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Abstract: 

Predictive coding is a key mechanism to understand the computational processes underlying brain 

functioning: in a hierarchical network, higher layers predict the activity of lower layers, and the 

unexplained residuals (i.e. prediction errors) are sent through. Because of its iterative nature, we 

wondered whether predictive coding could be related to brain oscillatory dynamics. First, we show that 

a simple 2-layers predictive coding model of visual cortex, with physiological communication delays 

between layers, naturally gives rise to alpha-band rhythms, similar to experimental observations. Then, 

we demonstrate that a multi-layer version of the same model can explain the occurrence of oscillatory 

travelling waves across layers, both feedforward (during visual stimulation) and backward (during rest). 

Remarkably, the predictions of our model are matched by the analysis of two independent EEG datasets, 

in which we observed oscillatory travelling waves in both directions.  

Keywords: predictive coding, alpha rhythms, travelling waves, impulse-response function, neural delays, 

time constants  

Introduction 

Predictive coding is a popular computational paradigm to model sensory information processing in the 

brain, and it has been proposed to explain several cognitive and physiological observations (Rao and 

Ballard, 1999). Could it also explain the emergence of alpha-band oscillations and some of their 

distinguished features (e.g. travelling waves)? Alpha rhythms (8-12Hz) are the most predominant 

oscillations in the human brain, even though their functional role remains controversial. On the one 

hand alpha is generally stronger in the absence of visual inputs, or when visual inputs are actively 

ignored – hence a proposed inhibitory role for alpha rhythms (Bonnefond and Jensen, 2012; Jensen 

and Mazaheri, 2010; Kizuk and Mathewson, 2017; Klimesch et al., 1998; Sadaghiani and 

Kleinschmidt, 2016). On the other hand, alpha has been suggested to contribute to the temporal framing 

of sensory inputs (Valera et al., 1981; VanRullen, 2016), and it can sometimes be positively correlated 

with visual inputs. For example, a recent study reported strong and long-lasting (up to ~1 s) alpha-

band oscillations in the visual Impulse Response Function (IRF; Vanrullen and MacDonald, 2012). 

The IRF is computed by cross-correlating occipital EEG signals recorded from human subjects 

watching a dynamic sequence of random (white noise) luminance values with the corresponding 

stimulus sequence (fig.1A). It is, therefore, a direct reflection of visual sensory processing. The 

existence of significant input-output correlations at lags of nearly 1s is surprising, given the typical 

neural time constants (<50ms) and the short-lived nature of visual-evoked responses (<0.5s). 

Additionally, a recent study from our group (Lozano-Soldevilla and VanRullen, 2017) showed that 

alpha IRF oscillations propagate as a travelling wave across the cortex in an occipital-to-frontal 

direction (fig.2A,C). This finding is in line with other recent intracranial studies about alpha-frequency 

cortical travelling waves (Bahramisharif et al., 2013; Halgren et al., 2017; Muller et al., 2018; Zhang 

et al., 2018). Yet, the mechanisms underlying such oscillations remain debated. Could it be possible 

that a common computational principle, predictive coding, gives rise to alpha-band oscillations and 

their typical travelling wave dynamics?  

Here, we address this question in two steps. First, we demonstrate the presence of similar long-

lasting alpha-band oscillations in the IRF of a simple 2-layers model of visual cortex. Our model does 

not explicitly integrate or maintain information over extended periods, but merely tries to predict what 

comes next based on what was just there, i.e., predictive coding. The key insight is that typical neural 

communication delays between cortical areas can give rise to a reverberation of visual inputs at alpha 

frequency, as observed experimentally. Second, we expand our predictive coding model by increasing 
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the number of layers to explore the occurrence of alpha band travelling waves in a hierarchical 

network.  After having observed that this hierarchical model produces 1) feedforward (FW) travelling 

waves during sensory processing and 2) backward (BW) travelling waves in the absence of sensory 

input, we turned to experimental EEG data to verify these predictions. Remarkably, we found FW 

waves in human EEG when participants were attending to visual stimulation, and BW waves when 

participants' eyes remained closed, in agreement with our model’s predictions.  
 

 

 

Figure 1 – Alpha-band oscillations in human IRF and in a predictive coding model. A) Cross-correlating the white 

noise sequence of a stimulus with simultaneously recorded EEG produces an Impulse Response Function (IRF) which 

reverberates at 10Hz for several successive cycles (one representative subject shown here, electrode POz). B) A simple 

predictive coding model in which layer 2 makes predictions y(t) about the input received by layer 1, and the residual x(t) 

(prediction error) is used to update the next prediction. Residual and prediction signals are transmitted to the next or 

previous layer (respectively) with a communication delay T. Such a model, with physiologically plausible parameters, 

generates an oscillatory IRF at 10 Hz. C) The oscillatory IRF produced by the model, with communication delay T=12ms, 

and neural membrane time constant =17ms. D) Systematic exploration of these two parameters suggests that alpha 

reverberation is a robust phenomenon (red colors) within a biologically plausible range of values. 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/464933doi: bioRxiv preprint 

https://doi.org/10.1101/464933
http://creativecommons.org/licenses/by/4.0/


3 

 

 

Figure 2 – Alpha-band travelling waves in EEG Impulse Response Functions. A-B) IRF as travelling waves can be 

observed over the 7 midline electrodes of the 10-20 system (Oz to Fz; one representative subject). From the 2D-map 

obtained by stacking signals from the 7 electrodes, we compute a 2D-FFT and derive a log-ratio between spectral quadrants 

that quantifies the direction of the waves. Positive values are associated with feedforward waves (FW), and negative values 

with backward ones (BW). C) Backward (red) and feedforward (blue) values (max value in the corresponding quadrant of 

the 2D-FFT) computed over 20 subjects. Participants were watching a white noise luminance sequence (see fig. 1A). D) 

Log-ratios computed from the values in C. The Bayes Factor (BF) of a one sample t-test against zero confirms the presence 

of FW waves. 

Results 

2-layers model and alpha-band oscillations 

In an attempt to explore the emergence of alpha-band IRF oscillations during the visual processing of 

white-noise luminance sequences (Fig 1A), we initially implemented a simple 2-layers model. The 

model architecture was inspired by the classic predictive coding model of Rao and Ballard (1999), 

where each layer attempts to “explain away” (via inhibitory feedback) the activity pattern in the 

previous layer, which only communicates the “unpredicted” residual signals (via feedforward 

excitation). Since in our case the stimuli are strictly temporal luminance sequences, without any 

meaningful spatial arrangement (fig.1A), the original model could be simplified greatly by ignoring 

spatial selectivity and considering a single neuron (or a single population of neurons) in each of two 

connected layers (corresponding, e.g. to LGN and V1 of the primate brain). The resulting circuit is 

illustrated in figure 1B. The specificity of the present approach is to consider the effects of the 

communication delay ΔT between the two layers (assumed here to be symmetric, for simplicity). The 

population in layer 1 encodes the residual between the input sequence and the "prediction" received, 

with a delay ΔT, from layer 2. The instantaneous response y(t) of the population in layer 2 is governed 

by a differential equation (see Materials and Methods) composed of two terms: the first term 

determines the integration of inputs from layer 1, with a delay ΔT, and the second is a decay term 

ensuring that neurons eventually return to their resting state in the absence of inputs. The temporal 

dynamics of neuronal integration and decay are governed by two time constants, respectively τ and 

τdecay, the latter of which was fixed to τdecay=200ms. We computed the model’s IRF by cross-correlating 

each random input luminance sequence input(t) with the corresponding layer 2’s output y(t), and 

averaging the result over 200 trials. That is, we assumed here that layer 2’s activity is an approximation 
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of the EEG signal (however, similar results with only a phase difference were found using layer 1’s 

activity instead). With biologically plausible values for the τ and ΔT parameters (respectively 17ms 

and 12ms), the model’s IRF oscillated at a frequency within the alpha-range, thus qualitatively 

replicating the experimental observations (fig.1C).  
Sensitivity to parameters 

We investigated the dependence of IRF oscillations (and of their frequency) on the model’s two free 

parameters τ and ΔT. First, we employed numerical simulations, similar to the one described above 

(Fig 1C). A fast-Fourier transform (FFT) applied on the simulated IRF was used to measure the peak 

oscillatory amplitude and its corresponding frequency. These two measures are color-coded in Figure 

1D, displaying the results of a systematic exploration of parameter space. Several combinations of 

parameters gave rise to oscillatory IRFs (brighter colors); among these, IRF oscillations in the alpha 

(8-13Hz) frequency range were particularly frequent (red colors). In particular, alpha-band IRF 

oscillations systematically arose when τ and ΔT lay in their “biologically plausible” range of 

respectively 15-25ms (Koch et al., 1996; Miyoshi et al., 2010; Rose, 2005; Zaitsev et al., 2012) and 

10-15ms (Bair et al., 2002; Nowak et al., 1997; Shimegi et al., 2014).   

Second, we also derived an analytical solution to a simplified version of our differential equation 

system (see Material and Methods). The solution revealed that 1) IRF oscillations occur mainly when 

the parameter τ lies slightly above ΔT (the optimal oscillatory situation corresponding to 𝜏 ≈  1.27 ∆𝑇) 

and 2) when oscillations occur, the oscillation period equals 8 * ΔT. In other words, alpha-range 

oscillations (8-13Hz) correspond to ΔT values between 10 and 15ms, and τ values around 15-20ms. 

Therefore, both of these analytical conclusions directly confirm the results of the numerical 

simulations. 

Multi-layers model and travelling waves 

FW travelling waves during visual processing 

After having explored the emergence of alpha oscillations in a simple predictive coding model, we 

investigated whether our model could reproduce other features of alpha-band oscillations, such as their 

travelling wave dynamics. Consequently, we extended the model to a multi-layers version (fig.3A), in 

which τD (decay time constant) remained fixed at 200ms, and ΔT and τ were respectively 12ms and 

20ms in all simulations. We chose these values based on the results of the previous parameter space 

exploration, considering that these parameters are both biologically plausible, and produced IRF alpha 

oscillations in a 2-layers version of the predictive coding model. As previously, the prediction signals 

from each layer in our model were treated as the equivalent of EEG signals from distinct electrodes 

over the human brain, and we used 7 layers to facilitate comparison with experimental data (fig.2A). 

However, qualitatively similar results were obtained using lower or higher electrode numbers. We 

created 2D maps by stacking the EEG or IRF signals (x-axis) from the 7 layers (y-axis, see fig. 2B).To 

quantify the presence and direction of waves, we then extracted the maximum values in the upper and 

lower quadrants of the 2D-FFT of these maps, representing respectively the amount of feedforward 

(FW) and backward (BW) signal propagation across layers (fig. 2 A-B). Finally, the log-ratio of these 

two values quantified the overall direction of the waves: positive ratios indicate predominantly FW 

waves, whereas negative ratios reveal mostly BW waves.  

In a first simulation, comparable to the experimental setup described in Figure 1A, we presented the 

multi-layer model with white-noise inputs only. As shown in the left column of figure 3B, the model 

response to these inputs displayed feedforward alpha-band oscillatory travelling waves, proceeding 

from lower to higher layers; this oscillatory propagation was visible both when we applied our wave 

quantification method to IRF signals (after cross-correlation with the stimulus sequence), and to the 

raw EEG signals. Whereas on the one hand the presence of FW waves in the model’s IRF (figure 3B, 

top left panel) was the anticipated model outcome (see Lozano-Soldevilla and VanRullen, 2017 but 

also fig.2A), on the other hand the presence of travelling waves in the raw (simulated) EEG signal was 

not readily predictable. Nonetheless, we observed a clear FW propagation in the raw EEG signals of 

our model, as shown in the bottom-left panel of figure 3B, suggesting that oscillatory travelling waves 
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during sensory processing could be directly visible in EEG recordings (without stimulus cross-

correlation). This prediction will be verified in one of the following sections. 

 
BW waves in the absence of inputs 

Next, we further expanded the model functionality and introduced an endogenous signal at the last 

layer, namely the prior yN+1(t) (fig.3A – where N is the number of layers). This signal is functionally 

equivalent to the prediction yL(t) generated by the model at all previous layers 1 to N, but it is assumed 

here to arise from higher-level brain regions that are not part of the model, and thus to influence the 

activity of the last layer as a top-down prediction. In order to investigate the consequences of this new 

‘prior’ signal, we first set the model’s input to zero and the prior as a time-varying white-noise signal, 

allowing us to compute a prior-driven IRF at each level. Note that these design choices were only made 

to facilitate computations and comparison of input-driven and prior-driven IRFs, and do not reflect 

any assumption about the statistical structure of inputs or priors under natural conditions of stimulation 

(natural inputs are not random, and typically do not display a flat power spectrum; similarly, top-down 

brain signals are unlikely to have white-noise properties). Contrary to the waves’ direction in the 

previous simulation, the activity of the prior in the absence of inputs generated an oscillatory backward 

alpha-band travelling wave, which propagated from higher to lower electrodes (figure 3B, top right 

panel), As previously, we also investigated whether the raw simulated EEG signals would exhibit 

similar dynamics: as shown in the lower-right panel of figure 3B, we found that this was indeed the 

case, observing EEG travelling waves proceeding from higher to lower layers. All in all, these results 

indicate that –at least in the model- EEG recordings are sufficient to identify travelling waves 

propagating in both directions. 
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 Figure 3 – Alpha-band traveling waves in a hierarchical predictive coding model. A) Multi-layer version of the model: 

the same parameters ΔT=12ms and τ=20ms are used throughout. The model is fed either a time-varying input (left) or a 

time-varying prior signal (right), reflecting top-down expectations computed in other parts of the brain. B) 2D maps with 

only input (left column) or prior signals (right column): travelling waves are visible both in the IRF (computed by cross-

correlating prediction signals with input or prior signals, top row) and in the raw prediction signals (considered as a proxy 

for the EEG, lower row). All the values have been z-scored layer-wise for visualization purposes only. The numbers in 

white show the log-ratio for each simulation: positive or negative numbers reveal respectively FW or BW waves. 

 

In a final simulation, the model was fed with both the input and the prior, as two independent white-

noise signals. In this case, the dynamics induced by the inputs appeared to dominate, which was 

mathematically expected given τD >> τ. Consequently, the model revealed predominantly FW waves 

in this simulation (see fig.S1 for an overview of all possible scenarios).  

All in all, the chief conclusion of these simulations is that hierarchical predictive coding gives rise to 

oscillatory travelling waves that can be seen in both the EEG and IRF signals. Sensory inputs generate 

FW waves, whereas top-down priors induce BW waves. Although the presence of alpha-frequency 

FW waves in the IRF during visual processing had been previously demonstrated (Lozano-Soldevilla 

and VanRullen, 2017;  see also fig.2A,C), our model makes further predictions that have not been 

experimentally validated yet. In the following section, we tested whether these new predictions are 

matched by experimental EEG data. 
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Travelling waves in human EEG data 

Our simulations show that hierarchical predictive coding can produce oscillatory travelling waves 

propagating both feedforward and backward. The model predicts that input processing produces 

mostly feedforward waves, whereas backward waves are generated by higher-level endogenous 

signals, and most visible in the absence of visual inputs. Finally, the model suggests that even though 

cross-correlation and IRFs may be helpful to reveal the travelling waves, their dynamics could also be 

directly visible in the raw EEG signals. To test these predictions, we turned to real human EEG data 

to investigate 1) whether we could observe travelling waves in both IRF and EEG signals, as predicted 

by our model, and 2) whether their direction is task-dependent (e.g. visual processing vs. rest).  
FW travelling waves during visual processing 

Our group recently showed that alpha-band IRFs can be interpreted as FW travelling waves during 

visual perception (Lozano-Soldevilla and VanRullen, 2017). We first confirmed this result by applying 

our wave quantification method to a previously collected (Brüers and VanRullen, 2017) EEG dataset 

(INPUT) composed of 20 participants, who fixated a 6.25 second long white noise sequence of random 

luminance values for ~360 trials (fig.1A).  For each electrode we considered the cross-correlation 

averaged over all trials. We obtained the 2D map and computed the log-ratio, as for the model, over 

seven midline electrodes (Oz to Fz – see fig.2A). Then, in order to estimate the proportion of reliable 

travelling waves, we computed the null distribution by shuffling the electrodes’ order 1000 times for 

each subject before re-computing the log-ratios. The difference between the real and the null 

distributions provides a statistical estimation of the proportion of reliable FW and BW wave events 

over and beyond what might be expected by chance, as captured by our surrogate distribution. In the 

INPUT dataset’s IRF, the comparison between the real and null distributions confirmed the presence 

of travelling waves (INPUT: Kolmogorov-Smirnov test, D=0.600, p<0.0008, fig.4B). Specifically, 

48.6% of IRF data epochs showed evidence for FW waves over and beyond what could be expected 

by chance, and only 1.3% suggested BW waves. In addition, the predominance of FW waves was 

further confirmed by testing the distribution of mean log-ratios across participants against zero 

(BF=32.4, error=1.392e-4% - fig.2D).  

Once we confirmed the presence of FW travelling waves in the IRF measurements, we explored in the 

same dataset whether we could also demonstrate travelling waves in the raw EEG signals, as suggested 

by our model. Although several studies have reported travelling waves using intra-cortical recordings 

(Muller et al., 2018), there is so far little evidence from EEG studies (Alexander et al., 2013; Patten et 

al., 2012). Here, we applied a sliding window of 1 second (500ms overlap) to the continuous EEG 

data, and obtained approximately 4000 epochs per subject. For each epoch, we computed the log-ratio 

as for the IRF data, and again compared the real and null distributions. Remarkably, the Kolmogorov-

Smirnov test used to assess a difference between the two distributions revealed the presence of 

travelling waves in the EEG data (INPUT: D=0.1584, p<0.0001; fig.4D). Particularly, 16.4% of the 

tested 1s EEG epochs showed reliable evidence in favor of FW waves, against only 5.3% of BW 

waves. The bias in favor of the FW propagation was confirmed by a Bayesian t-test between FW and 

BW waves (BF=134.3, error=1.055e-6%; see also fig.S2A). This result proves that direct EEG 

recordings can also reveal the presence of travelling waves, as suggested by the model’s simulations. 

Moreover, in line with the results using IRFs, the EEG data confirm that the bottom-up dynamics of 

perceptual processing are more strongly associated with FW than BW travelling waves.  
 

BW travelling waves in resting-state EEG data 

Our model simulations revealed that predominantly FW waves during stimulus processing are replaced 

by BW waves in the absence of stimulus. With the purpose of assessing the presence of BW waves in 

human EEG signals, we thus turned to a second dataset (CLOSED EYES) composed of 48 participants, 

who underwent a 1-minute recording with closed eyes. As for the previous dataset, we estimated the 

real and null log-ratios distributions after having computed the 2D maps for every 1 second time-

window (500 ms overlap), over the same line of 7 central electrodes (Oz to Fz). Eventually we counted 

~130 log-ratio values per subject. Notably, also in this dataset the comparison between the two 
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distributions unveiled the presence of travelling waves (CLOSED-EYES:  D=0.2149, p<0.0001; fig.4D) 

revealing, as predicted by our simulations, a preponderance of BW over FW waves (respectively 

21.5% and 7.5% of the tested 1s EEG epochs), as confirmed by a Bayesian t-test between FW and BW 

waves (BF=74.2, error=2.632e-8%; see also fig.S2A). All in all, this result corroborates the predictions 

of our model regarding 1) the possibility to reveal travelling waves from raw EEG signals and 2) the 

presence of BW waves in the absence of sensory stimulation.    

 
Human/Model comparisons 

For the sake of comparison, we applied the same quantitative analyses to the modelling data as to the 

human EEG/IRF, obtaining qualitatively similar results. Notably, in the simulations we were able to 

compute an IRF both with the input and with the top-down prior signals (for human experiments, we 

only have direct access to the visual input signals, but the internal priors, if any, remain unknown). In 

all simulations, significant travelling waves were observed both in IRF data (D=0.9800, p<0.0001; 

fig.4A) as well as in EEG data (D=0.7982, p<0.0001; fig.4C). Similar to the CLOSED-EYES condition 

of the human EEG dataset, when only the top-down prior signal was present in the model, we observed 

exclusively BW waves: 79.3% of the tested 1s EEG epochs showed evidence for BW waves, and 100% 

of the IRF measurements (0% of EEG epochs or IRF measurements suggested FW waves). 

Conversely, when only the input was provided to the model, only FW waves were observed, in line 

with the results of the INPUT human EEG dataset: 76.8% of EEG epochs and 100% of IRF 

measurements revealed FW waves (with 0% of EEG epochs or IRF measurements supporting BW 

waves).  

 

 
Figure 4 – Quantification of traveling waves in human EEG data and in model simulations. A) The first row shows 

the real (solid line) and shuffled (dashed line) distributions of log-ratios computed over the IRF obtained during 2 sets of 
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simulations, cross-correlating prediction signals (a proxy for the EEG in our model) either with the sensory inputs (first 

column), or with the top-down prior signals (second column). The second row shows the difference between the two, 

focusing on positive values, i.e. the travelling wave events in the data that occur more often than predicted by the null 

distribution. The proportion of significant backward and forward waves are shown in red and blue, respectively. B) Same 

as A, but for the IRF computed in the INPUT human-EEG dataset (during human EEG experiments, we only have direct 

access to the visual input signals but the top-down priors, if any, remain unknown and cannot be used for cross-correlation). 

C,D) Same as A,B), but based on log-ratio values computed directly in 1s EEG epochs, rather than in the IRF (for the 

model, we use the prediction signals yi as a proxy for the EEG signals). Experimental human EEG results (B,D) follow the 

same qualitative pattern as the simulations (A,C).     

 

 

Discussion 

We presented a novel hypothesis suggesting that the ubiquitous alpha rhythm could reflect, in part, the 

computations involved in predictive coding. Long-lasting (~1s) alpha-band oscillatory reverberation 

of visual inputs, compatible with experimental observations (VanRullen and Macdonald, 2012), could 

be reproduced in a simple model with only short-term dynamics—each neuron only integrates 

information over ~20ms (neural time constant τ), and the delays for information transmission (ΔT) are 

also restricted to <20ms. A systematic exploration of parameter space revealed that IRF oscillations in 

the alpha (8-12Hz) frequency range systematically arise when τ and ΔT lie in their “biologically 

plausible” range. Therefore, we conjecture that it may simply not be possible for a biological brain, in 

which communication delays are non-negligible, to implement predictive coding, without also 

producing alpha-band reverberations. Moreover, a major characteristic of alpha-band oscillations, i.e. 

their propagation through cortex as a travelling wave, could also be explained by a hierarchical multi-

layer version of our predictive coding model. The waves predominantly travelled forward during 

stimulus processing, and backward in the absence of inputs. These simulation results were remarkably 

matched by our human EEG data analyses (fig.5 provides a summary of the results), and are compatible 

with observations from other recent experimental studies (Halgren et al., 2017; Zhang et al., 2018).  

 

 
Figure 5 – Summary of the results. The tables summarize the results of the data (left) and simulation (right) for each 

dataset/condition. In each situation, the average log-ratio is presented numerically as well as color-coded. Red and blue 

squares indicate respectively a higher incidence of BW and FW waves. (As explained previously, it is not possible to 

compute an IRF in the CLOSED EYES condition). 

 

Generation of alpha (bidirectional interaction) 
One of our simulations’ result refers to the generation of oscillations within a predictive coding 

framework enforced with temporal delays (Chalk et al., 2016). Specifically, our model posits that the 

bi-directional interaction between layers, influenced by communication delays, produces alpha-band 

rhythms. Electrophysiological studies have pointed at the origin of the alpha rhythms in the thalamic-

cortical networks (Bollimunta et al., 2011; Steriade, 1997; Suffczynski et al., 2001), particularly 

involving the activity of the thalamic reticular nucleus (Lopes da Silva et al., 1980). The results of our 

2-layers model (and the systematic exploration of its two free parameters τ and ΔT) may comply with 
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this hypothesis, by considering respectively the lower and higher layer of the model as the thalamus 

and the primary visual cortex. However, other experimental evidence suggests that part of the alpha 

spectral power originates exclusively from cortical dynamics (Halgren et al., 2017; Lopes da Silva et 

al., 1980): in particular, pyramidal neurons in infra-granular and supra-granular layers of V2 and V4 

have been implicated as alpha pacemakers (Bollimunta et al., 2011). Similarly, other cortical regions 

(such as V1 or S1) revealed the presence of alpha current generators, involved in both feedforward and 

feedback processes (Haegens et al., 2015, 2011; van Kerkoerle et al., 2014). The notion that alpha 

rhythms arise from the interaction of cortical layers is also in line with the results of our model, 

considering each of its layers as a different cortical region. Altogether, our model suggests predictive 

coding as a common computational framework involved in the generation of alpha oscillations, thus 

reconciling several apparently conflicting experimental findings on the origin of alpha.    

Types of travelling waves 
Much work has been carried out regarding travelling waves, both in humans (mostly but not 

exclusively intra-cortical recordings – Muller et al., 2018) and in animals (e.g. turtles: Nenadic et al., 

2003; Prechtl et al., 2000; cats: Roelfsema et al., 1997). Specifically, three different types of dynamic 

spatial propagation of brain signals have been characterized in the literature, and indiscriminately 

referred to as “travelling waves”. First, scalp ERPs propagating from posterior to anterior regions in 

response to stimulus onset have been interpreted as non-periodic travelling waves (Klimesch et al., 

2007). Second, periodic sensory stimulations can produce oscillatory travelling waves that are 

confined to the same frequency as the entraining stimulus (Sato et al., 2012): even though they behave 

rhythmically, these waves are similar in principle to the first type above, as their oscillatory nature is 

not necessarily intrinsic, but directly related to the frequency characteristics of the generating stimulus. 

Lastly, truly periodic travelling waves have their own intrinsic frequency (e.g. within the alpha-band 

range, Lozano-Soldevilla and VanRullen, 2017), unrelated to the frequency content of the stimulus (if 

any). In this study, we investigated this last type of travelling waves, to understand the functional 

properties of intrinsically generated alpha-band oscillations. 

 

Generation of travelling waves 

Ermentrout and Kleinfeld identified 3 different types of computational mechanisms that could lead to 

the generation of electrical travelling waves (Ermentrout and Kleinfeld, 2001). The first mechanism 

produces waves by virtue of a single neuronal oscillator, which spreads its rhythmic activity to 

neighboring and more distal regions with increasing time delays. In the brain, a potential candidate for 

such a role of pacemaker could be the above-mentioned cortical-thalamic circuit (Bollimunta et al., 

2011; Destexhe et al., 1997; Jones, 2001; Muller and Destexhe, 2012). The second mechanism also 

suggests that the oscillatory wave originates as a result of a single oscillator, serially linked to other 

groups of neurons; however, whereas in the first model the wave’s motion was entirely due to varying 

communication delays from one oscillating region to all the others, in the second one the waves 

actually need to run through each region serially, with an increasing phase delay determined by the 

transmission delay between neighboring regions. Lastly, in the third mechanism each region is 

modeled as an independent oscillator with its own frequency and phase. In agreement with the 

Kuramoto model (Kuramoto, 1984), in this scenario the wave propagation follows the phase shifts 

between each region, which in turn depends on their relative frequencies, travelling from higher to 

lower frequencies. Remarkably, despite its numerous assumptions (i.e. weak coupling between 

regions, nearly identical oscillatory properties across regions), this last model (Kuramoto, 1984) has 

been successfully applied in several computational brain studies (Breakspear et al., 2010; Cumin and 

Unsworth, 2007). Although our model does not exactly fit within any of these three categories, it does 

share some similarities with the last two. On the one hand, the local interactions between neighboring 

regions with a constant communication delay relates to the second approach; on the other hand, the 

movement of the travelling wave arises naturally as in the last model from the communication between 
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separately oscillating layers. Importantly though, in our model none of the units is an oscillator or 

pacemaker per se; oscillations arise from bidirectional communication with temporal delays. This 

property marks a decisive difference with all three previous models. Lastly, in our implementation the 

wave’s direction does not depend on a gradient of time delays or a gradient of frequencies; instead, the 

same model can produce both FW or BW waves depending on the signals provided: FW waves 

originate from perceptual inputs, BW waves from top-down activity.      

Functional role of travelling waves 

The travelling direction of the waves appears important in determining their functional role. In a recent 

study (Halgren et al., 2017), intra-cortical recordings from epilepsy patients during quiet wakefulness 

revealed alpha-band travelling waves propagating “backward” from higher-order antero-superior 

cortex to lower-order occipital poles. Analyzing recordings simultaneously from cortex and the 

pulvinar, Halgren and colleagues concluded that alpha-band travelling waves 1) originate in the cortex, 

and 2) reflect feedback processing between cortical regions. However, another recent human 

intracranial study from Zhang and colleagues (Zhang et al., 2018) reported theta-alpha travelling waves 

(2 to 15 Hz) that could propagate “forward”, from posterior to anterior brain regions during the cue 

period of a visual memory task. Although these two studies appear contradictory in terms of the 

propagation direction, our model can easily reconcile these findings, by positing that alpha-band 

travelling waves emerge as a result of layer-by-layer interactions in a hierarchical system, and their 

direction is related to their functional role: forward to convey input signals (and the prediction 

residuals) during sensory processing and task engagement; backward to convey top-down priors and 

expectation signals, most visible during rest and in the absence of inputs. 

Speed of travelling waves 

The speed of cortical travelling waves appears to depend on several factors, as reflected by the large 

range of values reported in the literature (from 0.1 to 10m/s). One important distinction regards 

whether the travelling waves are recorded at a macroscopic (i.e. whole-brain) or mesoscopic level (i.e. 

within single regions in the cortex) (Muller et al., 2018). In the first case, M-EEG or ECoG recordings 

allow to determine their propagation, which supposedly occurs through myelinated axons of white 

matter fibers: consequently, their speed spans between 1 to 10 m/s (Muller et al., 2018; Patten et al., 

2012). Conversely, techniques with higher spatial resolution, such as voltage sensitive dye imaging 

(Shoham et al., 1999) or multi-electrode arrays (Borroni et al., 1991), grant access to local, slower 

travelling waves, whose speed ranges from 0.1 to 0.8 m/s (Muller and Destexhe, 2012; Zhang et al., 

2018), in agreement with the axonal conduction speed of unmyelinated long-range and horizontal 

fibers within the cortex (Girard et al., 2001). In addition, another important factor potentially affecting 

the measured travelling waves speed is cortical source mixing, which is especially pronounced when 

recording from the scalp (i.e. M-EEG): as every recording channel picks up not only local but also 

more distal cortical signals, we should expect an apparently faster speed at the scalp level than the true 

underlying speed of the travelling wave over the cortex. This could explain why the waves seem to 

traverse the 7 layers of our model much more slowly than they go through our 7 scalp-level electrodes 

in the human EEG recordings (compare Figure 2A to Figure 3B). In support of this view, we simulated 

EEG source mixing in our model to assess the corresponding changes in wave speed, and then 

compared the results with real EEG data (see Supplemental Figure S3). By assuming a layer-to-layer 

distance of 2cm, roughly equivalent to the distance between neighboring cortical regions, our model 

produces travelling waves whose speed falls in the mesoscopic range (~0.6 m/s, see fig.S3), 

comparable with experimental cortical recordings (Muller and Destexhe, 2012; Zhang et al., 2018). 

However, after remapping the model deep layers to superficial electrodes by means of a weighted 

average (thus simulating cortical source mixing, fig.S3, panel B), the speed of the traveling waves 

increased, now falling within the range of macroscopic waves (~2.2 m/s). Importantly, this linear 

averaging, despite increasing the apparent speed, did not significantly affect the waves’ direction or 
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their log-ratios. Furthermore, the speed of the scalp-level travelling waves as simulated by our model 

was now comparable with the one observed in our experimental human EEG dataset (~2.2 m/s, see 

fig.S3, panel D).    

Relation to other predictive coding models 

Due to its streamlined architecture, our predictive coding model produces a single oscillation whose 

frequency depends on the chosen parameters: typically in the alpha band for biologically plausible 

values (Figure 1D). The same alpha oscillation thus carries top-down predictions down the hierarchy, 

and bottom-up prediction residuals up the hierarchy, resulting in two alpha travelling waves moving 

in opposite directions. As explained above, this is compatible with recent experimental reports of both 

feedforward and backward alpha travelling waves in human intracranial studies (Halgren et al., 2017; 

Zhang et al., 2018). However, there is also a growing number of studies reporting that faster gamma 

oscillations (~30-80Hz) are specifically involved in feed-forward signal transmission, while alpha- and 

beta-band (13-30Hz) rhythms convey top-down information ( Bastos et al., 2012; Buffalo et al., 2011; 

Michalareas et al., 2016; van Kerkoerle et al., 2014). These dynamics have been appropriately captured 

by a more detailed predictive coding model, the “canonical cortical microcircuit” model ( Bastos et 

al., 2012; Friston, 2005), which includes different types of excitatory and inhibitory neurons, as well 

as detailed laminar circuitry in each brain region. An important next step would thus be to explore the 

existence, frequency and direction of travelling waves in a hierarchical version of the canonical 

microcircuit model. One can speculate that such a model could account for both the bi-directional 

nature of alpha travelling waves across the hierarchy (as observed in our model and in the above-cited 

human intracranial studies), and for the prevalence of gamma-band signals in the feed-forward 

communication between sending and receiving layers of two consecutive brain regions (as measured 

e.g. using Granger causality; Bastos et al., 2012; Michalareas et al., 2016). Finally, future versions of 

our model could also expand the number of simulated neurons in each layer, together with a retinotopic 

organization and spatially selective receptive fields (as in Rao and Ballard, 1999), in order to process 

spatially as well as temporally structured inputs. This should provide a more complete understanding 

of predictive coding and oscillatory travelling waves in relation to essential visual functions such as 

object recognition or categorization. 

 

 

Materials and methods  

Model and simulations 

Predictive coding (Rao and Ballard, 1999) postulates a hierarchical architecture in which higher layers 

predict the activity of lower layers, and the residuals (i.e the difference between the prediction and the 

actual activity) are carried over to update the next prediction. In our model, illustrated in fig 1B and 

3A, the residual is defined as: 

 

 xL(t) = yL-1 (t) - yL (t-ΔT) (1) 

 

where L indexes the layers, and ΔT represents the temporal communication delay between them. For 

simplicity, the delay is assumed here to be symmetric in both forward and backward directions, but it 

can easily be shown that the oscillatory behavior chiefly depends on the sum of forward and backward 

delays (e.g. comparable oscillatory dynamics would be found for symmetric delays with ΔT=12ms, or 

for asymmetric delays with ΔTforward=16ms and ΔTbackward=8ms). For the consistency of notations, we 

pose yL-1(t) = INPUT(t) when L=1. The prediction yL, as shown in equation 2, is updated based on the 

bottom-up residual xL (with a delay ΔT), and on the difference between its prediction and the prediction 

from the next higher layer, which can be considered as a top-down prior: 
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 dy𝐿

dt
  = 

1

τ
 . xL (t-ΔT)  +  

1

τ𝐷
 . (yL+1(t-ΔT)-yL(t)) (2) 

 

At the last layer, the prior yL+1 can serve to represent a generative endogenous process, arising from 

higher-level brain regions that are not part of the model; in our simulations, this top-level prior could 

be imposed as a time-varying signal or set to 0 (see fig. 3A). In order to facilitate measurements of 

cross-correlations (IRF) with this prior, and comparison with the stimulus-induced IRF, when different 

than 0 we set the time-varying top-level prior to a white-noise signal with statistics similar to (but 

independent from) those of the input signals.  

Besides ΔT, two other parameters play a crucial role in the model: τ and τD which describe the temporal 

dynamics (time constants) of neuronal integration and decay, weighting respectively the residual 

computed from the lower-layer, and the prediction from the higher layer. Note that when the prior yL+1 

is set to 0, the second term in Equation (2) acts as a decay term, which would ensure that the prediction 

yL(t) returns to zero in the absence of inputs. For this reason, and to take into account the fact that 

higher-level brain signals typically vary slower than low-level input signals (Gauthier et al., 2012; 

Kiebel et al., 2008; McKeeff et al., 2007; Murray et al., 2014), we set the time constant τD to a fixed 

value of 200ms. In all simulations, equations (1) and (2) were solved numerically with a 1ms time step.  

The results of the parameter search in the 2-layers model (fig.1D) were obtained presenting, 

for each pair of τ and ΔT, 200 different white noise luminance sequences of 3s. The model’s IRF was 

computed by cross-correlating each luminance sequence with layer 2’s output y(t), and averaging the 

results over the 200 trials. Regarding the results of the multilayer model (fig.4 A,C), we investigated 

2 possible scenarios, in which either an input or a prior signal was presented to the model for 6s on 

each of 200 simulated trials. Consequently, we computed the IRF by cross-correlating each layer’s 

output yL(t) with one of the two signals. We then defined 2D-maps (fig.2A-B) stacking up the temporal 

signals from all 7 model layers. We thus obtained two 2D-maps, one for each scenario, i.e. IRF with 

input or IRF with prior. Moreover, we computed 2 additional 2D-maps considering the raw (simulated) 

EEG signals (no cross-correlation) in place of the IRF, separately for each scenario (in this case, the 

temporal signals were obtained with a 1s sliding window with 500ms overlap, yielding 11 distinct 

analysis windows for each trial). For each of these maps we then computed a log-ratio that quantifies 

the presence and the direction of the waves (see below). Log-ratio distributions were obtained pooling 

together the results over the 200 simulated trials. We followed the same procedure for the null 

distribution, obtained by randomly shuffling the order of the layers before computing the log-ratios.        
 

Analytical solution of the (simplified) model 

An analytical solution for our system of delayed differential equations (1) and (2) exists (Kaplan 

and Yorke, 1974) for a 2-layer model under two simplifying assumptions: 1) we neglect the second 

term of equation (2), given that τD >> τ; 2) the integral over time of the input signal amounts to 0 (e.g. 

white noise centered on 0). This leads to the following equation, obtained by merging the simplified 

equations (1) and (2): 

 

 𝑑𝑦

𝑑𝑡
= − 

1

𝜏
  𝑦(𝑡 − 2ΔT) 

(3) 

If we consider as a general solution the exponential function in (4a), we can compute each side 

(respectively 4b and 4c) of the equation in (3) as:  

 

 𝑦(𝑡) = 𝑒𝛼 𝑡 (4a) 

 𝑑𝑦

𝑑𝑡
= 𝛼𝑒𝛼 𝑡  

(4b) 

  

(4c) 
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𝑦(𝑡 − 2Δ) = 𝑒𝛼 𝑡𝑒− 2𝛼ΔT 

 

By replacing (4b) and (4c) in (3), we obtain equation (5a), simplified in (5b): 

 

 𝛼𝑒𝛼 𝑡 =  − 
1

𝜏
𝑒𝛼 𝑡𝑒− 𝛼 2ΔT 

−𝛼𝜏 =  𝑒− 𝛼 2ΔT 

(5a)  

 

(5b) 

A “pure” oscillatory solution would correspond to a situation where α is an imaginary complex 

number, that is, α = 0 + iω (where ω is the oscillatory frequency). Given (5b), this leads to: 

 

 −𝑖 𝜔 𝜏 = 𝑒− 𝑖 𝜔 2ΔT (6)  

Eventually, applying Euler’s formula, we derive two equations by separately considering the real (7a) 

and the imaginary (8a) parts. Since the real part is equal to 0, we obtain  

   

 cos(2ωΔT) = 0 

2ωΔT =  
π

2
+ k𝜋 for k ∊ ℤ 

ω =
2 π

8 ∆T
+

 4 k π

8 ∆T
 for k ∊ ℤ 

(7a) 

 

(7b) 

 

(7c) 

whose first oscillatory solution (with lowest frequency) is: 

 

 𝜔 =
2 π

8 ∆T
 (7d)  

In plain English: if the model solution is oscillatory, it will most likely oscillate with a period around 

8ΔT. 

 

Regarding the imaginary part, we can write:  

 𝜔𝜏 = sin(2𝜔ΔT) (8a) 

which, given Equation (7a), must equal 1 or -1. As both ω and τ are positive, we conclude that: 

 𝜔 =
1

𝜏
 

 

(8b) 

 

Combining (7d) with (8b) provides equations (9a-b) 

 

 𝜏 =
8 ∆𝑇

2 𝜋
 

𝜏 ≈  1.2732 ∆𝑇 

(9a) 

 

(9b) 

In conclusion, oscillatory solutions exist in a region of parameter space (ΔT, τ) slightly above the 

diagonal (τ=ΔT). The period of the oscillation is 8ΔT, which will lie in the alpha-band (8-13Hz) 

whenever ΔT is between 10 and 15ms. In that case, Equation (9b) suggests that τ should be around 13-

20ms. Therefore, the equations theoretically confirm the results of the numerical parameter search (fig. 

1D), defining the region of parameter space where solutions oscillate in the alpha band.     
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Experimental datasets  

Participants 

The INPUT dataset was composed of EEG recordings from 20 volunteers (aged 23–39 years old with 

a mean age of 28, 10 women, 5 left handed), the CLOSED-EYES dataset from 48 volunteers (aged 20–

43 years old with a mean age of 27.8, 25 women, 7 left handed). All subjects reported normal or 

corrected to normal vision and no history of epileptic seizures or photosensitivity. All participants gave 

written informed consent before starting the experiment, in accordance with the Declaration of 

Helsinki. This study was carried out in accordance with the guidelines for research at the “Centre de 

Recherche Cerveau et Cognition” and the protocol was approved by the committee “Comité de 

protection des Personnes Sud Méditerranée 1” (ethics approval number N° 2016-A01937-44). 

Stimuli and protocols 

Results from the INPUT dataset have been published elsewhere (Brüers and VanRullen, 2018, 2017), 

whereas the second, CLOSED-EYES dataset presents a mixture of published and unpublished data. 

Regarding the INPUT dataset, the experiment was composed of two sessions of 8 experimental blocks 

of 48 trials each, having a total duration of about 1 hour. Participants viewed 6.25 second long random 

(white-noise) luminance sequences presented on a cathode ray monitor, positioned ~57 cm from the 

subject, with a refresh rate of 160 Hz and a resolution of 640 × 480 pixels. Each sequence had a flat 

power spectrum up to 80 Hz and was designed using MATLAB custom scripts and displayed using 

the Psychophysics Toolbox (Brainard, 1997). The stimuli were presented on a black background in a 

peripheral disk with a diameter of 7°, whose center was at 7° of eccentricity above the fixation 

point. Concerning the CLOSED-EYES dataset, participants were asked to close their eyes for 1 minute 

while recording their spontaneous brain activity (this is done routinely in our lab to measure each 

participant’s individual alpha frequency). After the recording ended, participants performed other tasks 

unreported in this manuscript.  

EEG recording and Pre-processing 

In both datasets, brain activity was recorded using a 64 channels active BioSemi electro-

encephalography (EEG) system (1,024 Hz digitizing rate, 3 additional ocular electrodes). The 

following pre-processing steps were applied to all subjects of the INPUT dataset using the EEGlab 

toolbox (Delorme and Makeig, 2004) in Matlab. Once the noisy channels had been rejected and 

interpolated (when necessary), the data was offline down-sampled to 160 Hz to match the presentation 

rate of luminance stimuli and thus facilitate the cross-correlation of the two signals. A notch filter 

[47Hz - 53Hz] was then applied to remove power line artifacts. We applied an average-referencing 

and removed slow drifts by applying a high-pass filter (>1 Hz). In the first dataset (i.e. INPUT), data 

epochs were created around each white-noise sequence (from −0.25 to 6.5 s) and the baseline activity 

was subtracted (i.e., mean activity from −0.25 s to 0 before trial onset). Finally, the data was screened 

manually for eye movements, blinks and muscular artifacts and whole epochs were rejected as needed: 

on average 20/384 trials were rejected per subject. For the second dataset (CLOSED-EYES), 

preprocessing was limited to noisy channels rejection, and a similar filtering process as in the previous 

dataset: after a notch filter [47Hz - 53Hz] was applied, a high-pass filter (>1Hz) removed slow drifts.  

 

Log-ratio 

We computed log-ratios of each 2D map (fig.2A-B) in order to assess and quantify the presence of 

travelling waves in both EEG signals and simulations. In order to create 2D maps of the human EEG 

data we considered either the raw EEG signals from 7 midline electrodes (posterior to frontal: Oz, 

POz, Pz, CPz, Cz, FCz, Fz), or their cross-correlation with the input sequence (i.e. IRFs). Regarding 

the simulations, we utilized either the prediction signals from each layer of the model or their cross-

correlation (IRF) with either the input or the prior signals. Each 2D map for the raw EEG (or its model 

equivalent) was computed with a sliding window of 1 second and an overlap of 500ms (x-axis). 2D 

maps for IRFs were obtained directly by stacking the 7 IRF time courses (from 7 EEG electrodes or 

from 7 model layers), as the support window of the IRF was only 1-s long. The maximum value of the 
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upper-left quadrant of the 2D-FFT was extracted to represent the amount of feedforward (FW) signal 

propagation across layers/electrodes, whereas the maximum value of the lower-left quadrant revealed 

the amount of backward (BW) waves. Finally, we computed the log-ratios by dividing the FW 

maximum value by the BW maximum value, and taking the log of the result: positive and negative 

ratios revealed respectively FW and BW waves. 
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Supplementary figures  

 
Figure S1 – Overview of 2D maps from all the simulations and experimental data. A) The picture reports all the 

possible simulation scenarios. The left column shows the 2D maps of the IRF, whereas the right one the 2D maps of the 

EEG (i.e. the prediction signals from each model layer). Each row shows the results of a different simulation, with either 

the input signal (first row), the top-down prior signal (last row), or both together (middle panels; although there is only one 

EEG signal in this situation, it can be cross-correlated with either the input or the prior signals, hence the two panels in the 

left column). B) The first row shows IRF (left) and EEG (right) 2D maps from one representative participant in the INPUT 

dataset. The second row shows another representative participant in the CLOSED-EYES dataset; only the EEG map is 

displayed, since we do not have access to either external input signals or internal top-down priors to cross-correlate with 

the EEG and derive an IRF. 
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Figure S2 – Direction of traveling waves in human EEG data. The first 2 panels show the proportion of backward (BW, 

in red) and forward (FW, in blue) travelling waves respectively in the INPUT and CLOSED-EYES dataset for each 

participant, as computed in figure 4D. Each value represents the percentage of waves that occur above chance level, when 

compared to the null distribution (see figure 4 and Material and Methods for details). In the INPUT dataset most participants 

have a larger number of FW waves than BW, whereas the CLOSED-EYES dataset reveals an opposite trend. The mean 

+/- SE log-ratios of both datasets result corroborated this result, as shown in the right panel. 

 

 

Figure S3 – Speed of travelling waves. A) Instead of assuming that distinct model layers correspond to distinct scalp-

level electrodes, each layer of the model can be interpreted as a cortical brain region, and consequently each prediction 

sequence as a cortical recording. Under these assumptions, the speed of the travelling wave, computed assuming a distance 

of ~2cm between neighboring cortical regions, is ~0.6m/s (model EEG in the picture, but similar results are obtained with 

IRF data).  B) Applying a moving linear weighted average for every layer at each time point (the red box highlights an 

example) determines a transformation in which each new layer (i.e. electrode) is influenced by neighboring layers, in the 

same way as superficial EEG electrodes are presumably affected by multiple deep cortical sources. In this transformation, 
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the contribution of each layer is weighted based on its distance to the electrode. The contribution of the kth layer for the kth 

electrode is equal to 1, and it decreases progressively with distance to 0.8, 0.6 and 0.4 (respectively for layers k±1, k±2 and 

k±3). The contribution of layers further away was set to 0. C) The transformed map reveals a travelling wave whose speed 

is faster, and more compatible with EEG recordings. Importantly, the wave direction and the log ratios are not significantly 

influenced by such transformation. D) The travelling wave speed of the model before (blue and violet) and after (green and 

cyan) the transformation, compared to the speed of all the significant waves in our experimental datasets (i.e. epochs whose 

log-ratio was above chance level, as estimated by the surrogate distributions). We estimated an average electrode-to-

electrode distance of ~4cm for the real data and the superficial model simulations, and a layer-to-layer distance of ~2cm 

for the deep model.     
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