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Abstract 19 
We experience a rich variety of emotions in daily life. While previous emotion studies focused on only a few 20 

predefined, restricted emotional states, a recent psychological study found a rich emotional representation in 21 

humans using a large set of diverse human-behavioural data. However, no representation of emotional states in the 22 

brain using emotion labels has been established on such a scale. To examine that, we used functional MRI to 23 

measure blood-oxygen-level-dependent (BOLD) responses when human subjects watched 3-h emotion-inducing 24 

movies labelled with 10,800 ratings regarding each of 80 emotion categories. By quantifying canonical correlations 25 

between BOLD responses and emotion ratings for the movie scenes, we found 25 significant dimensions of 26 

emotion representation in the brain. Then, we constructed a semantic space of the emotion representation and 27 

mapped the emotion categories on the cortical surface. We found that the emotion categories were smoothly 28 

represented from unimodal to transmodal regions on the cortical surface. This paper presents a cortical 29 

representation of a rich variety of emotion categories, which covers most of the emotional states suggested in 30 

traditional theories.   31 

32 
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Introduction 33 
A central topic in affective neuroscience is to clarify how emotions are represented in the human brain. Recent 34 

functional magnetic resonance imaging (fMRI) studies have addressed this issue by showing brain representations 35 

of specific emotional states 1-8. However, the results were not sufficient to establish a brain representation of all of 36 

the emotional states that we experience because the emotional states were confined to those defined in the 37 

traditional emotion theories. 38 

Traditionally, two main theories regarding the constitution of emotion have been postulated: One is the 39 

basic (categorical) emotion theory, which posits that emotional states can be explained by distinct categories of a 40 

few to 15 basic emotions (e.g. ‘fear’, ‘sadness’, ‘happiness’) 9-13. These categories have often been used in a 41 

hierarchical structure (e.g. featuring ‘anger’-related subcategories of emotions such as ‘annoyance’ and ‘fury’). 42 

However, when using this structure, it is difficult to represent the fuzzy boundaries among such emotion families 14. 43 

The other theory is the affective-dimension theory, in which emotion is explained in a continuous space consisting 44 

of a few dimensions (e.g. ‘arousal’ and ‘valence’) 14-17. However, such a low-dimensional model is inadequate to 45 

account for differences among multiple emotional categories such as anger and fear 18. 46 

A recent study addressed the problems regarding the discriminability of the traditional emotion theories 47 

and provided a more natural interpretation of emotion by constructing a semantic space of emotion from reports of 48 

emotional experiences 19. The authors collected emotion categories, affective dimensions and free affective words 49 

for each of 2,185 movie clips. By examining the correlations and predictability between the rating types, the 50 

authors found 27 independent dimensions of specific emotion categories. The number of emotion dimensions, 27, 51 

is a richer variety of emotional states than in the traditional emotion theories. This behavioural observation suggests 52 

that the use of movie clips would enable us to measure brain activity associated with a rich variety of emotions. 53 

To provide a comprehensive understanding of the brain representation of emotion, we used fMRI to 54 

measure blood-oxygen-level-dependent (BOLD) responses from eight subjects while they watched 3-h movies 55 

consisting of 720 clips that were selected to induce various types of emotion. The movies were rated regarding each 56 

of 80 emotion categories (see Methods), which constitutes greater variety than used in the previous fMRI studies 1-57 
8. Using the emotion ratings, first, we examined the number of significant dimensions having high correlations 58 

between emotion ratings and the BOLD responses (see Methods). For each voxel, we estimated the BOLD 59 

responses to each of the 80 emotion categories by using a regularised linear regression. We constructed a semantic 60 

space consisting of dimensions of response patterns to represent the 80 emotion categories. Then, we performed a 61 

factor rotation analysis to give the interpretation of the dimensions and showed the cortical gradient of each voxel’s 62 

factor loadings.  63 

 64 
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 65 

Figure 1. Schematic of experiment and procedure for constructing a semantic space of emotion. BOLD responses 66 

for eight subjects were measured while they watched emotion-inducing movies for 3 h. Each movie scene was rated 67 

regarding 80 emotion categories. Voxel-wise response was modelled as a linear weighted sum of the emotion 68 

ratings using an L2-regularised regression procedure. A semantic space was constructed by performing a dimension 69 

reduction on the estimated model weights. 70 

 71 

 72 

Result 73 

Twenty-five dimensions of emotion ratings were significantly correlated with the BOLD 74 

responses 75 
First, we revealed significant dimensions of emotion ratings that were correlated with the BOLD responses. For this 76 

purpose, we used a canonical correlation analysis (CCA) between the ratings (3,600 time points × 80 dimensions) 77 

and the BOLD responses (3,600 time points × 3,984–13,068 voxels per subject) of the training dataset from each of 78 

the eight subjects (S1–S8), where factor loadings for each of the ratings and the responses were estimated to have 79 

the maximum correlation between them (see Methods). Then, we tested whether factor loadings showed a 80 

significant correlation (p < 0.01, with Bonferroni correction for 80 emotion categories) for each dimension of the 81 

ratings, using a test dataset of the ratings (1,800 time points × 80 dimensions) and the responses (1,800 time points 82 

× 3,984–13,068 voxels per subject). The results revealed 19~32 significant dimensions across subjects (S1: 20; S2: 83 
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27; S3: 25; S4: 28; S5: 23; S6: 32; S7: 24; S8: 19). The median was 24.75. We employed 25 dimensions in the next 84 

analysis to construct a semantic space of emotion. 85 

 86 

A semantic space shows brain representation of 80 emotion categories  87 
To construct the semantic space of emotion, we used a dimensionality reduction technique on the BOLD-response 88 

patterns to 80 emotion categories for all the subjects. First, we concatenated estimated weights from individual 89 

subjects (80 × 18,684–34,066 voxels per subject). Then, we performed a principal component analysis (PCA) on 90 

the concatenated weights while treating the emotion categories and voxels as dimensions and samples, and reduced 91 

the dimensionality from the original 80 to 25. The semantic space of emotion was defined as the space consisting of 92 

the 25 dimensions. To maintain the quality of the semantic space, we only used voxels with high prediction 93 

performance of the regression model (see Methods). 94 

In the semantic space of emotion, the distance for each pair of emotions represents the dissimilarity in the 95 

BOLD-response patterns between them. Fig. 2a shows the semantic space projected into the two-dimensional 96 

space, maintaining the emotion-pair distances in the 25-dimensional space as much as possible. In this space, 97 

positive and negative emotions are separated. As supporting results, we labelled each emotion in the semantic space 98 

as a positive, negative, or ambiguous emotion based on the emotion-word hierarchy of WordNet-Affect 20 (Fig. 99 

S1a). There, intra-class emotion labels are located close to each other. This tendency is quantitatively confirmed by 100 

using a random permutation test (Fig. S1b). 101 

To interpret each principal component of the semantic space, we performed varimax factor rotation (Fig. 2b). 102 

The results showed that each factor had high weights for related emotion categories such as ‘fear’ and ‘horror’. Fig. 103 

2c shows factor loadings for the four representative factors, where the top-left factor (ID1) contains high weights in 104 

‘Disgust-related’ emotions such as ‘disgust’, ‘empathic pain’ and ‘fear’. The top-right factor (ID2) contains high 105 

weights in ‘Awkwardness-related’ emotions such as ‘awkwardness’ and ‘laughing’. The bottom-left factor (ID4) 106 

contains high weights in ‘Sexual-desire-related’ emotions such as ‘sexual-desire’, ‘sexiness’ and ‘levity’. The 107 

bottom-right factor (ID19) contains high weights in ‘Emotional-hurt-related’ emotion categories such as 108 

‘compassion’, ‘emotional hurt’ and ‘sadness’. Interpretations of the other factors are shown in Fig. S2. We found 109 

that each dimension was related to a specific emotion category, and more than half of the factors corresponded to 110 

emotion dimensions addressed in the work of Cowen et al. (2017): ‘Awkwardness’, ‘Sexual desire’, 111 

‘Entrancement’, ‘Amusement’, ‘Adoration (Friendliness)’, ‘Boredom’, ‘Anger’, ‘Admiration’, ‘Joy’, ‘Emotional 112 

hurt (Sadness)’, ‘Interest’, ‘Craving’ and ‘Nostalgia’. The other dimensions also allowed a similar interpretation as 113 

those in the work of Cowen et al. (2017), although the grouping was different: In our case, negative emotions such 114 

as ‘disgust’, ‘empathic pain’ and ‘fear’ were combined into one dimension, ‘Disgust’. Furthermore, ‘tension’, 115 

‘nervousness’, ‘scare’ and ‘positive-fear’ were combined into one dimension, ‘Nervous scared’, while distinct 116 

dimensions were reported for the related emotions (‘Anxiety’, ‘Horror’ and ‘Fear’) in the work of Cowen et al. 117 

(2017). As for positive emotions, we found some ‘Excitement-related’ emotions (‘excitement’, ‘entrancement’, 118 
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‘exuberance’, ‘encouragement’, and ‘fever’) that showed low contributions to explaining the BOLD responses (Fig. 119 

S3).  120 

 The semantic space was constructed from the aggregated regression model weights across all the 121 

subjects. To examine whether the obtained semantic space was consistent across individual subjects, we computed 122 

the Pearson’s correlation coefficient between the semantic space from one subject and that from the remaining 123 

seven subjects. As a control condition, we also computed the correlation coefficient between the semantic space 124 

from each excluded subject and that from the emotion ratings (see Methods). Table S1 lists the two types of 125 

correlation coefficients. For all of the subjects, we found a higher correlation between the individual and the group 126 

semantic space, than in the comparison with the emotion ratings. This suggests that the individual semantic space 127 

was consistent across the subjects and that the group semantic space can be used as a representative space for all 128 

the subjects.  129 

 130 

131 
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  132 
Figure 2. A semantic space of emotion and varimax factor loading. a Eighty emotion categories were plotted 133 
according to distances between the estimated weights of the L2-regularised regression model, using t-distributed 134 

stochastic neighbour embedding (t-SNE 21). A single RGB colour was assigned to each emotion category according 135 

to the three main components of the estimated weights (see Methods). Both marker size and font size were 136 

modulated according to the average weight across voxels (larger size denotes higher average weights). b Factor 137 

loadings of 25 components (= 25 emotion dimensions) of the estimated weights after varimax rotation. c Factor 138 

loadings of four representative components: ‘Disgust’, ‘Awkwardness’, ‘Sexual desire’ and ‘Emotional hurt’. The 139 

bars indicate the five highest and lowest factors. 140 

 141 

 142 

Cortical gradient of 25 emotion dimensions 143 
To examine how emotion dimensions were represented on the cortical surface, first, we assigned an RGB colour 144 

according to the first to third principal components of the semantic space (see Methods). Two examples (subjects 145 

S1 and S5) of the visualisation are shown in Fig. 3a. (The cortical maps for the other subjects are shown in Fig. S4.) 146 

In both of the cortical maps, we found a weight gradient shown as a color gradient in the whole cortical surface. 147 
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For example, different colours were assigned to the postcentral area and the superior temporal area. Indeed, weight 148 

distributions of 80 emotion categories differed between the two representative voxels obtained from these two areas 149 

(Fig. 3b). Specifically, one voxel from the postcentral sulcus contained high weights in ‘Disgust’-related emotions 150 

such as ‘empathic pain’ and ‘unrest’. The other voxel in the superior temporal gyrus contained high weights in 151 

‘Interest’ and ‘Awkwardness’-related emotions such as ‘interest’, ‘empathy’, ‘laughing’ and ‘awkwardness’. This 152 

suggests that weight variability across voxels was successfully visualised across the cortical map.  153 

Then, we examined how weights of the emotion dimensions varied across the cortical surface, especially in 154 

the four areas that showed consistent colour gradients across subjects, namely, the postcentral area, the superior 155 

temporal area, the inferior parietal area and the precuneus (Fig. 4b). In each of these four areas, we obtained 156 

weights of the 25 emotion dimensions from 30 successive positions on eight manually defined lines (line 1–8). The 157 

cortical maps of two subjects (S1 and S5) in Fig. 4a show the lines. The obtained weights from each line were 158 

plotted in a sequential order of spatial coordinates in the flattened map (Fig. 4b, Fig. S5). The postcentral area 159 

showed high weights in negative emotions such as ‘Disgust’ and ‘Nervous scared’ across the successive positions. 160 

‘Sexual desire’ also showed high weight, and high correlation in the weight gradient with ‘Disgust’ (line1: r = 161 

0.428, line2: r = 0.648). The superior temporal area showed a high weight gradient from ‘Interest’ to 162 

‘Awkwardness’ and ‘Aggressiveness’. ‘Aggressiveness’ showed similar weight gradients from ‘Nervous scared’ 163 

(line3: r = 0.95, line4: r = 0.97), ‘Sexual desire’ (line3: r = 0.77, line4: r = 0.88) and ‘Curiousness’ (line3: r = 0.90, 164 

line4: r = 0.95). The inferior parietal area showed a high weight gradient from ‘Disgust’ to ‘Awe’ and ‘Interest’. 165 

‘Disgust’ showed similar weight gradient from ‘Sexual desire’ (line5: r = 0.79, line6: r = 0.75) and ‘Curiousness’ 166 

(line5: r = 0.95, line6: r = 0.90). ‘Interest’ showed similar weight gradients from ‘Emotional hurt’ (line5: r = 0.93, 167 

line6: r = 0.77) and ‘Coolness’ (line5: r = 0.95, line6: r = 0.89). The precuneus showed a high weight gradient from 168 

‘Interest’ and ‘Awkwardness’ to ‘Nervous scared’. ‘Interest’ showed a similar weight gradient to ‘Emotional hurt’ 169 

(line7: r = 0.92, line8: r = 0.80). Furthermore, ‘Sexual desire’ and ‘Disgust’ also showed high weights across the 170 

latter positions, and their gradients were highly correlated (line5: r = 0.94, line6: r = 0.96). As supporting results, 171 

we showed that each line was obtained from anatomically similar regions, which is supported by the same or 172 

neighbour labels of the Destrieux atlas 22 obtained from each line across all the subjects (Fig. S6). 173 
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 174 
Figure 3. Cortical map of the semantic space of emotion. a Cortical maps for two subjects (S1 and S5). Emotion 175 
representations were visualised by assigning RGB colours according to the three main components of the semantic 176 

space (see Methods). In each cortical map, we show the results only for voxels showing significantly high 177 

prediction accuracy (p<0.0001, uncorrected). b Examples of the weight distribution for two voxels in the 178 
postcentral sulcus and the temporal gyrus of a single subject (S1). Positions of the two voxels are indicated on the 179 

S1’s cortical map in Fig. 3a. A red colour denotes positive weight and a blue colour denotes negative weight. 180 

Positions of emotion categories were the same as the positions in Fig. 2a. 181 
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 182 
Figure 4. Weight gradient on the flattened cortical surface. a Positions of eight representative gradients are 183 

depicted as lines for two subjects (S1 and S5). Lines 1 and 2 were mainly located in the postcentral area, Lines 3 184 

and 4 were mainly located in the superior temporal area, Lines 5 and 6 were mainly located in the inferior parietal 185 

area, and Lines 7 and 8 were mainly located in the precuneus. The anatomical location of each line was consistent 186 

across subjects, which is supported by results in Fig. S4. b Spatial transitions of representative (high absolute 187 
weights) emotion dimensions are plotted for each line. A bold plot denotes mean contribution across subjects. 188 

Shaded areas denote the standard deviation of contributions across subjects. The weights of all the emotion 189 

dimensions are shown in Fig. S5. 190 

 191 

 192 
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Discussion 193 
To reveal how a rich variety of emotion categories are represented in the human brain, we estimated the BOLD 194 

responses to 80 emotion categories, and constructed a semantic space consisting of dimensions of response patterns 195 

to specific emotion categories. We found 25 semantic dimensions that exhibited statistically significant signals. 196 

This is a considerably richer variety of emotions than the number of emotion categories or affective dimensions 197 

used in previous brain imaging studies (i.e. a few to 15) 1-8. Furthermore, each dimension showed a smooth gradient 198 

of the weights in the cortical surface. Such a gradient could not be revealed in these previous studies using a few 199 

emotion categories. By using a rich variety of emotions, we were able to construct a continuous space of emotion, 200 

and show more detailed localisation of the emotion categories. 201 

 The semantic space found here covered a large variety of emotion representations, and traditional 202 

emotion theories can be explained by part of the representations. In our semantic space, positive-emotion and 203 

negative-emotion categories were separately distributed (Fig. S1). This indicates that the positive/negative 204 

distinction is a basic factor for the organisation of emotions in the brain representation. This organisation is not 205 

contradictory to the emotion distribution in ‘Valence’ dimension of the core affect model 14-17. Furthermore, we 206 

found that most of the dimensions in our semantic space consisted of semantically related emotion categories that 207 

allowed interpretation as a group (e.g. ‘tension’, ‘nervousness’ and ‘alertness’ to form the ‘Nervous scared’ 208 

dimension). The total of 25 dimensions covered most of the emotion categories posited in the basic emotion 209 

theories 9-13. Some dimensions for negative emotions such as ‘Disgust’ and ‘Nervous scared (Fear)’ had higher 210 

average weights than those for the other dimensions such as ‘Joy (Happiness)’ and ‘Anger’ (Fig. S3). It has been 211 

suggested that negative emotions are more informative in the brain representation than the other categories, which 212 

may be because of their importance for survival23, 24, 31.  213 

 Emotion representation in our semantic space was partly consistent with the representation revealed 214 

using behavioural data. Specifically, the emotion-category distribution in our semantic space was consistent with 215 

the manually defined hierarchy of WordNet-Affect 20 (Fig. S1) in that the positive, negative and ambiguous 216 

emotions were distinguished from each other 25. This distinct positive/negative representation was also observed in 217 

a recent study using large-scale psychological assessments 19. Quantitatively, regarding the number of emotion 218 

dimensions, the 25 dimensions found here were similar to the 27 dimensions reported in the work of Cowen et al. 219 

(2017). Qualitatively, most of the 25 dimensions showed similar meanings to the behaviourally-defined emotion 220 

dimensions (e.g. ‘Awkwardness’, ‘Sexual desire’, and ‘Entrancement’). However, we found some differences 221 

regarding the boundaries among negative emotions (‘Empathic pain’, ‘Disgust’, and ‘Fear’). In our case, these 222 

negative emotions were combined into a single dimension while they were maintained as separate dimensions in 223 

the work of Cowen et al. (2017).  224 

Regarding the emotion dimensions of the semantic space, we found the smooth gradients of the weights in the 225 

following areas: the superior temporal area, the inferior parietal area, the precuneus, and the postcentral area. A 226 

previous study reported a unimodal to transmodal gradient of functional connectivity in the former three areas, 227 
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suggesting a cortical gradient of representation from sensory information to more abstract function 26. A similar 228 

gradient was observed during speech recognition tasks, as represented by the gradient from visual/tactile (sensory) 229 

information to emotional/social (abstract) information 27. In these areas, such gradients spatially correspond to our 230 

weight gradient from relatively strong emotions (e.g. ‘Sexual desire’, ‘Disgust’ and ‘Nervous scared’) to more 231 

complex emotions (e.g. ‘Awkwardness’, ‘Emotional hurt’ and ‘Interest’). This suggests that such strong emotions 232 

might be related to sensory or physical information, while more complex emotions might be related to more 233 

abstract (higher-order cognitive) information. Furthermore, in the postcentral area, we found a smooth gradient of 234 

‘Nervous scared’ and ‘Disgust’ (including empathic pain). In this area, such localisation of these negative emotions 235 

was also reported in previous fMRI studies 28, 29. However, the cortical gradient of the representation has not been 236 

revealed. This area is well known to have selectivity to somatosensory information, where regions responding to 237 

upper body parts are located more ventrally 30. The localisation of the negative emotions may be caused by bodily 238 

reactions to the experience of high-arousal emotions, such as goose pimples 31, and the weight gradient may be 239 

caused by differences in the bodily parts exhibiting responses among these emotions.  240 

In the current study, we demonstrated localisation of emotion categories in the whole cortex, but not in the 241 

sub-cortex. Previous brain-imaging studies traditionally focused on localisation of basic emotions into the sub-242 

cortical areas 32-36 and the connected cortical areas such as insular and cingulate 37-39. In particular, the amygdala is 243 

well known to be sensitive to ‘fear’ 40, 33. Although our study showed emotion representation in these connected 244 

areas, we could not provide strong support for the relationships to the sub-cortical areas. For example, when we 245 

examined voxels showing high prediction accuracy of the emotion-category model, in fact such voxels were found 246 

in the amygdala, (no. of significant voxels/no. of voxels, S1:5/334; S2: 69/427; S3:11/392; S4:61/427; S5:30/398; 247 

S6:8/349; S7: 8/400; S8:5/361, uncorrected p < 0.0001, Pearson's correlation test). However, the effect size was 248 

smaller than that in most cortical areas. Therefore, we here focused on the cortex. 249 

 Our weak support for association of emotion with the amygdala might have been caused by the experimental 250 

settings. In most previous studies 41, 42, 35, 36, brain activities were measured when evoking a specific emotion 251 

(especially ‘fear’) and also under neutral conditions, and the relationships of emotion to the amygdala were 252 

examined as a difference of activation between the two conditions. In comparison, we measured brain activities 253 

when feeling certain kinds of emotion evoked by movie scenes, and the responses to each emotion were estimated 254 

without comparison to the neutral condition. Furthermore, the amygdala activity might have been influenced by a 255 

task modality, where the difference in activation between the two conditions was lower in a movie-viewing task 256 

than in a still-image-viewing task 36. Therefore, we could not provide strong evidence for the relationship of 257 

emotions with the amygdala. 258 

One important issues in this context is about the relationship between emotions and objective information. In 259 

this study, we subtracted the effect of sensory information when estimating emotion-category weights (see 260 

Methods). However, it is natural to assume that emotion is positively correlated with objective information such as 261 

visual and auditory features (e.g. ‘a baby induces feelings of adoration’, ‘a music in a minor key induces feelings of 262 
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sadness’). Actually, intense competitions to predict emotions from objective information (e.g. visual, auditory, and 263 

linguistic features) are lively held in the engineering field, and the state-of-the-art methods show good prediction 264 

performance 43-46. To obtain a comprehensive understanding of emotion, future study is necessary to perform close 265 

comparisons of objective information, emotions, and the related brain activity. 266 

 Taken the obtained findings together, we found that a rich variety of emotion categories are represented 267 

in the human brain. In this study, we visualised the representation as a semantic space consisting of 25 emotion 268 

dimensions, each of which can be interpreted as similar emotion categories. In addition, we found smooth gradients 269 

of the emotion representation on the cortical surface, especially from unimodal to transmodal regions. 270 

271 
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Methods 272 
 273 

Subjects. Eight healthy individuals (S1–S8; age 23-32; four females) with normal or corrected-to-normal vision 274 
participated in our experiments. Before the experiments, we explained to the subjects that stimuli to be used would 275 

include extreme content, such as violent, disgusting or erotic representations. All the subjects accepted this and 276 

provided written informed consent. The ethics and safety committees of the National Institute of Information and 277 

Communications Technology approved the experimental protocol. 278 

 279 

Experimental design. In our experiments, fMRI BOLD responses were recorded while subjects watched audio-280 
visual stimuli. The stimuli consisted of 138 movie clips from a video-sharing site vimeo (https://vimeo.com/jp), 281 

which were selected to induce a rich variety of emotions. Examples of the movie genres were as follows: horror, 282 

violent drama, comedy, romance, fantasy, daily life scenes, and action movies. Movie clips were cut down to 10–283 

20 s in length (mean of 15 s), and recreated as a sequence of stimuli by combining the selected clips in a random 284 

order.  285 

 The visual stimuli were presented at the centre of a projector screen with 23.3 × 13.2 degrees of 286 

visual angle at 30 Hz. The audio stimuli were presented through MR-compatible earphones with an appropriate 287 

volume level for each subject. The subjects were instructed to watch the clips naturally as if watching TV show in 288 

daily life. For each subject, fMRI data were collected in 3 separate sessions over 3 or 4 days. Each session 289 

consisted of six movie-watching runs (each run lasting 610 s). A total of 18 runs were divided into 12 model 290 

training runs and 6 model testing runs. The model training runs were used to train encoding models and consisted 291 

of 480 different movie clips shown once each (total 7,200 s). The model testing runs were used to assess model 292 

prediction accuracy and consisted of three different types of 300-s movie sequence shown four times each (total 293 

3,600 s). None of the movies in the training runs was shown in the test runs.  294 

 295 

fMRI data acquisition. fMRI data were acquired using a 3T Siemens Trio TIM scanner (Siemens, Germany) 296 
with a standard Siemens 32-channel volume coil and a multiband gradient echo-planar imaging sequence 47 297 

[TR = 2,000 ms, TE = 30 ms, flip angle = 62°; voxel size = 2 × 2 × 2 mm3, matrix size = 96 × 96, 72 axial slices, 298 

FOV = 192 × 192 mm2, multiband factor = 3]. Anatomical data were collected on the same 3T scanner using T1-299 

weighted MPRAGE [TR = 2530 ms, TE = 3.26 ms, flip angle = 9°, voxel size = 1 × 1 × 1 mm3, matrix 300 

size = 256 × 256, 256 axial slices, FOV = 256 × 256 mm2]. 301 

 302 

fMRI data preprocessing. The Statistical Parameter Mapping toolbox (SPM8, 303 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) was used to preprocess EPI data. We performed motion 304 

correction by aligning all of the EPI data to the first image from the first scan for each subject. For each voxel, 305 

responses were normalised by subtracting the mean response across all time points. Then, long-term trends were 306 
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removed by subtracting results of the median filter convolution (120-s time window). To define anatomical regions, 307 

for each subject, the cerebral cortex was segmented into 156 regions of the Destrieux atlas 22 by using FreeSurfer 308 
48. The segmentation results in T1 space were registered to the EPI space using Freesurfer functions, and each voxel 309 

was given one anatomical label. 310 

 311 

Emotion ratings and preprocessing. We collected ratings regarding each of the 80 emotion categories (see 312 

‘80 emotion categories’ in Methods) induced upon exposure to the movie stimuli used in our fMRI 313 
experiments. To obtain the emotion ratings, we recruited 174 annotators. They were instructed to rate how well an 314 

emotion category (e.g. ‘laughing’) matched to the movie scene, by assigning a value ranging from 0 (not match at 315 

all) to 100 (matched perfectly). These annotators were also instructed to make ratings based not on ‘movie 316 

character’s feeling’, but on ‘their own feeling’. The ratings were made by dragging a mouse while watching the 317 

movie stimuli. The ratings were stored at 1-s resolution. To obtain reliable data, first, we conducted an aptitude test 318 

for each annotator. Specifically, we used a 246-s test movie, and examined consistency of temporal fluctuation of 319 

ratings between a template by one of the authors (NK) and each annotator, regarding each of two emotions: ‘fear’ 320 

and ‘disgust’. From the results, for all the 174 annotators, the ratings showed significantly high correlations with 321 

the template ratings in both emotions (p < 0.05 for 246 time samples). 322 

For each emotion category, each of four different annotators rated all of the movie stimuli. At most, two 323 

emotions were rated by one annotator, and we prevented them from rating similar emotions in successive rating 324 

periods. (In each period, a annotator rated for the whole movie stimuli.) The ratings for each annotator and each 325 

emotion were de-noised by convolving a median filter (5 s time window), and de-trended by subtracting results of 326 

convolving another median filter (150 s time window). For each emotion category, the preprocessed ratings were 327 

averaged across those for the four annotators at 2-s resolution (i.e. BOLD sampling rate). Finally, we obtained 328 

preprocessed 80-emotion ratings of 3,600 samples used as training data, and 80-emotion ratings of 1,800 samples 329 

used as test data. 330 

 331 

Model fitting. To estimate the BOLD-response patterns to 80 emotion categories, we constructed a voxel-wise 332 

linear regression model to explain BOLD responses 51, 52. The stimulus vector (total 2,080 dimensions) included 333 

emotion ratings and sensory factors (visual and auditory features). The latter was included to remove spurious 334 

correlation with the sensory factors (see Removing spurious correlation between emotion ratings and 335 

sensory information). To capture the hemodynamic response, the stimulus vector was concatenated with three 336 
temporal delays of 2, 4 and 6 s (total 6,240 dimensions). The model weights were optimised by least squares with 337 

L2-regularisation. The regularisation coefficient (𝛾) was optimised in 10-fold cross validation using 10 unique 338 

training-validation (9:1) subsets by randomised sampling from the training data (3,600 samples). In each cross-339 

validation step, we then constructed the regression model using a training subset, and computed prediction 340 

accuracy using a validation subset for each 𝛾 of 2#, where 𝑖 = {0,2, … , 25}. The prediction accuracy was 341 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/464636doi: bioRxiv preprint 

https://doi.org/10.1101/464636
http://creativecommons.org/licenses/by-nc-nd/4.0/


quantified as an across-voxel average of the correlation coefficients between the actual and predicted training 342 

BOLD responses. We employed the best 𝛾 showing the highest accuracy across 10 repetitions. We constructed the 343 

regression model with the best 𝛾 using the training data (3,600 samples), and computed the prediction accuracy 344 

using the test data (1,800 samples). In our main analyses, we used voxels with high prediction accuracy of the 345 

emotion-related BOLD responses, after regressing out the sensory factors. To determine the emotion dimensions 346 

using CCA, we employed voxels with high prediction accuracies (uncorrected p < 0.0001) averaged across the 10 347 

folds (3,984–13,068 cortical voxels per subject). To construct the semantic space of emotion, we employed voxels 348 

with high prediction accuracy (uncorrected p < 0.0001) for the test data (18,684–34,066 cortical voxels per 349 

subject). 350 

 351 

Removing spurious correlation between emotion ratings and sensory information. To estimate 352 

unalloyed responses to emotion categories, spurious correlation with a sensory factor was explained away from 353 

model prediction for the BOLD responses to 80 emotion categories 52. For this purpose, we employed low-level 354 

visual and auditory features as the sensory factor, and used them to fit the linear regression model, but these were 355 

not used in the model prediction.  356 

 As low-level visual features, we employed output of 2,139 motion energy filters 51. Each filter 357 

consists of quadrature pairs of spatiotemporal Gabor filters. Input frames were obtained at 15 Hz, and resized from 358 

720 × 1280 × 3 to 96 × 171 × 3, followed by cropping in the centre to a size of 96 × 96. Then, the image was 359 

converted from RGB colour to (CIE) L*A*B* colour space, and the colour information was discarded. The motion 360 

energy signals were yielded from the filter output, and then log-transformed and averaged across 2 s (TR). 361 

Consequently, we obtained 2,139 visual features, which represent preferences to spatial frequencies, temporal 362 

frequencies, and orientations. To minimise the computational burden, we reduced the original dimensions to 1,000 363 

using singular value decomposition. These 1,000 components preserved 83.8% of the variance explained in the 364 

original features. 365 

 As the low-level auditory features, we employed output of the modulation-transfer function model 366 
53. The spectrogram was generated using 128 bandpass filters 54 with window size of 25 ms and hop size of 10 ms. 367 

Then, the spectrogram was convolved with quadrature pairs of modulation-selective filters for 10 spectral 368 

modulation scales and 10 temporal modulation rates. The modulation energy was calculated using the same 369 

methods as reported by Nishimoto et al. (2011) 51. Modulation energy was log-transformed, averaged across 2 s 370 

(TR), and further averaged within each of the 20 nonoverlapping frequency ranges logarithmically spaced in the 371 

frequency axis. From the results, we obtained 2,000 auditory features, which represent preferences to frequencies 372 

of audio signal, and the temporal variation of the preference frequencies. The same as in the visual feature 373 

extraction, we reduced the original dimensions to 1,000 to minimise the computational burden. The 1,000 374 

components preserved 93.4% of the variance explained in the original features.  375 
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 As supplementary results, we showed the prediction accuracies of the BOLD responses using each 376 

type of the three features: emotion, visual and auditory (Fig. S7). The accuracy was quantified using Pearson’s 377 

correlation coefficients between the actual and predicted responses. We confirmed high prediction accuracy for the 378 

early visual and early auditory cortex from the visual and auditory features, respectively. This indicates that these 379 

two features could plausibly explain BOLD response in the early visual and auditory cortices.  380 

 381 

Emotion dimensions based on the BOLD-response patterns. To estimate significant emotion 382 
dimensions, CCA was performed based on correlation in temporal fluctuation between each emotion rating and 383 

BOLD responses. In the CCA, the two types of factor loadings (𝑨, 𝑩) were estimated to have the maximum 384 

correlation between the linear combinations of emotion ratings and the BOLD responses. Using the training data, 385 

we estimated the factor loadings (𝑨∗, 𝑩∗) as follows:  386 

𝑨∗, 𝑩∗ = 	 𝐚𝐫𝐠𝐦𝐚𝐱
𝑨,𝑩

𝒄𝒐𝒓𝒓(𝑺 ∙ 𝑨 , 𝑹 ∙ 𝑩),  387 

where 𝒄𝒐𝒓𝒓(𝒊, 𝒋) denotes correlation coefficients between 𝒊 and 𝒋. 𝑺 (3,600 × 80) is the emotion ratings. 𝑹 388 

(3,600 × 1,800) is the dimension-reduced BOLD responses of voxels showing good prediction accuracy 389 

(correlation coefficients, p < 0.0001) in 10-fold cross-validation in the linear regression model (see ‘A linear 390 
regression model for 80 emotion categories’ in Methods). To validate the estimated 𝑨∗ and 𝑩∗, we used test 391 

data of 𝑹 (1,800 × 1,800) and 𝑺 (1,800 × 80). Then, we quantified the significance of each dimension of 𝑨 as a 392 

Pearson’s correlation coefficient between each dimension of 𝑺 ∙ 𝑨 and that of 𝑹 ∙ 𝑩. The significance was defined 393 
by the statistical significance (p < 0.01; with Bonferroni correction for 80 emotion categories). After obtaining 394 
significant dimensions of 𝑨∗ (𝑨𝒔𝒊𝒈), we conducted a varimax factor rotation 19 on 𝑨𝒔𝒊𝒈 to explain dimensions 395 

with fewer emotion categories. The 𝑨𝒔𝒊𝒈 provided interpretation of a specific BOLD-response pattern by using the 396 

correlated emotion categories. Then, we calculated the median of the numbers of the significant dimensions across 397 

subjects (25 dimensions, Fig. S1). The number (25) was used in the subsequent analysis to determine the number of 398 

dimensions for a semantic space of emotion. 399 

 400 

A semantic space for brain representation of 80 emotion categories. To construct a semantic space, 401 
we used emotion-category weights of the regression model using voxels with high prediction accuracies (p < 402 

0.0001, uncorrected; the number of significant voxels ranged from 18,684 to 34,066 cortical voxels for each 403 

subject). The emotion-category weights were averaged across three temporal delays, and we obtained weight 404 

matrices (18,684 –34,066 cortical voxels x 80 emotions) that represent voxel-wise selectivity to each of the 405 

semotion categories. The weights for each subject were concatenated across eight subjects. We called them ‘group 406 

weights’. PCA was used to reduce the dimensions of the group weights to the number of significant dimensions of 407 

the CCA results (25 dimensions). We defined the PCA space as the semantic space of emotion. Then, we 408 

conducted a varimax factor rotation on the principal components, to obtain interpretation of each emotion 409 
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dimension. Factors with high negative loadings were rotated to have the opposite direction by multiplying by -1. 410 

The rotated components were used as ’25 emotion dimensions’ in analyses for the cortical gradient of emotion 411 

representation. 412 

 To confirm across-subject consistency of a semantic space, we performed a leave-one-subject-out 413 

method. For this, we constructed a semantic space for a single subject (individual space), and also that for the 414 

weights concatenated across the remaining seven subjects (sub-group space). As a control semantic space, we also 415 

constructed a semantic space by performing PCA (category-dimension reduction) on the emotion ratings of the 416 

training data. All of the three types of semantic space consist of the number of significant dimensions in the CCA 417 

analysis for the left-out subject (19–32 dimensions per subject). To support across-subject consistency of individual 418 
spaces, we showed that the similarity to the sub-group space (𝑟B) was higher than that to the control space (𝑟C) for 419 

each subject. To quantify the similarity between semantic spaces, we calculated a Pearson’s correlation coefficient 420 

in emotion distributions between each semantic space pair. The emotion distribution was quantified as pair-wise 421 

distances (correlation distance) of emotion categories in each semantic space. 422 

 423 

Cortical gradients of emotion dimensions. To visualise how emotion-category weights were distributed 424 
through the cortical surface, we used the first three components of the semantic space. Emotion-category weights of 425 

each voxel were first projected to the semantic space consisting of the three components. Then, the projected 426 

coordinates were normalised to range from 0 to 1 by z-scoring and linear scaling. The output result was used as 427 

RGB colour projected to voxel coordinates in the flattened cortical map. We can observe the weight gradient of 428 

emotion categories as the RGB colour gradient on the cortical map. Furthermore, we assigned an RGB colour to 429 

each emotion category by using three normalised components for each emotion category. This colour was used for 430 

visualisation of the semantic space in Fig. 2a. Each of the emotion-category colours implies an association with 431 

regions which have a similar colour in the flattened cortical map.  432 

 In the cortical map for emotion-category weights, we observed a smooth gradient in four areas: the 433 

postcentral area, the superior temporal area, the inferior parietal area, and the precuneus. To quantify the weight 434 

gradient, for each voxel, we first computed the weight of the 25 emotion dimensions by multiplying the 80 435 

dimensional weights [1 × 80] and the 25 emotion dimensions [80 × 25]. Then, we manually defined eight lines on a 436 

smooth gradient in the four areas at each of the left and the right hemispheres (see Fig. 4a), with reference to the 437 

flattened cortical map using the in-house Matlab (MathWorks Inc.) GUI toolbox. To confirm that each line is 438 

located at similar anatomical location, we obtained the anatomical label of the Destrieux atlas 22 from each line for 439 

each subject (Fig. S4). The label was defined based on anatomical location using Freesurfer 48. 440 

 441 

Eighty emotion categories 442 
The 80 emotion categories are listed below:  443 

(1)love, (2)amusement, (3)craving, (4)joy, (5)nostalgia, (6)boredom, (7)calmness, (8)relief, (9)romance, 444 
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(10)sadness, (11)admiration, (12)aesthetic appreciation, (13)awe, (14)confusion, (15)entrancement, (16)interest, 445 

(17)satisfaction, (18)excitement, (19)sexual desire, (20)surprise, (21)nervousness, (22)tension, (23)anger, 446 

(24)anxiety, (25)awkwardness, (26)disgust, (27)empathic pain, (28)fear, (29)horror (bloodcurdling), (30)laughing, 447 

(31)happiness, (32)friendliness, (33)ridiculousness, (34)affection, (35)liking, (36)shedding tears, (37)emotional 448 

hurt, (38)sympathy, (39)lethargy, (40)empathy, (41)compassion, (42)curiousness, (43)unrest, (44)exuberance, 449 

(45)appreciation of beauty, (46)fever, (47)scare (feel a cill), (48)daze, (49)positive-expectation, (50)throb, 450 

(51)sexiness, (52)indecency, (53)embarrassment, (54)oddness, (55)contempt, (56)alertness, (57)eeriness, 451 

(58)positive-emotion, (59)vigor, (60)longing, (61)tenderness, (62)pensiveness, (63)melancholy, (64)relaxedness, 452 

(65)acceptance, (66)unease, (67)negative-emotion, (68)hostility, (69)levity, (70)protectiveness, (71)elation, 453 

(72)coolness, (73)cuteness, (74)attachment, (75)encouragement, (76)annoyance, (77)positive-fear, 454 

(78)aggressiveness, (79)distress, (80)stress 455 

 456 
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