20)	=	1.949,	p	=	0.065,	Cohen’s	d	=	0.845)	or	self-motion	cues	(t(20)	

=	 0.117,	 p	 =	 0.908,	 Cohen’s	 d	 =	 0.051).	 Age	 was	 not	 correlated	 with	 navigation	

performance	 with	 landmark	 cues	 (r	 =	 0.123,	 p	 =	 0.586)	 or	 self-motion	 cues	 (r	

=	-0.214,	p	=	0.338).	

	

3.2.2	MRI	analyses	

Table	4	lists	bivariate	correlations	among	predictors	in	multivariate	linear	regression	

models.	 Similar	 to	 Experiment	 1,	 analyses	 were	 conducted	 separately	 for	 each	

hemisphere,	with	 HPC	 volume	 and	 ERC	 volume	 as	 covariates	 of	 interest,	 and	 sex,	

age,	head	size	as	covariates	of	no	interest.		

	

3.2.2.1	Predicting	performance	in	the	landmark	condition	

We	 conducted	multivariate	 linear	 regression	 analyses	 to	 predict	 response	 error	 in	

the	 landmark	 condition	 (i.e.,	 landmark-distance	 error).	 Results	 are	 summarized	 in	

Table	5.	The	analysis	on	the	left	hemisphere	showed	that	when	HPC	and	ERC	were	

analyzed	 together,	 HPC	 volume	 contributed	 negatively	 to	 landmark-distance	 error	

(beta	=	-0.997,	p	=	0.002).	As	shown	in	Figure	7a,	participants	with	larger	hippocampi	

committed	 smaller	 errors	 with	 the	 landmark	 cue.	 ERC	 volume	 did	 not	 predict	

landmark-distance	 error	 (beta	 =	 -0.019,	 p	 =	 0.918).	Notably,	 this	 regression	model	

significantly	 predicted	 landmark-distance	 error	 as	 a	 whole	 (adjusted	 R2	 =	 0.467,	

F(5,16)	=	4.687,	p	=	0.008).		

	

Similar	 results	 were	 obtained	 on	 the	 right	 hemisphere.	When	 HPC	 and	 ERC	 were	

analyzed	 together,	 HPC	 volume	 contributed	 negatively	 to	 landmark-distance	 error	
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(beta	=	-0.953,	p	=	0.003).	As	shown	in	Figure	7b,	the	 larger	the	right	HPC	volume,	

the	 smaller	 the	 error.	 In	 contrast,	 ERC	 volume	 did	 not	 predict	 landmark-distance	

error	(beta	=	0.208,	p	=	0.263).	Notably,	this	regression	model	significantly	predicted	

landmark-distance	error	as	a	whole	(adjusted	R2	=	0.456,	F(5,16)	=	4.524,	p	=	0.009).	

	

To	 summarize,	 the	 results	 showed	 that	 hippocampal	 volume	 in	 both	 hemispheres	

positively	 contributed	 to	 individual	 differences	 in	 navigation	 performance	 with	 a	

single	 local	 landmark.	 Specifically,	 participants	 with	 larger	 hippocampi	 retrieved	

more	 correctly	 the	 target’s	 distance	 to	 the	 local	 landmark.	 ERC	 volume	 did	 not	

contribute	to	 landmark	navigation	performance.	By	comparing	the	95%	confidence	

intervals	 of	 beta	 weights	 (Cumming,	 2009),	 we	 found	 that	 beta	 weight	 differed	

significantly	between	HPC	volume	and	ERC	volume	in	both	hemispheres	(ps	<	0.05).	

This	pattern	of	results	is	consistent	with	the	findings	in	Experiment	1.		

	

3.2.2.2	Predicting	performance	in	the	self-motion	condition	

We	 conducted	multivariate	 linear	 regression	 analyses	 to	 predict	 response	 error	 in	

the	 self-motion	 condition	 (i.e.,	 walking-distance	 error).	 Results	 are	 summarized	 in	

Table	5.		

	

Analysis	on	the	 left	hemisphere	revealed	that	neither	HPC	volume	nor	ERC	volume	

was	correlated	with	walking-distance	error	(HPC,	beta	=	-0.374,	p	=	0.342;	ERC,	beta	

=	0.342,	p	=	0.197)	when	they	were	analyzed	together.		
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Analysis	 on	 the	 right	 hemisphere	 revealed	 that	when	HPC	 and	 ERC	were	 analyzed	

together,	 HPC	 volume	 did	 not	 predict	 walking-distance	 error	 (beta	 =	 -0.084,	 p	 =	

0.807);	 ERC	 volume	 positively	 predicted	 walking-distance	 error	 (beta	 =	 0.630,	 p	 =	

0.010),	meaning	that	participants	with	larger	ERC	performed	worse	with	self-motion	

cues	(Figure	7c).		

	

To	 summarize,	 the	 results	 showed	 that	HPC	 volume	was	 not	 correlated	with	 path	

integration	 performance,	 and	 ERC	 volume	 in	 the	 right	 hemisphere	 negatively	

predicted	 path	 integration	 performance.	 Specifically,	 participants	 with	 larger	 ERC	

performed	worse	in	terms	of	walking	distance	to	the	target	location.	

	

3.3	Discussion	

In	Experiment	2,	results	in	the	landmark	condition	were	very	similar	to	those	in	the	

landmark	 condition	 in	 Experiment	 1.	 Hippocampal	 volume	 positively	 predicted	

performance	with	 the	 single	 local	 landmark,	meaning	 the	 larger	 the	hippocampus,	

the	more	 accurate	 the	 retrieved	 distance	 from	 the	 target	 to	 the	 landmark.	Unlike	

Experiment	 1,	we	 did	 not	 observe	 correlations	 between	 hippocampal	 volume	 and	

path	 integration	 performance,	 indicating	 that	 hippocampal	 involvement	 in	 path	

integration	might	be	stronger	when	body-based	cues	were	available.	The	absence	of	

correlation	 between	 hippocampal	 volume	 and	 path	 integration	 performance	 also	

indicates	 that	 the	 significant	 hippocampal	 contribution	 to	 landmark	 navigation	

performance	 cannot	 be	 purely	 explained	 by	 general	 cognitive	 abilities,	 such	 as	

memory	capacity	 (Squire	&	Zola-Morgan,	1991)	or	attentional	engagement.	Finally,	

the	 absence	 of	 hippocampal	 correlations	with	 path	 integration	 performance	 could	
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not	 be	 explained	 by	 statistical	 artefacts	 either,	 since	 we	 did	 observe	 a	 significant	

correlation	between	entorhinal	volume	and	path	integration	performance.		

	

4	POOLED	ANALYSIS	

As	 described	 previously,	 Experiment	 1	 and	 Experiment	 2	 shared	 two	 performance	

measurements,	 landmark-distance	 error	 in	 the	 landmark	 condition	 and	

walking-distance	error	in	the	self-motion	condition.	Therefore,	to	test	the	robustness	

of	 the	 observed	 effects,	 we	 pooled	 the	 data	 across	 the	 two	 experiments	 and	

conducted	 the	 same	 set	 of	 multivariate	 linear	 regression	 analyses	 on	 all	 the	 44	

participants.	Before	the	data	pooling,	performance	measurements	and	ROI	volumes	

were	 standardized,	 so	 z	 scores	 were	 included	 in	 the	 regression	 analyses.	

Performance	measurements	were	standardized	because	they	were	calculated	from	

different	 navigation	 tasks	 and	 on	 different	 scales	 in	 the	 two	 experiments.	 ROI	

volumes	 were	 standardized	 because	 T2-weighted	 structural	 scans	 obtained	 in	

different	MRI	scanners	had	different	contrasts	 (although	the	spatial	 resolution	was	

the	same),	which	could	have	affected	manual	segmentation.	Age,	sex,	and	head	size	

were	 not	 standardized,	 since	 they	 were	 already	 on	 the	 same	 scale	 across	

experiments.		

	

Table	6	lists	bivariate	correlations	among	predictors.	For	each	hemisphere,	HPC	and	

ERC	 were	 analyzed	 together	 in	 the	 same	 regression	 models.	 Given	 that	 the	

correlation	between	HPC	volume	and	ERC	volume	in	the	right	hemisphere	was	again	

substantially	 high	 (r	 =	 0.613),	 for	 the	 right	hemisphere,	we	also	 analyzed	HPC	and	

ERC	in	separate	regression	models	to	avoid	a	potential	multicollinearity	problem.		
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4.1	ROI	volumetry	analyses	

4.1.1	Predicting	landmark-distance	error	in	the	landmark	condition	

The	 results	are	 summarized	 in	Table	7.	 In	 the	 left	hemisphere,	when	HPC	and	ERC	

were	analyzed	 together,	HPC	volume	negatively	predicted	 landmark-distance	error	

(beta	 =	 -0.767,	 p	 <	 0.001),	 meaning	 that	 participants	 with	 larger	 hippocampi	

committed	smaller	errors	(Figure	8a);	ERC	volume	did	not	predict	landmark-distance	

error	(beta	=	0.243,	p	=	0.073).	Notably,	the	regression	model	significantly	predicted	

landmark-distance	error	as	a	whole	(adjusted	R2	=	0.360,	F(5,38)	=	5.843,	p	<	0.001).		

	

Similar	 results	 were	 obtained	 in	 the	 right	 hemisphere.	 When	 HPC	 and	 ERC	 were	

analyzed	together,	HPC	volume	negatively	predicted	landmark-distance	error	(beta	=	

-0.687,	p	=	0.004),	meaning	the	larger	the	HPC,	the	smaller	the	error	(Figure	8b);	ERC	

volume	did	 not	 predict	 performance	 error	 (beta	 =	 0.078,	 p	 =	 0.663).	Notably,	 this	

regression	 model	 significantly	 predicted	 landmark-distance	 error	 as	 a	 whole	

(adjusted	R2	=	0.176,	F(5,38)	=	2.835,	p	=	0.029).	Results	remained	unchanged	when	

HPC	and	ERC	 in	the	right	hemisphere	were	analyzed	 in	separate	regression	models	

(HPC,	beta	=	-0.637,	p	=	0.002;	ERC,	beta	=	-0.206,	p	=	0.225).		

	

4.1.2	Predicting	walking-distance	error	in	the	self-motion	condition	

The	 results	are	 summarized	 in	Table	7.	 In	 the	 left	hemisphere,	when	HPC	and	ERC	

were	analyzed	together,	HPC	volume	did	not	predict	walking-distance	error	(beta	=			

-0.259,	 p	 =	 0.174).	 ERC	 volume	positively	 predicted	walking-distance	 error	 (beta	 =	

0.323,	 p	 =	 0.048),	 meaning	 the	 larger	 the	 ERC,	 the	 larger	 the	 error	 (Figure	 8c).	

Scatterplot	in	Figure	8c	suggests	that	this	negative	correlation	was	mainly	driven	by	
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data	 from	 Experiment	 2,	 since	 the	 fitted	 linear	 regression	 line	 was	 almost	 flat	 in	

Experiment	 1.	 In	 the	 right	 hemisphere,	 neither	 HPC	 volume	 nor	 ERC	 volume	

predicted	walking-distance	error	(HPC,	beta	=	-0.418,	p	=	0.093;	ERC,	beta	=	0.140,	p	

=	0.470)	when	they	were	analyzed	together.	Results	remained	unchanged	when	HPC	

and	ERC	in	the	right	hemisphere	were	analyzed	in	separate	regression	models	(HPC,	

beta	=	-0.326,	p	=	0.121;	ERC,	beta	=	-0.032,	p	=	0.850).		

	

4.2	Voxel-based	morphometry	(VBM)	analysis	on	pooled	data	

We	conducted	VBM	analysis,	which	examines	 local	morphological	variability	at	 the	

voxel	level,	to	complement	the	ROI	volumetry	analyses.	VBM	can	help	verify	results	

obtained	 in	the	volumetry	analysis,	because	ROI	demarcation	 in	volumetry	analysis	

may	contain	inaccuracies.	Furthermore,	VBM	can	reveal	effects	not	detectable	in	the	

volumetry	analysis,	because	an	effect	localized	to	a	certain	portion	of	a	ROI	could	be	

washed	 out	when	 the	 ROI	 is	 considered	 as	 a	whole.	 Finally,	 unlike	 the	 volumetry	

analysis,	VBM	can	examine	the	entire	brain	and	capture	effects	beyond	the	ROI.	 In	

brief,	 in	 the	 VBM	 analysis,	 gray	 matter	 images	 of	 individual	 participants	 were	

registered	 to	 the	 Montreal	 Neurological	 Institute	 (MNI)	 template,	 and	 then	 a	

group-level	general	linear	model	was	conducted	to	assess	whether	local	gray	matter	

volume	 at	 each	 voxel	 was	 correlated	 with	 individual	 differences	 in	 navigation	

performance.		

	

The	VBM	analysis	was	conducted	using	the	Dartel	toolbox	as	implemented	in	SPM12	

(Ashburner,	2007).	First,	T1-weighted	structural	scans	were	manually	reoriented	and	

shifted	 to	 approximately	 align	 with	 the	 MNI	 template.	 Second,	 T1-weighted	
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structural	scans	were	segmented	into	grey	matter,	white	matter,	and	cerebrospinal	

fluid	(CSF).	Third,	a	population	template	was	created	as	follows:	an	average	brain	of	

the	 group	was	 created,	 and	 the	deformations	 for	 individual	 images	 relative	 to	 the	

average	brain	were	estimated	and	used	to	register	individual	images	to	the	average	

brain;	 this	procedure	was	conducted	 in	an	 iterative	manner.	Fourth,	 the	registered	

grey	matter	images	were	Jacobian	scaled,	spatially	normalized	to	the	MNI	template	

with	 a	 voxel	 size	 of	 1.5	 mm,	 and	 then	 smoothed	 with	 a	 kernel	 of	 4	 mm	 FWHM.	

Finally,	 a	 group-level	 general	 linear	 model	 was	 constructed	 on	 the	 grey	 matter	

images,	 with	 navigation	 performance	 as	 a	 covariate.	 To	 control	 for	 potential	

confounding	effects	of	age	and	sex,	these	two	factors	were	included	in	the	model	as	

covariates.	To	control	for	different	head	sizes,	total	intra-cranial	volume	was	used	in	

global	normalization	as	a	covariate.			

	

We	 created	 an	 anatomical	mask	 as	our	 region	of	 interest,	which	 consisted	of	HPC	

and	 ERC	 in	 both	 hemispheres.	 For	 each	 participant,	 the	 manually	 segmented	

anatomical	masks	 of	 HPC	 and	 ERC	 in	 both	 hemispheres	were	 combined	 and	 then	

normalized	 to	 the	 MNI	 template.	 Then,	 a	 group-mean	 mask	 was	 obtained	 by	

averaging	 the	 normalized	 masks	 of	 individual	 participants.	 Voxel	 values	 in	 the	

group-mean	 mask	 were	 between	 0	 and	 1.	 Finally,	 the	 group-mean	 mask	 was	

thresholded	by	 a	 value	 of	 0;	 that	 is,	 a	 given	 voxel	was	 included	 in	 the	 final	 group	

mask	 if	 it	was	within	the	anatomical	mask	of	at	 least	one	participant.	For	voxels	 in	

our	region	of	interest,	small	volume	correction	approach	was	adopted	to	control	for	

multiple	 comparisons	 at	 p	 <	 0.05.	 For	 voxels	 outside	 of	 our	 region	of	 interest,	we	

corrected	 for	multiple	 comparisons	 in	 the	 entire	 brain	 at	 p	 <	 0.05.	Nonparametric	
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permutation	tests	on	 linear	regression	were	conducted,	using	the	SnPM	toolbox	as	

implemented	 in	 SPM12	 (Nichols	 &	 Holmes,	 2002).	 Covariate	 of	 interest	 was	 the	

standardized	 performance	 measurement	 (i.e.,	 landmark-distance	 error	 in	 the	

landmark	 condition	 and	walking-direction	 error	 in	 the	 self-motion	 condition).	 Age,	

sex	were	entered	 into	the	regression	model	as	covariates	of	no	 interest.	Head	size	

was	entered	as	global	value,	as	a	nuisance	effect	(ANCOVA).	Note	that	the	setup	of	

the	 regression	 model	 in	 VBM	 analysis	 was	 similar	 to	 the	 multivariate	 linear	

regression	analyses	conducted	in	the	ROI	volumetry	analyses.	

	

For	voxel-wise	analyses	such	as	VBM,	statistical	thresholds	can	be	very	strict	due	to	

the	 need	 to	 control	 for	 multiple	 comparisons.	 VBM	 analyses	 for	 individual	

experiments	can	suffer	from	inadequate	power	due	to	relatively	small	sample	sizes	

(=	22	participants	in	each	experiment).	Therefore,	VBM	analysis	was	only	conducted	

on	the	pooled	data,	with	44	participants	in	total.	While	such	an	analysis	might	lose	

the	sensitivity	to	detect	effects	specific	to	individual	experiments,	it	granted	us	with	

adequate	power	to	detect	true	effects	common	in	both	experiments.	

	

As	 shown	 in	 Figure	 9a,	 the	 anterior	 portion	 of	 the	 left	 HPC	 negatively	 predicted	

landmark-distance	 error	 in	 the	 landmark	 condition	 (peak	 t	 =	 4.720,	 pFWE-corrected	 =	

0.018,	 MNI	 coordinate	 [-21,	 -15,	 -12]).	 Notably,	 this	 peak	 voxel	 represents	 the	

highest	significance	level	across	the	entire	brain.	In	Figure	9b,	partial	regression	plot	

was	 constructed	 for	 the	 mean	 VBM	 gray	 matter	 of	 a	 4mm-radius	 spherical	 area	

centered	 at	 the	 peak	 voxel	 and	 standardized	 landmark-distance	 error,	 after	 both	

variables	 were	 adjusted	 for	 age,	 sex,	 and	 head	 size.	 Landmark-distance	 error	
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decreased	as	VBM	gray	matter	estimate	 increased,	and	 this	 relationship	existed	 in	

both	 individual	 experiments	 and	 the	 pooled	 data.	 No	 significant	 effects	 were	

observed	 for	 positive	 correlations	within	 the	 region	of	 interest.	 For	 voxels	 outside	

the	 region	 of	 interest,	 no	 significant	 effects	 were	 observed	 for	 either	 negative	 or	

positive	 correlations.	 For	 walking-distance	 error	 in	 the	 self-motion	 condition,	 no	

significant	effects	were	observed	either	within	or	outside	the	region	of	interest.	

	

4.3	Discussion	

Our	 analyses	 of	 the	 pooled	 data	 again	 revealed	 a	 hippocampal	 contribution	 to	

landmark	navigation	performance.	This	effect	was	localized	in	the	anterior	portion	of	

HPC.	 The	 highly	 similar	 findings	 in	 the	 landmark	 condition	 across	 the	 two	

experiments	indicate	that	landmark	navigation	recruits	similar	neural	mechanisms	in	

both	 immersive	 and	 desktop	 virtual	 reality	 environments.	 However,	 unlike	

Experiment	1,	hippocampal	volume	did	not	predict	performance	 in	the	self-motion	

condition.	 In	addition,	unlike	Experiment	1,	entorhinal	volume	negatively	predicted	

path	 integration	 performance,	 meaning	 the	 larger	 the	 ERC,	 the	 worse	 the	

performance,	and	this	negative	correlation	was	mainly	driven	by	data	in	Experiment	

2	when	path	 integration	was	based	on	optic	 flow	but	not	body-based	 cues.	 These	

discrepancies	suggest	that	path	integration	was	affected	by	the	specific	virtual	reality	

setup,	and	that	the	hippocampal	involvement	in	path	integration	might	be	stronger	

when	body-based	cues	were	used.	
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5	GENERAL	DISCUSSION	

In	 our	 study,	 participants	 completed	 spatial	 navigation	 tasks	 in	 either	 a	 fully	

immersive	virtual	reality	environment	or	a	desktop	virtual	reality	environment,	with	

landmark	 and	 self-motion	 cues	 dissociated.	 The	 results	 showed	 that	 hippocampal	

volume	consistently	and	positively	predicted	navigation	performance	using	a	single	

local	 landmark	 in	both	 immersive	and	desktop	virtual	 environments,	 and	 the	VBM	

analysis	 revealed	 that	 this	 effect	was	 localized	 in	 the	 anterior	 portion	 of	HPC.	We	

also	 found	 that	 hippocampal	 volume	 positively	 predicted	 path	 integration	

performance	 in	 the	 immersive	 virtual	 environment	 when	 body-based	 cues	 were	

available.	 Finally,	 entorhinal	 volume	 was	 not	 related	 to	 landmark	 navigation	

performance,	and	negatively	predicted	path	integration	performance	based	on	optic	

flow	information.	Taken	together,	our	study	is	the	first	to	demonstrate	correlations	

between	hippocampal	volume	and	individual	differences	in	navigation	performance	

based	on	a	single	local	landmark.		

	

Despite	 different	 experimental	 setups	 and	 navigation	 tasks,	 results	 of	 both	

experiments	 showed	 that	 hippocampal	 volume	 positively	 predicted	 landmark	

navigation	 performance,	 i.e.,	 the	 representation	 of	 a	 target’s	 distance	 to	 the	 local	

landmark.	This	suggests	that	landmark	navigation	recruits	similar	neural	mechanisms	

regardless	of	 the	specific	virtual	 reality	setup.	While	consistent	with	previous	work	

showing	 that	 hippocampus	 contributes	 to	 processing	 of	 landmarks	 (Bohbot	 et	 al.,	

2007;	Hartley	&	Harlow,	 2012;	 Iaria	 et	 al.,	 2008;	Maguire	 et	 al.,	 2000;	Woollett	&	

Maguire,	 2011),	 our	 results	 demonstrated	 this	 relationship	 when	 contributions	 of	

path	integration	had	been	excluded	from	the	navigation	performance.		
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In	our	study,	participants	 relied	on	a	single	 local	object	as	 the	 landmark	 in	a	given	

trial	in	the	landmark	condition.	The	local	object	was	a	local	landmark,	as	opposed	to	

distal	 landmarks,	 since	 it	 provided	 distance	 information	 in	 addition	 to	 orientation	

information	 (Lew,	2011).	 Furthermore,	participants	approached	 the	 target	 location	

from	 the	 same	 perspective	 when	 executing	 the	 response.	 We	 speculated	 that	

egocentric,	but	not	allocentric,	representation	of	the	target	location	was	formed	and	

utilized	for	response,	since	a	view-based	matching	strategy	sufficed	to	solve	the	task	

(Collett	 &	 Collett,	 2002).	 Supporting	 this	 assumption,	 a	 majority	 of	 participants	

reported	 that	 during	 the	 response	 stage,	 they	 tried	 to	 match	 the	 size	 of	 the	

landmark	as	remembered	when	the	 landmark	was	displayed.	Relative	object	size	 is	

an	 important	 and	 effective	 pictorial	 cue	 for	 distance	 perception	 (Gillam,	 1995;	

Sedgwick,	 1986).	 Our	 finding	 that	 hippocampal	 volume	 predicted	 behavioural	

accuracy	 of	 retrieving	 the	 target’s	 distance	 to	 the	 landmark	 suggests	 that	 HPC	 is	

related	 to	 distance	 estimation	 based	 on	 the	 view-based	 matching	 strategy	 and	

therefore	contributes	to	egocentric	coding	of	distance	to	a	single	local	landmark.	

	

The	 local	 landmark	 used	 in	 the	 landmark	 condition	 in	 our	 experiments	 is	 also	

classified	as	a	featural	cue,	as	opposed	to	geometric	cues,	 like	a	circular	enclosure,	

and	 configural	 cues,	 like	multiple	 landmarks	 forming	 an	 implicit	 geometric	 shape.	

Many	 studies	 suggest	 that	 –	 compared	 to	 geometric	 and	 configural	 cues	 –	 the	

processing	 of	 a	 local	 landmark	 in	 spatial	 navigation	 is	 not	 dependent	 on	HPC,	 but	

rather	on	the	dorsal	striatum	(Doeller	et	al.,	2008;	McDonald	&	White,	1994;	Packard	

&	McGaugh,	1992,	1996).	HPC	has	been	shown	to	process	geometric	cues	specifically	
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(Doeller	 et	 al.,	 2008;	 O’Keefe	 &	 Burgess,	 1996;	 Wegman	 et	 al.,	 2014)	 and	

hypothesized	to	specialize	in	allocentric	representations	of	spatial	memory	(Burgess,	

2006;	 Ekstrom,	 Arnold,	 &	 Iaria,	 2014;	 O’keefe	 &	 Nadel,	 1978).	 In	 contrast	 to	 this	

hypothesis	 and	 previous	 findings,	 our	 study	 suggests	 that	 hippocampus	 also	

contributes	to	egocentric	encoding	of	a	single	local	landmark,	by	demonstrating	that	

hippocampal	 volume	 positively	 predicted	 navigation	 performance	 based	 on	 a	 sole	

local	landmark.		

	

To	understand	 the	neural	mechanisms	of	 local-landmark	navigation,	 it	 is	 critical	 to	

clarify	how	a	local	landmark	can	be	utilized.	First,	a	single	local	landmark	can	be	used	

as	an	associative	cue,	 such	 that	 it	 is	positioned	at	 the	 reward	 location	or	 linked	 to	

some	 motor	 responses	 (e.g.,	 turning	 directions)	 along	 a	 route	 leading	 to	 the	

destination.	The	associative	use	of	a	single	local	landmark	necessitates	no	extraction	

of	fine-grained	spatial	information	and	was	found	related	to	the	dorsal	striatum	but	

not	HPC	 (Hartley,	Maguire,	Spiers,	&	Burgess,	2003;	Marchette,	Bakker,	&	Shelton,	

2011;	Packard	&	McGaugh,	1992,	1996).	Second,	a	single	local	landmark	can	be	used	

for	precise	 localization.	Our	 findings	suggest	 that	when	navigators	were	capable	of	

extracting	 fine-grained	 spatial	 information	 from	 the	 local	 landmark,	 even	 in	 an	

egocentric	reference	frame,	HPC	was	involved	in	processing	the	landmark.		

	

Despite	the	abundant	evidence	that	place	cells	are	not	spatially	modulated	by	local	

landmarks	(Cressant	et	al.,	1997;	Cressant,	Muller,	&	Poucet,	1999;	O’keefe	&	Nadel,	

1978),	a	recent	rodent	study	found	that	firing	fields	of	some	hippocampal	place	cells	

recorded	 in	 the	dorsal	HPC	 (homolog	 to	posterior	human	HPC)	 lied	at	 fixed	angles	
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and	 distances	 to	 local	 objects	 in	 an	 allocentric	 reference	 frame	 (Deshmukh	 &	

Knierim,	2013).	 This	 finding	 leads	 to	 the	 speculation	 that	activities	of	hippocampal	

place	 cells	 can	be	utilized	 to	extract	 fine-grained	angular	and	distance	 information	

from	local	landmarks	under	certain	circumstances.	Our	finding	that	the	gray	matter	

volume	 of	 the	 anterior	 HPC	 predicted	 distance-to-landmark	 accuracy	 with	 a	 local	

object	 supports	 the	 distance	 proposition	 of	 this	 speculation	 and	 suggests	 that	 it	

might	 be	 possible	 to	 observe	 similar	 place	 cell	 firings	 in	 an	 egocentric	 manner	 in	

relation	 to	 local	 objects	 in	 the	 ventral	 portion	of	 the	 rodent	HPC	 (homolog	 to	 the	

human	anterior	HPC).	Our	results	did	not	seem	to	support	the	angular	proposition	of	

this	 speculation,	 since	 we	 did	 not	 observe	 significant	 correlations	 between	

hippocampal	volume	and	landmark-angle	accuracy	in	responses.		

	

Previous	 human	 fMRI	 studies	 pitted	 a	 local	 landmark	 against	 a	 geometric	 cue	 -	 a	

circular	 boundary	 (Doeller	 et	 al.,	 2008),	 or	 a	 configural	 cue	 –	 an	 object	 layout	

(Wegman	 et	 al.,	 2014).	 Their	 behavioral	 measurements	 tapped	 on	 fine-grained	

spatial	 information.	 Both	 studies	 showed	 that	 HPC	was	 involved	 in	 geometric	 and	

configural	 processing,	 but	 not	 related	 to	 the	 processing	 of	 the	 local	 landmark,	

inconsistent	with	our	observations.	However,	in	their	data	analysis,	geometric	trials	

and	local	object	trials	were	contrasted	with	each	other	but	not	with	baseline	trials,	

so	 it	 was	 possible	 that	 the	 processing	 of	 local	 objects	 still	 involved	 hippocampal	

processing,	 but	 to	 a	 lesser	 degree	 compared	 to	 geometric	 cues.	 This	 possibility	 is	

consistent	 with	 the	 notion	 that	 behaviorally,	 geometric	 cues	 and	 local	 landmarks	

might	differ	 long	a	single	dimension	of	cue	salience	(Mou	&	Zhou,	2013).	 Indeed,	a	

subsequent	 study	 by	 Doeller	 and	 colleauges	 found	 that	 hippocampal	 damage	
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impaired	performance	with	both	the	local	landmark	and	the	boundary	(Guderian	et	

al.,	 2015),	 in	 the	 same	navigation	 task	 used	before	 (Doeller	 et	 al.,	 2008),	 implying	

that	hippocampal	activity	might	be	related	to	local-landmark-processing	as	well.		

	

In	addition,	Doeller	et	al.	(2008)	and	Wegman	et	al.	(2014)	observed	recruitment	of	

the	posterior	HPC	when	the	geometric	and	configural	cues	were	used,	whereas	our	

study	indicated	an	involvement	of	the	anterior	HPC	in	processing	a	local	landmark,	as	

shown	 in	 the	 VBM	 analysis	 on	 the	 pooled	 data.	 Therefore,	 our	 results	 do	 not	

necessarily	 conflict	 with	 these	 two	 studies,	 but	 rather	 suggest	 that	 different	

hippocampal	 portions	might	 support	 different	 spatial	 functions:	 the	 posterior	 HPC	

supports	 allocentric	 representations	 of	 the	 spatial	 environment,	 which	 is	 usually	

induced	by	the	use	of	a	geometric	boundary	(O’Keefe	&	Burgess,	1996)	or	an	object	

layout	 (Mou	&	McNamara,	 2002;	Mou,	McNamara,	Rump,	&	Xiao,	 2006),	whereas	

the	 anterior	 HPC	 is	 related	 to	 egocentric	 representations,	 e.g.,	 representing	 one’s	

egocentric	 distance	 to	 a	 local	 object,	 as	 demonstrated	 in	 the	 current	 study.	

Consistent	 with	 this	 speculation,	 previous	 work	 has	 shown	 that	 activity	 in	 the	

anterior	hippocampus	keeps	 track	of	 the	human	navigator’s	egocentric	distance	 to	

the	 goal	 location	 (Howard	 et	 al.,	 2014).	 Our	 finding	 is	 also	 consistent	 with	 the	

neurophysiological	 evidence	 that	 the	 perirhinal	 cortex,	 which	 processes	 object	

information,	projects	more	to	the	anterior	than	the	posterior	portion	of	HPC	(Libby,	

Ekstrom,	 Ragland,	 &	 Ranganath,	 2012;	Maass,	 Berron,	 Libby,	 Ranganath,	 &	 Düzel,	

2015).	
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We	 also	 found	 that	 when	 body-based	 cues	 were	 involved,	 hippocampal	 volume	

positively	predicted	path	 integration	performance,	 i.e.,	 the	walking	distance	 to	 the	

target	location	from	a	fixed	location.	This	relationship	was	not	observed	when	path	

integration	was	based	on	optic	flow	inputs.	Considering	that	previous	studies	using	

desktop	virtual	reality	setups	observed	an	involvement	of	the	hippocampus	in	path	

integration	 when	 only	 optic	 flow	 information	 was	 provided	 (Chrastil	 et	 al.,	 2017,	

2015;	Wolbers	 et	 al.,	 2007),	 our	 study	 suggest	 that	 the	 relationship	 between	HPC	

and	path	 integration	might	be	 stronger	when	body-based	cues	were	 involved.	Our	

findings	also	suggest	that	HPC	was	prominently	 involved	 in	processing	the	distance	

component	but	not	the	angular	component	of	the	homing	vector	in	path	integration.	

This	 observation	 might	 help	 explain	 controversies	 in	 lesions	 studies	 (Alyan	 &	

McNaughton,	1999;	Kim,	Sapiurka,	Clark,	&	Squire,	2013;	Shrager,	Kirwan,	&	Squire,	

2008;	 Whishaw	 &	 Maaswinkel,	 1998),	 by	 proposing	 the	 possibility	 that	 these	

inconsistencies	 might	 stem	 from	 differential	 involvement	 of	 angular	 vs.	 distance	

components	in	the	behavioral	measurement.	

	

Finally,	 we	 did	 not	 observe	 positive	 correlations	 between	 navigation	 performance	

and	 volumetric	 measures	 of	 ERC.	 Rather,	 we	 observed	 negative	 correlations	

between	 path	 integration	 performance	 based	 on	 optic	 flow	 information	 and	 ERC	

volume	in	Experiment	2.	These	findings	are	inconsistent	with	the	abundant	evidence	

from	rodent	studies	that	suggest	a	prominent	role	of	the	entorhinal	grid	cell	system	

in	spatial	navigation	(Moser	et	al.,	2008).	However,	a	recent	fMRI	study	on	the	grid	

cell	network	did	not	observe	correlations	between	entorhinal	BOLD	signals	and	path	

integration	 performance	 in	 healthy	 young	 adults	 (Stangl	 et	 al.,	 2018).	 Given	 the	
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complexity	of	navigational	behavior,	we	suggest	that	computations	beyond	ERC,	i.e.	

in	HPC,	might	be	more	important	for	inter-individual	differences.	

	

To	conclude,	we	investigated	the	anatomical	basis	of	landmark	navigation	and	path	

integration	using	an	individual	differences	approach.	By	contrasting	path	integration	

and	 landmark	 navigation	 in	 the	 same	 spatial	 context,	 our	 results	 provide	 novel	

evidence	 implicating	 HPC	 in	 egocentric	 encoding	 of	 a	 single	 local	 landmark	 and	

demonstrate	a	role	of	HPC	in	path	integration	based	on	body-based	cues.	
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Tables	

Table	1:	Bivariate	Pearson	correlations	among	predictors	in	Experiment	1	

	 sex	 age	 head	size	 left	HPC	 right	HPC	 left	ERC	

age	 -0.225	 	 	 	 	 	

head	size	 -0.657**	 0.015	 	 	 	 	

left	HPC	 -0.292	 -0.096	 0.460*	 	 	 	

right	HPC	 -0.288	 0.093	 0.583**	 0.734**	 	 	

left		ERC	 0.049	 0.009	 0.264	 0.350	 0.512*	 	

right	ERC	 -0.384	 0.323	 0.464*	 0.520*	 0.809**	 0.435*	

*	represents	p	<	0.05;	**	represents	p	<	0.01.	
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Table	 2:	 Multivariate	 linear	 regression	 analyses	 for	 the	 landmark	 condition	 in	

Experiment	1	

 
landmark-angle	error 	 landmark-distance	error 

predictors beta t p 	 beta t p 
left	HPC -0.169 -0.596 0.560 	 -0.658 -2.753 0.014 
left	ERC 0.169 0.618 0.545 	 0.285 1.238 0.234 
sex -0.005 -0.015 0.988 	 0.05 0.170 0.867 
age -0.124 -0.490 0.631 	 -0.107 -0.502 0.623 
head	size 0.225 0.623 0.542 	 0.369 1.209 0.244 
 F(5,16)	=	0.293,	p	=	0.910 	 F(5,16)	=	1.716,	p	=	0.188 
	 R

2	
=	0.084,	R

2

adj	
=	-0.202 	 R

2	
=	0.349,	R

2

adj	
=	0.141 

right	HPC 0.032 
(-0.266) 

0.068 
(-0.913) 

0.947 
(0.374) 

	 -0.501 
(-0.409) 

-1.064 
(-0.439) 

0.303 
(0.168) 

right	ERC -0.364 
(-0.340) 

-0.802 
(-0.243) 

0.434 
(0.231) 

	 0.112 
(-0.264) 

0.249 
(-0.938) 

0.806 
(0.361) 

sex 0.056 0.164 0.872 	 0.298 0.88 0.392 
age 0.019 0.073 0.943 	 0.022 0.083 0.935 
head	size 0.380 0.987 0.338 	 0.542 1.417 0.176 

 
F(5,16)	=	0.480,	p	=	0.786 	 F(5,16)	=	0.524,	p	=	0.755	 

 
R
2	
=	0.130,	R

2

adj	
=	-0.141 	 R

2
=	0.141,	R

2

adj
=	-0.128 

Multivariate	 linear	 regression	 analyses	 were	 run	 for	 landmark-angle	 error	 (left	

sections)	 and	 landmark-distance	 error	 (right	 sections)	 in	 the	 landmark	 condition	

separately,	 and	 for	 the	 left	 hemisphere	 (upper	 sections)	 and	 the	 right	hemisphere	

(lower	sections)	separately.	Significant	regression	coefficients	are	highlighted	in	red.	

Results	when	the	right	HPC	and	the	right	ERC	were	analyzed	in	separate	regression	

models	are	shown	in	the	parentheses.		
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Table	 3:	 Multivariate	 linear	 regression	 analyses	 for	 the	 self-motion	 condition	 in	

Experiment	1	

 
heading-direction	error 	 walking-distance	error 

predictors beta t p 	 beta t p 
left	HPC -0.226 -0.822 0.423 	 -0.339 -1.403 0.180 
left	ERC 0.003 0.01 0.992 	 0.026 0.112 0.912 
sex 0.272 0.797 0.437 	 0.086 0.286 0.778 
age 0.128 0.519 0.611 	 -0.111 -0.512 0.615 
head	size 0.063 0.179 0.860 	 -0.276 -0.895 0.384 

 
F(5,16)	=	0.504,	p	=	0.769 	 F(5,16)	=	1.605,	p	=	0.215 

	 R
2
	=	0.136	,	R

2

adj	
=	-0.134 	 R

2
=	0.334,	R

2

adj	
=	0.126 

right	HPC -0.377 
(-0.097) 

-0.798 
(-0.334) 

0.437 
(0.763) 

	 -0.531 
(-0.542) 

-1.388 
(-2.354) 

0.184 
(0.031) 

right	ERC 0.343 
(0.060) 

0.757 
(0.214) 

0.460 
(0.833) 

	 -0.014 
(-0.412) 

-0.038 
(-1.766) 

0.970 
(0.095) 

sex 0.368 1.081 0.296 	 0.219 0.796 0.438 
age 0.095 0.363 0.721 	 0.002 0.009 0.993 
head	size 0.084 0.217 0.831 	 -0.023 -0.075 0.941 

 
F(5,16)	=	0.493,	p	=	0.777 	 F(5,16)	=	2.444,	p	=	0.079 

 
R
2	
=	0.133,	R

2

adj	
=	-0.137 	 R

2	
=	0.433,	R

2

adj	
=	0.256 

Multivariate	 linear	 regression	 analyses	 were	 run	 for	 heading-direction	 error	 (left	

sections)	 and	 walking-distance	 error	 (right	 sections)	 in	 the	 self-motion	 condition	

separately,	 and	 for	 the	 left	 hemisphere	 (upper	 sections)	 and	 the	 right	hemisphere	

(lower	sections)	separately.	Significant	regression	coefficients	are	highlighted	in	red.	

Results	when	the	right	HPC	and	the	right	ERC	were	analyzed	in	separate	regression	

models	are	shown	in	the	parentheses.		
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Table	4:	Bivariate	Pearson	correlations	among	predictors	in	Experiment	2	

	 sex	 age	 head	size	 left	HPC	 right	HPC	 left	ERC	

age	 -0.108	 	 	 	 	 	

head	size	 -0.680**	 0.031	 	 	 	 	

left	HPC	 -0.476*	 -0.115	 0.771**	 	 	 	

right	HPC	 -0.534*	 -0.129	 0.796**	 0.985**	 	 	

left		ERC	 -0.234	 -0.139	 0.334	 0.426*	 0.416	 	

right	ERC	 -0.172	 -0.198	 0.354	 0.222	 0.234	 0.378	

*	represents	p	<	0.05;	**	represents	p	<	0.01.	
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Table	5:	Multivariate	linear	regression	analyses	in	Experiment	2	

 

landmark-distance	error 	 walking-distance	error 
predictors beta t p 	 beta t p 
left	HPC -0.997 -3.746 0.002 	 -0.374 -0.980 0.342 
left	ERC -0.019 -0.105 0.918 	 0.342 1.346 0.197 
sex 0.355 1.614 0.126 	 0.106 0.336 0.741 
age 0.025 0.149 0.883 	 -0.207 -0.876 0.394 
head	size 0.635 2.095 0.052 	 0.295 0.678 0.507 
 F(5,16)	=	4.687,	p	=	0.008	 	 F(5,16)	=	0.642,	p	=	0.671 
 R

2	
=	0.594,	R

2

adj	
=	0.467 	 R

2	
=	0.167,	R

2

adj	
=	-0.093 

right	HPC -0.953 -3.433 0.003 	 -0.084 -0.249 0.807 
right	ERC 0.208 1.161 0.263 	 0.630 2.900 0.010 
sex 0.258 1.161 0.263 	 0.007 0.025 0.980 
age 0.055 0.316 0.756 	 -0.097 -0.460 0.652 
head	size 0.478 1.457 0.165 	 -0.107 -0.268 0.792 

 
F(5,16)	=	4.524,	p	=	0.009	 	 F(5,16)	=	2.042,	p	=	0.127 

 
R
2	
=	0.586,	R

2

adj	
=	0.456 	 R

2	
=	0.389,	R

2

adj	
=	0.199 

Multivariate	 linear	regression	analyses	were	run	for	 landmark-distance	error	 in	 the	

landmark	 condition	 (left	 sections)	 and	 walking-distance	 error	 in	 the	 self-motion	

condition	 (right	 sections)	 separately,	 and	 for	 the	 left	 hemisphere	 (upper	 sections)	

and	 the	 right	 hemisphere	 (lower	 sections)	 separately.	 Significant	 regression	

coefficients	are	highlighted	in	red.		
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Table	6:	Bivariate	correlations	among	predictors	in	the	pooled	analysis		

	 sex	 age	 head	size	 Z(left	HPC)	 Z(right	HPC)	 Z(left	ERC)	

age	 -0.183	 	 	 	 	 	

head	size	 -0.649**	 -0.022	 	 	 	 	

Z(left	HPC)	 -0.382*	 -0.099	 0.613**	 	 	 	

Z(right	HPC)	 -0.408**	 -0.025	 0.685**	 0.859**	 	 	

Z(left	ERC)	 -0.061	 -0.096	 0.307*	 0.286	 0.373*	 	

Z(right	ERC)	 -0.308*	 0.067	 0.395**	 0.473**	 0.613**	 0.406**	

ROI	volumes	were	standardized	within	each	experiment	 (z-score).	*	 represents	p	<	

0.05;	**	represents	p	<	0.01.	
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Table	7:	Multivariate	linear	regression	analyses	in	the	pooled	analysis	

 
landmark-distance	error 	 walking-distance	error 

predictors beta t p 	 beta t p 
left	HPC -0.767 -4.901 <	0.001 	 -0.259 -1.384 0.174 
left	ERC 0.243 1.846 0.073 	 0.323 2.048 0.048 
sex 0.192 1.138 0.262 	 <	0.001 <	0.001 >	0.999 
age 0.033 0.258 0.798 	 -0.150 -0.987 0.330 
head	size 0.381 1.959 0.057 	 -0.159 -0.683 0.499 
 F(5,38)	=	5.843,	p	<	0.001	 	 F(5,38)	=	1.792,	p	=	0.138	 
	 R

2
=	0.435,	R

2

adj	=	0.360 	 R
2
=	0.191,	R

2

adj	=	0.084 
right	HPC -0.687 

(-0.637) 
-3.083 
(-3.376) 

0.004 
(0.002) 

	 -0.418 
(-0.326) 

-1.725 
(-1.585) 

0.093 
(0.121) 

right	ERC 0.078 
(-0.206) 

0.439 
(-1.233) 

0.663 
(0.225) 

	 0.140 
(-0.032) 

0.730 
(-0.190) 

0.470 
(0.850) 

sex 0.297 1.566 0.126 	 0.109 0.530 0.599 
age 0.085 0.588 0.560 	 -0.150 -0.962 0.342 
head	size 0.496 2.136 0.039 	 0.083 0.329 0.744 

 
F(5,38)	=	2.835	,	p	=0.029	 	 F(5,38)	=	1.256	,	p	=	0.303 

 
R
2
=	0.272,	R

2

adj	=	0.176 	 R
2
=	0.075,	R

2

adj	=	-0.020 
Multivariate	 linear	regression	analyses	were	run	for	 landmark-distance	error	 in	 the	

landmark	 condition	 (left	 sections)	 and	 walking-distance	 error	 in	 the	 self-motion	

condition	 (right	 sections)	 separately,	 and	 for	 the	 left	 hemisphere	 (upper	 sections)	

and	 the	 right	 hemisphere	 (lower	 sections)	 separately.	 Performance	measurements	

and	 ROI	 volumes	 were	 standardized	 within	 each	 experiment	 (z-score).	 Significant	

regression	coefficients	are	highlighted	in	red.		
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Figure	legends	

Figure	1:	Experimental	setup	and	behavioral	analysis	in	Experiment	1.	(a)	a	typical	

snapshot	from	the	participant’s	first-person	perspective	of	the	virtual	environment.	

(b)	 a	 bird’s	 eye	 view	 of	 the	 environment.	 Purple	 triangles	 represent	 starting	

locations;	red	dots	represent	possible	 locations	of	the	first	post	 (i.e.,	 target);	green	

dots	represent	possible	locations	of	the	2nd	post;	the	blue	diamond	represents	the	

location	 of	 the	 3rd	 post.	 The	 solid	 orange	 and	 red	 arrows	 represent	 a	 typical	

trajectory	of	a	trial:	 the	orange	arrows	form	the	outbound	path	and	the	red	arrow	

represents	the	correct	inbound	path.	If	we	imagine	a	midline	from	the	blue	diamond	

to	the	flag,	the	first	post	always	appeared	on	the	opposite	side	to	the	location	of	the	

starting	 location	 in	 each	 trial.	 Randomized	 jitters,	 ranging	 from	 -0.4	m	 to	0.4	m	 in	

both	 spatial	 coordinates,	 were	 added	 to	 the	 first	 post’	 location	 on	 a	 trial-by-trial	

basis	 (see	Chen	et	al.	2017	for	details).	While	standing	at	 the	starting	 location,	 the	

participant’s	 attention	 was	 directed	 to	 the	 flag	 by	 the	 experimenter	 before	 the	

outbound	path	started.	During	walking,	participants	were	free	to	look	at	the	flag.	(c),	

spatial	 coordinates	 used	 to	 decompose	 the	 2d	 distance	 error.	 The	 yellow	 dot	

represents	 the	 response	 location.	 In	 the	 landmark	 condition	 (left	 panel),	 the	 2d	

distance	error	is	decomposed	into	landmark-distance	error	and	landmark-angle	error	

in	a	spatial	coordinate	with	the	target	 location	as	the	origin	and	the	y-axis	defined	

from	the	target	location	to	the	landmark	location.	In	the	self-motion	condition	(right	

panel),	 the	 2d	 distance	 error	 is	 decomposed	 into	 heading-direction	 error	 and	

walking-distance	error	 in	a	spatial	coordinate	with	the	target	 location	as	 the	origin	

and	the	y-axis	defined	from	the	3rd	post	to	the	target	location.	

	

Figure	 2:	 Demarcation	 of	 regions	 of	 interest.	 Manual	 segmentation	 of	 the	

hippocampus	 (HPC)	 and	 the	 entorhinal	 cortex	 (ERC)	 in	 the	 right	 hemisphere	 of	 a	

typical	 participant.	 (a),	 sagittal	 view	 of	 the	 brain.	 (b)	 to	 (g),	 cross-sections	 on	 the	

coronal	plane	corresponding	to	lines	b	to	g	in	(a).	

	

Figure	 3:	 Behavioral	 results	 of	 Experiment	 1.	 (a),	 response	 error	 is	 plotted	 as	 a	

function	 of	 cue	 type	 (landmark	 vs.	 self-motion)	 and	 axis	 (angular	 vs.	 distance).	
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Angular	 error	 and	 distance	 error	 correspond	 to	 landmark-angle	 error	 and	

landmark-distance	error	 respectively	 in	 the	 landmark	condition,	and	correspond	 to	

heading-direction	 error	 and	 walking-distance	 error	 respectively	 in	 the	 self-motion	

condition.	Error	bars	represent	±SE	of	the	mean.	

	

Figure	4:	Partial	regression	plots	in	Experiment	1.	The	partial	regression	plot	depicts	

the	 relationship	 between	 two	 variables	 after	 both	 of	 them	 are	 adjusted	 for	 other	

variables	 in	 the	multiple	 regression	model.	 For	 example,	 in	 (a),	 landmark-distance	

error	and	 left	HPC	volume	were	 regressed	against	all	 the	other	variables	 (i.e.,	age,	

sex,	 head	 size,	 and	 left	 ERC	 volume),	 from	which	 residuals	 of	 the	 two	 dependent	

variables	were	obtained	and	plotted	against	each	other.	The	partial	regression	plot	

in	 (b)	 was	 created	 in	 the	 same	 way.	 (a),	 the	 left	 HPC	 volume	 was	 correlated	

negatively	 with	 landmark-distance	 error	 in	 the	 landmark	 condition,	 after	 being	

adjusted	 for	 age,	 sex,	 head	 size,	 and	 left	 ERC	 volume.	 (b),	 the	 right	 HPC	 volume	

negatively	predicted	walking-distance	error	in	the	self-motion	condition,	after	being	

adjusted	for	age,	sex,	and	head	size.	The	fitted	linear	regression	line	is	displayed	in	

each	 plot,	 together	 with	 the	 Pearson	 correlation	 coefficient	 (r)	 between	 the	 two	

adjusted	variables.	

	

Figure	 5:	 A	 representative	 response	 trajectory	 in	 Experiment	 1.	 The	black	arrows	

represent	 the	 participant’s	 instantaneous	 positions,	 moving	 directions,	 and	

velocities.	 The	 arrow	 length	 represents	 speed.	 The	 blue	 diamond	 represents	 the	

starting	 position,	 the	 purple	 dot	 represents	 the	 middle	 position,	 the	 yellow	 dot	

represents	the	response	location,	the	red	dot	represents	the	target	location,	and	the	

blue	 star	 represents	 the	 landmark	 location.	 Note	 that	 the	 black	 arrows	 are	 not	

necessarily	aligned	with	the	facing	direction	of	the	participant.	

	

Figure	 6:	 Experimental	 setup	 and	 behavioral	 results	 of	 Experiment	 2.	 (a),	 left,	

schematic	 of	 the	 environment	 layout	 from	 a	 bird’s-eye	 view.	 For	 illustrative	

purposes,	 the	 landmarks	are	placed	closer	to	the	target	than	they	really	were.	The	

target,	 which	was	 a	 penguin,	was	 8	meters	 away	 from	 the	 three	 red	 arrows.	 The	

three	 red	 arrows	 pointed	 to	 the	 target	 along	 the	 30°,	 0°,	 and	 -30°	 perspectives,	
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respectively.	The	 four	blue	circles	 represent	 the	 four	 test	 locations	 --	3m	behind	 (-

3m),	 1m	 behind	 (-1m),	 1m	 ahead	 of	 (+1m),	 and	 3m	 ahead	 of	 (+3m)	 the	 target,	

respectively.	The	four	test	locations	lied	on	an	imaginary	linear	line	from	the	middle	

red	arrow	to	the	target.	(a),	right,	a	snapshot	of	the	background	environment.	 	(b),	

the	time	course	of	active	trials	 in	the	 landmark	condition	(left)	and	the	self-motion	

condition	 (right):	 (i)	 the	 participant	 stands	 at	 the	 start	 location,	 which	 was	

randomized	in	the	landmark	condition	and	fixed	in	the	self-motion	condition;	(ii),	the	

participant	places	the	cage	and	the	penguin	appears	at	 its	correct	 location;	(iii)	the	

participant	moves	to	the	penguin’s	location	to	make	the	penguin	disappear.	(c),	the	

time	course	of	passive	trials	 in	the	 landmark	condition	(upper)	and	the	self-motion	

condition	 (lower):	 (i),	 the	 participant	 stands	 at	 the	 start	 location,	 which	 was	

randomized	in	the	landmark	condition	and	fixed	in	the	self-motion	condition;	(ii),	the	

participant	 is	 passively	 moved	 to	 the	 test	 location;	 (iii),	 at	 the	 test	 location,	 the	

subject’s	viewpoint	smoothly	turns	down	and	then	faces	vertically	downward	at	the	

ground	for	4	s;	 (iv),	 the	participant	 judges	 the	relative	 location	of	 the	penguin;	 (v),	

feedback	is	provided.	The	red	arrow	is	invisible	in	the	landmark	condition	and	visible	

in	the	self-motion	condition	in	stage	(i)	of	both	active	and	passive	trials.	(d),	response	

error	 (=	number	of	wrong	trials	/	 total	number	of	 trials)	 is	plotted	as	a	 function	of	

cue	type.	Error	bars	represent	SE	of	the	mean.	

	

Figure	7:	Partial	 regression	plots	 in	Experiment	2.	As	 in	Figure	4,	variables	in	each	

plot	were	 adjusted	 for	 other	 variables	 in	 the	multivariate	 linear	 regression	model.	

HPC	volume	negatively	predicted	landmark-distance	error	in	the	landmark	condition	

in	 the	 left	 hemisphere	 (a)	 and	 the	 right	 hemisphere	 (b),	 after	 both	 variables	were	

adjusted	for	age,	sex,	head	size,	and	ERC	volume	in	the	corresponding	hemisphere.	

(c),	 the	 right	 ERC	 volume	 positively	 predicted	 walking-distance	 error	 in	 the	

self-motion	condition,	after	both	variables	were	adjusted	for	age,	sex,	head	size,	and	

the	 right	 HPC	 volume.	 In	 each	 plot,	 the	 fitted	 linear	 regression	 line	 is	 displayed	

together	 with	 the	 Pearson	 correlation	 coefficient	 (r)	 between	 the	 two	 adjusted	

variables.	
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Figure	8:	Partial	regression	plots	in	the	ROI	volumetry	analysis	on	the	pooled	data.	

Performance	measurements	and	ROI	volumes	were	standardized	 (z-scores)	 in	each	

experiment	before	pooling.	As	in	Figure	4	and	Figure	7,	in	each	plot,	variables	were	

adjusted	for	other	variables	in	the	multivariate	linear	regression	model.	The	left	HPC	

volume	 (a)	 and	 the	 right	 HPC	 volume	 (b)	 were	 negatively	 correlated	 with	

landmark-distance	 error	 in	 the	 landmark	 condition.	 (c),	 the	 ERC	 volume	 positively	

predicted	 walking-distance	 error	 in	 the	 self-motion	 condition.	 Data	 points	 are	

displayed	 separately	 for	 each	 experiment	 (blue	 symbols	 for	 Experiment	 1,	 red	

symbols	 for	 Experiment	 2).	 Fitted	 linear	 regression	 lines	 are	 displayed	 for	 the	 two	

experiments	separately	 (blue	 line	and	red	 line)	and	for	the	pooled	data	(dark	 line).	

Pearson	 correlation	 coefficients	 between	 adjusted	 variables	 (r)	 for	 individual	

experiments	(blue	and	red	texts)	and	pooled	data	(dark	text)	are	indicated.		

	

Figure	 9:	 Results	 of	 the	 VBM	 analysis	 on	 the	 pooled	 data.	 (a),	 the	 results	 are	

displayed	 on	 the	MNI	 template	 at	 a	 threshold	 of	 p	 <	 0.01	 (uncorrected),	with	 the	

MNI	 coordinate	 of	 the	 peak	 voxel	 indicated.	 Using	 the	 MarsBaR	 toolbox	 (Brett,	

Anton,	Valabregue,	&	Poline,	2002),	we	created	a	sphere	of	4	mm	in	radius	centered	

at	the	peak	voxel,	and	then	extracted	estimate	of	the	mean	gray	matter	volume	for	

this	 area.	 (b),	 in	 the	 partial	 regression	 plot,	 standardized	 landmark-distance	 error	

(z-score)	is	plotted	against	VBM	gay	matter	estimate,	both	adjusted	for	age,	sex,	and	

head	 size.	 Data	 from	 different	 experiments	 are	 represented	 with	 symbols	 of	

different	 colors	 (blue,	 experiment	 1;	 red,	 experiment	 2).	 The	 linear	 regression	 fit	

lines	were	shown	for	the	two	experiments	separately	(blue	line	and	red	line)	and	for	

the	pooled	data	(the	dark	line).		
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Figures	

Figure	1:	Experimental	setup	and	behavioural	analysis	in	Experiment	1	
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Figure	2:	Demarcation	of	regions	of	interest	
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Figure	3:	Behavioral	results	of	Experiment	1	
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Figure	4:	Partial	regression	plots	in	Experiment	1	
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Figure	5:	A	representative	response	trajectory	in	Experiment	1	
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Figure	6:	Experimental	setup	and	behavioral	results	of	Experiment	2	
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Figure	7:	Partial	regression	plots	in	Experiment	2		
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Figure	8:	Partial	regression	plots	in	the	ROI	volumetry	analysis	on	the	pooled	data		
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Figure	9:	Results	of	the	VBM	analysis	on	the	pooled	data	
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