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Abstract 

Competition for resources is a fundamental characteristic of evolution. Auctions have been widely 

used to model competition of individuals for resources, and bidding behavior plays a major role in 

social competition. Yet how humans learn to bid efficiently remains an open question. We used model-

based neuroimaging to investigate the neural mechanisms of bidding behavior under different types of 

competition. Twenty-seven subjects (nine male) played a prototypical bidding game: a double action, 

with three “market” types, which differed in the number of competitors. We compared different 

computational learning models of bidding: directional learning models (DL), where the model bid is 

“nudged” depending on whether it was accepted or rejected, along with standard reinforcement 

learning models (RL). We found that DL fit the behavior best and resulted in higher payoffs. We found 

the binary learning signal associated with DL to be represented by neural activity in the striatum 

distinctly posterior to a weaker reward prediction error signal. We posited that DL is an efficient 

heuristic for valuation when the action (bid) space is continuous. Indeed, we found that the posterior 

parietal cortex represents the continuous action-space of the task, and the frontopolar prefrontal cortex 

distinguishes among conditions of social competition. Based on our findings we proposed a conceptual 

model that accounts for a sequence of processes that are required to perform successful and flexible 

bidding under different types of competition.   
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Introduction 

We often deal with situations where buyers and sellers meet to exchange goods at prices determined 

by fluctuations in supply and demand. Perceived market competition influences human bidding 

(Fischbacher et al., 2009; van den Bos et al., 2008) and even the value of commodities traded by non-

human animals. For instance, baboons (Henzi & Barrett, 2002) and vervet monkeys (Fruteau et al., 

2009) demonstrate the effect of market competition on the price of natural currencies such as food or 

grooming. Indeed, biological auctions are used to model competition between species and individuals 

(Reiter et al., 2015). Despite its key importance in social behavior and financial modeling, the neural 

mechanisms of decision-making under market competition are still unclear. In particular, how do we 

learn bidding strategies across different market scenarios? Here, we investigate the neural mechanisms 

underlying bidding under different conditions of competition. 

The study of bidding behavior lies at the intersection of behavioral economics, game theory, and 

cognitive neuroscience. Much previous research has focused on simple sequential game theoretic 

paradigms, such as the ultimatum game (UG; Güth et al., 1982; Sanfey et al., 2003). Behavioral studies 

have shown that competition in UGs among proposers leads to higher bid offers (Roth et al., 1991), 

and in general it pushes players towards Nash equilibria with tell-tale lower rejection rates 

(Fischbacher et al., 2009). A combination of fairness concerns and decision errors has been put 

forward to explain the effect of competition on offer distributions in UGs (Fischbacher et al., 2009), 

but it is not clear how offers are picked in more general settings. In simultaneous bidding paradigms, 

Quantal Response Equilibrium (McKelvey & Palfrey, 1995), a normative solution concept from game 

theory, has been shown to capture behavior well. However, this model offers little insight about 

biological learning mechanisms and requires costly computations based on beliefs about other players. 

In repeated games, players typically demonstrate an extended adaptation to the environment’s 

conditions (Fudenberg & Levine, 1998; Grosskopf, 2003; Roth et al., 1991), and very simple models 
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have been shown to perform robustly as long as enough information about other players is provided 

(Fudenberg & Levine, 2009). Moreover, behavioral economics experiments show that adaptive 

learning algorithms explain bargaining behavior well (Camerer & Ho, 1999; Erev & Roth, 1998; 

Mookherjee & Sopher, 1994). Thus, a parsimonious learning model should be suitable for explaining 

offer distributions under changing supply and demand conditions. 

Previous neuroimaging studies investigated bargaining games, but focused on strategic deception 

and uncertainty about trustworthiness (Bhatt et al., 2010, 2012) or examined the influence of loss 

contemplation under social contexts in overbidding (Delgado et al., 2008). In this study, we 

investigated the neural mechanism of bidding behavior under different conditions of competition. 

Subjects played the role of buyers in a double auction in three different market types 

 

, which differed in levels of supply and demand. To investigate buyer’s decisions, we set the 

transaction price to equal the buyer’s bid, which in case of acceptance becomes the final price, while 

rejection was set to be the worst outcome. This paradigm is similar to online auctions such as eBay 

auction, where multiple buyers bid for a good, and in financial transactions with buy limit orders 

(assuming that buyers are strongly incentivized to acquire the good). In these scenarios, repeated 

bidding serves to ‘probe’ the market and estimate its current clearing price in a trial-and-error fashion, 

and thereby the buyer learns to bid more efficiently given the estimated clearing price and her needs.   

Although traditionally theoretical accounts of adaptive learning in decision-making tend to focus on 

model-free reinforcement learning (RL), algorithms that are beyond this minimal account may be more 

suitable for bidding. One such framework that is particularly suitable for bidding, directional learning 

(DL), suggests a simple adaptive strategy that takes into account that the available bids are ordered 

consistently (Selten & Buchta, 1994) and requires a representation of a one-dimensional continuum. 

According to DL, profitable bids exhibit a simple Markovian dependence on the immediately previous 
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outcome: it is adjusted up (down) if it was too low (high) in the previous period. 

To our knowledge, DL models have not been used in neuroimaging studies to probe the neural 

correlates of economic decision-making. However, numerous functional magnetic resonance imaging 

(fMRI) studies have shown that RL operational variables, such as expected value and reward 

prediction error (RPE), can be used to trace neural correlates of adaptive learning (e.g. Montague et al., 

2006; Ruff & Fehr, 2014). For example, neural correlates of RPE have repeatedly been located in the 

ventromedial prefrontal cortex (vmPFC) and the ventral striatum (Bartra et al., 2013; O’Doherty et al., 

2004). But such studies often use relatively simple decision-making tasks, structured specifically to be 

solvable by RL in a reasonable time, often with discrete response policies, while economic tasks 

involving continuous decision variables and policies that need to be structured over such real-value 

scales have been explored to a lesser extent. Here, we focus specifically on the neural underpinnings of 

DL and RL strategies that drive repeated bidding behavior under different types of buyer/seller 

competition.  

 

Materials and Methods 

Subjects 

Twenty-seven subjects (nine males, two left-handed, after discarding two of the initial 29 subjects 

due to excessive head motion) took part in the experiment. All subjects were queried to exclude 

histories of neurological pathologies. After a briefing, all subjects gave informed written consent. The 

protocol was approved by the local university’s ethics committee. 

 

The double auction paradigm 

To probe neural mechanisms of bid-learning, we used a modified version of the double auction is a 

standard paradigm in multiplayer game theory where players try to maximize their respective benefit 
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by means of a single-shot transaction (Fudenberg & Tirole, 1991). Subjects played the role of buyers 

in a double auction with first-price sealed bids, and  with opponents assigned by repeated random 

matching, in three different market types (Figure 1A).  

The three market types differed in the number of sellers and buyers. In the seller competition 

market (SC), there were two sellers and one buyer (the subject); in the no competition market (NC), 

one seller and one buyer (the subject); and in the buyer competition market (BC), one seller and two 

buyers (one of them being the subject). In all market types, the outcome of the transaction was 

determined by pitting the highest buyer’s bid against the lowest seller’s ask price. If the former was 

strictly lower than the latter, then the transaction was not consummated, and the subject received the 

disagreement outcome: zero monetary units (MU). Otherwise, the subject received 10-b MU, where b 

is the bid of the subject. Hence the win/loose structure was asymmetric: the win from an accepted bid 

was dependent on the bid amount, while the loss of fixed at 10 MU. We focused exclusively on buyer 

behavior, unlike previous studies analyzing all players’ behavior (Grosskopf, 2003; Güth et al., 1982). 

The clearing price was set to be the maximum bid in order to study buyer behavior specifically.  

 

Task description 

Subjects were informed that they were participating in a game investigating decision-making. The 

game paradigm required buyers to fix their bids in advance. Their task was to buy fish on a market 

using a 10-point Likert scale with increments of 0.1 MU. The initial position of the cursor on the 

Likert scale was randomized across trials. Collected fish led to a payoff: p = 10 – b, where b was the 

bid value in task MU and 10 represented the maximum endowment the player could make use of in 

every transaction. Opponents were prerecorded human subjects replayed by a computer. In each trial, 

subjects played in one of the market types, which were looped throughout the experiment (24 blocks of 

3 market types) in the order determined by a fixed sequence without repetition (of SC, NC, and BC). 
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One of the six possible sequences was pseudo-randomly and independently assigned to each subject.  

At the beginning of a trial, a MARKET stage (duration=5s, Figure 1A) informed subjects of the 

market type in the current trial. Next, a LOTTERY (duration=2s) stage consisted of a lottery 

determining whether subjects would be allowed to enter the market or not. In one of every six trials, 

subjects were not allowed to enter the market and had to move to the next trial. Otherwise, subjects 

entered the market and the CHOICE stage started. During the CHOICE stage (self-paced, but with a 

prompt to answer quicker after 15s), subjects had to purchase (by bidding) fish in a market using a 

101-point slider scale. The feedback screen (OUTCOME, duration=6s) displayed the outcome of the 

transaction and the profit earned. In BC trials, when the competitor outbid the subject, that bid was 

made visible to the subject. Sellers’ ask prices were never disclosed. All inter-stimulus intervals were 

jittered between 5 and 7s following a uniform distribution of duration 2s. The LOTTERY stage was 

included to assess the subject’s differential neural response to being rejected from each market type. 

However, we found no significant differences in this respect. 

Every subject played 24 trials of each market type (72 in total). The duration of each trial depended 

on the bid selection time and ranged from 21s to 61s, with an average of 39s. The total duration of the 

experiment was approximately 50 min. 

The instructions explicitly informed subjects that they would play against prerecorded human 

players who had played the same game before against other human opponents. Our design precluded 

subjects from trying to manipulate their opponents’ behavior in a sophisticated manner (Camerer et al., 

2002; Bhatt et al., 2010). In each trial, the actions of the subjects’ opponents were matched according 

to the trial order of each market type (repeated random matching). Once inside the scanner but before 

the scanning started, subjects were trained on 6–10 trials, encompassing all market types (at least two 

trials of each market type). The training phase ended after subjects successfully and consistently 

manipulated the button box by placing their intended bid and then reported understanding the task. 
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After scanning, subjects were rewarded according to the following reward scheme (Roth et al., 

1991): a fixed compensation of 300 Russian rubles (~5USD) for participation, in addition to a bonus 

equal to the sum of the profit earned in three random trials multiplied by 15 MU (~5–12 USD in total).  

The prerecorded data were recycled from a previous pilot study that implemented the same 

paradigm. Its design was identical to that of the present study with the following exceptions: 32 

subjects played with real opponents in anonymous groups on desktop computers with conventional 

keyboards, and they played against each other, simultaneously, in the same room. The game was 

programmed in z-Tree (Fischbacher, 2007). Subject roles were randomly assigned to buyer or seller 

throughout the duration of the experiment. Both seller and buyer had to set their respective ask prices 

and bids beforehand. The total number of trials amounted to 240 (40 periods with 6 rounds per period).  

Our task is a one-shot game because opponents are assigned by repeated random matching. 

However, given that subjects play repeatedly in the same three market types, this task also displays 

attributes of sequential games in the sense that what is being learned is not the type of one opponent, 

but the behavior of a population of players as a whole. This topic has been previously explored from 

the viewpoint of strategic teaching (Camerer et al., 2002).  

 

Stimulus presentation and response collection 

 The visual stimuli were projected with an LCD projector onto a rear screen. This screen was 

reflected by a mirror attached to the MRI head coil, subtending approximately 20 degrees of visual 

angle. The task was programmed using Presentation software (version 18.0, Neurobehavioral Systems, 

USA). Responses were collected through three response buttons: the right thumb shifted the cursor to 

the right, the right index shifted it to the left, and the left thumb confirmed bid choices. 

 

Computational algorithms of adaptive learning 
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We implemented, fitted, tested, and simulated six learning algorithms, including model-free RL and 

model-based DL algorithms with ad-hoc parameters (Table 1). The dataset consisted of the aggregated 

sequence of all trials played by the 27 subjects with the same prerecorded opponents. The null 

algorithm, consisting of assigning uniform probability to all outcomes, was run as  benchmark. The 

important parameters were the learning rate (a measure of how much weight was given to recent 

feedback with respect to older feedback) and the randomness of choice, embodied in the inverse 

temperature of the softmax function (a measure of degree of action selection randomness) for RL 

algorithms, and in the dispersion parameters for DL algorithms. The dispersion parameters could be 

specific to the upper or lower side of the preferred bid, and to the previous trial outcome contingency.  

In our task, there is only one state (each of the market types), unlike typical scenarios for RL agents, 

where the phase space comprises many states. The “native” action space consisted of 101 bid sizes. 

Although schemes for RL on continuous spaces have been proposed (Doya, 2000; van Hasselt & 

Wiering, 2007), we opted to use a coarse “binned” representation of the native action space for our RL 

models, fitting multiple candidate algorithms informed by task-specific assumptions. For the DL 

algorithms we used the native action space.  

To design the computational learning algorithms, based on preliminary data and heuristic reasoning, 

we devised a conceptual learning model of repeated bidding. The model requires at least three 

computational processes: (a) recognition of the different market types, (b) an internal representation of 

bid space, and (c) model-based learning optimizing bid choices.  

Model-free RL. First, we modeled participants’ decisions using a model-free RL algorithm which 

learned to ascribe, maintain, and update values attached to actions (Sutton & Barto, 1998). Here the 

problem lies solely in choosing a single bid repeatedly. The basic action-value updating equation was  

������|�� � ����|�� � 	
� � ����|��,  

where Q(b|m) is the action-value function with a value for each possible bid b given market type m 
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at trial t, and α is the learning rate regulating the speed of action-value updating. Action values were 

learned independently for each of the three market types. The policy for selecting a bid in each trial 

was a conventional softmax function 

���|�� � �����|��

∑ �����|��
�	


, 

where P(b|m) is the probability of choosing bid b in market type m, β is the inverse temperature 

parameter regulating the randomness in action selection, and B is the space of actions (bids). Clearly 

such naive algorithm would perform very poorly given that it neglects the incentive structure of the 

game and the low ratio of trials to possible actions. Therefore, we binned the 101 actions into 11 

uniform tiles (which speeds up learning), and we initialized the action value function distribution for 

each market type with a Beta distribution (with the two usual parameters and one scaling parameter) fit 

to the subject-pooled first trial bids (which furnishes efficient priors based on the subject’s pre-game 

beliefs for choosing bids). 

Model-based RL with counterfactual learning. Other models are more suitable when relevant prior 

information is known about the task structure that can be crucial to solve complex tasks where model-

free RL becomes unwieldy. We used counterfactual learning, an extension of model-free RL where the 

value function is updated contingent not only on the currently chosen action feedback, but also on non-

chosen actions based on a model about the contingent rewards of foregone actions. This model is 

derived from the observation that in auctions, any bid lower than the ask price of the seller (and thus 

lower any previously accepted bid), would have been also accepted, had it been chosen. Value 

updating occurs for actions that were not chosen, but which are nevertheless updated based on the 

assumption that they would have been updated had they been chosen. Here, counterfactual learning is 

carried into effect explicitly as a model-based RL algorithm which asymmetrically updates (through a 

delta rule) the whole domain of bid choices every time a bid is selected, conditional on both the bid 

value and the feedback. Overall, it can be considered a hybrid of value-function and model-based 
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algorithm. 

We applied the following rule sketch: for every bid b selected, if it is accepted (rejected), increase 

(decrease) the value of the action-value function for all a>b. This however does not specify how much 

to decrease or increase the value, and for which actions. We chose to update values conditioned on the 

outcome of the current transaction only for the higher or lower range of bids for accepted and rejected 

trials respectively, as follows. 

If accept:  For all i < b, ������|�,�� � ����|�,�� 

           For all i ≥ b, ������|�,�� � ����|�,�� � 	
� � ����|�,��  

If reject:   For all i ≤ b, ������|�,�� � ����|�,�� � 	
0 � ����|�,�� 

           For all i > b, ������|�,�� � ����|�,��, 

where α is the learning rate and ri is the counterfactual reward, that is, the reward the player would 

have received had she selected the bid i. For the current trial bid b, ri = rb = r, the reward actually 

obtained. The action value function distribution was initialized for each market type with a Beta 

distribution fit to the pooled first trial bids. 

DL as value-free, model-based learning. DL is a learning mechanism suggested for repeated games 

(Selten & Buchta, 1994). DL is suitable only under specific circumstances: the space of feasible 

actions should be a totally ordered set (actions should represent some magnitude varying 

monotonically), and there should exist a unique optimal action, so DL implies having an a priori 

knowledge about the structure of the environment. Our task, the double auction, satisfies these 

conditions, since assuming that the seller holds a given ask price, there is a unique minimal bid below 

which all bids are rejected. DL is effectively a myopic policy that operates without the need of action-

value functions, by nudging the bids up or down depending on a directional signature (DS): whether 

the previous bid was accepted or rejected. However, the payoff structure of choices around the optimal 

action is markedly asymmetric in our study, since overbidding entails a reduction of the profit 
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proportional to the overbid, but underbidding entails a null profit.  

In every trial of market type m, DL is implemented by picking a bid from a unimodal probability 

distribution P(b|m) centered in the preferred bid (the lowest accepted bid estimate). If the selected bid 

is accepted (rejected), then the preferred bid is increased (decreased). The preferred bid for the first 

trial of each market type was set to equal the mean of the pooled first trial bids. Unlike RL algorithms, 

DL algorithms lack the notion of expected value, and therefore of RPE.  However, it is possible to 

defined a pseudo-RPE signal as a RPE where the expected value is assumed to be the currently 

preferred bid. This framework still leaves unspecified how much to decrease or increase the preferred 

bid, so we devised and fitted three adaptive learning algorithms based on DL.  

DL delta rule with Gaussian noise. This is perhaps the simplest conceivable DL model. We can 

update values conditioned on the outcome of the current trial by making the gain depend on the value 

of the current preferred bid and the reward received: ������� � ����� � 	
� � �����, where α is a 

gain akin to the learning rate in RL, At is the preferred bid at trial t, m is the market type (SC, NC, or 

BC), and r is the reward. Here, the policy for bid selection accounts for noisy decision-making by 

means of a Gaussian distribution function of bids around the preferred bid: 

���, �� � �

√���	
�
��������

�

��� , where σ is the standard deviation and A(m), which is equal to the 

preferred bid for market type m, is the mean. 

Naive DL with asymmetric leptokurtic noise. This algorithm consists of simply “nudging” the bid 

up and down but taking into account the incentive structure of the game by doing it asymmetrically 

with respect to the two sides of the preferred bid. Contingent on the outcome of the transaction, the 

preferred bid is updated as follows:  

If accepted, ������� � ����� � �
�� , and if rejected, . 

We chose ad hoc a leptokurtic probability distribution function to model the noise around the 

preferred bid because it fits the data better than the Gaussian distribution (see Figure 1C). The 
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distribution of bids (Figure 1C) is markedly asymmetric and non-Gaussian, specifically with fatter tails 

and a thinner peak.  

���|�� � �

���
�
�|������|

��  for b > A(m) after previous trial rejection,  

���|�� � �

���
�
�|������|

��  for b < A(m) after previous trial acceptance, and 

 for the rest of (rare) cases, where P(b|m) is the Laplace distribution of bids b for market type m, 

and σm, σl, and σ0 are parameters proportional to the standard deviation of the Laplace distribution. 

This captures the intuition that the tail above the preferred bid after rejections is fatter than the tail 

below the preferred bid after acceptances. 

DL delta rule with asymmetric leptokurtic noise. This algorithm incorporates both the asymmetric 

leptokurtic policy distribution and the delta rule-based updating of the preferred bid. This was the best-

fitting algorithm (Figure 2A, Table 1). It included an additional parameter k which accounted for a 

different proportion of trials with explorative (risky) versus exploitative (safe) bids. 

 

Learning algorithms optimization and software 

Following the usual approach in estimation problems with a small number of trials, a global 

objective function (the log-likelihood of aggregated data) was optimized with yoked parameters (fixed 

effects) across all subjects for all learning algorithms (Daw et al., 2006). This reduces parameter 

estimator variances at the cost of losing the ability to make between-subject parameters comparisons 

by pooling together between-subject and within-subject variability, but this is deemed to have little 

impact in the quality of the algorithm simulation predictions (Grinband et al., 2008). Given the scarcity 

of within-subject samples and the jagged geometry of the resulting objective functions, and that the 

random and fixed-effects analyses yielded largely consistent results (Table 1), we preferred this fixed 

effects  comparison over the alternative of running the numerical optimizer for each subject 
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individually  in an objective function with multiple local extrema, which can lead to overfitting and 

bad performance of the numerical optimizer (but see Wilcox, 2005). For each algorithm agent, 

negative log-likelihood functions were constructed by making the agent play all 27 of the subject 

sessions. The log-likelihood function was 

��
�����
�� � ∑ ∑ ∑ �������,��,��
��
��

��
��� ���
��������
 , ��,��, 

where lμ is the log-likelihood function for model μ, θyoked is the parameters vector of model μ (for 

example, for naive RL θyoked=(α,β)), and Pμ is the likelihood of model μ choosing a specific bid b given 

parameters θ and feeback fsn in market type m for subject s and block number n. A numerical local-

search optimizer was then run on each of the negative log-likelihood functions, and the found minima 

were used to recover the maximum likelihood parameter estimations. Bayesian Information Criterion 

(BIC) scores were derived from the negative log-likelihood values (Table 1).  

To check for consistency, we also performed separate optimization routines for each subject 

objective function: ��,����|���, with individual free parameters θs for subject s. The scarcity of data 

samples prevented convergence in some subjects, but converged instances yielded consistent BIC 

scores and parameter fits  (Table 1).  

Because subjects have 101 possible actions and they play only 60 times in all three market types, 

convergence of the model-free RL algorithms is troublesome when parameters are fitted individually, 

since values are updated sparsely and rarely, and often the game ends without sampling all possible 

states or actions. This is a problem for algorithm fitting, and in particular estimating 101 initial action-

values depletes all useful degrees of freedom during optimization. Therefore, either we simplified the 

initial action-values using a three-parameter (as opposed to 101) Beta distribution or else we simply 

used the first round bids as initial conditions. 

Data were processed with code written in Python with the scientific computing packages Numpy 

(RRID:SCR_008633), Scipy (RRID:SCR_008058), Matplotlib (RRID:SCR_008624), and Pandas. 
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Purpose-specific code was written to define the maximum likelihood functions used to estimate the 

parameters of the learning algorithms. The numerical optimizer employed was a bound-constrained 

version of the Broyden-Fletcher-Goldfarb-Shannon algorithm, a local search technique which 

approximates local curvature. This algorithm is an implementation of a constrained optimizer of 

multivariate scalar functions belonging to the Python package Scipy. This optimizer was combined 

with a basin-hopping heuristic (scipy.optimize.basinhopping) with at least ten “hops” to offset the 

probability that the optimizer would converge into a local minimum due to the jagged geometry of the 

log-likelihood function. 

 

fMRI data collection and analysis 

Data acquisition. The fMRI data were obtained using ascending interleaved slice acquisition with 

gradient echo T2*–weighted echo-planar imaging (EPI) sequence in a 3T Magnetom Verio equipped 

with a 32-channel head coil (Siemens; Erlangen, Germany). Scanning protocol parameters were as 

follows: TE=30 ms; flip angle=80°; TR=2280 m; slice thickness=3 mm; no gap; slice matrix=64x64; 

number of axial slices=35; FoV=192 mm; Voxel resolution=3x3x3.7 mm. 

High-resolution structural MRI data acquisition used a T1–weighted MP-RAGE sequence. 

Parameters were as follows: TE=2.47 ms; flip angle=9°; TR=1900 ms; slice thickness=0.5 mm; slice 

matrix=512x512x176; number of slices=176; FoV=256 mm; Voxel resolution=0.508x0.508x1 mm. 

These data were used for anatomical localization. A corrective routine aimed at counteracting 

susceptibility angled through the slice plane (z-shimming) was performed by the scanner. The slice 

angle was tilted a negative 30° with respect to the anterior commissure–posterior commissure axis in 

the sagittal plane to reduce the unaccounted spatial components of the susceptibility gradients 

(Weiskopf et al., 2006) and because this allows for better acquisition of the orbitofrontal cortex 

(Deichmann et al., 2003). The number of volumes acquired was on average 1,263, corresponding to a 
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duration of approximately 48 min. 

Sample size. Although median (reward-related) effects sizes in the striatum for gambling have been 

reported to have a Cohen’s d of only 0.4 (Poldrack et al., 2017), and our study was in theory only 

sufficiently powered to detect effects greater than 0.76 (based on sample size of 27 subjects and the 

analysis of Poldrack et al. (2017), using the distribution of local maxima of Cheng and Schwartzman 

(2015)), we found significant population level striatal signals with 27 subjects.   

Preprocessing. Images were processed using SPM12 (Wellcome Department of Imaging 

Neuroscience, Institute of Neurology, London, UK). Preprocessing of T2*–weighted volumes 

consisted of rigid-body model realignment within each session to a mean volume for head-motion 

correction, unwarping of the residual variance using the field map, slice-timing correction centered at 

TR/2, bias-field correction, coregistration of T2*–weighted volumes to the corresponding structural 

image (T1–weighted volume) and segmentation and spatial normalization to a standard T2*–weighted 

template (Montreal Neurological Institute, MNI) for group analysis, spatial smoothing with an 8 mm 

Gaussian kernel, and high-pass temporal (128s) filtering. Fieldmaps were acquired using a dual echo 

2D gradient echo sequence with echoes at 5.19 and 7.65 ms, and repetition time of 444 ms, and then 

used with the SPM FieldMap toolbox to correct EPIs for unwanted dropout due to variations in spatial 

magnetic susceptibility (Weiskopf et al., 2006; Jezzard & Balaban, 1995).  

GLM analysis. Eight event-related regressors (delta sticks) were used to model the onset of the 

MARKET stage (MARKETxSC, MARKETxNC, MARKETxBC), LOTTERY outcome stage (for won 

and lost lotteries), CHOICE stage and OUTCOME stage (ACCEPTED and REJECTED). In addition, 

five parametrically modulated delta sticks were constructed: three for all stages of the task using the 

preferred bid value (PBV=10-PB): MARKET_PBV, LOTTERY_PBV, CHOICE_PBV; one for the 

pseudo-RPE signal at outcome (OUTCOME_pseudo-RPE) based on the best-fitting DL algorithm; and 

one for the DS signal (OUTCOME_DS, consisting of +1 for positive RPEs and -1 for negative RPEs). 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2018. ; https://doi.org/10.1101/464925doi: bioRxiv preprint 

https://doi.org/10.1101/464925
http://creativecommons.org/licenses/by-nd/4.0/


 

18 

Importantly, according to DL, the variables tracking currently estimated action values were not 

conventional expected values, but rather an estimation of the value of the maximum reward obtainable 

(PBV). Computing an expectation over a probability distribution of values associated with actions is 

not possible in a DL algorithm because there is no action value function over which a measure can be 

integrated. Thus, PBVs should be interpreted as a rough equivalent of the conventional expected 

values of RL algorithms. Both parametrically modulated and non-modulated stimuli onset markers 

were convolved (first order expansion) with the canonical hemodynamic response function (HRF) 

implemented in SPM12 and entered into a general linear model (GLM). The motion parameters output 

from the preprocessing realignment routine were added to the design matrix as covariates to account 

for residual head-motion effects.  

In a separate analysis, two additional GLM regression matrices with three regressors were 

constructed with the stimulus onset marker OUTCOME and the mutually orthogonalized 

OUTCOME_DS and OUTCOME_RPE parametrically modulated regressors. 

ROI activity in basal ganglia and PPC was extracted with the SPM extension MarsBar (Brett et al., 

2002). Masks consisted of 8-mm spheres with center in-peak cluster of activity associated to preferred 

bid value in PPC (MNI coordinates [+-47,-48,52]), and manually delineated anatomical subdivisions 

of basal ganglia were used as in Palminteri et al. (2015), in both cases with their contralateral 

homologues. Specifically, (beta) coefficient estimates were calculated by averaging over the 

coefficients of all voxels within their ROIs separately for each subject. These individual estimates 

were passed to the group-level analysis, where the final coefficient values and their confidence 

intervals were calculated using the summary statistics approach. 

fMRI statistics. Temporal serial correlations in fMRI data were removed with the (SPM12) 

autoregressive AR(1) model to satisfy the parameter estimation routine (restricted maximum 

likelihood) assumptions. Each subject design matrix was fitted individually, and the resulting 
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regression coefficients were taken to a random effects group-level analysis. This analysis was 

performed by means of a summary statistics approach (Holmes & Friston, 1998). All reported fMRI 

statistics come from the group level.  

Most decision-making studies model brain activity lasting less than 4 s with delta sticks, but studies 

have shown that this activity often lasts until the motor response (Grindband et al., 2008). Therefore, to 

ensure that such effects were not being ignored, we repeated the same analysis but with boxcar-shaped 

regressors functions instead of delta sticks. We found no significant additional effects. 

Activations were also reported for regions of interest (ROI): striatum (Palminteri et al., 2015), 

orbitofrontal cortex, frontopolar and dorsolateral prefrontal cortex, anterior cingulate cortex, and 

medial prefrontal cortex, and temporo-parietal junction (Tzourio-Mazoyer et al., 2002). Activations 

were reported at a voxel-level threshold of p<0.05 after family-wise error rate (FWER) correction 

outside ROIs and for the learning signals (DS and pseudo-RPE) in the striatum because these 

activations were much stronger than any other. Brain regions are displayed on a standard MNI 

template. All clusters from all figures are listed in Tables 2, 3, and 4. 

We also investigated correlations between neural data and model proxy variables to localize 

potential brain regions involved in the computation of the economic transactions on a trial-by-trial 

basis. We derived a time series of expected value and prediction error signals from each of the bidding 

algorithms by simulating bidding agents with each algorithm and pitting them against the same 

sequences of stimuli that the human subjects played against. The dataset comprising all the sequences 

for all subjects was used. Then, we fitted fMRI data to the learning algorithm variables informed by 

plausible assumptions on the strategies used by players to maximize profit, and we selected the best 

algorithms based on BIC scores.  

We standardized all algorithm proxy variables (PBV, pseudo-RPE, DS) as z-scores across subjects 

before entering them as parametric regressors in the design matrix. In the group-level analysis, we 
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used this analysis to link between-subject differences to significant activations (Haruno et al., 2004). 

Finally, a neural model comparison routine based on a SPM Bayesian model selection module was 

performed on anatomical ROIs encompassing striatum and inferior posterior parietal cortex. To assess 

the goodness of fit of both DL and RL algorithms to neural activity, we defined GLMs in OUTCOME, 

including either DS or RPE parametric modulators, respectively, and then estimated them using 

Bayesian statistics, which provided a measure of the evidence of the model for each subject. Log 

evidence was then fed to a BMS random-effect analysis (Palminteri et al., 2015; Stephan et al., 2009), 

which computed the exceedance probability of each GLM within the anatomical mask.  

 

Results  

Behavior across market types indicates heuristic (DL) learning of valuation. Overall, subjects 

successfully performed the double auction task under all types of social competition (72.47% of 

successful transactions). Transaction rates per market type were 92.44% (869/940) in SC, 74.68% 

(702/940) in NC, and 50.26% (472/939) in BC market. 

To estimate subjects’ beliefs about their human opponents and each market type prior to learning, 

we compared the bids in the first trial of each experimental session. On average, subjects bid 4.96, 

5.13, and 6.55 monetary units (MUs) in the SC, NC, and BC markets, respectively. A one-way 

ANOVA test rejected the hypothesis that first mean bids were equal: F(2,137)=18.93, p=6*10-8. Thus, 

subjects discriminated among market types already before the beginning of the task. Reaction times 

(RT) did not differ significantly across market types: 11.2±3.6s, 11.1±3.8s, and 11.8±3.8s for SC, NC, 

and BC, respectively. 

Next, we wanted to know how the bids and bid-adjustments evolved over time and across markets. 

We tracked the evolution of subjects' bid choices in each market (Figure 1B) by fitting a linear mixed-

effects model with random intercepts. Subjects gradually decreased bids in SC (beta=-0.027, t(588)=-

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2018. ; https://doi.org/10.1101/464925doi: bioRxiv preprint 

https://doi.org/10.1101/464925
http://creativecommons.org/licenses/by-nd/4.0/


 

21 

4.44, p=5.4*10-6) and increased bids in BC (beta=0.086, t(587)=14.264, p=4*10-40), whereas in NC, 

we found a weakly significant evolution of bids (beta=-0.009, t(588)=-2.01, p=0.045). Notice that the 

decreases in SC and increases in BC are not symmetric: subjects tended to increase the bids much 

more than decreasing them. 

We reasoned that bid changes should depend directly on the subjects learning their success or 

failure in the previous bid they made. Hence, to inquire into the potential causes of bid evolution, we 

examined the effect of the previous trial outcome on the current bid. We tracked, on a trial-by-trial 

basis, the bid increments from one trial to the next within a given market type (Figure 1C). The 

distribution of these bid increments conditioned on the outcome of the previous trial displayed a 

skewed shape, with opposite skewness for the previous-trial -accept and -reject bids. Such distribution 

can be roughly sketched as an asymmetric accept-down/reject-up rule or win-stay/lose-shift strategies 

(Nowak & Sigmund, 1993). Furthermore, the distributions of bid increments were qualitatively 

invariant across all market conditions, suggesting that the trial-by-trial learning rule underlying bid 

adjustments is independent of the market type. Therefore, we reasoned that the subjects' market-

dependent bidding trends must be attributed largely to the opponents’ behavior. This supports a view 

where the subjects’ bid learning strategy (or algorithm) does not change from market- type to market 

type; yet the subjects explicitly recognize which market condition they are. This is indeed suggested by 

data in Figure 1B showing that the bids are rapidly rescaled between the different market types. We 

thus inquired what formal learning algorithm could best account for the learning behavior and the 

evolution of bids (irrespective of the market type): conventional model-free RL algorithms or model-

based algorithms that take into account the structure of the task (see below).  

Finally, we examined whether subjects’ ability to bid successfully was related to how well they 

learned to identify the different market conditions. To get a coarse index of the degree to which 

subjects distinguished between the three market types, we devised the market discrimination index 
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(MDI), calculated as the difference between the mean bid chosen over all trials for BC and SC 

conditions. Buyers who better distinguished market types, as assessed by the MDI, were more likely to 

receive higher profits (Figure 2B). Indeed, we found a significant correlation between profit earned 

and the MDI (r=0.52, Pearson's product-moment correlation, t=3.20, df=27, p=0.003497, 

95%CI=[0.1955, 0.7473]). Thus, in our task better market discrimination is associated on average with 

higher profit. 

The above results gave us a hint that the observed behavior may be accounted for by a DL 

algorithm of bid learning, where bids are nudged up or down depending on previous outcome. 

Importantly, DL requires a model of the “action (bid) space” to account for the directionality of bid 

adjustments. We also note that the traditional reinforcement learning schemes and DL differ in the 

learning signals they use to update decision-making variables: a continuous reward prediction error 

(RPE) for RL and a binary error signal we denote by directional signature (DS) for DL (see Methods 

for details). In order to test our hunch that DL is used to learn bids in our task, we proceeded to test 

which DL or (and) RL algorithms could best explain the observed behavior.  

Adaptive learning algorithm fits and model selection. We fitted six adaptive learning algorithms to 

the behavioral data. All DL algorithms fitted better than RL algorithms (Figure 2A). As we expected, 

the RL algorithms failed to explain the bid evolution in all market types. We believe this was in part 

due to a difference in the efficiency of the two algorithm classes. The RL algorithms require a large 

dataset to learn action values to the point where they start being operationally useful. Since our 

subjects learned to bid successfully in the limited number of played trials, we argue that DL is the 

more efficient and appropriate learning strategy for the task we consider.  

Across all subjects, 74.99% (1586/2115) of the trials matched the behavioral predictions of the best 

DL algorithm. Conditioned on the outcome of the previous trial of the same market type, subjects 

behaved according to the DL algorithm in 76.26% (453/594) and 79.73% (1133/1421) of trials when 
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their bids were rejected and accepted, respectively. Importantly, subjects with a higher DL-compliance 

score (the fraction of trials where they behaved according to DL) were more likely to receive higher 

profits (Figure 2C). We found a significant between-subjects correlation between the profit earned and 

the proportion of trials compliant with DL (r=0.47, Pearson's product-moment correlation, t=2.74, 

df=27, p=0.01078, 95%CI=[0.1204, 0.7113]). To confirm this we took the best-fitting DL and the best-

fitting RL models and simulated their bidding against the same prerecorded opponents as the subjects. 

Only the DL agent’s bid evolution resembled the human one, with progressive increase in the SC bids 

and relative invariance of the NC and SC bids (not shown). Next, we proceeded to determine the 

neural underpinnings of repeated bidding learning. 

Fronto-parietal cortical activity associated with recognition of the different market types. To 

identify the brain regions associated with subjects recognizing the different market types, we analyzed 

the neural activity during the MARKET stage of the task, which informs subjects about the market 

type at the beginning of each trial. We found that neural activity in the posterior parietal cortex (PPC) 

increased when subjects entered the competitive BC and SC markets (Figure 3A, Table 2) as compared 

to NC. The effect remained significant when the expected reward based on the preferred bid was 

regressed out, ruling out that it was a value-related activation. The other pairwise subtraction contrasts 

between market types revealed no significant differences in activity.  

To further investigate neural activity underlying the recognition of the different market types, we 

used the MDI as a covariate in the group-level analysis. The between-subject differences were 

manifested only in the prefrontal activity during processing of outcomes (OUTCOME stage, Figure 

3B), specifically in a region bridging the bilateral medial frontal and superior frontal gyrus, adjacent to 

the frontopolar prefrontal cortex (fpPFC), and in mPFC (Figure 3C). Thus, fronto-parietal activity was 

associated with the recognition of market types.  

Posterior-parietal cortex activity associated with the internal representation of bid space. To find 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2018. ; https://doi.org/10.1101/464925doi: bioRxiv preprint 

https://doi.org/10.1101/464925
http://creativecommons.org/licenses/by-nd/4.0/


 

24 

brain areas whose activity encoded an internal representation of bid space, we used the preferred bids 

provided by the fitted DL algorithm as a covariate regressor at the CHOICE stage. We found a 

significant activity modulation in the PPC (Figure 3B). This indicates that learned preferred bids are 

encoded in the PPC. Bids are real numbers, and their representation in the PPC is compatible with 

previous studies showing evidence for encoding of a number line in PPC (Dehaene et al., 2003). 

Moreover, the PPC region associated to the preferred bid value was also strongly modulated by both 

pseudo-RPE and DS signals (Figure 4).  

Striatal activity associated with trial-by-trial adaptive learning 

In order to identify the neuronal representation of the learning algorithms used, we compared the 

explanatory power of RL and DL algorithms over the neural activity in the two areas most relevant to 

the task: striatum and PPC. We calculated the exceedance probability (Stephan et al., 2009) for each 

algorithm, given the brain imaging data gathered from all subjects. The exceedance probability was 

calculated using Bayesian model comparison of GLMs regressing the learning signals, DS for DL and 

pseudo-RPE (the RPE based on the accepted preferred bids of the DL algorithm, see below) for RL. 

The analysis confirmed the explanatory power of the DL algorithm to be stronger than that of the RL 

algorithms: the Pexc(DL)=0.9533 > Pexc(RL)=0.0467. This yields a Bayes factor above 19, which 

indicates clearly strong evidence (Kass & Raftery, 1995) in favor of DL.  

Therefore, we used the variables provided by the best-fitting DL algorithm to search for neural 

correlates of the outcome evaluation and learning during the CHOICE and OUTCOME stages. In 

particular, we asked whether DL and RL neural learning signals could be distinguished. We reasoned 

that it is unsound to search for correlates of the variables extracted from the ill-fitting RL algorithms. 

Therefore, we instead compared RPE and DS signals by using the best-fitting DL algorithm and 

calculating RPEs based on the reward expected from accepted preferred bids, which we call pseudo-

RPE. We then performed a whole-brain analysis for the OUTCOME stage and compared DS and 
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pseudo-RPE. 

Neural correlates of both DS and pseudo-RPE were found in the striatum (Figure 4). Because DS 

and pseudo-RPE are highly correlated, we orthogonalized both regressors with respect to each other: 

ort-pseudo-RPE (pseudo-RPE orthogonalized with respect to DS), and ort-DS (DS orthogonalized with 

respect to pseudo-RPE). Interestingly, ort-DS related activity was found primarily in the posterior 

putamen whereas ort-pseudo-RPE strongly modulated activity of the caudate and ventral striatum 

(Figure 4). This is in line with previous studies reporting that neurons in the caudate nucleus could 

play a role in transforming expected reward into a spatially selective behavior (Gold, 2003; Kawagoe 

et al., 1998; Lauwereyns et al., 2002).  

Our results indicate that both DS and RPE signals are encoded in the striatum but in anatomically 

dissociated areas; anterior and ventral regions encode an RPE learning signal, whereas the dorsal and 

posterior regions encode a binary DS learning signal. We further explored averaged signals within 

anatomical ROIs.  A two-way ANOVA (regions: [posterior striatum, anterior striatum], learning 

signal: [ort-DS, ort-pseudo-RPE]) yielded a significant interaction (p=0.0012; F=11.08, df=1). 

Although both signals are represented concomitantly, computational algorithm fits suggest that DS is 

the predominant learning signal.  

Finally, we examined the relationship between learning-related neural activity during OUTCOME 

and the behavioral adjustments. We computed a parametrical regressor modulated by the size of the 

subsequent adjustments of bids (the bid in the next trial of the same market type minus the bid in the 

current trial). Given that subjects after the accepted trials usually repeated or sometimes decreased 

their bids, the activity of the dorsolateral prefrontal cortex (dlPFC) and the ventral striatum in accepted 

trials was associated with subsequent bid repetition (Figure 5A). After the rejected trials, subjects most 

often increased or (less frequently) repeated the bid; activity of the right putamen during rejected trials 

was associated with subsequent bid increase (Figure 5B). Thus, neural activity in the dlPFC and 
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striatum correlated with bid adjustments. 

 

Discussion 

We investigated the neural underpinnings of learning to bid in double auctions. We found that 

buyers learned to choose bids using an effective decision-making heuristic consisting of directional 

adjustments contingent on the previous trial outcome. As opposed to model-free reinforcement 

learning, directional learning postulates the existence of a priori knowledge about the structure of the 

task. Namely, DL assumes that the action values of bids bear an order relationship; it and stores and 

updates the value of the preferred bid on an internal number line. Therefore, DL naturally fits market 

and auction decisions in which prices or quantities are the main strategic variables. Although one could 

object that DL and RL are intimately related, a crucial aspect distinguishes them: unlike RL, DL does 

not learn an explicit value function spanning all actions, but only a single preferred action.  

Analysis of the first bids in each market type revealed that subjects discriminated among the market 

types already at the beginning of the game. Although subjects underestimated the effect of social 

competition in the different market types, they gradually learned to optimize their bidding decisions. 

Indeed, the learning curve for each market type exhibited an incomplete convergence toward the strict 

Nash equilibrium predicted for perfectly rational agents. Importantly, the fact that the RTs did not 

differ across the market types suggests that the differences of learning curves in three markets were not 

confounded by cognitive effort differences.  

Since numerous fMRI studies have demonstrated neural correlates of RPE in the striatum (e.g. 

Haruno et al., 2006; O’Doherty et al., 2003; van den Bos et al., 2013), we examined in detail pseudo-

RPE and DS-related activity within this region. We found that the pseudo-RPE signal was observed in 

the anterior and ventral striatal areas, whereas the DS signal was represented in the dorsal posterior 

striatal areas, particularly in the posterior putamen. According to the Bayesian model comparison 
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analysis, the variability of the striatal activity was explained by DL better than by RL, supporting the 

pertinence of DL-based bidding. This finding concurs with previous suggestions that neural learning 

signals in motivated decision-making are not necessarily always RPE-like (Behrens et al., 2008, 

supplement), and that a region of striatum is involved in learning stimulus–response associations and 

action selection (Jessup & O'Doherty, 2011). Although the coexistence of these complementary yet 

exclusive value signals is not exceptional (Lebreton et al., 2013), the reason underlying the coexistence 

of DS and pseudo-RPE signals in the striatum is unclear, since only DS explains the behavior of 

participants. Although these learning signals are difficult to decorrelate, a follow-up study could 

clarify their relationship, in particular, whether these signals could be partially ancillary to bidding 

behavior and be part of a hybrid DL-RPE architecture.  

Intriguingly, in a correlation analysis of feedback processing related neural activity with the next 

trial bid adjustment, we also found that both dlPFC and striatum activity were associated with bid 

increase or repetition in the next trial regardless of whether the bid was previously accepted or rejected 

(Figure 5A). We may posit that activity of the dlPFC subserves a cognitive control mechanism for 

tracking the preferred bid, and concomitantly striatal activity has a role in increasing the value of the 

currently preferred bid. This parallels the previously reported role of the dorsal striatum in updating 

action values (Balleine et al., 2007; Haruno et al., 2004; Lauwereyns et al., 2002; Palminteri et al., 

2012) and the parametric working memory encoding in the PFC reported by Romo et al. (1999). 

Significant activity predicting bid adjustments after rejection was also present in the putamen when 

subjects’ bids were rejected. To account for the role of the striatum in updating bids instead of values, 

we speculate that because the task revolves consistently around the bid choice, the reference 

magnitude for updating values was not the expected reward, but the preferred bid, as suggested by the 

best-fitting DL algorithm. Although, to our knowledge, such function has not been attributed to the 

striatum in previous studies, it is plausible that at least some neuronal submodules could compute bids 
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instead of expected rewards because in our task, the bid is the natural operational variable (bid size is 

the only quantity that needs to be tracked) and is perfectly anti-correlated with reward when accepted. 

The activity consistently associated with “nudging up” bids and a similar signal reported in the 

superior PPC (Figure 3B) lends support to this hypothesis. 

The DL-based learning strategy requires a representation of an internal number line where the 

preferred bids are stored and actively updated. Our results indicate that this representation is 

implemented in the PPC (Figure 3A). Accordingly, Gläscher et al. (2010) also found neural signatures 

of model-based prediction errors analogous to DS in the PPC in a Markov decision task, and the 

superior PPC has been implicated in directing spatial attention to a representation of an internal 

number line (Hubbard et al., 2005). Moreover, we found activity associated with the preferred bid size 

in the left superior PPC, which has been also found to represent the relative value or probability of 

different actions (Sugrue et al., 2005). Thus, during bidding, activity of the superior PPC could not 

only modulate attention to the internal number line, but also contribute to decision-making. Other 

neuroimaging studies show that the activities of the superior PPC contribute to working memory 

(Koenigs et al., 2009), arithmetic facts (Dehaene et al., 2004; Pesenti et al., 2000), and quick value-

based decision-making (Jocham et al., 2014). Altogether, the superior PPC could participate in a 

calculation and representation of the preferred bid that is transmitted to motor areas to execute 

appropriate motor commands. 

The ability to recognize market types is also critical for successful bidding. At the beginning of each 

trial, activity in the bilateral superior PPC was stronger in trials with higher social competition (SC and 

BC; Figure 3A). This activation could reflect neural activity monitoring the competitiveness in the 

current trial or retrieving relevant information (Vilberg & Rugg, 2008) about the current market type 

(i.e. the preferred bid). Activity in the superior PPC has been previously implicated in the processing 

of numerical information needed for the forthcoming motor selection (Sawamura et al., 2002). Thus, 
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the PPC could set bargaining decisions into the appropriate social competition context by associating 

the specific market type with its associated DL-learned preferred bid. Therefore, successful bidding 

could be subserved by the same computational processes underlying simple arithmetical calculations 

(Dehaene et al., 2004) and distance estimation. Between-subject differences associated with the ability 

to distinguish the different market types in our study affected the activity of the fpPFC and vmPFC. 

This might indicate that subjects who distinguished better among market types, besides earning more 

profits, exhibited stronger activation of the higher-order cognitive prefrontal areas associated with the 

appraisal of suitable models of the environment (Boorman et al., 2009) and mentalizing (Hampton et 

al., 2008; Coricelli & Nagel, 2009). Congruently with previous fMRI studies, fpPFC activity might be 

involved in appraising the behavior of opponents (Koechlin & Hyafil, 2007), whereas vmPFC activity 

might be involved in appraising the subject’s own valuation during feedback. 

In this study, we used prerecorded opponent data, which could affect behavior through social 

preferences (van den Bos et al., 2008) and arguably may not allow us to disentangle precise market-

based prior strategies from feedback-based learning. Although studies using live opponents (e.g. Carter 

et al., 2012) eschew this limitation, they cannot control well for variability induced by repeated mutual 

feedback, which was necessary in our study to control the bid variability in each market type. Further 

studies are needed to verify the role of feedback-based learning in double auctions.  

In conclusion, while the buyers were bidding under different levels of supply and demand, their 

behavior was explained best by a simple learning heuristic. Between-subjects higher compliance with 

DL predicted higher payoffs. Our results suggest that the PPC encodes an internal representation of a 

bid space that serves as a model on top of which subjects adjust and select bids, and posterior striatal 

activity was associated with a simplified learning signal characterized by a binary learning signal. 

Individual differences during feedback associated with activity in the dlPFC and superior PPC indicate 

the critical role of at least a rudimentary prior knowledge of the structure of the task and the 
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differences among market types. In summary, we suggest that a learning heuristic based on a binary 

learning signal distinct from the conventional RPE signal solves the problem of repeated bidding in 

double auctions. Showing the learning mechanisms underlying bidding under social competition, this 

study paves new pathways for the discovery of neural mechanisms engaged in competitive, dynamic, 

complex decisions. 
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Table 1 | Ranks and BIC scores for all fitted algorithms.  

 

Rank by 

BIC 

Random effects (RFX)*  Fixed effects (FFX)  

 

 

Agent name 

 

Agent type 

 

Number of   

parameters 

Negative log-

likelihood per 

subject 

BIC per 

subject  

Fitted parameters Negative log-

likelihood per 

subject  

BIC per 

subject 

Fitted parameters    

1 28.04 ± 3.97 64.97 ± 11.50 
α = 0.58 ± 0.04 

σa  = 0.61 ± 0.06 

σr  = 0.79 ± 0.06 

σ0  = 0.56 ± 0.06 

k = 0.30 ± 0.03 

 

34.15 ± 2.64 

 

68.63 ± 5.41 
α = 0.53  

σa = 0.70  

σr = 0.79 

σ0 = 0.65  

k = 0.39 

Leptokurtic DL 

with delta rule  

Leptokurtic jitter + 

delta rule + DL 

5 

2 31.79 ± 2.08 67.14 ± 7.72 α = 0.56 ± 0.05 

σ =  0.89 ± 0.07 

39.21 ± 2.55 78.55 ± 5.21 α = 0.38 

 

σ = 1.09 

Gaussian DL 

with delta rule 

Gaussian jitter + 

delta rule + DL 

2 

3 35.90 ± 1.89 78.91 ± 7.33 nup = 0.31 ± 0.04 

 

ndown = 0.11 ± 0.02 

 

σa  = 0.78 ± 0.05 

 

σr  = 0.82 ± 0.09 

46.26 ± 2.10 92.78± 4.32 nup= 0.20 

 

ndown = 0.06 

 

σa = 1.06 

 

σr = 1.16 

Leptokurtic 

naive DL 

Leptokurtic jitter  + 

DL 

4 

4 96.19 ± 1.71 195.94 ± 6.98 α = 0.20 ±  0.05 

 

β  = 1.37 ± 0.12 

101.98 ± 2.04 204.09 ± 4.21 α = 0.09 

 

β  = 1.00 

Model-based 

counterfactual 

RL 

Softmax + 

Counterfactual 

learning  RL 

2 

5 101.13 ± 1.00 205.82 ± 6.15 α = 0.002 ± 0.001 

 

β  = 1.40 ± 0.11 

103.88 ± 1.55 207.89 ± 3.22 α = 0.00 

 

β  = 0.99 

Model-free RL 

with coarse bid 

space 

Softmax + model-

free RL 

2 

6 100.65 ± 1.26 204.86 ± 6.07 α = 0.02 ± 0.01 

 

103.45 ± 1.66 207.03 ± 3.44 α = 0.01 

 

Model-free RL Softmax + model-

free RL 

2 
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β = 1.44 ± 0.14 β  = 1.042 

7 120.26 242.30 - 120.26 242.30 - Null model Null 1 

 ‘Jitter’ refers to the shape of the probability distribution function used to model the variability of the 

bid selection process. α: learning rate; β : inverse temperature; σa ,σr ,σ0 : variance of Laplace 

distributions; k: proportion of trials with explorative (risky) versus exploitative (safe) bids; nup ,ndown: 

fixed nudge size in the naive nudger algorithm. ± signifiy standard error of the mean across subjects. 

*Some instances of the RFX log-likelihood optimization did not converge. Only those which achieved 

convergence are used.   

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2018. ; https://doi.org/10.1101/464925doi: bioRxiv preprint 

https://doi.org/10.1101/464925
http://creativecommons.org/licenses/by-nd/4.0/


 

38 

Table 2 | Neural activity related to market type recognition and expected value (Figure 3).  

  

Contrast  (Figure)  Region Cluster p-value  Cluster z-score Peak voxel MNI 

      FWE-corrected extent k  p-value (x,   y,   z)  

MARKETxBC vs MARKETxNC Left SPL 0.085 43 4.33 <0.001 -33 -46 48  

(Figure 3A Left)  Right SPL 0.044 53 3.87 <0.001  36 -46 60 

  

    Right ANG   3.44 <0.001  39 -46 45 

 

 

MARKETxSC vs MARKETxNC Left SPL 0.818 9  3.32 <0.001 -33 -52  48 

(Figure 3A Right)  

 

 

CHOICE_PBV  Left SPL 0.630 15  3.49 < 0.001  -47 -48 52 

(Figure 3B)      

 

 

REJECTED vs ACCEPTED, Right SFG 0.031 76  4.15 <0.001  21   59  19 

MDI-modulated,   Left SFG 0.125 47  3.83 <0.001 -24   53  23 

group level (Figure 3C) Right MFC 0.582 17 3.79 <0.001   6   29 -14  

    Right ANG 0.301 30 3.66 <0.001  60  -52  23 

    Right TrIFG 0.258 33 3.61 <0.001  54   32   4 

    Left MSFG 0.528 19 3.56 <0.001  -3   50   4 

  

  

Here and below all voxels are significant at least at p < 0.001, uncorrected for the whole brain. Cluster-level inference alone may yield inflated false 

positives (Eklund et al., 2016; Flandin and Friston, 2017). x, y, z: stereotactic coordinates of the MNI template. Atlas labels were provided by 

Neuromorphometrics, Inc. MSFG: superior frontal gyrus medial segment;  TrIFG: triangular part of the inferior frontal gyrus; ANG: angular gyrus; MFC: 

medial frontal cortex; SFG: superior frontal gyrus; SPL: superior parietal lobule; OCP: occipital pole; MFG: middle frontal gyrus; STG: superior temporal 

gyrus; MorG: medial orbital gyrus; CblExt: cerebellum exterior; AIns: anterior insula; NAcc: accumbens area 
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Table 3 | Neural activity coding error signals pseudo-RPE and DS (Figure 4). 

 

 Contrast  (Figure) Region Cluster p-value  Cluster z-score Peak voxel MNI 

      FWE-corrected extent k  p-value (x,   y,   z)  

           DS    Left Putamen <0.001 47  5.59 <0.001 -30  -10   8 

      (Figure 4A Left) Right CblExt <0.001 147  5.51 <0.001  33  -58 -40    

             Left MorG <0.001 20  5.50 <0.001 -24   35 -18  

    Right Putamen <0.001 35  5.48 <0.001  30  -10   4  

    Left CblExt <0.001 83  5.36 <0.001 -15  -52 -18 

    Left Caudate <0.001 16  5.34 <0.001 -24  -19  23  

    Right Caudate <0.001 51  5.33 <0.001  24  -10  26

  

    Right Putamen   5.20 <0.001  24   14   0  

    Right CblExt 0.001 9  5.25 <0.001   6  -70 -33   

    Right OCP 0.001 12  5.21 <0.001  18 -100   8  

    Left Caudate <0.001 13  4.94 <0.001 -21   11  19 

    Right SPL 0.003 6  4.91 <0.001  45  -43  60 

  

 

 

   pseudo-RPE Right CblExt  <0.001 119  5.83 <0.001  18  -67 -22 

 (Figure 4A Center Left) Left OCP <0.001 25  5.32 <0.001 -12 -103   4 

   Right NAcc <0.001 48  5.28 <0.001  12   17 -11 

  

    Right Putamen    5.28 <0.001  21   14 -11 

    Right Putamen <0.001 14  5.14 <0.001  30  -13   8 

  

    Left SMG  0.003 7  5.11 <0.001 -57  -34  45 

    Left MFG  0.001 10  5.04 <0.001 -36   35  30 

    Left MFG  0.002 9  4.87 <0.001 -39   38  15 

  

    Right OCP  0.004 6  4.77 <0.001  15 -100  11 

    Left CblExt 0.003 7  4.76 <0.001 -12  -52 -22  
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 ort-pseudo-RPE Left MFG <0.001 197  4.23 <0.001 -24   20  63   

(Figure 4A Center Right) Right SPL 0.315 29  3.93 <0.001  27  -61  34 

  

    Right MFG 0.196 38  3.92 <0.001  42   14  56 

  

     Left SPL 0.023 82  3.89 <0.001 -21  -46  45 

  

    Right SFG 0.283 31  3.71 <0.001  27   14  63 

  

    Right MFG 0.501 20  3.63 <0.001  36   38  30 

  

     Right MFG 0.924 5  3.56 <0.001  48   41  26 

    Right ACgG 0.728 12  3.52 <0.001  12   38  11 

  

    Left Nacc 0.609 16  3.50 <0.001  -9    8  -7 

    Left Caudate 0.788 10  3.42 <0.001 -15   -4  23 

  

     Right MFG 0.924 5  3.42 <0.001  39   47   8 

    Left ACgG 0.924 5 3.25 0.001 -3 32 -11  

 

 

ort-DS    Left Caudate  0.070 56 4.36 <0.001 -27  -7  26  

(Figure 4A Right)  Left Putamen   3.79 <0.001 -27 -10   8  

    Right Caudate  0.227 34 4.18 <0.001  24 -10  26 

  

    Right Putamen   3.60 <0.001  27 -10  11 

    Right STG  0.057 60 4.07 <0.001  57 -28   8 

  

     Right Caudate 0.543 18 3.97 <0.001  21  20  15 
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Table 4 | Neural activity during OUTCOME stage associated with follow-up bid increases (Figure 5). 

 

Contrast (Figure)    Region Cluster p-value  Cluster z-score Peak voxel MNI 

      FWE-corrected extent k  p-value (x,   y,   z)  

 

ACCEPTED  Right Caudate 0.515 16 4.22 <0.001  18   5  19  

bid increase-modulated Right Putamen 0.020 59 4.18 <0.001  18   8 -11  

(Figure 5A)  Right AIns   3.57 <0.001  33  11 -18 

   Left MFG 0.764 10 3.92 <0.001 -33  56  19 

  

   Left MFG 0.035 51 3.87 <0.001 -30  41  34 

   Right SMG 0.047 47 3.85 <0.001  63 -34  19 

  

    Left Putamen 0.202 28 3.79 <0.001 -21   8  -7 

  

    Right SFG 0.917 6 3.40 <0.001  24  44  26 

   Left MSFG 0.806 9 3.34 <0.001  -9  50   0 

  

 

 

REJECTED  Right Putamen 0.818 9  3.59 <0.001 24 14 -3 

bid increase-modulated 

(Figure 5B) 
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Figure 1 | Task design and behavioral results. (A) Each trial consisted of four stages: market t

announcement, lottery, bid selection, and game outcome feedback. During the market announcem

stage (MARKET), the subject was informed of the market type of the current trial. The next st

(LOTTERY) indicated whether the subject would go forth to the next stage or be redirected to 

beginning of the next trial. In the former case, a Likert scale was displayed, and the subject had
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choose her bid by sliding a vertical bar (CHOICE). Finally, the game outcome stage (OUTCOME) 

signaled whether the bid was accepted (ACCEPTED) or rejected (REJECTED). (B) Behavioral 

learning dynamics of bids across all subjects. Box “hinges” represent the first and third quartiles. (C) 

Bid adjustments were contingent on the previous trial’s outcome of the same market type.  
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Figure 2 | Algorithm fit scores and correlations with individual profits during the task. (A) BIC sco

averaged within algorithm classes (DL: models 1-3, RL: models 4-6 in Table 1). (B) Correlation

market differentiation index with profits averaged across the whole task. The line slope correspond

a (Pearson’s product-moment) correlation coefficient of 0.524 (p=0.003). (C) Scatter plot of subje

DL compliance scores and profits averaged across the whole task. The line slope corresponds t

correlation coefficient of 0.466 (p=0.01). N=27. Error bars indicate 95% confidence intervals.  
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Figure 3 | Neural activity related to market type recognition and expected value. (A) Left: stron

superior parietal cortex activity in BC as compared to NC condition during market entra

(MARKET_BC vs MARKET_NC). Right: stronger left superior parietal cortex activity in SC mar

as compared to NC market during market entrance (MARKET_SC vs MARKET_NC). (B) Activat

reflecting modulation by the preferred bid during bid choice (CHOICE_PBV). (C) Feedb

processing-related activity (outcome stage, REJECTED vs ACCEPTED) modulated by individ

differences in market differentiation index in the right medial frontal cortex (C Left) and frontopo

cortex (C Right). Clusters are listed in Table 2 
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Figure 4 | Neural correlates of pseudo-RPE and DS signals based on the best-fitting DL algorithm

anterior putamen and nucleus accumbens area and posterior putamen during OUTCOME. 

Correlated activity in the anterior (y=16) and posterior (y=-10) putamen was stronger for pseudo-R

and DS, respectively, during feedback. From left to right columns: pseudo-RPE (p<0.05, FWER), 

(p<0.05, FWER), pseudo-RPE orthogonalized with respect to DS (p<0.001, unc), and 

orthogonalized with respect to pseudo-RPE (p<0.001, unc). (B) Barchart of signal estimation (in gr

mean percentage) by brain region. Signals were averaged within anatomical ROIs for basal gan

(Palminteri et al., 2015) and on an 8mm sphere in PPC. oDS and oRPE correspond to DS and pseu

RPE signals after being orthogonalized with respect to each other, respectively. Clusters are listed
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Table 3.  
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Figure 5 | (A) Neural activity during positive feedback (ACCEPTED) in dlPFC (Left) and stri

(Right) areas that was significantly modulated by bid increases in the next trial of the same mar

type. (B) Neural activity during negative feedback (REJECTED) in putamen that was significan

modulated by bid increases in the next trial of the same market type. Clusters are listed in Table 4 
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