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1. SUMMARY 

An important aspect of age-related research is to find proteins in human blood that can be 

used to track physiological processes of aging. Here, we have used a multiplexed affinity 

proteomics approach to search for the presence of age-associated levels of proteins in human body 

fluids. First, serum samples from 156 subjects aged 50-92 years were explored using a 

comprehensive bead array assay including 7,258 antibodies. We identified 16 age-associated 

profiles (adjusted P < 0.05) and followed up on the most significantly age-associated profiles in 

eight additional study sets (n = 4,044 individuals) analyzing both serum and plasma. As a result of 

a meta-analysis and antibody validation, we found that levels of histidine-rich glycoprotein (HRG), 

a plasma glycoprotein produced by the liver, consistently increased with age (P = 5.37 × 10-6). 

Higher levels of HRG also increased the risk of mortality during about 8.5 years follow-up 

(interquartile range = 7.7-9.3) after blood sampling at a hazard ratio = 1.25 per standard deviation 

(P = 6.45  10-5). Our multi-cohort affinity proteomics analysis found that blood levels of the 

multi-purpose HRG were associated with age and all-cause mortality. This combination suggests 

that elevated HRG levels could serve as an accessible molecular indicator for accelerated aging.  
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2. INTRODUCTION 

Aging is the single most dominant risk factor of common diseases of elderly and death in 

the human population (López-Otín, Blasco, Partridge, Serrano, & Kroemer, 2013). Molecular 

insights on aging could enable direct identification of future treatments for various diseases and 

would increase our understanding of longevity and related mechanisms. However, many of the 

underlying molecular processes and changes in humans still remain poorly understood (López-

Otín et al., 2013). Aging is most often studied using animal models or cell lines (López-Otín et al., 

2013), despite the vast differences in lifespans (2 weeks to 100 years) (Gorbunova, Seluanov, 

Zhang, Gladyshev, & Vijg, 2014). Findings from these model organisms should preferably be 

translated into studies on humans. Recently rejuvenation factors were found in mouse blood 

(Katsimpardi et al., 2014), which suggest the potential to find aging governing molecules in human 

blood. Some proteomics studies on aging showed several candidates as age or mortality predictors 

(Barron, Lara, White, & Mathers, 2015; Jylhävä, Pedersen, & Hägg, 2017). In this study, we aim 

to search for novel proteins aging predictor associated with both age and mortality. This poses a 

challenge to the analytical methods in terms of sample complexity and availability. 

To study proteins at a wider scale, there are currently two major technological concepts 

available for measuring the proteome: mass spectrometry (MS) and affinity-based proteomics 

(Ayoglu et al., 2011). Both approaches have been used to study the plasma proteome (Schwenk et 

al., 2017), offering a unique window into human health and diseases. Even though affinity 

proteomics has suffered from a lack of binding reagents to the proteome (Stoevesandt & Taussig, 

2012), antibody resources such as the Human Protein Atlas (HPA) (Uhlén et al., 2015) or aptamer-

based platforms (Emilsson et al., 2018), now offer the possibility to apply affinity proteomics for 

broader discovery projects. The capacities to conduct near population-based studies implementing 

also genome-wide association studies (GWAS) is very attractive, which has been demonstrated 

using different plasma proteomics assays (Johansson et al., 2013; Melzer et al., 2008; Suhre et al., 

2017). Several interesting connections between proteins and genetic variants in human have 

recently been identified in large scale cohort studies (Emilsson et al., 2018; Sun et al., 2018). The 

two-omics approach have indeed provided novel insights on the links between the distant 

molecular systems, but also indirect validation to mitigate uncertainty in the molecular assays. 

Utilizing the in-house developed antibody assays based on the suspension bead arrays 

(Schwenk, Igel, Neiman, et al., 2010) we aimed to profile serum and plasma from a large number 

of individuals, studying the changes in age-related plasma protein levels. Our strategy was to 

explore, filter and rank plasma profiles associated with age in extended sets of samples and to 

confirm antibody selectivity by applying different validation assays (Supporting Figure 1).  
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3. RESULTS 

We analyzed human serum and plasma samples of 4200 subjects for blood proteins 

associated with age. Using affinity proteomic assays initially based on a large set of antibody 

reagents, protein profiling was conducted with nine sets of samples to determine the most 

consistent age associations. Our aim was to describe proteins present in serum and plasma that 

could serve as indicators of biological age to increase our understanding of age-related phenotypes. 

Screening for age-associated profiles 

Age-associated protein profiles were first investigated in a set of 156 human subjects 

selected in 5-year age intervals from a Swedish twin cohort using our proteomic assays (Table 1). 

The sex-matched samples from the study set included 30 monozygotic (MZ) twin pairs (age 50-

70). The average intraclass correlation within pairs of antibody profiles was small (ICC = 0.13) so 

twins were treated as unrelated. Minimal effects of the twin relationship were corroborated by a 

linear mixed model that considered the dependency.  

Assays using a total of 7,258 HPA antibodies were applied to profile age-associated 

proteins in serum. For this screening, target inclusion criteria were purely dependent on availability 

of antibodies but not due to their target antigens (Byström et al., 2014). This set of antibodies 

comprised targets from 6,370 protein-encoding genes (about 32% of the non-redundant human 

proteome) and profiles were obtained using antibody suspension bead arrays (Drobin, Nilsson, & 

Schwenk, 2013), which provided up to 384 profiles on 384 samples per batch. The acquired data 

was preprocessed through quality control including outlier removal and normalizations to account 

for experimental variation across individual samples, assay plates and data batches (details in 

Experimental procedures). Linear regression models were then used to determine the protein 

profiles that changed monotonically with increasing age. The models revealed 16 out of 7258 

(adjusted P < 0.05) protein profiles that were age associated when screening sera of individuals at 

the age of 50 to 92.  

Study sets to replicate and confirm the discovered age-associations  

Next, we aimed at following up on this screening phase and focused on validating the most 

significant indications, accepting that other previously published age-associated proteins will not 

be included. Because the age range of set 1 covered life expectancy in Sweden (84 years for women 

and 80 years for men in 2015 (Statistics Sweden, 2016)) we considered it more likely that findings 

from this set might be related with accelerated ageing and mortality. Concentrating on the three 

most significant findings from set 1 (Table 2), we investigated eight additional sample sets (set 2-

9) (Table 1). Out of 4,044 subjects in total, 829 subjects were from non-diseased control groups. 
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The entire set of subjects were from 3 to 93 years old at blood draw. Blood samples had been 

prepared either as serum or plasma (Table 1, Supporting Figure 2), hence differences originating 

from these preparation types were likely. Twelve sera in the otherwise plasma sample set 2 were 

not included in the meta analyses. Sample sets 6 to 9 (729 subjects) were from four independent 

studies (Table 1)(Baldassarre et al., 2010; Gabrielson et al., 2017; Odeberg et al., 2014; Samnegård 

et al., 2005). Two other sample sets (set 4 and 5) included 100 subjects that were selected for 

cancer-related studies and derived from the same twin cohort as set 1 (Lichtenstein et al., 2002; 

Magnusson et al., 2013). Besides one single subject, there was no overlap between these and the 

individuals analyzed during the discovery. The sample set 3 (2999 subjects) was again chosen 

from the population-based twin cohort (Lichtenstein et al., 2002; Magnusson et al., 2013), in which 

disease status was not considered during recruitment. Almost all (98.5%, all except forty-four) 

subjects were not included in sample set 1.  

Discovery and confirmation of age-association of HRG in serum and plasma 

Protein profiles were generated by using antibody bead arrays, as this platform allows to 

combine antibodies towards different targets whilst consuming only minute amounts of samples. 

Our analysis revealed consistent age-associated trends for HPA045005 across the eight sample 

sets for replication (Supporting Figure 3). Accounting for differences in age ranges and spectra, 

the combined effect of age on HPA045005 in the 9 sample sets was estimated using a random 

effects model and showed consistent association across sample sets (meta-analysis, 

P = 5.37 × 10-6, Figure 1). Less prominently, the increasing trends of the second and third ranked 

candidate profiles generated by HPA039928 and HPA029931 could not be replicated as 

consistently in all study sets (Supporting Figure 3).  

Focusing on HPA045005, of which the profile was most significantly associated and 

replicated, we investigated if the described protein levels in the circulation were controlled by 

genetic components. Employing GWAS with sample set 3 (N = 2592), a locus in chromosome 

3q27.3 was solely found to be associated with the antibody profile (P < 1.13  10-9 

= 0.01 / 8,833,947) among ~8.8M genetic variants imputed from or genotyped by Illumina 

BeadChip for >700K single nucleotide variants (Figure 2A). The locus spans two genes, FETUB 

and HRG, in the human genome (Figure 2B). The most significantly associated genetic variant in 

the locus was the single nucleotide polymorphism (SNP) of rs9898 (P = 2.35  10-97, minor allele 

frequency (MAF) = 0.32, increment per number of minor allele (β) = 0.15), which is a missense 

variant that induces the amino-acid sequence change from proline to serine in the histidine rich 

glycoprotein (HRG). Among the top 99 genome-wide significant SNPs (P < 1.13  10-9) having 

RefSNPs (rs) number, four SNPs (rs1042464, rs2228243, rs10770) including rs9898 are non-
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synonymous and two SNPs (rs3890864 and rs56376528) are located near (<2kbp) to transcription 

start site (Supporting Table 1). All are located in exons or upstream of HRG. This GWAS result 

indicates that the antibody describes the protein levels of HRG, a protein secreted by the liver and 

found in abundance in blood (Morgan, Koskelo, Koenig, & Conway, 1978). Associations of 

plasma HRG levels to SNPs have also been found in previous plasma profiling studies (Suhre et 

al., 2017).    

Next, we confirmed the binding of HPA045005 to HRG by using a sandwich 

immunoassay. Beads with HPA045005, an additional anti-HRG antibody (HPA054598), as well 

as negative controls were combined to detect HRG. When analyzing full-length HRG in dilution 

series experiments, we found that pairing both HPA045005 and HPA054598 with a biotinylated 

version of HPA054598 allowed us to detect HRG in a concentration dependent manner 

(Supporting Figure 4A). Here, the data obtained from both sandwich assay pairs was substantially 

higher than the internal negative controls. To further elucidate the selectivity of HPA045005 over 

other proteins, we used a protein microarray (Sjoberg et al., 2012). Besides the antigen used to 

generate HPA045005, the array contained 12,412 other protein fragments. In this analysis 

HPA045005 exclusively bound to its corresponding antigen (Supporting Figure 4B). This 

indicated that the antibody does not generally cross-react in an unspecific manner, which points at 

a selective recognition of abundant HRG in serum and plasma. This molecular analysis supports 

the GWAS findings that there is an affinity of HPA045005 to the secreted liver HRG, when using 

the antibody in bead-based assays for the analysis of serum and plasma samples. 

Mortality association and prediction 

Finding the age-association of HRG lead us to study further age-related indications. We 

therefore accessed the Swedish death registry that listed information whether the subjects were 

still alive or not with a follow-up time of ~8.5 years after donating the serum samples. We chose 

the largest sample set of the subjects at mid to old ages (sample set 3, N=2973, 48-93 years old) 

that also revealed the age-association of HRG. To test for all-cause mortality, a Cox proportional 

hazards model with age as the time scale was used. The Cox model was further adjusted for the 

effects of sex revealed that the HRG levels were significantly associated with the mortality during 

follow up (inter-quartile range (IQR) = 7.7-9.3; P = 1.13  10-4). As protein levels increase with 

age, the HRG value was standardized using a linear regression model for age and age squared for 

each sex, followed by scaling in order to account for the linear and quadratic effects of age and to 

let the hazard ratio (HR) quantifiable that was estimated by the survival model. The hazards model 

using the standardized HRG value affirmed the association (number of deaths=362, 

P = 6.45  10-5), estimating that the risk of all-cause mortality increased 1.25 times per standard 
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deviation (SD) of the HRG values compared to persons at the same age and sex. A Cox model 

stratified by sex suggested stronger association in women (N = 1602, deaths = 160, 

P = 2.13  10-5, HR = 1.35 per SD) than in men (N = 1371, deaths = 202, P = 0.059, HR = 1.15 

per SD). The comparison of the extreme subsets with standardized HRG levels of the upper and 

lower quartile demonstrated that the difference of median age at death was 1.8 years in favor of 

the bottom quarter (P = 3.87  10-3, HR = 1.54, Figure 3). The difference was 1.9 years in men 

(86.9 years vs. 85.0), while 0.6 years in women (89.6 vs. 89.0; Supporting Figure 5). Potential 

influence of general inflammation on survival were also tested by models including clinically 

measured C-reactive protein (CRP) values. As for HRG, two Cox models were fitted to 1) CRP 

and 2) age-adjusted CRP. The latter was obtained using same linear model as HRG including the 

adjustment for same covariate. The outcome of P = 0.024 (N = 2971, HR = 1.07 per SD) and 

P = 0.023 (HR = 1.01) was far less significant than for HRG. Next, we included CRP as a covariate 

in the Cox model for HRG in order to determine if inflammation in general would have an 

influence of HRG-related mortality. The resulting CRP-adjusted HRG association reduce the 

significance only from P = 6.45  10-5 to P = 1.05  10-4. (HR = from 1.25 to 1.24 per SD) We 

also confirmed that none of the hazard models violated the proportionality assumption of the Cox 

model. The predictive power of HRG levels together with age for all-cause mortality was tested 

using a Cox model with the time from sample collection as the time scale. The Harrell's C-index 

of the model was 0.766.  
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4. DISCUSSION 

HRG, a multi-functioning protein in plasma 

We analyzed the age-association of proteins with antibody-based assays in blood prepared 

as serum or plasma, and found increasing levels of HRG to be consistently associated with age. 

GWAS and sandwich assays demonstrated that HRG was the protein captured by the antibody in 

the exploratory discovery antibody assay.  

According to mRNA sequencing data of human tissues, HRG is exclusively expressed in 

liver (Uhlén et al., 2015). HRG has been known and described as an abundant protein in human 

blood plasma (Morgan et al., 1978; Poon, Patel, Davis, Parish, & Hulett, 2011). It has been 

characterized to interact with diverse molecules including heparin, immunoglobulin G (IgG), Zn2+, 

and complement components (Poon et al., 2011). HRG in plasma is known be involved not only 

in immune response toward foreign substances and clearance of dead cells, but also in vascular 

biology including anti-coagulation (Poon et al., 2011). HRG levels have previously been correlated 

and linked to blood type and age (Drasin & Sahud, 1996), but because of its molecular composition 

and abundance, HRG has also been assigned to many different biological processes. Hence it is 

yet difficult to pinpoint and postulate the most plausible mechanism of increasing HRG levels in 

the process of aging.  

In a genetic study of activated partial thromboplastin time (APTT), Houlihan et al. 

observed that the minor T allele of the rs9898 associated with shorter APTT, suggesting elevated 

risk of thrombosis in these individuals (Houlihan et al., 2010). The rs9898 was the SNP most 

significantly associated with HRG levels in sera of sample set 3. We observed that, as for APTT, 

the HRG levels increases with the number of T alleles of the SNP. Houlihan et al. proposes a 

potential interaction between HRG and thrombosis, hence thrombosis could be a possible mediator 

between HRG and risk of mortality. Notwithstanding, no single genetic variant around HRG 

reached genome-wide significance for the mortality risk in a study including the TwinGene cohort 

(Ganna et al., 2013), which served as sample source for several study sets.   

Limitation and variation 

Our study was cross-sectional and the ages of the participants covered those age ranges of 

average lifespan in many of the profiled sample sets, including both serum and plasma. There is 

still limited information available to interpret the trend of increasing of HRG levels as advanced 

age reflected longitudinal change within individual subjects. On the other hand, those gradual 

alterations were repeatedly observed in multiple independent study sets derived from different 

Swedish cohorts, which provides strong indications that the association of HRG with age was 
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confirmed. As we also found that the elevated level of HRG comparing to same-aged peers was 

correlated with higher risk of mortality, the age-dependent diversity may imply a time-wise 

transition along individual ages, possibly biological ages. We observed variation in the degree of 

the age-dependent transition, which is visible in Figure 2. To some extent, the variation can be 

explained by the shift of signal range in each assay, which was primarily developed to screen for 

possible associations and not standardized to determine absolute abundance levels. Seeing that the 

estimated slopes from sample sets 2, 3, and 9 were relatively lower than the values from the other 

sets, some parts of the variation might originate from the difference in age range and sample 

source, collection and selection procedures. For example, the individuals in the sample sets 2, 7 

and 9 were substantially younger (median age 40, 52 and 54 years, respectively) compared to all 

others (~65 years old). The sample sets 2, 3, and 9 were near population-based, while the others 

were healthy individuals except those in the sample set 1, in which older women and men were 

overrepresented due to same number selection per age group.  

Significance as a potential predictor of mortality 

Several indicators in blood were found predictive for mortality risk in previous studies and 

Barron et al. (2015) showed three markers, CRP, N-terminal pro brain natriuretic peptide (NT-

proBNP), and white blood cell (WBC) count, were statistically significant in meta-analyses 

(Barron et al., 2015). The HR estimate of HRG in this study (1.54 between top and bottom quarters) 

was comparable with the combined estimate in the meta-analysis (1.42 for CRP, 1.43 for NP-

proBNP, and 1.36 for WBC count). In a previous study of CRP for mortality risk in similar follow-

up duration (median 8.9 years) to this study, HR per SD of CRP was estimated 1.18, which is 

slightly smaller than our estimate of 1.25 from HRG (Schnabel et al., 2013). Comparing with the 

questionnaire-derived measures examined in Ganna and Ingelsson's study, HRG (C-index = 0.766 

with age) marginally outperformed the top predictors (max C-index = 0.74 including age) in the 

extensive population-based mortality study (Ganna & Ingelsson, 2015).    

Other recent affinity proteomics approaches have also shown age related signatures of 

aging, highlighting GDF15 as well as other proteins of coagulation system (Tanaka et al., 2018). 

While that study acknowledged the need for further validation, we have conducted extensive effort 

to confirm our observations across many different cohorts. Our strategy, on the other hand, was 

not to include previously known age-related proteins, hence did not shortlist antibodies that could 

be useful for screening plasma for these markers by using our method. 

In conclusion, an increased level of HRG in serum or plasma of older humans was 

discovered and adequately replicated in multiple sample sets by affinity proteomics. Appropriate 

molecular approaches were employed to characterize the identity of the discovered protein profile 
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that paved the way to develop targeted assays for expanding the analysis of our primary data. The 

supporting evidence of HRG serving as a predictive indicator for all-cause mortality in several 

years suggests HRG in blood as an aging indicator. 
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5. EXPERIMENTAL PROCEDURES 

Cohort design and sample selection 

a) Sample set 1 from TwinGene 

A population wide collection of blood from 12,614 twins born between 1911-1958 has 

been undertaken in a project called TwinGene. The primary aim of the TwinGene project has been 

to systematically transform the oldest cohorts of the Swedish Twin Registry (STR) into a 

molecular-genetic resource (Magnusson et al., 2013). From 2004 to 2008, a total of 21,500 twins 

(~200 twin pairs per month) were contacted by the invitation to the study containing information 

of it and its purpose, also consent forms and health questionnaire. The study population was limited 

to those participating in the Screening Across the Lifespan Twin Study (SALT) which was a 

telephone interview study conducted in 1998-2002 (Lichtenstein et al., 2002). Other inclusion 

criteria were that both twins in the pair had to be alive and living in Sweden. Subjects were 

excluded from the study who had declined to participate in future studies or been enrolled in other 

STR DNA sampling projects. When the signed consent forms returned, blood-sampling equipment 

was sent to the subjects, who were asked to visit local health-care facilities on the morning, after 

fasting from 20:00 the previous night, from Monday to Thursday and not the day prior to a national 

holiday. This was to ensure that the sample tube would be delivered to the Karolinska Institutet 

(KI) Biobank by the following morning by overnight mail. After arrival, the serum was stored in 

liquid nitrogen. 

The contribution for sample set 1 of serum samples from the TwinGene study consisted of: 

A) samples from 96 unrelated twins distributed in groups of 12 subjects (6 males and 6 females) 

in each age strata 50, 55, 60, 65, 70, 75, 80 and 85 years of age. The width of the age intervals was 

approximately +/- 3 months, and B) samples from 60 MZ twins (30 complete pairs) distributed in 

groups of 12 (3 male pairs, 3 female pairs) in each age strata of 50, 55, 60, 65 and 70 years of age. 

The width of the age intervals was approximately +/- 3 months.  

b) Sample set 2 from LifeGene 

Life Gene is a prospective cohort study that includes collection of plasma and serum, tests 

of physical performance, as well as questionnaire responses regarding a wide range of lifestyle 

factors, health behaviors and symptoms (Almqvist et al., 2011). Participants respond to a web-

based questionnaire and book time for a visit to a LifeGene test center, at which blood samples are 

taken. EDTA plasma was processed at the test center as follows: the EDTA tube with a gel plug 

was centrifuged, put into -20ºC prior to shipment in a cold chain. All samples were sent to KI 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/464909doi: bioRxiv preprint 

https://doi.org/10.1101/464909


 12 

Biobank for further separation into aliquots in REMP plates and frozen at -70ºC. All participants 

or, in the case of children under the age of 11, their guardians, provided signed consent.   

The sample set 2 cohort consisted of 5 male and 5 female samples randomly chosen from 

each of the ages <5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and 55 (+/- 3 months). For 12 participants, 

serum was also available. 

c) Sample sets 3, 4, and 5 from TwinGene 

Sample sets 3, 4, and 5 were selected from the same cohort, TwinGene (Magnusson et al., 

2013), as for sample set 1 (described above). Out of 132 microtiter 96-well plates for storage of 

TwinGene samples, the twelve plates having the largest age span (>20 years) among samples in a 

plate and another randomly chosen twenty plates having enough number of samples (>91) were 

selected. Sample set 3 consisted of the three thousand samples in the selected 32 storage places. 

The data of one individual was removed in the analyses because age of the subject is missing. 

Independently from the sample selection, sample sets 4 and 5 were age and gender matched 

controls for breast and prostate cancer studies, respectively. The mortality data was obtained by 

connecting individuals in TwinGene to the data in the Swedish tax authorities by personal 

identification number. The data was updated on 2015-01-10. Clinical blood chemistry assessments 

of hs-CRP of the samples in TwinGene was performed using Syncron LX System (Beckham 

Coulter). 

d) Sample sets 6 to 9 

The sample sets 6 to 9 are described in Supporting Text.  

e) Ethics 

All the studies were approved by the Ethics Board of the correspondent hospital or 

institution, and conducted in agreement with the Declaration of Helsinki. The ethical approval 

document numbers are 2007/644-31/2 for TwinGene, 2009/615-31/1 for LifeGene, 03-115 and 

2017/404-32 for IMPROVE, 95-397 and 02-091 for SCARF, EPN 2009/762 and LU 298-91 for 

CHAPS, and 2010/958-31/1 for Karma. All subjects, or their guardians, provided their informed 

consent to participation in individual studies. 

 

Data acquisition - Assay design and SBA procedure 

All 372 samples from sample set 1 and sample set 2 together were randomly allocated into 

wells in four 96-well plates. One sample from sample set 1 and one from sample set 2 were loaded 

into two more wells as a repeated control within a plate. Another sample in each cohort was 
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transferred to two more wells of two different plates as a control to examine inter-plate variation. 

The data of each of those 4 samples was combined by taking mean of three measures. All the 

human materials were biotinylated together with four negative controls that contained only buffer. 

For the entire 19 assays for discovery stage, the samples were labeled two times.  

The selected antibodies were divided into collections named bead arrays (BA) so that each 

BA consisted of 384 antibodies including positive and negative controls, anti-albumin and no 

antibody, respectively. For discovery, the selection of the affinity binders for one BA was 

determined by technical reasons such as the available amount. Every antibody in an BA was 

coupled with beads with a different colour code as detailed together with the assay procedure in 

the Supporting Information and as described earlier (Drobin et al., 2013).  

Quality control and preprocessing 

Because an aliquot of mixed bead solution was suspended into each sample, all values of 

the samples that were seemingly failed within an assay (with 384 antibodies) were discarded rather 

than one measure of a sample for an antibody. These were samples 1) that had median bead counts 

lower than twenty, 2) that had median values of MFIs lower than the median of the negative 

controls (buffer only) in the same plate and assay, and 3) that were detected as an outlier by robust 

PCA using ‘rrcov’ R package (version 1.3-4)(Hubert, Rousseeuw, & Branden, 2005). The cutoff 

probability values in an outlier diagnostic plot were 0.025 for both score and orthogonal distance 

coordinates. Those deviating beyond the cutoffs in both coordinates were classified as outliers, 

setting alpha, the proportional tolerance, to 0.9.  

The human samples were of two different types in terms of preparation method, plasma 

and serum. The two blood preparation types showed considerable dissimilarity, which was 

expected (Supporting Figure 2)(Schwenk, Igel, Kato, et al., 2010). Since such contrast was not of 

our research interest here, the data was split by the sample preparation type after quality control.  

In order to minimize the underlying sample-wise fluctuation of individual sample such as 

total concentration and dilution, probabilistic quotient normalization (PQN) was applied (Dieterle, 

Ross, Schlotterbeck, & Senn, 2006). It normalizes the data assuming 1) that the majority of 

measures of a sample reflect the fluctuation and 2) that it is not associated with our interests, age 

and gender. The variation across samples in the 96-well plates was minimized by Multi-MA 

method, with the assumption that the mean of observed values for each antibody within a plate is 

same as those of the other plates (Hong, Lee, Nilsson, Pawitan, & Schwenk, 2016) . The means of 

log-transformed measures within each plate were positioned in a 4-dimensional space, in which 

each axis corresponded to one plate. The vector that goes through origin and (1, 1, 1, 1) is named 
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A. The projection of each point onto the A axis is computed. All values for the point were shifted 

as much as the element vector on the corresponding plate axes of the projection. Limited for the 

analysis using both samples sets 1 and 2 for pilot investigation, the difference of individual 

antibody profiles between two blood preparation types was adjusted by the data of serum samples 

to have same mean and variance as plasma samples in the overlapping age range (50-60) trimming 

the upper and lower 5% to avoid the effect of outliers. 

Data acquisition of replication sample sets 

Data of other replication samples (sample sets 3-9) were acquired using the same protocol 

with a few variations. For each original study for sample sets 4-8, the samples were distributed 

into plates together with patient samples. The 383 other antibodies selected for each of the intended 

studies were included in the assays. Experiment and data preprocessing were conducted together 

with those additional samples and antibodies. Data of disease-free controls and for HPA045005 

were extracted from the processed full data sets. Likewise, we obtained the data of the other top 2 

candidates shown in Table 2. 

Genome-wide association study 

Genomic DNA from all available dizygotic twins and one member of each monozygotic 

twin pair were genotyped by using Illumina OmniExpress BeadChip (700K). Genotyping QC 

exclusion criteria: genotypic or individual missingness > 0.03, minor allele frequency 

(MAF) < 0.01, Hardy-Weinberg equilibrium (HWE) P < 10-7, sex mismatch, heterozygosity 

(individuals with an F-statistic beyond ±5 SD from the sample mean), or cryptic relatedness. The 

1000 Genome reference panel (GRCh 37/hg 19, Phase 1, version 3) was used for imputation, by 

using Mach 1.0 and Minimac. 

After genotype antibody-profile match, GWAS was performed among 2592 twins by using 

PLINK. Analyses were restricted to autosomal SNPs with imputation quality (info or r2) higher 

than 0.4. The first four principal components were used as covariates in the linear regression model 

to control population stratification. The --within option in PLINK was used to statistically adjust 

for relatedness (complete dizygotic twin pairs). Manhattan and quantile-quantile plots were drawn 

by using qqman package in R 3.4.1. 

The mutation types of the associated SNPs were obtained from UCSC table browser 

(https://genome.ucsc.edu) using human 'GRCh38/hg38' assembly and 'snp150Common' (dbSNP 

build 150, ≥1% MAF) table, which was accessed on 2018-09-20.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/464909doi: bioRxiv preprint 

https://doi.org/10.1101/464909


 15 

Other experimental details 

Experimental details on antibody selection, bead array assays, sandwich immunoassays, 

and protein microarray analysis are available in Supporting Text. 

Statistical analysis 

The preprocessed intensity data was log-transformed ahead of following analyses. To 

control family-wise error rate, Bonferroni method was employed in adjusting P-values unless 

otherwise specified. The linear association of an antibody signal with age was tested with ordinary 

linear regression using R. The meta-analysis was conducted using the inverse variance method 

with between-study variance estimated by DerSimonian-Laird model (DerSimonian & Laird, 

1986), which was implemented in the R-package “meta”. We used a linear mixed model to address 

the correlation between twins where the response variable was the normalized antibody 

measurement and age was a fixed covariate. This model was performed using the R-package 

“lme4”. For the association test for mortality, Cox proportional hazards model was fitted to the 

survival data with age as the time-scale and right censoring at the age on the updated date of death 

information (Thiébaut & Bénichou, 2004). In the survival analysis for two group comparison, the 

subjects in sample set 3 were divided into two groups, top and bottom quarters by the standardized 

HRG values, which were the scaled residuals of linear model where the normalized MFIs of HRG 

were regressed on age and age squared for women and for men, separately. The hazard models 

were adjusted for sex if applicable and for CRP as described above. The proportionality 

assumption of the models was tested using Schoenfeld residuals (Grambsch & Therneau, 1994). 

Survival analyses including computation of Harrell's C-index (Harrell, Califf, Pryor, Lee, & 

Rosati, 1982) were conducted using the R package "survival".  
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9. SUPPORTING INFORMATION 

 

Supporting Text - Materials and methods 

Supporting Table 1.  The HRG associated SNPs that are non-synonymous or located near to 

transcription start site. 

Supporting Table 2. Statistics for survival analyses presented in Figure 3 and Supporting Figure 

5 

 

Supporting Figure 1. Study design 

Supporting Figure 2. Difference between serum and plasma in sample sets 1 and 2 

Supporting Figure 3. Protein profiles of top 3 proteins in every sample set 

Supporting Figure 4. Additional results for molecular target 

Supporting Figure 5. Survival curves for women and men, comparing two extreme quarters by 

HRG levels 
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10. TABLES 

Table 1. Sample sets  

Study set 
Age  

[yr] 

Sex  

(F : M) 

Sample 

Type 
Indication* 

Cohort 

name 
References 

Set 1 50 – 92 78 : 78 Serum Population TwinGene 
(Lichtenstein et al., 2002; 

Magnusson et al., 2013) 

Set 2 
3 – 6 6 : 6 Serum Population 

LifeGene (Almqvist et al., 2011) 
9 – 63 102 : 102 Plasma Population 

Set 3 48 – 93 1613 : 1386 

Serum 

Population 

TwinGene 
(Lichtenstein et al., 2002; 

Magnusson et al., 2013) 
Set 4 51 – 86 50 : 0 Breast cancer 

Set 5 56 – 75 0 : 50 Prostate cancer 

Set 6 55 – 78 16 : 27 Plasma Cardiovascular disease IMPROVE (Baldassarre et al., 2010) 

Set 7 41 – 60 12 : 31 Plasma 
Myocardial 

infarction 
SCARF (Samnegård et al., 2005) 

Set 8 48 – 73 20 : 23 Plasma 
Acute coronary heart 

syndrome 
CHAPS (Odeberg et al., 2014) 

Set 9 40 – 73 600 : 0 Plasma Mammography KARMA (Gabrielson et al., 2017) 

 

* Subjects included in the presented study did not include subjects diagnosed with the disease of the 

indication area, but the subjects assigned as controls for the different disease cohorts. 

Table 2.  Antibody profiles with strongest association to age 

HPA ID FDR FDR – Twin† Within-pair correlation‡ 

HPA045005 3.9210-11 4.0710-10 0.428 

HPA039928 6.8310-10 2.1510-9 0.312 

HPA029931 1.0010-5 5.3010-5 0.404 
 

† The false discovery rate (FDR) of the linear mixed effects model with random effects of twin pair. 

‡Intraclass correlation coefficient between within-pair of 30 twin pairs.  
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11. FIGURE LEGENDS 

 

Figure 1. Meta-analysis from 9 different sample sets 

In the forest plot, the numbers in parenthesis indicate the age range of the included subjects. The 

estimated effect, 95% confidence interval of it, and study weight are shown as a tick, a line, and a 

grey box, respectively, in the middle. The numeric value of the effect is clarified at the right side. 

Figure 2. GWAS results of the age-associated plasma profile 

(A) Manhattan plot. The significance of association between genotypes and HPA045005 profiles 

is presented vertically. The dashed guide line marks the stringent threshold of P-value for GWAS, 

which is P=0.01 after Bonferroni correction. One peak in chromosome 3 indicates strong 

association of a locus with the molecular phenotype. (B) LocusZoom (Pruim et al., 2010) on 

associated locus. The illustration shows the elements of chromosome 3 associated with 

HPA045005 profiles. Zooming in the peak of the Manhattan plot in (A), the genes around the locus 

were presented together with the associated SNPs.  

Figure 3. Survival analysis comparing upper and lower quarters of HRG levels 

The individuals of sample set 3 were divided into four subsets by the quartiles of signal intensities 

for HRG abundance. Differential mortality across follow-up time is illustrated by the survival 

curves. Some detailed statistics related to this survival analysis are presented in Supporting Table 

2.  
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12. FIGURES 

 

Figure 1.  
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Figure 2.  
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Figure 3.  
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