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Abstract 
Motivation: Exome sequencing is a powerful technique for the identification of disease-causing genes. 
A number of Mendelian inherited disease genes have been identified through this method. However, it 
remains a challenge to leverage exome sequencing for the study of complex disorders, such as schiz-
ophrenia and bipolar disorder, due to the genetic and phenotypic heterogeneity of these disorders. 
Although not feasible for many studies, sequencing large sample sizes (>10,000) may improve statis-
tical power to associate more variants, while the aggregation of distinct rare variants associated with a 
given disease can make the identification of causal genes statistically challenging. Therefore, new 
methods for rare variant association are imperative to identify causative genes of complex disorders.    
Results: Here we propose a method to predict causative rare variants using a popular probabilistic 
problem: The Birthday Model, which estimates the probability that multiple individuals in a group share 
the same birthday. We consider the probability and coincidence of samples sharing a variant akin to 
the chance of individuals sharing the same birthday. We investigated the parameter effects of our 
model, providing guidelines for its use and interpretation of the results. Using published data on autism 
spectrum disorder, hypertriglyceridemia in addition to a current case-control study on bipolar disorder, 
we evaluated this probabilistic method to identify potential causative variants. Several genes in the top 
results of the case-control study were associated with autism spectrum and bipolar disorder. Given that 
the core probability based on the birthday model is very sensitive to low recurrence, the method suc-
cessfully tests the association of rare variants, which generally do not provide enough signal in com-
monly used statistical tests. Importantly, the simplicity of the model allows quick interpretation of ge-
nomic data, enabling users to select gene candidates for further biological validation of specific muta-
tions and downstream functional or other studies.  
Availability: https://github.com/yberstein/Birthday-Algorithm 
http://labshare.cshl.edu/shares/mccombielab/www-data/Birthday-Algorithm/Birthday-
Algorithm.html 
Contact: yberstei@cshl.edu (or yaelberstein@gmail.com)  
Supplementary information: Supplementary data are available online. 

 
 

1 Introduction  
Next generation sequencing (NGS), both exome and whole genome 
(Goodwin, et al., 2016; Shendure, et al., 2017), is a powerful tool for the 
investigation of genomic sequences and the identification of disease-re-
lated genes (Boycott, et al., 2013; Chong, et al., 2015; Do, et al., 2015; 
Stranneheim and Wedell, 2016; Yoshida, et al., 2011). It poses an exciting 
opportunity to investigate thousands of diseases for which causative genes 
remain to be discovered. Notably, complex diseases such as schizophre-
nia, bipolar disorder, autism and major depression, are particularly hard to 
study due to their genetic and phenotypic heterogeneity (Agarwala, et al., 
2013; Hindorff, et al., 2011; McClellan and King, 2010; Mitchell, 2012; 
Mitchell and Porteous, 2011; Pritchard and Cox, 2002). Hundreds of ge-
netic loci associated with complex disorders have been detected by ge-
nome-wide association studies (GWAS). However, the vast majority of 

these peaks have not been linked to a specific coding or non-coding variant 
that contributes to the disease and they can only explain a small portion of 
the expected heritability of these diseases (Eichler, et al., 2010; Maher, 
2008; Manolio, et al., 2009). This discrepancy between phenotypic and 
genetic evidence, often referred to as “missing heritability”, is a key bar-
rier to understanding complex disorders. 
A working hypothesis in the field of psychiatric genetics is the idea that 
certain diseases can be caused by many different variants in many differ-
ent genes, leading to mechanistic complexity. As a result, case-control ge-
nomic studies using standard metrics of statistical significance derive mul-
tiple and widespread low frequency signals. Assigning likelihood proba-
bilities to subtle variants of this type remains a major obstacle for the iden-
tification of causative variants in complex disorders. A simulation-based 
study (Kryukov, et al., 2009) suggested that at least 10,000 individuals are 
required to ensure satisfactory statistical power for case-control genomic 
studies. Another analytical study (Zuk, et al., 2014) recommends at least 
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25,000 cases together with a replication cohort. Accordingly, similar rec-
ommendations were proposed to overcome relatively low frequencies ob-
served in putative causative variants (Kiezun, et al., 2012; Tennessen, et 
al., 2012; Zollner, 2012). Finally, a comparison of methods to detect dis-
ease-associated variants showed that even sample sizes of ten thousand 
individuals made little improvement in statistical power, further suggest-
ing that much larger sample sizes are needed (Moutsianas, et al., 2015). In 
light of these observations, the cost and logistic complexity of genomic 
studies could significantly escalate, despite the dramatic drop in sequenc-
ing costs in recent years.  
In this work, we introduce a predictive method to successfully identify 
possible causal genes and variants in smaller sample sizes in complex dis-
orders. We assign the probabilistic likelihood of rare variants by assessing 
the probability that a recurrent mutation within a gene of a given coding 
length would happen by chance in a group of individuals of a given size. 
To this aim, we represented genomic data as a popular probabilistic prob-
lem, the birthday problem, which estimates the probability that a group of 
individuals share the same birthday. Our solution provides intuitive and 
simple criteria to prioritize gene variant candidates from genomic data for 
further downstream investigation. Here, we will show implementations on 
exome sequencing analysis. 

2 Materials and Methods 
The predictive method for prioritizing rare variants incorporates two main 
elements. The core element is the probability that a variant is observed by 
chance in a group of individuals; this is derived from the famous birthday 
probability. The second element is the way we implement this core prob-
ability in order to evaluate each observed variant. This is the decision-
making method, which combines both the probabilities in the group of 
cases and in the group of controls to the decision process. Finally, the al-
gorithm implements a permutation method to evaluate all variants ob-
served in the analysis, and provides the final ranking of potentially causing 
rare variants. 

2.1 The birthday probability 
We simplify the problem of rare variant association by focusing on the 
probability that individuals would have the same variant by chance. The 
analogy to the birthday problem is straightforward: in a group of N indi-
viduals, what is the probability that at least k of them share the same birth-
day by chance or analogously, have the same mutated variant? The for-
mulation is based on the following model.  
Probability model. Adopting the generalized birthday model, first pre-
sented by Mckinney (Mckinney, 1966), and its approximated solution 
(Diaconis and Mosteller, 1989), the probability of coincidence p can be 
extracted from   
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where N is the sample size, c is the coding length of the gene where the 
variant was observed and k is the observed recurrence of this variant i.e. 
the number of individuals presenting this same variant. 

2.2 The decision-making method  
In a cohort of exome sequenced cases and controls, we observe for each 

SNP (single-nucleotide polymorphism) the total number of cases and the 
total number of controls that present this specific variant. Then, we ques-
tion if our observation is a mere coincidence or if it may be indicating a 

potential causative variant. Ascertaining the probability of coincidence in 
both cases and controls allow us to evaluate our observation. If the proba-
bility results in a high value, it indicates that this observation is probably 
occurring by chance. Conversely, an indication of a real finding is when 
the probability results in a low value, indicating that there is a low proba-
bility of the observation being a coincidence. Generally, we expect that a 
causative variant would be observed in cases, but not in controls. There-
fore, the decision-making method selects variants that simultaneously 
show low probability of coincidence in cases and high probability of co-
incidence in controls. The birthday problem probability is quite sensitive 
to absolute values of recurrence and sample size. Therefore, even in the 
case of rare variants, where recurrence is low, this model should be sensi-
tive to small deviations from the recurrence rates expected for coincidental 
events. 

2.3 The algorithm 
The user could define the accepted level of coincidence; however, this 

would lead to a subjective decision-making based on the specific thresh-
old.  For this reason, we propose the following multiple testing algorithm 
inspired by Westfall & Young (Westfall and Young, 1993) . First, the al-
gorithm computes for each variant the probability of the observed recur-
rence in cases and controls, p*case  and p*control  respectively. Then, after 
permuting the disease status of the original dataset several times, it com-
putes for each variant the probability in cases and controls for each per-
mutated dataset. The final probability of each variant is the proportion of 
permutations where both the probability of cases and controls were more 
extreme than the observed probabilities. The permutations that will be 
counted are those that simultaneously have a lower probability in cases 
than the observed in the sample of cases and higher probability in controls 
than the observed probability in the sample of controls. Importantly, the 
algorithm can be applied at both variant and gene resolution. In a gene 
level implementation, the count for recurrence within a gene is defined as 
the overall recurrence of all variants in the specific gene. 
 

  
 

3 Results 
We tested several aspects of the proposed method in both simulated data 
and in published data. The simulated data consists of three different sets. 
In simulation set I, we verified that our adaptation of the birthday model 
could properly represent the probability of recurrence of a variant. We 
have tested the behavior of the core probability under different parameters. 

 Algorithm 

1. Compute p*
case 

 and   p*
control 

 for each gene/variant. 

2. Permutation of the disease status of the in-

dividuals. 

3. For each permutation compute p
case 

 and   p
control 

 

for each gene/variant. 

4. Compute for each gene/variant: 

𝑝 =

{𝑝&:;< ≤ 𝑝&:;<∗ 	𝑝&@ABC@D ≥ 𝑝&@ABC@D∗ }

#𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠
 

5. Rank the genes/variant in increasing order 

of p. 
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Second, in simulation set II, we tested the ability of the birthday probabil-
ity to test the association of rare variants to a disease in several simulated 
case-control studies. In the last set of simulations, set III, we tested the 
limit of the model in an actual case-control study of bipolar disorder 
(Goes, et al., 2016) using a wide range of recurrence values. We then 
tested the decision-making method on two published data sets of: autism 
spectrum disorder (Iossifov, et al., 2014) and hypertriglyceridemia 
(Johansen, et al., 2010). The implementation of our model on these two 
studies is based on our initial method which did not employ a permutation 
step. Therefore, the analysis relies on the comparison of the resulting prob-
ability of cases and of controls, which gave valuable insight about the 
basic model. Finally, we fully implemented our algorithm in a case-control 
study on bipolar disorder (Goes, et al., 2016) with ten thousand permuta-
tions. Here we compared the method with PLINK/SEQ and SKAT, which 
were the methods used in Goes study.    

3.1 Simulations  

3.1.1  General behavior of the core probability - simulation set I 

The generalized birthday model provides an estimate of the probability 
that a recurrent mutation occurred by random chance. Changes in each one 
of the parameters of the model – sample size (N), gene size (c) and recur-
rence (k) - lead to changes in the probabilities as expected, as illustrated 
in figure 1.  In this simulation set we computed the core probability based 
on the equation  (Diaconis and Mosteller, 1989) described in section 2.1 
and considering the following values for the parameters:   

𝑘 ∈ {2,3, … ,30},𝑁 ∈ {100, 500, 1000, 5000}, 𝑐
∈ {630, 1200, 2800, 6400} 

The coding length of a gene used in this simulation, represented by c, is 
based on the distribution of the principal isoform length (Rodriguez, et al., 
2013). Specifically, 630 nucleotides represent the coding length of 20% of 
the genes, 1200 nn 50%, 2800 nn 90% and 6400 nn 99%. More details on 
the coding size of the gene can be found in supplementary material. 

We have tested the probability of coincident recurrence computed by our 
model while varying only one of the three parameters. (i) We observe that 
for fixed sample size and recurrence level, as the coding length of a gene 
increases the probability of coincident recurrence decreases, i.e.  it would 
be less likely for a variant to coincide on the same nucleotide by chance 
as gene length increases. (ii) When testing the probability of coincidence 
in genes of the same coding length and recurrence, the probability of co-
incidence increases as the sample size becomes larger. i.e. more individu-
als increase the chances of coincidences happening. (iii) Observing the 
negative slope of all curves in figure 1, we see that for the same sample 
size and same coding length as the recurrence rates increase the probabil-
ity of coincident recurrence decreases, which is what we would expect 
since higher recurrence of a mutation may indicate an interesting observa-
tion.   
 

3.1.2 Performance of the decision-making method in rare vari-
ant association – simulation set II 

 
The following set of simulations illustrates the ability of the decision-mak-
ing model to identify rare variants associated with a disease. Each instance 
of the simulation is defined by three parameters: the sample size(N), the 
recurrence of the implanted causative variant in cases, and the recurrence 
of the implanted causative variant in controls. For simplicity, the sample 
size is the same in cases and controls and varied from 50, 500 and 5000 
individuals. Given that our focus is on the identification of rare variants 
associated with a disease, we set the recurrence of the implanted causative 
variant to be 5 or 10 in cases, and 1, 2, 3 or 4 in controls. Note that the 
fraction of the sample population sharing a given variant is determined by 
both the recurrence and the sample size. For example, a fraction of 20% is 
derived from recurrence of 10 in a sample of 50 individuals (10/50), and 
it represents a relatively common variant shared among 20% of the sample 
population. Whereas the same recurrence of 10 individuals in a sample of 
5000 defines a fraction of 0.2% (10/5000), and represents a rare variant. 
In order to evaluate the limit of the model, we ran 1000 iterations of each 
simulation instance. The recurrence of the background variant was simu-
lated based on allele frequencies of the Exome Variant Server, NHLBI GO 
Exome Sequencing Project (ESP), Seattle, WA (URL: http://evs.gs.wash-
ington.edu/EVS/), for details see supplementary figure 2. The coding size 
of each gene is sampled from the principal isoform distribution in APPRIS 
database. For each instance, we calculated the number of iterations where 
the implanted causative variant was the top 1 (red), top 2 (green) or top 3 
(blue) variant based on the basic probability method and 5% accepted level 
of coincidence (Figure 2). We observe that for sample sizes of 50 and 500 
individuals there are several instances where the implanted causative var-
iant was ranked at the top in almost all of the 1000 iterations (Figure 2). 
For example, even when sample size is 500 individuals, a variant recurring 
in 2% (10/500) of cases and 0.08% (4/500) in controls can be detected. As 
the sample size increases, the relative fraction of patients sharing a given 
variant decreases (representing rarer variants), therefore is expected to 
have a lower success in detecting the implanted causative variant as illus-
trated in figure 2.  
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Fig. 1. Impact of gene coding length and recurrence rates on the Birthday Method for 
variant detection. The plots show the probabilities (vertical axis) computed by the birthday 
model at different levels of observed recurrence (horizontal axis). Each curve represents a 
gene with a different coding length: 630 nucleotides represents the coding length of 20% 
of the genes, 1200 nn 50%, 2800 nn 90% and 6400 nn 99% (based on principal isoform, 
APPRIS database). The distribution of the coding length based on Appris database can be 
found in supplementary fig.1 
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3.1.3 Testing the limits of the decision-making method in a bipo-
lar disorder study – simulation set III 

Here we evaluate the decision-making method for a broader range of re-
currence of the implanted causative variant. We focus on simulations of a 
case-control study on bipolar disorder (Goes, et al., 2016), comprised of 
1141 affected individuals and 1146 unaffected controls, as a representa-

tion of a study in a complex disorder. The recurrence of each variant in 
cases and controls, and the coding length of this simulation set are gener-

ated similarly to the previous simulation set. In addition to that, we simu-
lated different “causative” rare variant scenarios by implanting a “causa-
tive” variant such that k, l ∈ {1, 2, …, 20 |k>l}. For each instance, we ran 
1000 iterations. Figure 3 illustrates the proportion of iterations in each in-
stance for which the implanted causative variant was ranked in the top 3 
based on the method. We observe that already with recurrence in cases (k) 
of 11 individuals, which is around 1% of cases, the model has an ~90% of 
success even when there are 5 controls with the same mutation. Note that 
even in a scenario of 6 cases having the same causative variant, the model 
detects the causative mutation in about 20% of the iterations.  

 

3.2 Implementation of the decision-making method on 
real data  

3.2.1 Autism spectrum disorder 

Here we illustrate the adaptability of the model to different studies. We 
show an implementation of the decision-making method to a family study 
design, as opposed to the previously described case-control study imple-
mentation.  We used the birthday model on data from a study on autism-
spectrum disorder (Iossifov, et al., 2014). Even though the method was 
developed for case control studies, we can implement it on family studies 
that focus on de novo mutations, as in the study on autism, as follows: de 
novo mutations are those detected in the affected sibling but not in either 
of the parents. The autism study consisted of exome sequencing to identify 
de novo mutations in simplex families: trios (unaffected parents with one 
affected child) or quads (unaffected parents with one affected and one un-
affected child).  Given that the families are independent, in order to im-
plement our decision-making method, we group the affected children as 
the case samples and the unaffected children as the control samples.  The 
study focused on “likely gene disruptive” mutations (LGD) which include 
frameshift, splice-site and nonsense mutations. Therefore, the input for re-
currence is restricted to the counts of LGD mutations in cases and controls 
in each gene. Specifically, 2508 affected children and 1911 unaffected sib-
lings. According to our model, only gene CHD8 presents a relatively low 
probability of coincidence in cases (0.043%), and simultaneously high 
probability in controls (100%). Therefore, this is the only gene that the 
birthday model would indicate as worthy of further investigation. Note 
that the original study (Iossifov, et al., 2014) reported significant results 
for specific gene-sets, such as chromatin modifier and FMRP target genes. 
However, in a gene level analysis, no specific gene had a statistically sig-
nificant number of de novo mutations in cases compared to controls, even 
CHD8 which was the most recurrently hit gene. We observe that all other 
genes showed a very high probability of being a coincidence in cases, as 
described in Supplementary Table 1. These results show the behavior of 
the model when relatively low recurrence is observed in the case group. 
When applying the model to LGD mutations, the model predicts only 
CHD8 to be a potential candidate. We also observe that none of the vari-
ants were recurrent in this gene, meaning that there were 7 different vari-
ants detected. Therefore, a variant level implementation would not select 
any of the variants of this gene. We also implemented the model after col-
lapsing the counts of LGD and missense mutations, even though they are 
separate categories in the original paper, and we observed that gene 
SCN2A has 6 mutations in affected individuals (2 LGD and 4 missense), 
therefore 2.82% probability of being a coincident recurrently hit gene in 6 
different individuals. 

3.2.2 Hypertriglyceridemia 
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Fig. 2. In the horizontal axis are scenarios defined by N-sample size, k – recurrence in 
cases and l – recurrence in control. Red bar represents the number of iterations that the 
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third. 
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We implemented the decision-making method based on the birthday 
model on a study of hypertriglyceridemia (Johansen, et al., 2010). We an-
alyzed this data at both the variant level and gene level, as an illustration 
of the differences of the decision-making method when applied at different 
resolutions. First, they did a GWAS study to identify common variants 
associated with hypertriglyceridemia. Then, they resequenced the genes 
that were identified in the first stage in order to identify rare variants 
within these genes. Because our focus is on rare variant association, we 
concentrate on this second part of the study. It is comprised of four genes, 
APOA5, GCKR LPL and APOB (exons 26 and 29, 67.8% of the coding 
region of this gene) that were re-sequenced in 438 cases and 327 controls. 
There were 80 rare variants, with minor allele frequency of at most 1% in 
controls.  
We first performed a variant level analysis based on the birthday model. 
Supplementary Table 2 describes for each one of the 80 rare variants, its 
respective recurrence in cases and in controls, and the resulting probability 
of cases and of controls. The model prioritizes 6 variants that presented 
very low probability in cases and very high probability in controls: 
p.Q234P in gene GCKR, p.G188E in gene LPL, and p.E2539K, p.P2794L, 
and p.S3252G in gene APOB. No variant in gene APOA5 showed inter-
esting probabilities, as all variants presented probability value 1 in both 
cases and controls. In this data set the probability values were quite ex-
treme i.e. values close to zero or one in both cases and controls. Therefore, 
regardless of the cutoff level, the same set of variants would be selected. 
We observe the expected: the decision model will “exclude” the rare var-
iant that recurred only one time in a case or in both groups. 
Then, we implemented our model at a gene level resolution, using 5% as 
the threshold of the probability of coincidence, to be consistent with the 
methods of the authors, who applied a fisher exact test with nominal sta-
tistical significance defined as two-sided p<5%. It is important to note that 
the published study counts the total alleles, thus sample size in the birthday 
model is equal to twice the number of individuals with diploid genomes. 
Their analysis combined all variants of the 4 candidate genes showing en-
richment of rare variants when comparing the counts in cases versus con-

trols. When performing a gene level analysis, we observe that our deci-
sion-making method would not indicate any of these four genes as poten-
tial candidates.  None of the genes presented simultaneously a relatively 
low probability in cases and high probability in controls, as described in 
Supplementary Table 3. Even though, genes GCKR, LPL and APOB have 
very low probability in cases, the method discarded those genes due to low 
probabilities in controls as well. In fact, collapsing the variants to the gene 
level had diluted the signal of these genes due the different variants found 
in the controls. If sample size were the total number of individuals, as we 
propose in our method, the results are very similar. It is worth noting that 
the majority of the individuals carry a single rare variant. This is helpful 
in our model when applying at a gene level, since we know we were not 
over-counting recurrence of individuals in the same gene. Also, reported 
in that article, the few individuals with multiple rare variants were 
overrepresented among individuals with HTG. Therefore, our model could 
be inflating the recurrence, leading to a better (lower) probability. Despite 
this, we could not detect “interesting” genes in the gene level analysis. 

3.3 Implementation of the algorithm to a study on bipo-
lar disorder  

Here we implemented the algorithm based on the birthday model on a re-
cent case-control study on bipolar disorder (Goes, et al., 2016), consisting 
of 1135 cases and 1142 controls. Note that for implementing the algo-
rithm, which includes the permutation step, the detailed SNP profile of 
each individual is needed as input. In our implementation, we focus on the 
set of disruptive variants – nonsense, splice-sites and frameshift muta-
tions, with minor allele frequency of at most 1% in EVS, 1000 Genomes, 
and the case-control group. Both variant level and gene level analysis were 
performed, using 10000 permutated datasets. We also compare the results 
of our algorithm with the methods applied in the original study. At the 
variant level we compare our results to Firth’s penalized logistic regres-
sion (PLR)(Firth, 1993). At the gene level we compare our results with 
both SKAT (Wu, et al., 2011) and the burden test as implemented in 
PLINK/SEQ. The variant list in Supplementary Table 4 describes the top 
20 ranked variants by our method, along with the rank according to PLR 
and the recurrence of the specific variant in the case group and in the con-
trol group. It also shows the rank of the respective gene from the gene 
level analysis by our method, by SKAT and by PLINK/SEQ, with the re-
spective recurrence. Note that both our algorithm in variant level resolu-
tion and PLR ranked the same top 1 variant in gene ZNF677, but quite 
different ranking for most of the top 20 variants. At the gene level, the 
ranking of the top 20 genes by our algorithm is closer to the ranking of 
SKAT than PLINK/SEQ. We observe overlap between the gene level and 
the variant level analyses based on our algorithm, especially on the top of 
the list. For example, the top three variants in the variant level analysis are 
located in the top three genes of the gene level analysis: ZNF677, 
DMRTC2 and LY75/LY75-CD302 (the variant is located in a region that 
overlap these two last). This shows the ability to detect rare variants even 
when applying the method at “high resolution” (variant level). The con-
sistent results at the gene level resolution reinforce the findings, showing 
that even at a lower resolution the results are the same. Those top variants 
and genes are of special interest for follow up. Furthermore, any variants 
that ranked high, even if the gene in which they are located had a lower 
ranking should be further investigated. There are several reasons for that, 
but the main factor is likely to be that the gene level analysis could dilute 
the signal. As we observed in the previous section, the gene could get 
ranked low due recurrence of other variants in the same gene in controls. 
In figure 4, we can see a graphical representation of the recurrence in cases 
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Fig. 4 This plot shows the top 50 variants based on our method. The variants (horizontal 
axis) are ordered on decreasing order of the rank, meaning that the first variant is the top 1 
and the last the top 50. The red dots represent the recurrence of the respective variant in 
cases, and the blue dots the recurrence in controls. 
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and controls of the top 50 variant by our method. Note that the small dif-
ference between the recurrence values, for example 5 cases and zero con-
trols among the top 10 variants, can be detected by our algorithm. In figure 
5 we can see the difference of the ranking of our algorithm in variant level 
compared to PLR, we observe concordance of the algorithms in the top 1 
and 3 variants.  
As guidelines for analyzing the data based on our algorithm, we recom-
mend further biological investigation of two main categories of genes. The 
first category consists of the genes at the top of the list where recurrence 
reflects the recurrence of a single variant within these genes. This means 
that the recurrence of a specific variant led the gene to be well ranked, 
even without the recurrence of other variants in the same gene. In the an-
alyzed bipolar dataset, we observe the following genes in this category: 
ZNF677 (#2 gene level and #1variant level); DMRTC2 (#3 in both gene 
and variant level); LRG1 (#11 gene level and #6 variant level). The second 
category consists of the genes that get highly ranked at the gene level due 
to overall recurrence of several variants within this gene. For example: 
ZNF776 (#4 gene and #10 variant); LY75/ LY75-CD302 (#1 gene and #3 
variant); ATP11A (#6 gene #12variant). 
We checked our top results from this bipolar disorder study for known 
association to psychiatric disorders or brain expression. Supporting find-
ings are summarized in table 1. 

Table 1 This table describes the supporting findings of the top 15 variants which are lo-
cated in genes already associated with psychiatric disorders. 

position	 gene	 	

chr19_42355761	 DMRTC2	
Copy number variation was identified in 
a study on autism  (van der Zwaag, et al., 
2009).  

chr3_66430818	 LRIG1	 Regulate hippocampal dendrite develop-
ment (Alsina, et al., 2016). 

chr1_20021023	 TMCO4	

Associated with olanzapine clearance in 
an African American cohort (Bigos, 
2015). Even though we did not see any 
reported association of TMCO4 with bi-
polar disorder, the use of this same anti-
psychotic is reviewed (Narasimhan, et 
al., 2007) on the treatment of acute ma-
nia and bipolar patients as well.*	

chr12_52822482	 KRT75	

Another variant in this same gene was 
detected in all affected individuals with 
bipolar disorder of an Amish family 
study (Strauss, et al., 2014), it was one 
of 10 potentially pathogenic alleles that 
was tested in a larger Amish cohort. 

chr2_179702420	 CCDC141	 Directly interact with DISC1. (Tomppo, 
et al., 2012).	

chr13_113536239	 ATP11A	 Associated with Attention Deficit Hyper-
active disorder (Poelmans, et al., 2011).	

chr1_145592761	 POLR3C	

An intronic variant that cause splicing 
in this gene was detected on the analy-
sis of both transcriptome and whole 
exome sequencing of males with Au-
tism Spectrum disorder (Codina-Sola, 
et al., 2015). 
On a pathway analysis focusing on 
schizophrenia this gene was 
overrepresented.(Rietkerk, et al., 
2009). 

chr19_33424399	 CEP89	

Important role in mitochondrial complex 
IV activity and is required for proper 
cognitive and neuronal function. (van 
Bon, et al., 2013). 

*Also, gene CD36, which was highly ranked in our gene level analysis, predicts response to 
olanzapine in schizophrenic individuals (Tomasik, et al., 2015). CD36 did not rank well at the 

variant level since the variant recurrence is spread over 7 different variants. 

3.4 The robustness of the algorithm  

We tested the robustness of the algorithm by evaluating the stability of the 
ranking when less data is available, meaning smaller sample size than the 
original. We showed good performance even with 70% of the original 
data. For this purpose, we randomly excluded some of the samples from 
the original data, and re-ran our algorithm on this dataset. To evaluate the 
similarities between the rankings of the different subsets to the original we 
use the R package GeneSelector (Boulesteix and Slawski, 2009). We ap-
plied the algorithm to nine different subsets of the original dataset ranging 
from only 10% to 90% of the original sample data. For each subset we 
generated ten different instances. GeneSelector was originally developed 
for testing stability and aggregation of ranked gene lists in gene expression 

data. Since all of the comparative metrics are based only on the ranking of 
the gene list, and not on the gene expression values, we could adapt it to 
our purpose. We focus on the following measures of evaluation: the per-
centage of overlap and the overlap score. The overlap of a fixed number t 
of top-variants is defined by the size s(t) of the intersection between two 
ranked lists i.e. the total number of variants that were ranked in the top-t 
of both lists. The overlap percentage is this overlap size, s(t), divided by t. 
For more details see (Boulesteix and Slawski, 2009). The second measure, 
the overlap score, is a weighted version of the overlap, where high ranked 
variants get higher weights than variants ranked below it. Specifically, we 
applied the linear weighted overlap score, meaning that position i in the 
list has a weight of 1/i on the score. As expected, as the sample size de-
creases compared to the original sample size, the intersection decreases as 
well. In this dataset, we can observe that when the sample size is 70% of 
the original size the algorithm provided results that the minimal average 
overlap score is 0.476, as seen in figure 5.  Note that this is the average 
overlap score when it is computed based on the overlap of the top 19 var-
iants. When the sample size is 80% the minimal average overlap score is 
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Fig. 5. The plots on the left show the rank of all 10 iterations of the specific sample size 
proportion compared to the rank on the original dataset. The blue line is presented as a 
guideline for comparison; it represents the case where the results of the algorithm in a 
smaller data provide the exact same ranking as the original. The plots on the right side show 
both the average percentage of overlap (white dots) and the average overlap score (black 
dots) of all 10 iterations over list position k.   
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Birthday Algorithm 

0.567, when considering the overlap of the top 21 variants. When the sam-
ple size is 90% the minimal average overlap score is 0.73, when consider-
ing the overlap of the top 31 variants. These show the robustness of our 
algorithm, that even when downsizing the data by 10%, the resulting rank-
ing of the algorithm is relatively similar to the original ranking algorithm. 
Figures corresponding to datasets of sizes 10% till 60% of the original data 
are in supplementary figure 3 and 4. 

 

4 Discussion 
We have proposed to take advantage of a well-known probabilistic model 
–the Birthday Model- to indicate if findings in complex disorders may be 
real or are mere coincidence in the small number regimes expected for rare 
variant studies. Its analogy to our genomic problem allows an intuitive 
understanding of what we want to evaluate: whether the finding that we 
have observed is a true signal or a chance occurrence. The core probability 
of our method is determined by the observed recurrence, the sample size 
and the size of the gene. This input data for the algorithm can be easily 
extracted from the sequencing data. This is also especially beneficial in 
complex disorders where the genetic architecture is still unrevealed. 
Therefore, using a simplistic approach of observing coincidence of recur-
rence may help avoid bias due to inclusion of biological features that may 
not affect the causality of variants. Other biological criteria, such as type 
of mutation and minor allele frequency, can be included a priori, as a fil-
tering step before implementing the algorithm.  
A benchmark dataset for a complex disease with validated rare variants 
and known non-associated variants would be the ideal dataset for testing 
the ability of our algorithm to accurately select true causal variants.  Un-
fortunately, there is no complex disease with a clear set of causative genes 
explaining a large fraction of the heritability. Therefore, we opted to ex-
plore the features of our method using simulations showing several rare 
variant scenarios detected by our method. We have also analyzed results 
of published studies in complex disorders under the implementation of the 
birthday decision-making method, showing the ability of the model to pro-
vide a quantitative metric to support the findings. And finally, we have 
performed the analysis of a case-control study on bipolar disorder using 
our algorithm, showing potentially interesting results for follow up stud-
ies. This same data on bipolar disorder was used to test the robustness of 
the algorithm, which showed good performance even when sub-sampled 
down to 70% of the original data. In addition to illustrating the robustness 
of the algorithm, this test shows the sensitivity of the algorithm when a 
smaller number of samples are available. 

Here we have applied the birthday model for two different study designs 
of complex diseases: case-control and family studies looking for de novo 
mutations. However, the simplicity of the model gives the flexibility to 
adapt it to different studies, as for example in cancer for detection of mu-
tations in tumor cells by modeling the normal cells as controls and the 
cancer cells as cases. It also can be applied for detecting protective vari-
ants by focusing on the recurrence of the variants present in the unaffected 
individuals instead the ones in the affected. This model can help to esti-
mate the significance of the finding, especially for studies which are in-
tended to identify rare mutations associated to complex disorders. The 
core probability based on the birthday model is very sensitive to the rela-
tively low values of recurrence, which generally do not provide enough 
signal in existing statistical tests. With that, we may miss the moderate 
and common variants. However, existing tools showed good performance 
for these kinds of variants. In summary, given the insufficient sample size 
in current studies of complex disorders, our algorithm complements exist-
ing methods, specifically for the detection of the missing rare variants. Our 
approach provides a quantitative metric for evaluating whether rare find-
ings, such as rare variants, may be meaningful in a world of coincidences. 
Hopefully, it will aid researchers in the prioritization of findings which 
merit further investigation.  
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