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Abstract 

The drift diffusion model (DDM) provides a parsimonious explanation of decisions across 

neurobiological, psychological, and behavioral levels of analysis. Although most DDM 

implementations assume that only a single value guides decisions, choices often involve multiple 

attributes that could make separable contributions to choice. Here, we fit incentive-compatible 

dietary choices to a multi-attribute, time-dependent drift diffusion model (mtDDM), in which taste 

and health could differentially influence the evidence accumulation process. We found that these 

attributes shaped both the relative value signal and the latency of evidence accumulation in a 

manner consistent with participants’ idiosyncratic preferences. Moreover, by using a dietary prime, 

we showed how a healthy choice intervention alters mtDDM parameters that in turn predict prime-

dependent choices. Our results reveal that different decision attributes make separable 

contributions to the strength and timing of evidence accumulation – providing new insights into the 

construction of interventions to alter the processes of choice. 

Main 

Simple choices, like those between food items, have been characterized using sequential integrator 

models such as the drift (or decision) diffusion model (DDM)1-4. In the DDM, choices arise from a 

process that dynamically integrates evidence for and against each option over time – and a decision 

is made when the evidence signal reaches the threshold associated with one of the choice options. 

These models have been enhanced to account for various features of the decision process, allowing 
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them to better explain choices and to generate new insights into cognitive processes. For example, 

gaze,5 and pupil dilation,6 and neural data7-11 have incorporated the influence of attention and 

neural signals, resulting in improved predictions. See Ratcliff12 for a review of advances in the DDM. 

A key advantage of these models is their ability to dissociate the influences of distinct cognitive 

processes, such as distinguishing bias toward one choice option from reductions in the amount of 

evidence needed before deciding. Although current variants of these models provide highly accurate 

descriptions of the psychometrics of value-based choices (i.e., describe both choices and their 

response times in laboratory experiments), they do not account for important potential contributors 

to the choice process, including distinct contributions of different attributes to a single choice13,14. 

Here, we present a multi-attribute, time-dependent, drift diffusion model (mtDDM) that modifies 

the traditional DDM in two ways. First, it estimates the rate of evidence accumulation at each time 

point (“drift slope”) separately for two attributes, which allows estimation of their unique 

contributions while controlling for other features of the decision process15,16. Second, the mtDDM 

allows each attribute to begin influencing the decision process at a distinct time (“drift latency”). 

This builds on previous work in which processing of irrelevant features must be inhibited (e.g., 

Stroop tasks), potentially through shifts in the drift process or two-stage diffusion processes17-22. 

Similarly, previous efforts to understand the temporal order of events in the brain – such as the 

timing of automatic and voluntary processes – have enhanced our understanding of cognition and 

behavior23,24. 

A potential strength of the mtDDM is its ability to distinguish among different pathways that could 

each lead to an unhealthy choice. Most commonly, an individual could place a large weight on taste 

or a small weight on health. Alternatively, and non-exclusively, relatively delayed processing of 

health information might preclude its consideration in the decision process – leading to unhealthy 

choices that run counter to the decision-maker’s preferences. There also could be an interaction 

between decision weights and the timing of processing; e.g., an earlier entry of health information 

could compensate for a large weighting on the taste attribute. Any of these pathways could result in 

unhealthy choices, but cannot be differentiated in canonical models.  

Dietary choices have several convenient features that make them ideally suited to testing the 

mtDDM; most importantly, they often involve conflicts between contradictory desires, such as short-

term goals related to consumption of a tasty snack and long-term goals related to personal health. In 

our model, such conflicts can be represented as trade-offs in the separate weights placed on taste 

and health. Moreover, taste and health have meaningfully different properties, resulting in faster 

processing of taste than health13. This may be because taste is a momentary, immediate, and 
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concrete reward whereas the healthfulness of a food presents only future benefits and involves 

integration of multiple quantities such as caloric and fat content25. Although previous studies have 

estimated the time at which taste and health are processed13,14, they did not disentangle differences 

in the weight placed on each attribute from differences in timing parameters. By estimating both 

attributes simultaneously, we can assess their independent contributions.  

The predictions of the mtDDM are illustrated in the two plots of Figure 1. Suppose that taste and 

health enter the decision process at similar times (Fig. 1a). In this case, health influences the value 

signal toward the healthy option’s boundary early in the decision process, and the healthier option is 

chosen. In contrast, Figure 1b depicts an identical decision process, except that health’s drift latency 

is much later, resulting in a large “temporal advantage” such that taste has 300ms longer to 

influence the value signal. In this example, the value signal has nearly reached the boundary for the 

tastier option when the health attribute’s latency has been reached. Health therefore would have a 

more limited time to influence the value signal before a choice is made in favor of the tastier, less 

healthy option (the top boundary). 
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Figure 1. Examples of the decision process modeling within the multi-attribute, time-dependent 
drift diffusion model (mtDDM). In these example choices between a tasty food (tasty but unhealthy) 
and a healthy food (healthy but not tasty), a relative value signal (RVS) begins with a value set by a 
bias parameter (here, zero) and evolves only with noise, ε, at every timepoint t as depicted in 
equation and segment “a”. Once the taste latency is reached (red dotted line), the relative (tasty–
healthy) taste value, ΔT, begins contributing to the RVS at a rate determined by its drift slope δT ( 
“b”). After the health attribute latency is reached ( “c”), relative health value, ΔH, begins 
contributing to the RVS at a rate determined by its drift slope δH. At each time point, Gaussian noise 
ε is added to the value signal. A decision is reached when the RVS becomes equal to or greater than 
the boundary for an item. (a) In this example, a simulated RVS path is displayed for a choice in which 
the difference in taste and health attributes are ΔT=1 and ΔH=-7, and mtDDM parameters are set to  
δT 

=0.005 units/ms, δH=0.0009 units/ms, t*T=200 ms, t*H=300 ms, bias=0, and tasty option 
boundary=1 and healthy option boundary=-1. Taste and health enter the decision process at similar 
times, which leads to an early contribution of the health attribute to the RVS, and a healthy choice.  
(b) In this example, all parameters are the same except that the taste attribute has a large “temporal 
advantage” of 300 ms. That is, due to a later entry of health to the decision process (at t*H=500 ms), 
it begins contributing to the RVS later than in the previous example. Thus, the tasty option boundary 
is crossed before the health attribute has a significant influence on choice. Figure adapted from59. 

 

We tested the robustness of the mtDDM within an incentive-compatible experiment in which 

participants made a series of binary choices between two foods that varied on two key attributes: 

their tastiness and healthfulness (Fig. S1). Two behavioral primes were also employed to shape 

participants’ dietary goals via attention to either health or taste attributes, respectively. By focusing 

attention to each attribute in independent participant groups using a between-subjects design, we 

perturb the decision process, and thus can evaluate how well the mtDDM can adapt to changes in 

attribute weighting. Because drift slopes have been shown to vary depending on allocation of 

attention26, an intervention that increases attention to one attribute could increase its rate of 

accumulation and therefore bias choice – independently of any effects of dietary self-control. We 

hypothesize that increased focus on the primed attribute may also facilitate faster processing of that 

attribute, and that these speeded latencies could help to facilitate more health-focused choices.  
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Interventions directed at improving choice have found limited success, especially information-based 

interventions or those targeted at changing patterns of conscious thought27,28. Therefore, it is critical 

to identify the mechanisms underlying what seem to be failures in dietary self-control – particularly 

if healthy choices might depend on something other than self-control or preferences29-32. For 

example, if healthy choices are facilitated in part by other features of the decision process, such as 

the time at which health information is processed, harnessing those features may aid in the 

development of effective interventions. This paper goes beyond introducing an innovation to 

sequential integrator models to also suggest ways in which the decision process could be nudged to 

improve choice. 

Results 

mtDDM Predictions. First, we derived qualitative predictions for how our key new parameters – 

specifically, the taste and health drift latencies – interact with taste and health drift slopes to 

influence healthy choices. A series of simulated mtDDMs were performed using an artificial choice 

set with health and taste values like those in our experimental dataset. Taste’s slope and latency 

were fixed (to 0.08 units/ms and 500 ms, respectively) and health’s slope and latency was varied so 

that the influence of changes in the relative (Taste – Health) latency and slope on choice could be 

visualized (see Supplemental Information for details).  

When taste and health drift slopes are equal (Figure 2, purple line) agents made more healthy 

choices as health latencies became earlier (left to right). This pattern held when taste slopes were 

larger than health slopes (red lines). Importantly, differences in taste and health drift slope matter 

less for later health latencies (Figure 2, far left), and matter much more for earlier health latencies 

(far right). This indicates that as latencies diverge, the influence of slope changes, implying an 

interaction between the two parameters. Of note, changes in latency had a bigger effect on the 

attribute whose parameters were fixed, such that an exactly symmetrical effect would be obtained 

were health parameters to be fixed instead (Fig. S2D).  See Supplemental Information for more 

details. 
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Figure 2. Predicted results of the mtDDM. The proportion of healthy choices (y-axis) predicted by 
simulations of the mtDDM are plotted for different relative latencies (x-axis).  Colored lines show the 
percent of healthy choices broken out by value difference. Red colors represent simulated agents in 
which the taste drift slope was larger than health drift slope, and Blue colors represent agents in 
which the health drift slope was relatively larger. 

 

Behavioral Results. We performed several tests to ensure that participants were choosing according 

to their preferences in both prime conditions and that their response times (RTs)fit expected 

patterns. Choices were significantly related to each option’s reported wanting for both the health- 

and taste-primed participants (Fig. 3b; mixed effects slope: health prime M=1.02, d=1.82, t39=11.53, 

p<0.001, 95% CI=[0.84 1.19]; taste prime M=1.35, d=2.33, t38=14.57, p<0.001, 95% CI=[1.16 1.53]).  

Logistic regression slopes were statistically significantly smaller in health-primed participants (d=-

0.59, t77=-2.61, p=0.01, 95% CI=[-0.59 -0.08]).  

Faster RTs for conflict than non-conflict trials (Fig. S3a; M=1557.59 ms, 1635.57 ms; paired t-test of 

log(RTs) d=-0.17, t(77)=-3.34, p=0.001, 95% CI=[-0.08 -0.02]) were driven by fast unhealthy choices, 

as healthy choice RTs were markedly longer (Fig. S3b; M=1917 ms, 1493 ms; paired t-test of log(RTs) 

d=0.61, t(76)=7.33, p<0.001, 95% CI=[0.15 0.27]). This is expected from any DDM with separate 

weights on taste and health and is the result of the accumulating advantage of taste information 

during the decision process (see “Response Times by Choice and Trial Type” section of Supplement). 
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RTs increased with choice difficulty – as measured by a difference of zero in reported wanting 

indicating a difficult choice between two equally-wanted options – for both groups (Fig. 3c; mixed 

effects quadratic slope: health prime M=-45.30, d=-1.41, t39=-8.90, p<0.001, 95% CI=[-55.60 -35.01]; 

taste prime M=-40.34, d=-1.86, t38=-11.62, p<0.001, 95% CI=[-47.37 -33.31]). Quadratic regression 

slopes were not statistically significantly different between the taste than health prime (d=-0.18, 

t77=-0.80, p=0.43, 95% CI=[-17.29 7.36]), nor were average RTs (means 1628 vs. 1554 ms, d=0.13, 

t77=0.59, p=0.56, 95% CI=[-175.39 323.30]). These results indicate that individuals used value to 

guide choice in both conditions, and that health-primed participants weighted wanting less than 

taste-primed participants. 

We next estimated the influence of our behavioral prime on choice using each food’s taste and 

health differences, to estimate the weight each participant placed on taste and health information in 

their decisions, and how this changed depending on the prime they received. We found that health-

primed participants placed significantly less weight on taste information (Fig. 3d; means 1.18 vs. 

0.13, d=2.24, t77=9.94, p<0.001, 95% CI=[0.84 1.27]), which resulted in a marginal increase in the 

proportion of healthy choices in the health prime condition, as assessed by comparing their log-

transformed values (means=0.26, 0.18; d=0.44, t(75)=1.94, p=0.057, 95% CI=[-0.01 0.83]).  

Figure 3. Behavioral results. (a) Effects of value difference (Left – Right Food Wanting) on choices. 
Positive numbers on the x-axis represent cases in which the left item was higher in reported food 
wanting (mixed effects slope: health prime M=1.02, d=1.82, t39=11.53, p<0.001, 95% CI=[0.84 1.19]; 
taste prime M=1.35, d=2.33, t38=14.57, p<0.001, 95% CI=[1.16 1.53]). (b) Mean response time (RT) is 
shown as a function of choice difficulty as measured by the difference between wanting for the right 
item and for the left item. A difference of zero indicates a difficult choice between two equally-
wanted options, and a 4 or -4 indicates an easy choice between items with opposite wanting (mixed 
effects quadratic slope: health prime M=-45.30, d=-1.41, t39=-8.90, p<0.001, 95% CI=[-55.60 -35.01]; 
taste prime M=-40.34, d=-1.86, t38=-11.62, p<0.001, 95% CI=[-47.37 -33.31]). (c) Cumulative 
distribution function illustrating taste decision weights by prime condition broken out by whether 
the participant was primed for health (blue) or taste (red) goals (means 1.18 vs. 0.13, d=2.24, 
t77=9.94, p<0.001, 95% CI=[0.84 1.27]). For plots A and B, error bars represent standard error of the 
mean. For all plots, the health prime condition is represented by the blue solid line and taste prime 
condition by the red dotted line. 
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Fitted parameters of the mtDDM. Using participants’ choices and RTs, we fit five mtDDM 

parameters (Table 1; see Fig. S4 for parameter distributions). These parameters were the weight 

placed on taste and health during option comparison (“Drift Slope”, δT and δH), the time required for 

taste and health to enter option comparison (“Drift Latency”, t*T and t*H), and the evidence required 

to make a choice (“Boundary”, b). Taste drift slopes were larger than health drift slopes (d=1.83, 

t78=10.91, p<0.001, 95% CI=[0.04 0.05]), reflecting a greater emphasis on taste information in 

evidence accumulation. Together, these results confirm findings from the previous literature that 

taste has an overall “weighting advantage” in the choice process. Drift latency was significantly 

earlier for taste than for health (d=-0.98, t78=-6.22, p<0.001, 95% CI=[-603 -311]). These results 

indicated that taste information has two advantages during the decision process – both an earlier 

entry and a greater contribution to evidence accumulation – that together may explain taste’s 

greater influence on the relative value signal and subsequent decisions. 

 

Table 1. Average best-fitting mtDDM parameters. 

Parameter Mean (SD) Min Max 

Taste Drift Slope, δT (units/ms) 0.062 (0.030) 0.003 0.148 

Health Drift Slope, δH (units/ms) 0.017 (0.018) 0 0.086 

Taste Drift Latency, t*T (ms) 409 (245) 10 1920 

Health Drift Latency, t*H (ms) 866 (611) 20 2750 

Boundary, b (units) 1.414 (0.200) 1.088 1.950 

 

Correlation between parameters. There was not a statistically significant correlation between taste 

and health drift slopes (Pearson ρ=-0.12, p=0.29) nor between taste and health drift latencies 

(ρ=0.02, p=0.87). Each attribute’s drift slope and latency were not statistically significantly correlated 

(Taste, Pearson ρ=0.11, p=0.32; Health, Pearson ρ=-0.11, p=0.32). Boundary width, typically linked to 

response caution33-37(although see38) was not statistically significantly related to health drift slopes 

or taste drift latencies (p>0.12). However, larger boundary width was marginally correlated with 

smaller taste drift slopes and with later health drift latencies (δT, Pearson ρ=-0.20, p=0.07; t*H, 

Pearson ρ=0.35, p=0.001). This could arise from artifactual interdependencies between model 

parameters39-41 resulting in trade-offs between drift rates, latencies, and boundaries. However, we 

did not find a statistically significant correlation between slope and boundary parameters in in the 

recovery dataset (Taste Slope and Boundary, Pearson correlation ρ=-0.09, p=0.36; Health Slope and 

Boundary, Pearson ρ=-0.17, p=0.09), but did for latency and boundary (Taste Latency and Boundary, 

Pearson correlation ρ=0.37, p<0.001; Health Slope and Boundary, Pearson ρ=0.25, p=0.01) 

Alternatively, individuals who process health information later – or who had a smaller contribution 
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of taste information during evidence accumulation – may have required more evidence to make a 

choice. This may allow some individuals to compensate for a late health drift latency and still make a 

healthy choice – a hypothesis we investigate in the penultimate Results section. See Fig. S5 for 

parameter correlations.  

Model validations and comparisons. To validate the model, a parameter recovery was performed 

(see Supplemental Results and Fig. S6). This ensured that a large drift slope for one attribute would 

not lead to inaccurately fast estimate of that attribute’s latency. The mtDDM also was tested against 

and performed better, as assessed by lower Bayesian Information Criterion (BIC), than four 

alternative models (see Table S1 and Supplemental Results): one in which only slopes, and not 

latencies varied by attribute (multi-attribute DDM, mDDM); one in which only latencies, and not 

slopes, varied by attribute (latency DDM, latDDM); one in which attributes vary in the times when 

they stop rather than start contributing to the value signal (stopping time DDM, stDDM); and one in 

which taste and health have equal slopes and latencies (simple DDM, sDDM). Lastly, we tested, but 

do not find evidence for, the possibility that latencies differences could arise from differences in 

unhealthy and healthy choice non-decision times (see Supplemental Results). 

mtDDM vs. single-latency model. We next test the ability of the mtDDM to explain choices and RTs 

better than a model without separate latencies. This DDM was identical to the mtDDM, but that 

additionally assumed that taste and health enter the decision process simultaneously. This is 

functionally equivalent to a simple DDM with one relative value signal (taste + health; see 

Supplemental Methods)  

To compare models, we obtained a BIC using both choices and RTs to classify a correct prediction. 

Critically, the BIC penalizes the mtDDM for having two latency parameters. The mtDDM performs 

better (mean BIC values 1111 vs. 1143; d=-0.33, t(78)=-7.95, p<.001, 95% CI=[-40 -24]) for 95% (75 of 

79) participants, indicating that the addition of attribute-wise latency parameters generates an 

improvement in model performance, capturing variance in choices and RTs that a single-latency 

model cannot.  

mtDDM parameters are proportional to their influences on choice. To validate that the mtDDM 

accurately reflects participants’ choices, we next tested the relationship between drift slopes and 

the weight placed on each attribute in choice; this relationship is expected because an attribute’s 

drift slope represents the weight placed on that attribute throughout the choice process. These 

analyses were performed using cross-validated estimation, in which mtDDM parameters were fit 

using one half of a participant’s data, and were used to predict choice in the other half of data (see 

Supplemental Methods). First, we estimated the relationship between taste and health drift slopes 
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and their decision weights using a linear regression and found that a participant’s relative drift slope 

(taste – health) fitted to one half of trials was correlated with the relative weight (taste – health) 

during choice in the other half of trials (Fig. 4a; taste – health weights; R2=0.67, slope=19.57, 

p<0.001). Furthermore, an increased likelihood of healthy choices in Conflict Trials (when one food 

was healthier, but less tasty, than the other) was related to relatively smaller taste and larger health 

drift slopes (Fig. S7a; R2=0.67, slope=-5.14, p<0.001). Together, these results confirmed that drift 

slopes reflected the weight participants placed on taste and health during choice and captured a 

large proportion of variance in healthy choices, suggesting a correct fitting of the model to choices.  

Because the an attribute entering the decision process earlier influences the relative value signal for 

longer, it should have a greater influence on choice, all else being equal (see Figures 1 and 2). 

However, latency differences could fail to drive choices if those differences were very small 

compared to the overall choice period or if the drift slopes were so large that they dominated the 

choice process. These concerns are partially addressed by the mtDDM’s better fit compared to the 

mDDM, and by noting that the taste information enters the choice process approximately 450 ms 

earlier than health information (Fig. 4b; one-sample t-test vs. 0, d=-0.70, t(78)=-6.22, p<0.001, 95% 

CI=[-603 -311]). This result, combined the mtDDM’s lower BICs and the successful parameter 

recovery, provides converging evidence that drift latencies themselves do differ by attribute, and 

that taste has a temporal advantage in the decision process. 

We next confirmed that, across participants, taste’s temporal advantage was related to an increased 

decision weight on health, relative to taste – again, using cross-validation fitted DDM parameters 

(Fig. 4c; R2=0.16, slope=5x10-4, p<0.001) and thus more healthy choices (Fig. S7b; R2=0.18, 

slope=1x10-4, p<0.001).  A robust regression approach to confirmed that this relationship held even 

when excluding outliers in Figure 4c (slope=6x10-5, p=0.02).  
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Figure 4. Attribute drift latency parameters related to choice. (a) Histogram depicting the 
distributions of best-fitting taste and health drift slopes (δT and δH) across participants. (b) Taste and 
health drift latency shown as a function of their logistic decision weights. Lines represent best-fitting 
linear regression lines. (c) Relative (taste – health) drift latency shown as a function of proportion of 
healthy choices. Lines represent best-fitting linear regression lines. 

 

These results indicate that the influence of taste and health on choice depends on the time at which 

each attribute began to influence the decision process. They also provide an additional explanation 

for apparent failures of dietary self-control: for many individuals, health information enters the 

decision process too late (relative to taste information) to drive choices toward the healthier option. 

Drift slope and attribute latency have independent influences on healthy choice. We had 

hypothesized that drift slope and latency exert independent influences on choice, even when 

controlling for each other. To test this, we estimated a series of multiple linear regressions using 

drift slope and latency differences (Taste – Health) to predict individual differences in the proportion 

of healthy choices made (Table 2). To control for response caution, boundary width was also 

included. This method tests whether drift slopes and latencies explain different types of variance in 

the proportion of healthy choices participants made. This analysis was performed using drift slopes 

fitted using the mDDM, latencies fitted using the latDDM, and boundary width fitted using the 

sDDM. As expected, drift slopes and latencies predicted individual differences in proportion of 

healthy choices in the full model. All variables together explained a much larger proportion of the 

variance in healthy choices than any other model (72%; Model 5 in Table 2); of note, we then 

performed the same prediction using mDDM drift slopes (i.e., the single-latency model), which 

explained less variance in healthy choices a model that included latency differences as well (57%; see 

Model 1 vs. 5 in Table 2). 
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Table 2 | Relationship between proportion healthy choices and fitted mtDDM parameters. Weighting 

advantage was fit using mDDM slopes, Temporal advantage was fit with latDDM latencies, and Bounds were 

fit with sDDM bounds. 

 Model (1) Model (2) Model (3) Model (4) Model (5) 

Weighting 
Advantage 

β=-4.12 
[-5.07 -3.36] 
p<.001 

  β=-3.24 
[-4.04 -2.45] 
p<0.001 

β=-3.84 
[-4.71 -2.97] 
p<0.001 

Temporal 
Advantage 

 β=2x10-4 
[1x10-4 2x10-4] 
p<0.001 

 β=1x10-4 
[7x10-5 1x10-4] 
p<0.001 

β=1x10-4 
[8x10-5 2x10-4] 
p<0.001 

Interaction   β=0.002 
[9x10-4 0.003] 
p<0.001 

 β=-0.001 
[-0.002 -3x10-4] 
p=0.006 

Bounds β=-0.05 
[-0.22 0.11] 
p=0.52 

β=0.55 
[0.35 0.75] 
p<0.001 

β=0.30 
[0.08 0.52] 
p=0.008 

β=0.20 
[0.04 0.37] 
p=0.02 

β=0.15 
[-0.01 0.32] 
p=0.07 

Constant β=0.50 
[0.25 0.75] 
p<0.001 

β=-0.37 
[-0.63 -0.12] 
p=0.005 

β=-0.10 
[-0.39 0.20] 
p=0.53 

β=0.19 
[-0.04 0.43] 
p=0.11 

β=0.25 
[0.022 0.48] 
p=0.03 

R2 0.58 0.45 0.20 0.71 0.74 

R2
adj 0.57 0.44 0.17 0.70 0.72 

95% CI in brackets 
 

  

 

Next, we used a stepwise linear regression to test which DDM parameters result in the best-fitting 

model. All DDM parameters from the above model (taste and health slope and latency differences, 

as well as the sDDM’s temperature parameter and bounds) were added to the regression to predict 

an individual’s proportion of healthy choices. The best-fitting resulting model was one that  included 

slope difference, latency difference, and their interaction (R2
adj=0.71, F(1,74)=64.80, p<0.001). This 

further indicates that both slope and latency provide independent contributions to explaining 

healthy choice. 

We next performed a bootstrap mediation analysis42 to estimate the additional contribution of drift 

latency to the proportion of healthy choices. Health drift latency significantly reduced health drift 

slope’s influence on healthy choice decision weights by 8% (s.e.=.12, p<0.001, 95% CI=[7.66 8.13]). 

Taste drift slope’s prediction of healthy choices was improved, not reduced, by the inclusion of taste 

latency (-13% s.e.=0.45, p<0.001, 95% CI = [-14.30 -12.52]). Collectively, these results indicate that 

individual differences in healthy dietary choice was related to both the drift slope and latency 

parameters of the mtDDM when controlling for the effects of each other, reflecting their 

independent contributions. 

Longer RTs associated with greater influence of health. The above findings suggest that longer RTs 

could increase the likelihood of a healthy choice, as they would allow slower-processed values like 
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health more time to influence the value signal. To test this, we estimated the relationship between 

individual trial RT and healthy choice in Conflict Trials. We found that longer RTs were associated 

with an increased likelihood of selecting the healthier food (Table S2, Model 1; mixed-effects logistic 

regression R2
adj=0.37, log(RT) slope=0.61 (s.e.=0.05), t11698=11.85, p<0.001), which holds when 

controlling for the reported wanting of the healthy, relative to tasty, option (Table S2, Model 2; 

p<0.001). To assess whether this relationship held across participants, we estimated this regression 

using average log-transformed conflict trial RTs to predict the proportion of healthy choices made 

and found the same relationship (robust regression slope=0.09, t76=2.01, p=0.048). This regression 

was not significant when using non-conflict trial RTs to predict the proportion of healthy choices in 

Conflict Trials (slope=0.03, t76=0.56, p=0.58). This indicates that longer RTs were correlated with 

increased likelihood of healthy choices both within and across participants. 

Next, we assessed whether this varies by individual mtDDM parameters. If longer RTs promoted 

healthy choices because they allowed slower-processed health information longer to influence the 

decision process, then individuals with earlier health latencies would have been less influenced by 

longer RTs. To investigate this, we first added cross-validation fitted health drift latencies to the 

previous model predicting healthy choice by RT.  RTs remained a significant predictor of healthy 

choice (Table S2, Model 3; mixed-effects logistic regression, R2
adj=0.48, log(RT) slope=0.39 

(s.e.=0.05), t5846=5.21, p<0.001; wanting slope=0.92 (s.e.=0.07), t5846=12.60, p<0.001; t*H slope=0.006 

(s.e.=0.002), t5846=-2.76, p=0.006). This indicates that after controlling for the weight of health and 

taste, RTs continued to explain additional variance in healthy choice. 

To assess the interplay between latency and RT, we added interaction terms for RTs and health drift 

latency. If slower health drift latencies require longer RTs to increase the likelihood of a healthy 

choice, we would see an interaction between health drift latency and RT. We indeed find that the 

influence of drift latencies on healthy choice depended on a trial’s RT; longer RTs were associated 

with increased likelihood of a healthy choices with late health drift latencies. Further, RT’s predictive 

power was reduced by a third and was no longer significant when drift latency-RT interactions were 

included in the regression (Table S2, Model 4; mixed-effects logistic regression, R2
adj=0.46, log(RT) 

slope=0.13 (s.e.=0.12), t5846=1.05, p=0.29; wanting slope=0.92 (s.e.=0.07), t5846=12.52, p<0.001; t*H 

slope=-0.03 (s.e.=0.010), t5846=-3.33, p<0.001; log(RT) x t*H slope=0.003 (s.e.=0.001), t5846=-2.77, 

p=0.006). The inclusion of this interaction term resulted in a statistically significant reduction in the 

influence of RT on healthy choice, as assessed by 1,000 iterations of bootstrap mediation analysis42 

(mean=30% path strength reduction (s.e.=0.17%) p<0.001 95% CI=[29.84% 29.17%]). These results 

indicate that longer RTs may promote healthful choices by allowing slower-latency health 

information to contribute to the value accumulation process. 
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Dietary primes alter evidence accumulation. Finally, we examined the effects of our two dietary 

primes – a taste prime and a health prime – on the decision process. There were no statistically 

significant log(RT) differences between prime groups in Conflict Trials (p=.81), Non-Conflict Trials 

(p=.94), or for healthy or unhealthy choices (p>.55). Taste drift slopes were smaller for health- than 

taste-primed participants (Fig. S8a; means 0.06 vs. 0.07, d=-0.48, t77=-2.12, p=0.04). Log-transformed 

taste drift slopes were also relatively smaller than health drift slope for health primed participants 

(δT-δH; Fig. S8b; means 0.04 vs. 0.05, d=-0.47, t77=-2.08, p=0.04). No other parameter differed 

statistically significantly between condition (p > 0.27).  Together, these results provide no credible 

evidence that the health prime slowed the overall decision process, per se, but instead that the 

prime influenced the degree to which taste information influenced the value signal, both in absolute 

terms and relative to health information. 

Discussion 

Sequential integrator models such as the DDM have been used to understand the mechanisms 

underlying binary choices1,43. One useful feature of these models is that they allow separation of 

different cognitive processes that drive choice. Here, we introduce a multi-attribute, time-

dependent, DDM (mtDDM) which allows two distinct and often opposing attributes, taste and 

health, to be processed at different times and weighted differently in the decision process. We show 

that both the influence of an attribute on evidence accumulation and the delay before an attribute 

contributes to the evidence accumulation process differ significantly by attribute – and that 

between-attribute differences in these two parameters explain a large proportion of the variance in 

healthy choices. This indicates that models assuming the relative value signal reflects the total 

stimulus value – and not potentially independent attributions – may be unnecessarily limited in their 

explanatory power. 

Poor dietary choices are often attributed to the combination of two factors: strong preferences for 

the tasty foods that are endemic to modern society, and limitations in how well self-control 

mechanisms can inhibit the strength of those preferences44. Our findings support the alternative 

explanation that tasty dietary choices reflect not only of relative strength of taste preferences but 

also their relative timing13,14. That is, an individual may eat a cookie not because the desire for a 

tasty snack overwhelms their limited willpower, but because information about future health 

consequences does not enter the decision process sufficiently early to influence choice. Hereafter, 
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we explore the implications of our results both for models of the decision process and for 

understanding decision making in the face of competing goals.    

Our findings have several implications. First, they generate the clear recommendation that slowing 

down the decision process may mitigate the effects of relative attribute latency or lower weighing of 

health, which could improve choices for some multi-attribute decisions. Further, this suggests a 

mechanistic explanation for previous work showing that the relative encoding of taste information in 

in value-related brain regions decreases when free response times are allowed and increases with 

shorter response times45, such as time pressure46, which alters parameters of the DDM47. Future 

interventions could either remove time pressure from dietary choices where they often occur, such 

as at a drive-through window, or extend the decision process by mandating a waiting time before 

choice. 

Second, we find that a prime that explains the importance of healthy eating can decrease the weight 

placed on taste information during evidence accumulation, facilitating more healthy choices. Such 

primes can readily be incorporated into choice architectures, allowing future work to test variations 

of this prime and its application outside the lab – which may provide opportunities for improving 

choice29. 

Third, we propose that the processes identified for simple multi-attribute dietary choices should 

exist for other decision domains in which values may be processed differently. For example, in 

financial choices, one must often make a trade-off between spending money now, and saving for the 

future48-50 – and, similar to what is seen for dietary choices, the future consequences of financial 

saving may not be as readily estimated as the immediate benefits of spending now. This may lead to 

a slowed estimation of the value of delayed financial rewards, and therefore more impulsive choices, 

regardless of an individual’s underlying preference for saving. Similarly, a multi-attribute DDM has 

been proposed for social decision making15, and adding a latency parameter could extend this work. 

For example, the speed with which rewards for the self and others are processed and incorporated 

into the decision process may increase the model’s explanatory power, as well as individual 

differences in prosociality. Applying the mtDDM to different choice contexts, and with different 

forms of nudges, could help expand our understanding of both the decision process and how to 

improve choice. 

There are multiple limitations to the mtDDM that could be addressed in future studies. First, our 

model assumes that drift slopes begin at zero but transition discretely to some fixed weight 

following a latency period. However, many cognitive mechanisms could alter the drift slope over 
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time. For example, attention has found to significantly influence the evidence accumulation5. 

Second, plausible alternative models exist, such as one with a stopping time for an attribute’s 

consideration. Although we show here that the mtDDM outperforms a stopping time DDM, there 

may be other choice problems for which it improves model predictions. A time-variable drift rate51 

could address both alternatives by assessing how drift slopes vary over time; for example, such a 

model could be implemented for dietary choice by down-weighting the taste drift slope once health 

information is computed. In addition, the mtDDM presented here assumes that taste and health 

combine linearly to guide choice. However, non-linear utility functions are often more robust52. For 

example, in monetary decision making, a hyperbolic model is often used to combine immediate and 

future value information into a singular utility to guide choice 48,53,54. Future work could probe the 

precise functional form appropriate for evidence accumulation.  

Moreover, previous work has found significant trial-to-trial variability in DDM parameters36,55. 

Examination of these fluctuations may help explain within-individual variability in dietary choice. For 

example, it is possible that when a healthy option is chosen, there is a reconsideration time that 

does not exist (or is different) for unhealthy choices and that could lead to a shorter health latency. 

Although we find that health’s latency is still longer, on average, in trials in which a healthy choice is 

not possible, and that latencies could be recovered even with such reconsideration times, 

examination of the various ways in which health information can enter the decision process would 

be a fruitful avenue for future research.  

Another set of potential limitations are methodological: interdependencies can arise between 

parameters in multi-parameter models . For example, smaller drift slopes and larger boundary 

widths could produce similar choice and response time patterns. This is also a concern with the 

mtDDM, although our successful parameter recovery indicates parameters can be estimated with at 

least some accuracy. Additionally, the current work presents parameters estimated using only 

choices and response times. Although this is convenient (both are readily obtained via standard 

methods for both laboratory and naturalistic experiments) it is also a limitation. This work could be 

extended by including neural signals, which may provide more accurate estimates or refinements to 

the model itself. Previous work using neural data to inform multi-attribute choices and models7,15,56 

are a promising direction. 

Finally, our work suggests that different interventions may work better for some individuals than 

others. For example, individuals with very slow processing of health information might benefit most 

from extending their decision process by introducing a wait time before choice. For others who 
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weigh health minimally or not at all in choice, extending decision time may not substantially improve 

choice; instead, interventions would need to first encourage consideration of health information (in 

any form) through a mechanism such as priming. By broadening interventions beyond appeals to 

self-control to include a more nuanced consideration of the timing and strength of different 

attributes, researchers and policy makers will be more likely to identify methods for eliciting healthy 

choices.  

Methods 

All procedures and stimuli were approved by the Institutional Review Board at Duke University. 

Participants and sample size. Seventy-nine young adults from the Durham-Chapel Hill community 

(64% female; mean age 24.4 years) participated in this 90-minute study. Participants were screened 

for any dietary restrictions. Informed consent was obtained after the experiment was explained to 

participants.  

The targeted sample size (40 individuals in each of two priming groups) was determined based on 

measurements in two independent datasets (results in preparation for publication) that included a 

binary choice task like our task described below. First, we calculated the effect of our differential 

priming conditions on the proportion of healthy choices across a large sample of subjects (N=133), 

which generated an approximate required sample size of between 40 and 45 participants in each 

prime group (via the sampsizepwr function in MATLAB and a p<0.05 threshold for effects by prime). 

We next examined the robustness of our priming effects in a second independent data set (N=40), in 

which the main effect of our primes fully replicated. Based on these prior results, we set 40 

participants in each prime group as the target sample size in the current study. 

One participant did not have sufficient variability in food ratings to generate 150 Conflict Trials; that 

participant is not included in analyses involving the proportion of healthy choices in Conflict Trials. 

Experimental procedure. Prior to the experiment, participants fasted for four hours, with 

compliance as measured by computerized self-report. Participants were compensated with $12 in 

cash and a snack food for consumption at the end of the experiment. All stimuli were presented with 

the Psychophysics Toolbox 57 for MATLAB. The experiment contained four phases, always presented 

in the below order. See Supplemental Methods for task instructions.  

Phase 1: Rating Task. Participants began by rating 30 familiar snack foods on three five-point scales. 

They were asked their opinions of the tastiness, healthfulness, and wanting (“How much do you 

want to eat this food at the end of the experiment?”). Scale type, food presentation order, and left-
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right scale direction (good to bad, or bad to good) were randomized across participants. Stimuli were 

600 x 600 pixel full-color images on a black background, presented alongside a one- to three-word 

item name (e.g. “Oreos”). Food images included a sample of the food outside of its packaging (e.g., a 

few chips outside the chips bag).  

Phase 2: Goal Priming. Each participant was randomly assigned to one of two priming conditions. 

After the ratings task, participants read instructions for the following Food Choice Task (described 

below). A short instructional script (see Supplemental Methods) was imbedded in these instructions. 

This script emphasized the importance of either health information (“Health Prime”; N=40) or taste 

information (“Taste Prime”; N=39) in dietary choice using science-based reasoning. Data collection 

and analysis were not performed blind to the prime condition. 

Phase 3: Choice Task. Next, participants made 300 self-paced choices between pairs of foods they 

had rated in Phase 1. On each trial, they saw two foods and indicated which they would like to eat 

more using a keyboard (Fig. 4a) and were told that one trial would be randomly selected, and that 

food would be served to them at the end of the experiment. Using the participants’ previous food 

ratings, half of the trials were constructed with one food that was tastier and less healthy than the 

other food (“Conflict Trials”). Note that one participant did not have enough variance in health and 

taste ratings to construct 150 Conflict Trials; for that participant, foods were paired randomly, and 

any reported statistic measuring the proportion of healthy choices made in Conflict Trials does not 

include this participant. One third of trials presented options using images, one third as their item 

names from the ratings task, and one third featured one option in words and the other as an image; 

as this study does not focus on differences in choice by image presentation, data from all three 

option representation trial types are pooled together to maximize the number of trials used for 

more precise parameter estimation. Presentation order was randomized across trials and 

participants, while ensuring that the same item did not appear within five trials.  

Participants then completed a second version of the food choices task and personality 

questionnaires; those measures are outside of the scope of this paper and not reported here. The 

analyses reported here were not tested or performed on this second task, which was part of a larger 

series of tests of dietary nudges; this second task was always performed after the one used in these 

results, and participants were not aware that it would occur. For the results of this second task, 

see58. 

Phase 4: Incentive Delivery. To ensure incentive compatibility, at the end of the experiment one trial 

was randomly selected, and the food chosen on that trial was given to the participant. Participants 

could leave immediately after eating one serving of the food or could wait thirty minutes in the 
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experiment room (1 of the 79 participants chose to wait). This procedure encouraged participants to 

treat each trial as if it were the one that could count for their food compensation. 

Statistical Analysis. All statistical analyses were performed in MATLAB. All t-tests reported are two-

sided. Data distributions were assumed to be normal, but this was not formally tested. All mixed 

effects regressions used mixed effects regressions with random slopes and intercepts using MATLAB 

fitglme. Between-subjects regressions were performed using MATLAB regstats. Pearson correlations 

were performed with MATLAB corr. Estimation of mtDDM parameters was performed using 

maximum likelihood estimation in MATLAB. Statistical thresholds were set to p<.05. All statistical 

tests that resulted in a p-value less than 0.001 are reported at that level, given the limits on the 

precision of our statistical analyses. 

The mtDDM. We simulated choices and response times for a multi-attribute, time-dependent DDM 

(mtDDM).  In this model, a relative value signal (RVS) evolved in 10-ms time steps per convention. At 

each time step t, a weighted amount of the relative (left minus right) taste (TL–TR) and health (HL–HR) 

value difference was added the RVS. When the RVS reached the boundary for the right or left item, a 

choice was considered as being made for that food. The value signal evolved per equation (1). 

Parameter τ determines the drift latencies, set by t*T and t*H:  

RVSt = RVSt-1 + (τT  ∙ δT) (TL – TR) +  (τH  ∙ δH) (HL – HR) + εt       (1) 
where, 
τT = 1 if t ≥ t*

T, and τT = 0 otherwise; 
τH = 1 if t ≥ t*

H, and τH = 0 otherwise. 

In this model, ε represents i.i.d. Gaussian noise with a standard deviation fixed to σ = 0.1. The drift 

latency parameter t* represented the time before which each attribute’s relative value does not 

contribute to the RVS, and after which it contributed at a rate determined by its drift slope. For 

speed of estimation, this model assumes that the non-decision time proposed in standard DDMs 

(i.e., the time during the trial not allocated to evidence accumulation) is included in both taste and 

health drift latencies. One parameter commonly used in diffusion modeling is bias at choice outset, 

often resulting from over-trained motor response as it is introduced before options are identified or 

processed. As options in this task were randomly and equally presented on the left and right sides of 

the screen, participants were unable to develop a pre-set motor bias toward the healthier or tastier 

item on each trial. Further, choices in this mtDDM were fit using left vs. right choices, and not 

healthy vs. unhealthy choices. Therefore, bias was fixed to zero (i.e., in favor of neither the left nor 

right option). 

Per-participant DDM Parameter Estimation. We estimated five parameters of the mtDDM (taste 

and health drift slopes, taste and health drift latencies, and boundary width) for each participant in 
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MATLAB. Using a multi-stage grid search, then optimized using nonlinear minimization. The best-

fitting parameters for each subject were determined using maximum likelihood estimation. See 

Supplemental Information for more details on this procedure.  

Parameter Recovery. We performed a parameter recovery exercise of 100 simulated participants to 

ensure that simulated mtDDM parameters could be recovered using our estimation methods. See 

Supplemental Information for more details on this procedure and its results, and Figure S7 for 

correlation between true and recovered parameters.  

DDM Simulation to Illustrate Model Predictions. To generate the qualitative predictions for the 

influence of taste and health latencies on response times and choices displayed in Figure 2, a 

stimulus set was constructed using health and taste values like those in the experimental dataset’s 

conflict trials – specifically, all possible combinations of value differences ranging from -4 to 4 in 

which one option had a larger health, and smaller taste, than the other Taste’s drift slope and 

latency were fixed to 0.08 units/ms and 500 ms, respectively. Health drift slopes were varied 

between from .04 to .12 units/ms in .02 increments had health latencies that ranged from 10 ms to 

1000ms, in 250 ms timesteps. Boundary size was fixed to 1 unit. For each of the 25 parameter 

combinations and 16 taste and health value difference pairs, 1,000 decision processes were 

simulated, and proportion of healthy choices and mean response times were recorded. 

References 

1 Ratcliff, R., Smith, P. L., Brown, S. D. & McKoon, G. Diffusion Decision Model: Current Issues and 

History. Trends in cognitive sciences 20, 260-281, doi:10.1016/j.tics.2016.01.007 (2016). 

2 Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky, competing 

accumulator model. Psychological review 108, 550-592 (2001). 

3 Rangel, A. & Clithero, J. in Neuroeconomics: Decision Making and the Brain   (eds P.W. Glimcher 

& E. Fehr)  (Academic Press, 2013). 

4 Bogacz, R. Optimal decision-making theories: linking neurobiology with behaviour. Trends in 

Cognitive Sciences 11, 118-125, doi:http://dx.doi.org/10.1016/j.tics.2006.12.006 (2007). 

5 Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and comparison of value 

in simple choice. Nature Neuroscience 13, 1292-1298 (2010). 

6 Cavanagh, J. F., Wiecki, T. V., Kochar, A. & Frank, M. J. Eye tracking and pupillometry are 

indicators of dissociable latent decision processes. Journal of Experimental Psychology: General 

143, 1476-1488, doi:10.1037/a0035813 (2014). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2021. ; https://doi.org/10.1101/465393doi: bioRxiv preprint 

http://dx.doi.org/10.1016/j.tics.2006.12.006
https://doi.org/10.1101/465393
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 Eldar, E., Bae, G. J., Kurth-Nelson, Z., Dayan, P. & Dolan, R. J. Magnetoencephalography decoding 

reveals structural differences within integrative decision processes. Nature Human Behaviour 2, 

670-681, doi:10.1038/s41562-018-0423-3 (2018). 

8 Turner, B. M., van Maanen, L. & Forstmann, B. U. Informing cognitive abstractions through 

neuroimaging: the neural drift diffusion model. Psychological review 122, 312–336 (2015). 

9 Ratcliff, R., Philiastides, M. G. & Sajda, P. Quality of evidence for perceptual decision making is 

indexed by trial-to-trial variability of the EEG. Proceedings of the National Academy of Sciences 

106, 6539, doi:10.1073/pnas.0812589106 (2009). 

10 Hanes, D. P. & Schall, J. D. Neural Control of Voluntary Movement Initiation. Science 274, 427, 

doi:10.1126/science.274.5286.427 (1996). 

11 Gold, J. I. & Shadlen, M. N. Neural computations that underlie decisions about sensory stimuli. 

Trends in Cognitive Sciences 5, 10-16, doi:https://doi.org/10.1016/S1364-6613(00)01567-9 

(2001). 

12 Ratcliff, R., Smith, P. L., Brown, S. D. & McKoon, G. Diffusion Decision Model: Current Issues and 

History. 

13 Sullivan, N., Hutcherson, C., Harris, A. & Rangel, A. Dietary self-control is related to the speed 

with which attributes of healthfulness and tastiness are processed. Psychological science 26, 

122-134, doi:10.1177/0956797614559543 (2015). 

14 Lim, S. L., Penrod, M. T., Ha, O.-R., Bruce, J. M. & Bruce, A. S. Calorie Labeling Promotes Dietary 

Self-Control by Shifting the Temporal Dynamics of Health- and Taste-Attribute Integration in 

Overweight Individuals. Psychological science 0, 0956797617737871, 

doi:10.1177/0956797617737871 (2018). 

15 Hutcherson, C. A., Bushong, B. & Rangel, A. A Neurocomputational Model of Altruistic Choice 

and Its Implications. Neuron 87, 451-462 (2015). 

16 Trueblood, J. S., Brown, S. D. & Heathcote, A. The multiattribute linear ballistic accumulator 

model of context effects in multialternative choice. Psychological review 121, 179-205, 

doi:10.1037/a0036137 (2014). 

17 Ulrich, R., Schroter, H., Leuthold, H. & Birngruber, T. Automatic and controlled stimulus 

processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognitive 

psychology 78, 148-174, doi:10.1016/j.cogpsych.2015.02.005 (2015). 

18 Schwarz, W. On the relationship between the redundant signals effect and temporal order 

judgments: Parametric data and a new model. Journal of Experimental Psychology: Human 

Perception and Performance 32, 558-573, doi:10.1037/0096-1523.32.3.558 (2006). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2021. ; https://doi.org/10.1101/465393doi: bioRxiv preprint 

https://doi.org/10.1016/S1364-6613(00)01567-9
https://doi.org/10.1101/465393
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 Rouder, J. N. Premature Sampling in Random Walks. Journal of Mathematical Psychology 40, 

287-296, doi:https://doi.org/10.1006/jmps.1996.0030 (1996). 

20 Dambacher, M. & Hübner, R. Time pressure affects the efficiency of perceptual processing in 

decisions under conflict. Psychological Research 79, 83-94, doi:10.1007/s00426-014-0542-z 

(2015). 

21 Pratte, M. S., Rouder, J. N., Morey, R. D. & Feng, C. Exploring the differences in distributional 

properties between Stroop and Simon effects using delta plots. Attention, Perception, & 

Psychophysics 72, 2013-2025, doi:10.3758/APP.72.7.2013 (2010). 

22 Hübner, R., Steinhauser, M. & Lehle, C. A dual-stage two-phase model of selective attention. 

Psychological review 117, 759-784, doi:10.1037/a0019471 (2010). 

23 Bompas, A. & Sumner, P. Saccadic Inhibition Reveals the Timing of Automatic and Voluntary 

Signals in the Human Brain. The Journal of Neuroscience 31, 12501, 

doi:10.1523/JNEUROSCI.2234-11.2011 (2011). 

24 Thorpe, S., Fize, D. & Marlot, C. Speed of processing in the human visual system. Nature 381, 

520-522, doi:10.1038/381520a0 (1996). 

25 Liberman, N. & Trope, Y. The Psychology of Transcending the Here and Now. Science 322, 1201-

1205 (2008). 

26 Schmiedek, F., Oberauer, K., Wilhelm, O., Suss, H. M. & Wittmann, W. W. Individual differences 

in components of reaction time distributions and their relations to working memory and 

intelligence. Journal of experimental psychology. General 136, 414-429, doi:10.1037/0096-

3445.136.3.414 (2007). 

27 Webb, T. L. & Sheeran, P. Does changing behavioral intentions engender behavior change? A 

meta-analysis of the experimental evidence. 

28 Marteau, T. M., Hollands Gj Fau - Fletcher, P. C. & Fletcher, P. C. Changing human behavior to 

prevent disease: the importance of targeting automatic processes. 

29 Johnson, E. J. et al. Beyond nudges: Tools of a choice architecture. Marketing Letters 23, 487-

504, doi:10.1007/s11002-012-9186-1 (2012). 

30 Cummins, S., Flint, E. & Matthews, S. A. New neighborhood grocery store increased awareness 

of food access but did not alter dietary habits or obesity. Health Affairs 33, 283-291, 

doi:10.1377/hlthaff.2013.0512 (2014). 

31 Appelhans, B. M. et al. Delay discounting and intake of ready-to-eat and away-from-home foods 

in overweight and obese women. Appetite 59, 576-584, doi:10.1016/j.appet.2012.07.009 (2012). 

32 Marteau, T. M., Ogilvie, D., Roland, M., Suhrcke, M. & Kelly, M. P. Judging nudging: can nudging 

improve population health? BMJ 342, doi:10.1136/bmj.d228 (2011). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2021. ; https://doi.org/10.1101/465393doi: bioRxiv preprint 

https://doi.org/10.1006/jmps.1996.0030
https://doi.org/10.1101/465393
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 Forstmeier, S., Drobetz, R. & Maercker, A. The delay of gratification test for adults: Validating a 

behavioral measure of self-motivation in a sample of older people. Motiv Emot 35, 118-134, 

doi:10.1007/s11031-011-9213-1 (2011). 

34 Ratcliff, R., Thapar, A. & McKoon, G. Application of the Diffusion Model to Two-Choice Tasks for 

Adults 75−90 Years Old. Psychology and aging 22, 56-66 (2007). 

35 Ratcliff, R., Thapar, A. & McKoon, G. Aging and individual differences in rapid two-choice 

decisions. Psychonomic Bulletin & Review 13, 626-635, doi:10.3758/BF03193973 (2006). 

36 van Maanen, L. et al. Neural Correlates of Trial-to-Trial Fluctuations in Response Caution. The 

Journal of Neuroscience 31, 17488 (2011). 

37 Mansfield, E. L., Karayanidis, F., Jamadar, S., Heathcote, A. & Forstmann, B. U. Adjustments of 

Response Threshold during Task Switching: A Model-Based Functional Magnetic Resonance 

Imaging Study. The Journal of Neuroscience 31, 14688 (2011). 

38 Rae, B., Heathcote, A., Donkin, C., Averell, L. & Brown, S. The hare and the tortoise: emphasizing 

speed can change the evidence used to make decisions. J Exp Psychol Learn Mem Cogn 40, 1226-

1243, doi:10.1037/a0036801 (2014). 

39 Lerche, V. & Voss, A. Model Complexity in Diffusion Modeling: Benefits of Making the Model 

More Parsimonious. Frontiers in Psychology 7, doi:10.3389/fpsyg.2016.01324 (2016). 

40 Lerche, V. & Voss, A. Retest reliability of the parameters of the Ratcliff diffusion model. 

Psychological research 81, 629-652 (2017). 

41 van Ravenzwaaij, D. & Oberauer, K. How to use the diffusion model: Parameter recovery of three 

methods: EZ, fast-dm, and DMAT. Journal of Mathematical Psychology 53, 463-473, 

doi:https://doi.org/10.1016/j.jmp.2009.09.004 (2009). 

42 Preacher, K. J. & Hayes, A. F. SPSS and SAS procedures for estimating indirect effects in simple 

mediation models. Behavior Research Methods, Instruments, & Computers 36, 717-731, 

doi:10.3758/BF03206553 (2004). 

43 Ratcliff, R. A theory of memory retrieval. Psychological review 85, 59-108, doi:10.1037/0033-

295x.85.2.59 (1978). 

44 Hare, T., Camerer, C. F. & Rangel, A. Self-Control in Decision-Making Involves Modulation of the 

vmPFC Valuation System. Science 324, 646-648 (2009). 

45 Shiv, B. & Fedorikhin, A. Heart and Mind in Conflict: the Interplay of Affect and Cognition in 

Consumer Decision Making. Journal of Consumer Research 26, 278-292, doi:10.1086/209563 

(1999). 

46 Sokol-Hessner, P., Hutcherson, C., Hare, T. & Rangel, A. Decision value computation in DLPFC and 

VMPFC adjusts to the available decision time. Eur J Neurosci 35, 1065-1074 (2012). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2021. ; https://doi.org/10.1101/465393doi: bioRxiv preprint 

https://doi.org/10.1016/j.jmp.2009.09.004
https://doi.org/10.1101/465393
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 Milosavljevic, M., Malmaud, J., Huth, A., Koch, C. & Rangel, A. The Drift Diffusion Model can 

account for the accuracy and reaction time of value-based choices under high and low time 

pressure. Judgment and Decision Making 5, 437-449 (2010). 

48 Loewenstein, G. & Prelec, D. Anomalies in Intertemporal Choice: Evidence and an Interpretation. 

The Quarterly Journal of Economics 107, 573-597 (1992). 

49 Chabris, C. F., Laibson, D., Morris, C. L., Schuldt, J. P. & Taubinsky, D. Individual Laboratory-

Measured Discount Rates Predict Field Behavior. National Bureau of Economic Research Working 

Paper Series No. 14270, doi:10.3386/w14270 (2008). 

50 Berns, G. S., Laibson, D. & Loewenstein, G. Intertemporal choice – toward an integrative 

framework. Trends in Cognitive Sciences 11, 482-488 (2007). 

51 Ratcliff, R. A note on modeling accumulation of information when the rate of accumulation 

changes over time. Journal of Mathematical Psychology 21, 178-184, 

doi:http://dx.doi.org/10.1016/0022-2496(80)90006-1 (1980). 

52 Samuelson, P. A Note on Measurement of Utility. Review of Economic Studies 4, 155-161 (1937). 

53 Mazur, J. E. in Quantitative analysis of behavior Vol. 5 The effect of delay and intervening events 

on reinforcement value (eds J.E. Mazur, J.A. Nevin, & H. Rachlin)  55-73 (Erlbaum, 1987). 

54 Laibson, D. Golden Eggs and Hyperbolic Discounting. The Quarterly Journal of Economics 112, 

443-478 (1997). 

55 Gluth, S. & Rieskamp, J. Variability in behavior that cognitive models do not explain can be linked 

to neuroimaging data. Journal of Mathematical Psychology 76, 104-116, 

doi:https://doi.org/10.1016/j.jmp.2016.04.012 (2017). 

56 Hunt, L. T., Dolan, R. J. & Behrens, T. E. J. Hierarchical competitions subserving multi-attribute 

choice. Nature Neuroscience 17, 1613, doi:10.1038/nn.3836 

https://www.nature.com/articles/nn.3836#supplementary-information (2014). 

57 Brainard, D. H. The Psychophysics Toolbox. Spatial vision 10, 433-436 (1997). 

58 Sullivan, N. J., Fitzsimons, G. J., Platt, M. L. & Huettel, S. A. Indulgent foods can paradoxically 

promote disciplined dietary choices. Psychological science (2019). 

59 Sullivan, N. J. The Neurocomputational Basis of Self-Control Success and Failure PhD thesis, 

California Institute of Technology, (2015). 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2021. ; https://doi.org/10.1101/465393doi: bioRxiv preprint 

http://dx.doi.org/10.1016/0022-2496(80)90006-1
https://doi.org/10.1016/j.jmp.2016.04.012
https://www.nature.com/articles/nn.3836#supplementary-information
https://doi.org/10.1101/465393
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Information 

Supplemental Methods 

Task instructions 
Ratings Task. In the first task, you will rate foods on three attributes, one at a time. Ratings will be 
made using the keyboard. You’ll rate foods on their health, how tasty they are to you, and how 
much you would like to eat them at the end of the experiment. You have the option to rate an item 
as "neutral", but please avoid that as much as possible. Rate each food based on how it looks on the 
screen. For example, when rating a picture of a plain piece of bread, tell us how healthful you think it 
is alone, not how healthful it would have been if it were covered in butter. For each food, you will be 
shown both an image and a text description. It is important to pay attention to both the image and 
its text description when rating the foods. This is because later in the experiment you may have to 
make decisions based on the text descriptions alone. 

Choice Task. [Either Health or Taste Prime Text; see below]. On each trial of this task, you will choose 
between two different foods. Press the one (1) key to select the food on the left, and the zero (0) 
key to select the food on the right. Your choices will be displayed as either food images or their text 
descriptions. The descriptions will be the same text descriptions that you saw in the previous ratings 
task. At the end of the experiment, you will actually receive your food choice from one randomly-
selected trial across the entire experiment (from either this task, or next task). You can leave either 
when you’ve eaten the food, or when one half hour has expired. 

Prime text 
Imbedded in the Choice Task instructions, participants received either a health or taste prime to 
encourage either health or taste goals in their subsequent binary choices. 

Health Prime. The purpose of this study is to learn about how a food item's healthfulness 
affects people's choices about what they eat. We are interested in this question because 
leading scientists at top universities across the country have shown that eating a healthy diet 
is very important. They mention that one key benefit of eating healthy is the ability to 
maintain a healthy body weight, which can reduce the risk for many diseases. Previous 
research found that the top three killers in America are heart disease, cancer and stroke. 
Chronic diseases develop over time and are the cumulative effect of each eating decision we 
make in our lives. The health benefits of eating healthy are clear, but we would like to better 
understand how people incorporate health into each individual food choice. 

Taste Prime. The purpose of this study is to learn how taste affects people’s choices about 
the foods they eat. We are interested in this question because food is a central part of 
human culture, and is thought to be a source of enjoyment, passion, and fulfillment for 
many. Leading scientists at top universities across the country have found that high-taste 
foods reliably increase activity in the brain’s reward centers. This increased activity is usually 
associated with a boost in dopamine levels in the brain, and dopamine is closely tied to our 
brain’s reward processing, as well as our subjective experiences of reward. We would like to 
understand how food choice is affected by the rewarding aspects of flavor and taste. The 
benefits of eating flavorful foods are clear, but we would like to better understand how 
people incorporate taste into each individual food choice. 

mtDDM Model Estimation. In this model we estimated five free parameters: δT, δH t*T, t*H, and b. 
Best-fitting mtDDM parameters were estimated separately for each participant using the following 
procedure. For each unique taste-health rating value pair experienced by the participant during the 
choice task, 5,000 simulations were run for each mtDDM free parameter combination to compute 
the likelihood function over observed left or right item choices and their response times. All trials 
with response times less than 8000 ms and greater than 300 ms were used, and response bins were 
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created using MATLAB’s histcounts. The best-fitting parameter set was found by selecting the set 
that resulted in simulated choices and response times that minimized the negative log-likelihood of 
the experienced trials. 

Parameter estimation was run in four stages. Stage one was used to find the maximum and 
minimum search values for each free parameter. This was done by running a coarse grid search for 
each participant and increasing maximum, and lowering minimum, search values until no 
participants hit the maximum or minimum value for any parameter. Based on this procedure, the 
maximum and minimum parameter values for each attribute (taste or health) to search over for 
stage two were set to: drift slope, [max(min(δ) - 0.1, 0), max(δ) + 0.1], drift latency, [max(min(t*) - 
500, 10), max(t*) + 500]. Boundary width, which did not differ by attribute, was set to [max(min(b) - 
0.2, .1), max(b)+0.2]. Noise added to each time step was set to be normally distributed around zero 
with a standard deviation of 0.1. 

Stage two served to find a finer estimate of each participant’s free parameters. The final grid, after 
expanding the maximum and minimum values as described above, consisted of every possible 
combination of the following parameters: Drift slope for taste, δT, [.02, .16] in .01 increments. drift 
slope for health, δH, [0, .16] in .01 increments, boundaries, b, [.4, 2] in .1 increments. Drift latency for 
taste, t*T, [10, 2240], and for health, t*H, [10, 2230], both in 50 ms increments. To speed estimation, 
the subject’s maximum possible drift latency was re-set to the average response time for that 
participant if it was smaller, as a latency longer than a mean response time is not physiologically 
meaningful. 

The purpose of the third stage was to find the best-fitting set of parameters at a much finer 
resolution. To do this, the best-fitting stage two parameters for each participant were used to 
develop a very fine search grid. The grid for each parameter was set using the following procedure. 
For drift slope, the upper and lower grid values were  +/- .01 the stage two estimates in .001 
increments, excluding δ<0; for boundaries, the upper and lower values were +/- .01 of the stage two 
estimate, in .01 increments; for both t*T and t*H, the upper and lower grid values were +/- 500 ms, in 
10 ms increments, excluding t* < 10 ms. 

The fourth stage used a nonlinear minimization search using MATLAB’s fmincon to search within 
stage three’s fine grid to arrive at the final parameter combination for each participant. For each 
participant, the top five best-fitting parameter combinations from stage three were selected. For 
each of these five-best combinations, the minimization was run 1,000 times, resulting in a total of 
5,000 parameter estimations. The starting point for each parameter on each of these 5,000 
minimizations was drawn randomly from a uniform distribution whose median was that parameter’s 
stage three best-fitting value, and whose maximum and minimum values were that best-fitting value 
plus and minus stage three’s step size. These maximum and minimum values were also the 
maximum and minimum constraints on each parameter’s search. This effectively allowed for a 
random search within the best-fitting grid from stage three. 

For all stages, there was only one best-fitting parameter combination for each participant (i.e., only 
one smallest negative log likelihood). The best-fitting parameters from the fourth stage were used 
for the analyses reported in the paper. 

Single-Latency Model (mDDM). We next tested the ability of the mtDDM to explain choices and 
response times better than a model without taste and health latency parameters. To do this, we 
estimated a DDM model identical to the mtDDM, but that assumed that both taste and health enter 
the decision process at the same time (See Supplemental Materials for details), which we term 
“value latency.” We fit separate taste and health drift slopes. The model was as follows:  

RVSt = RVSt-1 + (τ  ∙ δT) (TL – TR) +  (τ  ∙ δH) (HL – HR) + εt  

where, 
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τ = 1 if t ≥ t*, and τ = 0 otherwise. 

Attribute Stopping Time Model (stDDM). We tested a model in which we replaced attribute latency 
parameters with attribute stopping time parameters. In this model, both attributes begin 
contributing to the decision process at the same time, but the time at which they stop contributing 
was allowed to vary.  This was estimated using the same procedure described above. The model was 
as follows: 

RVSt = RVSt-1 + (τT  ∙ δT) (TL – TR) +  (τH  ∙ δH) (HL – HR) + εt 

where, 

τT = 1 if t ≤ t*
T, and τT = 0 otherwise; 

τH = 1 if t ≤ t*
H, and τH = 0 otherwise. 

Latency Only Model (latDDM). We tested a model in which both taste and health receive the same 
drift slope δ, which is a temperature parameter. Taste and health latencies were allowed to vary. 
This was estimated using the same procedure described above. The model was as follows:  

RVSt = RVSt-1 + τT δ(TL – TR) + τH  δ(HL – HR) + εt  

where, 

τT = 1 if t ≤ t*
T, and τT = 0 otherwise; 

τH = 1 if t ≤ t*
H, and τH = 0 otherwise. 

Simple DDM (sDDM). We tested a simple DDM with only three parameters, in which taste and 
health receive the sample slope drift slope δ and taste and health latencies held to be equal. This 
was estimated using the same procedure described above. The model was as follows: 

RVSt = RVSt-1 + τ δ(TL – TR) +  τδ(HL – HR) + εt  

where, 

τ = 1 if t ≤ t*, and τ = 0 otherwise; 

Parameter recovery procedure. Choices and response times were simulated with the same mtDDM 
process used for parameter estimation. mtDDM parameter combinations were randomly selected 
from the range of values in our participant dataset. For each of 100 agents, a dataset of 5,000 trials 
were simulated using all possible taste and health value difference combinations (from -4 to 4) in the 
experimental dataset. On half of those trials, to approximate the experimental dataset’s composition 
of trials, health and taste were in conflict (that is, one option was tastier, and less healthy, than the 
other) Next, the same parameter estimation procedure applied to the participant data was used to 
estimate the five free mtDDM parameters (see “mtDDM Model Estimation” above). 

Cross-validation DDM fitting. To compare DDM parameters to behavioral measures such as choices 
and logistic decision weights while avoiding “double dipping” (comparing parameters to choices 
used to fit the parameters), a separate set of DDM parameters was fit for each participant using a 
cross-validation method. First, one half of a participant’s 300 choices were randomly selected for 
parameter estimation. This was done such that half of a participant’s non-conflict trials, and half of 
their conflict trials, were used. This resulted in a dataset for each participant of 150 total trials, 75 
conflict and non-conflict trials each – except for the participant with no conflict trials, in trials were 
partitioned randomly. DDM parameters were then fit using the procedure detailed above (“mtDDM 
Model Estimation”). For all analyses performed with the cross-validated parameters, comparisons 
were made between the fitted parameters from one half of trials, and choices on the other half of 
trials (that is, those trials not used to estimate the DDM parameters). 
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Supplemental Results 

mtDDM Predictions Using Simulations. We first assessed how relative value of the healthy vs. 
unhealthy option (in this simulation, value was the unweighted sum of taste and health) was related 
to healthy choice, and how taste and health latencies influenced this relationship. This was done 
with a series of simulations, in which mtDDM parameters were used to predict the proportion of 
healthy choices made. In this analysis, health and taste drift slopes and boundary size were held to 
be equal. Taste latencies were fixed, while health latencies were allowed to vary. This allowed us to 
see, qualitatively, how changes in the relative latency of health would influence the proportion of 
healthy choices made, holding all else equal (see Supplementary Methods above). 

In Figures S2a and b, the black line refers to simulations in which taste and health latencies were 
equal. We found that as health latencies became faster (Fig. S2a, from dark to light blue), the 
proportion of healthy choices increased as a function of value, as evidenced by a leftward shift in the 
psychometric choice curve. Conversely, the psychometric curve shifts to the right as health latencies 
became slower (in red), indicated an increase in unhealthy choices and taste latencies become 
relatively faster. The simulations also predict a pattern in response times that would be expected 
from value-based choices: specifically, that response times will be longer when both options are 
similar in value (Fig. S2b). 

Figure S2c displays the simulation in a different way to highlight specifically the proportion of 
healthy choices predicted (y-axis) relative to health’s latency (x-axis), which was varied in these 
simulations. Importantly, this also demonstrates how this relationship is also influenced by the value 
difference between the options. As mentioned above, taste latency was always fixed to 200 ms 
(vertical grey bar). As health latencies became faster than taste’s (to the left of the grey bar), the 
proportion healthy choices increased - even when the value of the healthy item was much worse 
than the tasty item (blue lines). Healthy choices declined as health’s latency became increasingly 
slower than taste’s latency or slower than (to the right of the grey bar). Of note, latency had an 
influence on choice even when one option was strongly preferred to the other (value differences of -
4 in blue, or 4 in green), and that this influence is strongest when both options are equally liked 
(light blue, value difference of 0). This further illustrates that earlier health latencies predict more 
healthy choices, even in cases in which the tempting tasty item was higher in value. 

Response Times by Choice and Trial Type. Response times (RTs) were faster for conflict trials (in 
which there was a choice between a healthier, less tasty food and a tastier, less healthy food) than in 
nonconflict trials (Fig S3a; M = 1558 ms, 1636 ms; paired t-test of log(RTs) d = -0.17, t(77) = -3.34, p = 
0.001, 95% CI = [-0.08 -0.02]). Among conflict trials, trials in which the healthier choice was made 
took longer (Fig S3b; M = 1917 ms, 1493 ms; paired t-test of log(RTs) d = 0.61, t(76) = 7.33, p < 0.001, 
95% CI = [0.15 0.27]). There was not a statistically significant relationship between the number of 
healthy choices made and RTs when making healthy choices (Pearson correlation ρ = -0.02, p = 0.86). 
However, participants who made more healthy choices took longer on unhealthy choice trials 
(Pearson correlation ρ = 0.26, p = 0.02).  This is expected from any DDM with separate weights on 
taste and health and is the result of compounding of the weight placed on health versus taste during 
the decision process, a prediction we pursue below.  

DDM Predictions for RT Differences Between Choice Types. Both the mDDM and mtDDM would 
predict the observed phenomena of slower healthy choices and faster unhealthy choices, given that 
individuals (on average) place a larger weight on taste than health in the decision process. To 
confirm this analytically, we performed a series of simulations to 1) assess whether a multi-attribute 
DDM can predict the observed RT differences between healthy and unhealthy choices, and 2) 
whether adding an attribute-wise latency parameter improves the prediction of these RT differences 
(above a multi-attribute DDM with one latency parameter). To answer these questions, we 
simulated RTs on each experienced conflict trial (in which one food was healthier and less tasty than 
the other). For each trial, 1,000 decision processes were simulated twice: Once using participants’ 
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best-fitting mtDDM parameters, and once using participants’ best-fitting mDDM parameters (that is, 
a model identical to the mtDDM but fit with a single latency). We then compared the simulated RTs 
between healthy and unhealthy choice trials. For cases in which a simulation predicted no healthy or 
unhealthy choices, that trial type is omitted from the analysis. 

Both the mDDM and mtDDM predicted longer RTs for healthy than unhealthy choice trials (mDDM 
M = 2101 ms, 1836 ms, paired t-test of log(RTs) d = 0.64, t(30) = 5.33, p < 0.001, 95% CI = [0.05 0.12]; 
mtDDM M = 2117 ms, 1804 ms, paired t-test of log(RTs) d = 0.71, t(31) = 6.00, p < 0.001, 95% CI = 
[0.10 0.20]). This is expected, as trials in which the healthier option is chosen are more likely to have 
smaller summed weighted attribute values due to the small weight on health (i.e., small drift slopes), 
which will result in relative value signals that take longer to cross a boundary. As the healthier option 
approaches and overtakes the unhealthy option in summed weighted value, two things happen: 
first, the relative value signal is likely to take longer to cross a boundary due to more similar value 
differences and second, the choice is more likely to be in favor of the healthy option. For example, 
consider a participant with drift slopes of taste=0.02 and health=0.01. For choice in which the 
relative taste and health of the (healthy - unhealthy option) is [taste = -4, health = 4], this results in a 
total weighted summed value of 0.02*-4 + 0.01*4 = -0.04, which is in favor of the unhealthy option.  
For a value difference pair, in which the healthier option has improved in its relative tastiness, of 
[taste = -1, health = 4], the total value is 0.02*-1 + 0.01*4 = 0.02, which is a smaller relative value 
difference but now in favor of the healthy option. The latter case will result in slower choices in favor 
of the healthy option and is an illustration of how healthy choices are often slower, as their summed 
weighted value is often much less due to the smaller weight on the health attribute. Next, we assess 
whether multi-attribute latencies improve explanation of this difference in RT between choices. 

We investigated where specifically the mtDDM outperformed the mDDM by investigating RT and 
choice predictions by RT quantile. We note, however, that these comparisons do not penalize the 
mtDDM for its additional parameter, so therefore should be treated as exploratory. The mtDDM 
predicted larger differences in RTs between healthy and unhealthy choices than mDDM (healthy – 
unhealthy RTs, 170 ms vs. 286 ms; paired t-test of log(RT) differences d = -0.55, t(24) = -3.24, p = 
0.003, 95% CI = [-0.09 -0.02]). This indicates that both models predict an RT difference, and that the 
mtDDM predicts an even larger difference between choice types. Next, we assess how well both 
models’ predictions match with the observed RT data. 

Observed RTs were correlated with those predicted by both the mDDM and mtDDM but were more 
closely correlated for the simulated RTs of the mtDDM than the mDDM. The simulated mDDM and 
mtDDM RTs and observed RTs were correlated for both healthy (mDDM, ρ  = 0.66, p < .001; mtDDM, 
ρ  = 0.72, p < 0.001) and unhealthy (mDDM, ρ  = 0.88, p < 0.001; mtDDM, ρ  = 0.91, p < .001) choices.  

Finally, we measured how well the DDM models predicted differences in RTs between healthy and 
unhealthy choices. For this, too, the mDDM does well, and the mtDDM does best. The difference in 
RTs between healthy and unhealthy choices are correlated between simulated and real RTs for both 
the mDDM and mtDDM (mDDM, ρ = 0.39, p = 0.005, mtDDM ρ = 0.62, p < 0.001). This correlation is 
larger for mtDDM than mDDM predictions (Williams-Hotelling test t(76)=3.74, p<0.001).  

We further investigated RT predictions for different decision durations. For each participant, we 
binned experienced trials by log(RT) quantile and then used both their mDDM and mtDDM fitted 
parameters to predict RTs for each experienced trial. We found that the variable latency allowed by 
the mtDDM improves its predictions over the mDDM for the first three quantiles; interestingly, for 
the longest RT quantile both models have worse performance, with the mDDM providing better 
prediction.  

Percent RT quantiles predicted correctly, mtDDM vs. mDDM 
Q1 Mean difference = 0.058, d = 0.01, t(78) = 0.10, p = 0.920, 95% CI = [-1.089 1.205] 
Q2 Mean difference = 2.950, d = 0.24, t(78) = 2.15, p = 0.035, 95% CI = [0.213 5.688] 
Q3 Mean difference = 3.291, d = 0.15, t(78) = 1.33, p = 0.094, 95% CI = [-1.737 8.319] 
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Q4 Mean difference = -5.700, d = -0.26, t(78) = -2.33, p = 0.022, 95% CI = [-10.561 -0.836] 
 
Similarly, the mtDDM does best relative to the mDDM in the 3rd quantile, in predicting the correct 
choice. Comparing this performance by a median split of absolute differences in latency, we find that 
difference in mtDDM and mDDM performance is significantly better for the mtDDM for those with 
larger median latency differences in Quantile 3 (Means = 2.96, 0.94, d = 0.43, t(77) = 2.04, p = 0.044, 
95% CI = [0.052 3.985]). 
 
Percent Choices predicted correctly, mtDDM vs. mDDM, by RT quantile 
Q1 Mean difference = 0.081, d = 0.02, t(78) = 0.19, p = 0.847, 95% CI = [-0.751 0.914] 
Q2 Mean difference = 0.772, d = 0.24, t(78) = 2.17, p = 0.033, 95% CI = [0.063 1.480] 
Q3 Mean difference = 1.941, d = 0.43, t(78) = 3.85, p < 0.001, 95% CI = [0.938 2.944] 
Q4 Mean difference = 0.945, d = 0.20, t(78) = 1.77, p = 0.081, 95% CI = [-0.118 2.008] 

mtDDM Simulation and Recovery. To ensure that no parameter of the mtDDM could be estimated 
to be falsely larger or smaller than its true value due to an inability to separate and estimate each 
parameter individually, or a bias causing artificial correlation between parameters, we assess how 
well each parameter of the mtDDM could be recovered from simulated data (see “Parameter 
recovery procedure” above for methods).  

To assess the ability of this method to accurately recover the true parameters, we first assessed 
whether the recovered and true parameters were correlated, even if the precise parameter values 
were not recovered. There was a statistically significant correlation between true and recovered 
values for all parameters (scatter plots, Fig. S5; Pearson correlations: Drift Slope 1, ρ = 0.75, p < .001; 
Drift Slope 2, ρ = 0.71, p < .001; Drift Latency 1, ρ = 0.82, p < .001; Drift Latency 2, ρ = 0.87, p < .001; 
Boundary Width, ρ = 0.86, p < .001). Despite this, slopes and boundaries were recovered to be larger 
than their true values, and latencies were recovered to be shorter (histograms, Fig. S5; Recovered – 
True value mean differences, Drift Slope 1 =  0.003, d = 0.61, t(99) = 6.07, p < 0.001, 95% CI = [0.002 
0.003]; Drift Slope 2 = 0.003, d = 0.59, t(99) = 5.87, p < 0.001, 95% CI = [0.002 0.004]; Latency 1 = -
140 ms, d = -0.31, t(99) = -3.08, p = 0.003, 95% CI = [-230 -50]; Latency 2 = -129, d = -0.29, t(99) = -
2.94, p = 0.004, 95% CI = [-215 418]; Boundary Width, = 0.15, d = 0.91, t(99) = 9.05, p < 0.002, 95% CI 
= [0.12 .18]). 

As much of our hypothesis revolved around the relative attribute slope and latency (Taste – Health), 
we also assessed the relationship between the true and recovered relative drift parameters. 
Importantly, there was a statistically significant correlation between the true and recovered relative 
drift slope (ρ = 0.85, p < .001), and between the true and recovered relative drift latency (ρ = 0.93, p 
< .001). The difference between the true relative (Taste – Health) and recovered relative value was 
not statistically significantly different from zero for slope or latency (relative slope mean difference = 
-0.0002, d = 0.03, t(99) = 0.25, p = 0.80, 95% CI = [-0.0011 0.0014]; relative latency mean difference = 
11.1 ms; d = 0.02, t(99) = 0.19, p = 0.85, 95% CI = [-103 125]).  

We also use the mtDDM parameter recover to test for a major concern for parameter estimation. 
Specifically, it is possible that a large drift slope for one attribute could lead to recovering that 
attribute’s latency as faster than it truly was. To see if this happened in the simulated dataset, we 
investigated cases in which an attribute had a larger drift slope relative to the other attribute, but a 
slower attribute latency. We calculated the proportion of simulated agents in which this attribute’s 
latency was falsely recovered to be faster instead of slower. Since, in this simulation, taste and 
health are arbitrary attributes, we collapse across both attributes for this test. Because parameter 
combinations were made randomly, this happened half (50) of our 100 agents, compared to our 
participant data in which this happened for an attribute only 14% of the time for either attribute. For 
the simulated agents, a latency was incorrectly recovered as faster for 4 of the 52 agents, for a 92% 
accurate classification rate overall. Altogether, this exercise indicates that although it is possible for 
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a larger drift slope to result in a falsely faster drift latency, it is unlikely that this happens 
systematically due to mis-estimation of mtDDM parameters. 

Attribute Stopping Time DDM (stDDM). We compared the mtDDM to a model in which both taste 
and health enter the decision process simultaneously, but stop being considered at different times. 
The same procedure was used to fit this model as the mtDDM. Once the stopping time for an 
attribute was reached, its influence on the value signal dropped to zero (that is, it no longer 
contributed to changes in the relative value signal over time).  

As expected, drift slopes for the stDDM were larger for taste than for health in this model (M = 
0.045, 0.015; d = 1.97, t(78) = 9.78, p < 0.001, 95% CI = [0.02 0.04]) and each attribute’s drift slope 
was correlated with its slope estimated using the mtDDM (taste, ρ = 0.86, p < 0.001; health, ρ = 0.45, 
p < 0.001). We found no statistically significantly difference in health slope between this DDM and 
mtDDM (d = -0.14, t(78) = -1.19, p = 0.24, 95% CI = [-0.01 0.00]), whereas taste slopes were 
statistically significantly larger in the mtDDM (d = -0.67, t(78) = -9.35, p < 0.001, 95% CI = [-0.02 -
0.01]). Fitted boundary widths were statistically significantly larger in the stDDM than mtDDM (M = 
1.50, 1.41; d = 0.40, t(78) = 7.82, p < 0.001, 95% CI = [0.06 0.10]). The best-fitting taste stopping time 
was significantly earlier for health than for taste (M = 4145 ms, 2551 ms; d = 0.85, t(78) = 5.26, p < 
0.001, 95% CI = [991 2198]). Interestingly, the taste stopping times exceeded mean RTs for 96% of 
participants (vs. 58% for health stopping times), suggesting for most trials and participants, taste 
remained influential on the decision process until the decision boundary was reached.  

Next, we assessed whether the addition of attribute-wise stopping time parameters improved the 
mDDM’s and mtDDM’s ability to explain choices and RTs. The mDDM resulted in statistically 
significantly smaller BIC values than the stDDM, indicating that the mDDM fit the observed data 
better (Table S2; paired t-test of BIC values, M = 1143, 1645; d = -4.65, t(78) = -58.50, p < 0.001, 95% 
CI = [-518 -484]). The mtDDM also had statistically significantly lower BIC values than the stDDM 
(paired t-test of BIC values, M = 1111, 1645; d = -4.99, t(78) = -63.30, p < 0.001, 95% CI = [-550 -517]). 

Finally, we assessed whether stopping times can help explain any variance in healthy choices above 
drift slopes for taste and health. In a regression model predicting the percentage of healthy choices 
made by a participant, stDDM all parameters together explain a large proportion of choice variance 
(Table S3; R2 = 0.76, F(72) = 46.77, p < 0.001). As in the mtDDM, larger taste drift slopes were 
statistically significantly negatively related to the number of healthy choices (slope = -7.28, 95% CI = 
[-8.75 -5.80], p < 0.001) and health drift slopes were statistically significantly positively related to the 
number of healthy choices made (slope = 4.58, 95% CI = [2.91 6.26], p < 0.001). Later health stopping 
times were statistically significantly related to more healthy choices (slope = 3x10-5, 95% CI =[1x10-5 
4 x10-5], p < 0.001). We found no statistically significant relationship between taste’s stopping time 
and healthy choices (slope = -7x10-6, 95% CI = [2x10-5 1x10-5], p = 0.41), perhaps because stopping 
times exceeded the mean RT for 96% (all but three) participants and therefore had little influence on 
most choices. 

Latency DDM (latDDM). We compared the mtDDM to a model in which both taste and health 
enter the decision process at different times, but their drift slopes are equal. The same procedure 
was used to fit this model as the mtDDM. Fitted latencies for taste were earlier than for health (M = 
231.52, 1238.86; d = -1.97, t(78) = -10.46, p < 0.001, 95% CI = [-1199.01 -815.68]). Taste and health 
latencies estimated from the latDDM were correlated with those estimated in the mtDDM (taste, ρ = 
0.71, p < .001; health, ρ = 0.55, p < .001). Taste latencies were estimated to be earlier than those 
estimated by the mtDDM (M = 231.52, 407.35; d = -0.58, t(78) = -6.55, p < 0.001, 95% CI = [-229.29 -
122.37]), while health latencies were estimated to be later than those estimated by the mtDDM (M = 
1238.86, 880.44; d = 0.63, t(78) = 5.74, p < 0.001, 95% CI = [234.02 482.81]). 

Next, we calculated whether choices and RTs were explained better for the latDDM, mDDM, stDDM, 
or mtDDM using pairwise comparisons of Bayesian Information Criterion (BIC) values, which penalize 
additional drift parameters. The mtDDM resulted in statistically significantly smaller BIC values than 
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the latDDM, indicating that the mtDDM fit the observed data better (Table S2; paired t-test of BIC 
values, d = -0.57, t(78) = -8.06, p < 0.001, 95% CI = [-69 -41]). This was also true for the mDDM (d = -
0.23, t(78) = -3.00, p = 0.004, 95% CI = [-38 -8]). The latDDM fit the data better, however, than the 
stDDM (d = 4.51, t(78) = 49.97, p<0.001, 95% CI = [459 497]) and the sDDM (see sDDM details below; 
M = 1168.99, 1245.58; d = -0.83, t(78) = -8.40, p < 0.001, 95% CI = [-94.74 -58.44]). 

Simple DDM (sDDM). We compared the mtDDM to a model in both drift slopes and drift latencies 
for taste and health are fixed to be equal, which is functionally equivalent to a simple single-
attribute DDM. Below we report comparisons between the fit of the sDDM to the other DDM 
models, which demonstrate that models with multi-attribute latencies perform better than the 
sDDM, but that models without them perform worse than the sDDM. The mtDDM fits the observed 
data better as measured by smaller BIC values (M = 1111.21, 1245.58; d = -1.44, t(78) = -12.97, p < 
0.001, 95% CI = [-155.00 -113.75]), as does the latDDM (M = 1168.99, 1245.58; d = -0.83, t(78) = -
8.40, p < 0.001, 95% CI = [-94.74 -58.44]). However, the sDDM has lower BIC values than the stDDM 
(M = 1644.45, 1245.58; d = 3.88, t(78) = 32.48, p < 0.001, 95% CI = [374.42 423.32]) and the mDDM 
(M = 1432.47, 1245.58; d = 1.53, t(78) = 10.81, p < 0.001, 95% CI = [152.47 221.31]). 

Consideration of choice-specific non-decision times (csNDTs). An alternative decision process, 
whereby participants reconsider their choice after a decision boundary is reached and that this time 
differs between healthy and unhealthy choices, could possibly bias latency estimation. Specifically, 
longer healthy choice non-decision times could lead to health latencies falsely estimated as shorter 
(and vice versa in unhealthy choice trials), and therefore a false difference between health and taste 
latencies. We address this possibility with three analyses. First, we note that the imbalance in 
healthy and unhealthy choice trials in our dataset makes it ill-suited to directly estimate choice-
specific non-decision times. Participants made on average 33 healthy choices (range, 0 to 140) and 
115 unhealthy choices (range, 0 to 150). This would lead to noisier healthy choice nondecision time 
(NDT) estimates than unhealthy choice NDT estimates, and also would mean that participants with 
many healthy choices would have more accurate estimates for their healthy-choice than unhealthy-
choice NDT, and vice versa for participants making many unhealthy choices. Future work with an 
adaptive design to ensure an equal number of healthy and unhealthy choice trials is a promising 
avenue for future work. 

Non-conflict trial mtDDM estimation. If attribute latencies are a relatively stable feature of the 
individual’s decision process, participants should have similar attribute processing times if estimated 
from non-conflict trials only (that is, trials in which one option is not healthier and less tasty than the 
other; half of all trials). These non-conflict trial latencies should predict healthy choice in the conflict 
trials. Because nonconflict trials do not have the option of a healthy choice, it would be impossible to 
have the csNDTs (as there are no healthy and unhealthy choices). To address this, we estimated 
mtDDM parameters for each participant using their non-conflict trials only. For the one participant 
who had only non-conflict trials, 150 trials were randomly selected for this estimation. We found 
that taste drift slopes were larger than health drift slopes (M = 0.05, 0.02 units/ms; d = 1.43, t(78) = 
8.04, p < 0.001, 95% CI = [0.02 0.04]), and their difference was related to relative (taste – health) 
decision weights in conflict trials (Pearson ρ = 0.77, p < 0.001). Crucially, taste latencies were faster 
than health latencies (M = 342, 609 ms; d = -0.94, t(78) = -6.25, p = 0.001, 95% CI = [-351 -182]), and 
their difference also was correlated with relative decision weights (Pearson ρ = -0.25, p = 0.03). This 
indicates that, even when there can be no csNDTs specific to healthy and unhealthy choices, latency 
findings replicate those found with the entire trial dataset, and are associated with the healthy 
choices a participant makes when confronted by a conflict trial. However, we note that there were 
very few trials used for estimation, so these results should be treated with caution.  

mtDDM parameter recovery using csNDT data generation process. We next used simulations and 
parameter recovery to test whether longer healthy choice NDTs would falsely recover as longer taste 
(vs. health) latencies (and vice versa for unhealthy choice NDTS). We did this by simulating choices 
and RTs as described in our mtDDM recovery with two changes. First, all trials were “conflict trials” 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2021. ; https://doi.org/10.1101/465393doi: bioRxiv preprint 

https://doi.org/10.1101/465393
http://creativecommons.org/licenses/by-nc-nd/4.0/


so that all choices would be either healthy or unhealthy choices. Second, NDTs varied by healthy or 
unhealthy choice instead of by attribute. Then, mtDDM parameters were estimated from this data 
using the estimation procedure described above. This allows us to test whether a data-generating 
process with choice-specific and not attribute-specific latencies could result in differences in 
attribute-specific latencies (even though they were not a part of the decision process).  Waiting 
times ranged from 100 to 500 ms in 10 ms timesteps which was chosen a priori informed by the 
range of non-decision times in our dataset (estimated from the single latency mDDM model which 
had a mean of 280 ms and within one standard deviation ranged from 101 ms to 468 ms). 

First, we note that true and recovered drift slopes and boundaries were correlated (Taste slope, 
Pearson ρ = 0.82, p < 0.001; Health Slope Pearson ρ = 0.77, p < 0.001; boundary Pearson ρ = 0.56, p < 
0.001). However, true choice-specific NDTs were not correlated with estimated attribute latencies 
(Fig. S9A; Taste latency vs. Healthy Choice NDT, Pearson ρ = 0.09, p = 0.38; Health latency vs. Healthy 
Choice NDT, Pearson ρ = 0.01, p = 0.90; Taste latency vs. Unhealthy Choice NDT, Pearson ρ = 0.00, p 
= 0.98; Health latency vs. Unhealthy Choice NDT, Pearson ρ = 0.18, p = 0.08). This indicates that 
there is no credible evidence to support the hypothesis that longer csNDTS would lead to different 
attribute latencies. We do highlight, however, that there was a non-significant trend toward a 
correlation between longer health latencies and longer unhealthy choice NDTs (p = 0.08) in the 
direction we expected if a bias did exist.  

mtDDM parameter recovery using mtDDM and csNDT data generation process. For completeness, 
we performed a further simulation. This estimation was identical to the above, with one addition: 
taste and health latences were added to the decision process. This resulted in a DDM model with 
seven parameters: taste and health drift slopes, healthy and unhelathy choice NDTs, taste and 
health latencies, and boundary width. We then performed the same parameter recovery exercise to 
test whether attribute latencies be recoverd (that is, separately estimated) if both attribute-wise 
latencies and choice-specific NDTs exist in the decision proces. We find that, even when csNDTs are 
included, recovered taste and health latencies are correlated with their true parameters (Fig. S9B; 
Taste latency, Pearson ρ = 0.62, p < 0.001; Health latency, Pearson ρ = 0.63, p < 0.001, taste – health 
latency, Pearson ρ = 0.61, p < 0.001). However, we note that this is a noisier recovery than one 
without csNDTS (mtDDM recovery reported above), and that both taste and health latencies are 
recovered to be faster than their true values (one-sample t-test of difference between recovered 
and true parameters vs. 0; taste latency, M = 180 ms; d = 0.38, t(99) = 3.81, p 0.001, 95% CI = [87 
274]; health latency, M = 223; d = 0.46, t(99) = 4.61, p < 0.001, 95% CI = [1267 319]). However, this 
indicates that taste and health latencies can be recovered fairly accurately even if csNDTs exist in the 
data-generation process.  

Across three analyses, we find no credible evidence to support a concern that choice-specific non-
decision times result in a large bias in attribute latencies and are therefore not likely to be a cause of 
significant bias in our manuscript’s results. 
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Supplementary Figures 
 

 Supplementary Figure 1. Flow of a choice trial. Participants made 300 binary choices with free 

response time (RT). Foods were displayed on the left and right sides of the screen. After keyboard 

response, the chosen food was highlighted in green for 200 ms to reflect participant response. 

Between trials, a fixation cross was displayed in the center of the screen for between 200 and 500 

ms (mean 350ms; i.i.d. distributed). 
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Supplementary Figure 2. Simulation results. (a) The proportion of healthy choices for each value 
difference (Healthy– Tasty Food Value) are plotted for different relative latencies. Darker lines 
represent more similar latencies. Blue lines represent earlier health than taste latencies, and red 
lines represent earlier taste than health latencies. (b) Mean response times for each value difference 
(Healthy– Tasty Food Value) are plotted for different relative latencies; line colors are similar to 
those in the previous panel. (c) The proportion of healthy choices (y-axis) predicted as a function of 
health latency (y-axis) and option value difference (green to blue). When taste and health’s latencies 
are equal (at 200 ms, indicated by the grey bar), both attributes entered the decision process at the 
same time. Value differences, indicated here by colors green to blue, represent the relative (Healthy 
– Tasty) value (taste + health) of the options, with green representing a higher valued healthy option 
and blue representing a higher valued tasty option. As the healthy option increased in value (green), 
it was selected more often. There was a further increase in healthy choices moving from the grey bar 
to the left, indicating faster health latencies relative to taste latencies. Conversely, as health 
latencies became slower, plotted here to the right of the grey bar, fewer healthy choices were made. 
(d) The simulated percent of healthy choices predicted by the mtDDM given changes in taste slopes 
and latencies, while holding health (left panel) or taste (right panel) latencies fixed to 500 ms and 
health (left panel) or taste (right panel) slope fixed to 0.08 units/ms. 
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Supplementary Figure 3. Response time distributions by trial type. A) Log-transformed response 

time distributions in conflict trials, in which one food was tastier and less healthy than the other, and 

non-conflict trials. B) Among conflict trials, RT distributions when the healthy or unhealthy choice 

was made. 

 

 

 
 

Supplementary Figure 4. Distribution of best-fitting mtDDM parameters. (a) Histogram depicting 

the distributions of best-fitting taste and health drift slopes (δT and δH) across participants. (b) 

Distribution of best-fitting taste and health drift latencies (t*T and T*H). (c) Distribution of estimated 

boundary size. 
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Supplementary Figure 5. Scatter plots of each free mtDDM parameter combination. Each fitted 
mtDDM parameter is plotted against each other parameter to visualize the correlation (or lack 
thereof) between parameters. 
 

 
Supplementary Figure 6. Difference between recovered and true simulated parameters. (a) Each 

“true” mtDDM parameter is plotted against its recovered estimate. The distribution of differences 

between true and recovered parameters are shown below each scatterplot. (b) The difference in 

Drift Slopes and Latencies for Taste and Health are plotted, with the true parameters of the 

simulations plotted against their recovered parameters. The distribution of differences in true and 

recovered parameter differences (Taste-Health) are shown below each scatterplot. In each scatter 

plot, the black line represents a perfect correlation line. In each histogram, the black line represents 

the mean difference between true and recovered parameter. 
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Supplementary Figure 7. Attribute drift slopes related to choice. (a) Drift slopes plotted as a 

function of the proportion of healthy choices made. (b) Relative drift latency (taste – health) plotted 

against proportion healthy choices. 

 

Supplementary Figure 8. Influence of prime on mtDDM parameters. (a) Drift slopes for food 

tastiness and healthfulness by prime condition. (b) Difference in taste and health drift slopes by 

prime condition. For both plots, black crosses represent outliers as determined by Matlab’s boxplot. 
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Supplementary Figure 9. Simulation results from test of bias caused by choice-specific non-

decision times (csNDTs). (a) Correlation between csNDTs and estimated latencies. (b) Correlation 

between recovered and true latencies when csNDTs are present in the decision process. 
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Supplementary Tables 

 

Table S1. Model comparisons 

 

 Mean BIC Std. Dev. BIC Sum BIC Min. BIC Max. BIC 

mtDDM 1111.21 97.39 87785.52 907.64 1347.02 

mDDM 1143.37 99.50 90326.29 930.55 1391.60 

latDDM 1166.25 95.36 92133.80 951.86 1407.24 

stDDM  1644.45 115.59 129911.40 1381.28 2005.32 

sDDM 1245.58 88.38 98400.87 1081.39 1337.95 

 
Table S2. Association between health’s drift latency, response times, and healthy choices. Models 

3 and 4 use latency fit to one half of trials to predict healthy choice on the other half of trials. 

 
Model (1) Model (2) Model (3) Model (4) 

log(RT) β=0.62 
[0.49 0.76] 
p<0.001 

β= 0.38 
[0.23 0.52] 
p<0.001 

β= 0.39 
[0.24 0.54] 
p<0.001 

β=0.13 
[-0.11 0.36] 
p=0.29 

Reported Wanting  
(Healthy – Tasty Option) 

 β= 0.92 
[0.78 1.07] 
p<0.001 

β=0.92 
[0.78 1.06] 
p<0.001 

β=0.92 
[0.77 1.06] 
p<0.001 

Health Latency (t*H)   β= -0.006 
[-0.01 -0.002] 
p=0.006 

β=-0.03 
[-0.05 -0.013] 
p<0.001 

t*H X log(RT)    β=0.004 
[0.001 0.006] 
p=0.006 

Constant β=-5.99 
[-7.04 -4.95] 
p<0.001 

β= -3.39 
[-4.49 -2.30] 
p<0.001 

β=-2.98 
[-4.10 -1.85] 
p<0.001 

β=-1.01 
[-2.80 0.79] 
p=0.27 

R2 0.23 0.48 0.48 0.46 

R2
adj 0.23 0.48 0.48 0.46 

95% CI in brackets 
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Table S3. Coefficients of a regression predicting healthy choices by stDDM parameters.  
 

 stDDM 

Taste drift slope β=-7.28 

[-8.75 -5.80] 

p<0.001 

Health drift slope β=4.58 

[2.91 6.26] 

p<0.001 

Taste stopping time β=7x10-6 

[2x10-5 1x10-5] 

p=0.41 

Health stopping time β=3x10-5 

[1x10-5 4 x10-5] 

p<0.001 

Boundary width β=-0.05 

[-0.18 0.07] 

p=0.38 

Constant β=0.52 

[0.34 0.71] 

p<0.001 

R2 0.76 

R2
adj 0.75 

95% CI in brackets  
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