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1 Abstract: Recent advances in forest ecosystem modeling allow the simulation of a suite of dynamics
:  from site- to landscape-scale. In order to scale models efficiently from trees to landscapes, different
s model reduction strategies are employed. Yet, the results of these strategies and the assumptions
« they entail are rarely compared. Here, we conducted a model intercomparison exercise using two
s such forest biogeochemistry models, PPA-SiBGC and LANDIS-II NECN. We simulated past-decade
s conditions at flux tower sites in Harvard Forest, MA, USA and Jones Ecological Research Center, GA,
»  USA. We mined the wealth of field data available for both sites to perform model parameterization,
s validation, and intercomparison. We assessed model performance using the following time-series
o metrics: net ecosystem exchange, aboveground net primary production, aboveground biomass, C,
1o and N, belowground biomass, C, and N, soil respiration, and, species total biomass and relative
1 abundance. We also assessed static observations of soil organic C and N, and concluded with
12 an assessment of general model usability, performance, and transferability. Despite substantial
13 differences in design, both models achieved good accuracy across the range of metrics. While
12 LANDIS-II NECN performed better for interannual NEE fluxes due to its basis in the Century model,
15 the PPA-SiBGC model indicated better overall correspondence to observational data for both sites
16 across the 11 temporal and 2 static metrics tested (HF-EMS R2 = 0.73,+0.07, RMSE = 4.84,—10.02;
v JERC-RD R2 = 0.76, +-0.04, RMSE = 2.69, —1.86).

1 Keywords: Perfect Plasticity Approximation; SORTIE-PPA; LANDIS-II; forest ecosystem simulation;
1 forest biogeochemistry model; forest landscape model; model intercomparison; Harvard Forest; Jones
20 Ecological Research Center

1 1. Introduction

N

22 Forest models are thought to have began 350 years ago in China with yield tables known as
= the Lung Ch'uan codes, invented by a women of the Kuo family in Suichuan county, Jiangxi [1]. It
2« was not until the 20 century that the first complex mathematical models of forests emerged. Digital
25 computers enabled researchers, for the first time, to explicitly model forest dynamics. Following the
26 development of matrix models [2] and empirical growth-and-yield models such as Prognosis [3,4],
2z a vast array of gap [5], forest landscape [6-10], and terrestrial biosphere models [11-13] have been
22 developed. Models of forest ecosystems vary substantially in their representation of crown geometry
20 and biogeochemical processes.

30 Representation of canopy geometry varies from implicit to a single 'big-leaf’ and detailed
a1 three-dimensional crown and root geometry (e.g., modern gap models such as MAESPA [14] and
;2 LES [15]). Models of growth range from simple allometric equations (e.g., growth-and-yield models)
3 to light-use efficiency models [16] and first-principles mechanistic models of photosynthesis [17].
s« Belowground process models similarly vary in structure, from simple stoichiometric relations to carbon
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ss and nitrogen cycling with microbial dynamics to a fully mechanistic representation of energetic and
s biogeochemical processes based on thermodynamics. Current belowground models vary considerably
sz in their process representation and accuracy, with much improvement left to be made [18]. Most
;s belowground models in use globally rely on a variant of the classical Century model [19,20].

39 Model specialization and generalization ranges from pure research applications in narrowly
20 defined areas (e.g., [14]) to simulating multiple loosely coupled landscape processes to simulating
a1 biogeochemical fluxes throughout the world’s forests. A trade-off is thought to exist between realism,
«2 precision, and generality [21], with more detailed models requiring higher parameterization costs. Yet,
a3 little is known about the net effects of variation in the structure of these models on the precision and
as accuracy of their predictions across temporal and spatial scales. While such model intercomparisons
+s are common within classes of models such as terrestrial biosphere models, they are seldom applied to
as  gap or forest landscape models. Models operating at different scales are seldom compared within sites.
4z Yet, much can be learned by comparing models that differ in assumptions and structure.

48 Existing forest model intercomparison projects, or MIPs, in Europe include the stand-level
4+ Intersectoral Impact MIP (ISIMIP) [22] and landscape-level Comparison of Forest Landscape Models
so (CoFoLaMo) [23], the latter conducted under the European Union Cooperation on Science and
s1 Technology (COST) Action FP1304 "Towards robust projections of European forests under climate
s= change" (ProFoUnd). Previous efforts in the United States include the Throughfall Displacement
s Experiment (TDE) Ecosystem Model Intercomparison Project at Walker Branch Watershed in Oak
s« Ridge, Tennessee [24]. Presently, no other forest model intercomparison project is evident for North
ss  America. There is a critical need to conduct ongoing forest biogeochemistry model comparisons in
ss this and other regions of the world in order to establish the regional foundation for robust global C
sz cycle projections. In this work, we aim to begin this process for North America with a comparison
s Of the Perfect Plasticity Approximation with Simple Biogeochemistry (PPA-SiBGC) and Landscape
s Disturbance and Succession with Net Ecosystem Carbon and Nitrogen (LANDIS-II NECN) models,
s which provide contrasting model structures for representing stand dynamics.

o1 Modern forest landscape models are the result of five key model development phases, listed in
e2 chronological order: (1) growth-and-yield models; (2) fire models; (3) gap models; (4) physiological
es models; (5) hybrid models combining design principles from each [5,25,26]. Terrestrial biosphere
ss models similarly trace their roots back to early one-dimensional physiological models, with land
es surface models currently in their third generation and dynamic global vegetation models in their
es second generation [27]. This latest generation of models was intended to address the lack of
ez explicit representation of vegetation dynamics - a critical source of model uncertainty in future
es climate scenarios [28]. This inspired the aforementioned forest ecosystem model intercomparisons
e as well as new terrestrial biosphere model designs based on gap models, bypassing the trade-offs of
70 medium-resolution forest landscape models.

7 Collectively, these efforts yielded a number of new terrestrial biosphere models based on the
72 classical gap model, including the Lund-Potsdam-Jena General Ecosystem Simulator (LP]-GUESS)
7 [29], the Ecosystem Demography model (ED/ED2) [30,31], and Land Model 3 with PPA (LM3-PPA)
7a  [32], based on the Perfect Plasticity Approximation (PPA) [33,34]. These models represent the current
s  state-of-the-art in modeling vegetation dynamics globally. While individual-based global models have
7 begun to merge, forest landscape models have remained in between, focused on spatial processes of
7z fire, harvest, and biological disturbance. Yet, previous research has shown that such forest landscape
7 models are often insensitive to landscape configuration and are therefore aspatial [35], counter to the
7 main assumption and selling point of these models.

80 While most forest landscape and terrestrial biosphere models lack individual trees, the SAS [30]
a1 and PPA [33,36,37] model reduction strategies have demonstrated an ability to successfully up-scale
s2 gap dynamics to forest stands. Other up-scaling strategies exist as well. One recent forest landscape
ss model participating in the CoFoLaMo intercomparison scales from individual trees to stands by
ss pre-computing light tables [38]. Regardless of the model structure, it is clear that gap, forest landscape,
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es and terrestrial biosphere models are beginning to merge into new models of the terrestrial biosphere.
e This trend is also attributable to improvements in computational efficiency with new processor designs
ez and cluster or cloud computing infrastructure. As few, if any, existing models are designed for highly
ss parallel architectures (e.g., general-purpose graphics processing units, or GPGPUs), there remains
s much potential for future model efficiency gains.

% In this forest biogeochemistry model intercomparison, we focus on two sites on the East Coast of
o1 the United States, Harvard Forest (HF), Massachusetts and Jones Ecological Research Center (JERC),
o2 Georgia. The two sites were selected for their representativeness of the United States Eastern Seaboard
os and for the availability of data needed to parameterize and validate the models. Harvard Forest is one
9a  of the most-studied forests in the world, with Google Scholar returning 12,700 results for the site. We
os focus on results for the Environmental Measurement Station (EMS) eddy covariance (EC) flux tower
96 site within the Little Prospect Hill tract - the longest-running eddy covariance flux tower in the world.
oz Previous research at the EMS EC flux tower site found unusually high rates of ecosystem respiration
9s in winter and low rates in mid-to-late summer compared to other temperate forests [39]. While the
9 mechanisms behind these observed patterns remains poorly understood, this observation is outside
10 the scope of the presented research.

101 Between 1992 and 2004, the site acted as a net carbon sink, with a mean annual uptake rate
102 of 25MgCha~'year—!. Aging dominated the site characteristics, with a 101-115 Mg C ha-1 increase
10s  in biomass, comprised predominantly of growth of red oak (Quercus rubra). The year 1998 showed
10s a sharp decline in net ecosystem exchange (NEE) and other metrics, recovering thereafter [40]. As
1s  Urbanski et al. [40] note of the Integrated Biosphere Simulator 2 (IBIS2) and similar models at the
10s time, "the drivers of interannual and decadal changes in NEE are long-term increases in tree biomass,
107 successional change in forest composition, and disturbance events, processes not well represented in
10e current models.” The two models used in the intercomparison study, a SORTIE-PPA [33,34] variant and
100 LANDIS-II with NECN succession [41,42], are intended to directly address these model shortcomings.
110 While there have been fewer studies at Jones Ecological Research Center, Georgia, USA, Google
11 Scholar returns 1,370 results for the site, reflecting its growing role in forest sciences research. Our
12 study focuses on the Red Dirt (RD) EC flux tower site within the mesic sector, for which a handful of
us  relevant studies exist. Two recent studies [43,44] indicate that the mesic sector of this subtropical pine
us  savanna functions as a moderate carbon sink (NEE = —0.83 Mg C ha! year—!; —1.17 Mg C ha~' year™1),
us  reduced to near-neutral uptake during the 2011 drought (NEE = —0.17 Mg C ha'year™'), and is a
ue carbon source when prescribed burning is taken into account. NEE typically recovered to pre-fire rates
1z within 30-60 days. The mechanisms behind soil respiration rates here again appear to be complex,
us  site-specific, and poorly understood [44].

110 Overall, existing research highlights the importance of fire and drought to carbon exchange in
120 long-leaf pine (Pinus palustris) and oak (Quercus spp.) savanna systems [43—45] at JERC. This is in
i1 contrast to the secondary growth-dominated deciduous broadleaf characteristics of Harvard Forest.
122 Species diversity at the EMS tower site is 350% greater than that of the JERC-RD site, with 14 species
12z from a variety of genera compared to four species from only two genera, Pinus and Quercus.

124 In this work, we aim to establish a foundation for future forest biogeochemistry model
s intercomparisons.  This includes open-source object-oriented software to facilitate model
126 parameterization, validation, intercomparison, and simplified reproducibility of results. We perform
12z the model intercomparison for two key research forests in the United States to assess the ability of each
12 model to reproduce observed biogeochemistry pools and fluxes over time. We hypothesize that the
120 inclusion of forest growth, compositional change, and mortality processes in both models will allow
1o for accurate predictions of biomass and NEE dynamics, as suggested in previous research Urbanski
1 et al. [40]. Accordingly, we compare both models to observations and to each other for a host of metrics
12 related to biomass, C, N, and forest composition at the two research sites.


https://doi.org/10.1101/464578

bioRxiv preprint doi: https://doi.org/10.1101/464578; this version posted December 2, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Version November 30, 2018 submitted to Journal Not Specified 4 0f40

133 2. Materials and Methods

134 LANDIS-II NECN and PPA-SiBGC were parameterized for two forested sites in the eastern United
135 States, Harvard Forest, Massachusetts and Jones Ecological Research Center, Georgia. At the HF site,
13s  we focus on Little Prospect Hill and the EMS EC flux tower (HE-EMS). At the JERC site, we focus on
137 the mesic zone and RD EC flux tower (JERC-RD). Both sites provided local EC and meteorological
s measurements to conduct this study. Plots of EC flux and meteorological tower measurements for both
130 sites are located in Appendix A; maps of both sites are located in Appendix B.

140 Both models were parameterized using data available for each site, including local (i.e., field
11 measurements) and general information sources (e.g., species compendiums and other published
1z sources). As these empirical or observational values were used to parameterize both models, further
1z model calibration (i.e., parameter tuning) was not necessary. This is because tuning parameters away
1ae  from measured values to improve model performance, or defining a separate set of tuning parameters,
us  is known to produce model over-fitting (i.e., reduced generality) and thus false improvements in
1ee model accuracy through reduced parsimony [46]. We explicitly avoided this practice, as it is only
17 appropriate when fitting empirical growth-and-yield models such as Prognosis, also known as the
us Forest Vegetation Simulator (FVS) [3,4]. All model parameters are provided in the Appendix C. We
10 close the methodology section with descriptions of the metrics, models, and criteria used in the
150 intercomparisons.

11 2.1. Model Descriptions

152 In the following sections, we provide a brief overview of the two forest ecosystem models used in
12 this intercomparison study. For detailed information on each model, readers are encouraged to refer to
s« the original publications.

15 2.1.1. LANDIS-II NECN

156 The LANDIS-II model is an extension of the original LANdscape DIsturbance and Succession
157z (LANDIS) model [47-49] into a modular software framework [41]. Specifically, LANDIS-II is a model
1se  COre containing basic state information that interfaces or communicates with external user-developed
1s»  models known as "extensions" using a combination of object-oriented and modular design. This design
10 makes LANDIS-II a modeling framework rather than a model. The LANDIS family of models, which
11 also includes LANDIS PRO [50] and Fin-LANDIS [51,52], are stochastic hybrid models [25] based on
162 the vital attributes/fuzzy systems approach of the LANDSIM model genre [53]. Perhaps unknowingly,
s this genre borrows heavily from cellular automata [54] and thus Markov Chains by applying simple
1a heuristic rule-based systems, in the form of vital attributes, across two-dimensional grids.

165 Models of the LANDSIM genre focus on landscape-scale processes and assume game-theoretic
e Vital attribute controls over successional trajectories following disturbance [55]. The LANDSIM model
17 genre is thus a reasonable match for the classical forest fire model [56], given its local two-dimensional
s cellular basis. In contrast to the original LANDIS model, LANDIS-II is implemented in Microsoft
160 C# rather than ISO C++98 [57], simplifying model development in exchange for a proprietary
170 single-vendor software stack [41].

1 The latest version of LANDIS-II (v7) supports Linux through use of the Microsoft .NET Core
12 developer platform. The modular design of LANDIS-II is intended to simplify the authorship and
s interaction of user-provided libraries for succession and disturbance. The centralized model core
s stores basic landscape and species state information and acts as an interface between succession
1s  and disturbance models. While there have been numerous forest landscape models over the years
e [6-10], the LANDIS family of models has enjoyed notable longevity and is currently united under the
17z LANDIS-II Foundation. Part of its longevity is attributable to the prioritization of model functionality
s over realism in order to appeal to application-minded managers seeking a broad array of functionality.
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170 The Net Ecosystem Carbon and Nitrogen (NECN) model [42] is a simplified variant of the classical
10 Century model [19,20]. The original ten soil layers in Century have been replaced by a single soil layer,
11 with functions for growth and decay borrowed directly from Century v4.5. The NECN succession
1.2 model Figure 1 is thus a process-based model that simulates C and N dynamics along the plant-soil
13 continuum at a native monthly timestep.

Monthly Temperature, Precipitation

Regeneration = Liebig’s Law

Growth = Century
Cohorts Mortality = Century
Decay = Century
Hydrology = Bucket
Surface Soil Coarse .
. . Wood Detri Pool
Residue Residue Roots etritus Pools
StructuraI: boli | Metaboli :
1 CO2, N
SOM Pools
SOM 3
Passive
T . — C, N Flow

v -- - ’ -gw
CO2, N Decomposition

Figure 1. LANDIS-II NECN model structure

188 Atmospheric effects are included through monthly climate (i.e., temperature maxima, minima,
s means, and standard deviations, and precipitation means and standard deviations). Explicit geometric
16 representation of tree canopies is forgone in favor of bounded statistical growth models based
1e7  theoretically on Liebig’s Law of the Minimum. Functions for growth, mortality, and decay are adopted
18s  from Century [19] while hydrology is based on the simple bucket model [58]. The regeneration function
180 is the only new process in NECN and is also based on Liebig’s Law. For a detailed description of
100 the NECN model, readers may refer to the original model publication [42]. Parameterization of the
102 LANDIS-II model for both sites was based on updating parameters used in recent [59-62] and ongoing
102 (Flanagan et al., in review) work.

103 2.1.2. PPA-SiBGC

108 The PPA-SiBGC model belongs to the SORTIE-PPA family of models [33,36] within the SAS-PPA
105 model genre, based on a simple and analytically tractable approximation of the classical SORTIE
16 gap model [63,64]. The Perfect Plasticity Approximation, or PPA [33,34], was derived from the dual
107 assumptions of perfect crown plasticity (e.g., space-filling) and phototropism (e.g., stem-leaning), both
10 of which were supported in empirical and modeling studies [36]. The discovery of the PPA was rooted
190 in extensive observational and in silico research [33]. The PPA model was designed to overcome the
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200 most computationally challenging aspects of gap models in order to facilitate model scaling from the
201 landscape to global scale.

202 The PPA and its predecessor, the size-and-age structured (SAS) equations [30,65], are popular
202 model reduction techniques employed in current state-of-the-art terrestrial biosphere models [13]. The
20s  PPA model can be thought of metaphorically as Navier-Stokes equations of forest dynamics, capable of
20s modeling individual tree population dynamics with a one-dimensional von Foerster partial differential
206 equation [33]. The simple mathematical foundation of the PPA model is provided in Equation 1.

00 k
1= / Y Ni(z)Aj(z*, z)dz o)
z* ]':1
207 where k is the number of species, j is the species index, Nj(z) is the density of species j at height z,

208 Aj(a*,z) is the projected crown area of species j at height z, and dz is the derivative of height. In other
200 words, we discard the spatial location of individual trees and calculate the height at which the integral
210 Of tree crown area is equal to the ground area of the stand. This height is known as the theoretical z*
211 height, which segments trees into overstory and understory classes [33].

212 The segmentation of the forest canopy into understory and overstory layers allows for separate
213 coefficients or functions for growth, mortality, and fecundity to be applied across strata, whose first
=na  moment accurately approximates the dynamics of individual-based forest models. Recent studies have
215 shown that the PPA model faithfully reduces the dynamics of the more recent neighborhood dynamics
z2e (ND) SORTIE-ND gap model [66] and is capable of accurately capturing forest dynamics [67,68].

217 In this work, we applied a simple biogeochemistry variant of the SORTIE-PPA model, PPA-SiBGC
ze  [Erickson and Strigul, In Review] Figure 2.

Monthly Temperature, Precipitation
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Figure 2. PPA-SiBGC model structure; Raich et al. [69]; Domke ef al. [70]
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210 Empirical observations were relied upon for the C and N content of tree species compartments.
220 Stoichiometric relations were used to estimate N from C, based on empirical measurements provided
= for both sites. All values were calculated directly from observations. Previously published equations
222 [71] and parameters [72] were used to model crown allometry. Together with inventory data, general
223 biomass equations were used to estimated dry weight mass (kg) for tree stems, branches, leaves, and,
224 fine and coarse roots [73]. Carbon content is assumed to be 50% of dry mass, supported by data.
225 Monthly soil respiration is modeled using the approach of Raich et al. [69], while soil organic C is
26 modeled using the simple generalized approach of Domke et al. [70]. Species- and stratum-specific
227 parameters for growth, mortality, and fecundity were calculated from observational data available for
228 both sites.

220 2.2. Site Descriptions

230 In the following sections, we describe the two forested sites on the East Coast of the United States:
21 HF-EMS and the JERC-RD. A critical factor in the selection of the sites was the availability of eddy
232 covariance flux tower data needed to validate NEE in the models.

23 2.2.1. HF-EMS

234 The HF-EMS EC flux tower is located within the Little Prospect Hill tract of Harvard Forest
25 (42.538°N, 72.171°W, 340 m elevation) in Petersham, Massachusetts, approximately 100 km from the
236 city of Boston [40]. The tower has been recording NEE, heat, and meteorological measurements since
27 1989, with continuous measurements since 1991, making it the longest-running eddy covariance
2s  measurement system in the world. The site is currently predominantly deciduous broadleaf
230 second-growth forests approximately 75-95 years in age, based on previous estimates [74]. Soils
2e0 at Harvard Forest originate from sandy loam glacial till and are reported to be mildly acidic [40].

201 The site is dominated by red oak (Quercus rubra) and red maple (Acer rubrum) stands, with
22 sporadic stands of Eastern hemlock (Tsuga canadensis), white pine (Pinus strobus), and red pine (Pinus
23 resinosa). When the site was established, it contained 100 Mg C ha™! in live aboveground woody
2es  biomass [74]. As noted by Urbanski et al. [40], approximately 33% of red oak stands were established
2as  prior to 1895, 33% prior to 1930, and 33% before 1940. A relatively hilly and undisturbed forest (since
2 the 1930s) extends continuously for several km? around the tower. In 2000, harvest operations removed
207 22.5 Mg C ha™! of live aboveground woody biomass about 300 m S-SE from the tower, with little
2es  known effect on the flux tower measurements. The 40 biometric plots were designated via stratified
2e0 random sampling within eight 500 m transects Urbanski et al. [40]. The HF-EMS tower site currently
250 contains 34 biometric plots at 10 m radius each, covering 10,681 m?, or approximately one hectare, in
261 area. Summary statistics for the EMS tower site are provided in Table 1.

Table 1. HF-EMS site forest inventory summary; DBH in cm and aboveground biomass (B4) in kg

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
Year 7,234 2006.93 3.155 2002 2004 2010 2012
DBH 7,234 24.79 11.63 9.60 15.53 32.37 72.40
Bag 7,234 385.90 507.07 22.50 88.82 470.28 4,216.27

252 A table of observed species abundances for the 2002-2012 period are provided in Table 2.
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Table 2. HF-EMS site species abundance

Species ~ Count

ACPE 6

ACRU 2720
BEAL 400
BELE 131
BEPO 64

FAGR 152
FRAM 143
PIGL 251
PIRE 342
PIST 334
PRSE 150
QURU 1366
QUVE 135
TSCA 1012

253 Data were collected here for a range of studies, as evidenced by the Harvard Forest Data Archive.

254 Datasets used in model validation include HF001-04, HF004-02, HF069-09, HF278-04, HF069-06,
=5 HF015-05, HF006-01, and HF069-13. These include weather station and forest inventory time-series,
e eddy covariance flux tower measurements, soil respiration, soil organic matter, and studies on C:N
=7 stoichiometry. Standard measurement techniques were used for each. For both sites, local tree species,
s age, depth-at-breast-height (DBH), biomass, soil, and meteorological data were primarily used to
20 parameterize the models.

260 2.2.2. JERC-RD

261 Jones Ecological Research Center at Ichauway is located near Newton, Georgina, USA (31°N,
262 84°W, 25-200 m elevation). The site falls within the East Gulf Coastal Plain and consists of flat to
263 rolling land sloping to the southwest. The region is characterized by a humid subtropical climate
20 With temperatures ranging from 5-34 °C and precipitation averaging 132 cm year-1. The overall site is
2es 12,000 ha in area, 7,500 ha of which are forested [75]. The site also exists within a tributary drainage
266 basin that eventually empties into the Flint River. Soils here are underlain by karst Ocala limestone
27 and mostly Typic Quartzipsamments, with sporadic Grossarenic and Aquic Arenic Paleudults [76].
zes  Soils here often lack well-developed organic horizons [75-77].

260 Forests here are mostly second-growth, approximately 65-95 years in age. Long-leaf pine (Pinus
=0 palustris) dominates the overstory, while the understory is comprised primarily of wiregrass (Aristida
an  stricta) and secondarily of shrubs, legumes, forbs, immature hardwoods, and regenerating long-leaf
22 pine forests [78]. Prescribed fire is a regular component of management here, with stands often burned
2rs  at regular 1-5 year intervals [75]. This has promoted wiregrass and legumes in the understory,
2z while reducing the number of hardwoods [75]. The RD EC flux tower is contained within the
zrs  mesic/intermediate sector. This site consists of only four primary tree species from two genera:
276 long-leaf pine (Pinus palustris), water oak (Quercus nigra), southern live oak (Quercus virginiana), and
27z bluejack oak (Quercus incana). Measurements for the RD tower are available for the 2008-2013 time
zre  period. Summary statistics for the RD tower site are provided in Table 3.

Table 3. JERC-RD site forest inventory summary; DBH in cm and aboveground biomass (B 4¢) in kg

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
Year 1,012 2011.01 1.42 2009 2010 2012 2013
DBH 1,012 31.10 12.73 10.70 18.96 42.25 62.75

Bac 1,012 707.28 564.65 391 177.27 1,179.59 2,708.08
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270 A table of observed species abundances for the 2009-2013 period are provided in Table 4.

Table 4. JERC-RD site species abundance

Species ~ Count

PIPA 967
QUIN 5
QUNI 10
QUVI 30
280 Datasets used in model validation at JERC-RD include JC010-02, JC010-01, JC003-04, JC004-01,

2e1 JC003-07, and JC011-01. These include weather station and eddy covariance flux tower measurements,
2e2  forest inventory data, soil respiration, soil organic matter, and studies on C:N stoichiometry. Standard
2e3  measurement techniques were also used for each of these.

20 2.3. Site Data

205 To conduct this model intercomparison exercise at HF-EMS, we leveraged the large amount of
20 data openly available to the public through the Harvard Forest Data Archive:

207 http:/ /harvardforest.fas.harvard.edu/harvard-forest-data-archive

208 Jones Ecological Research Center has hosted multiple research efforts over the years, collectively
200 Tresulting in the collection of a large data library. However, JERC-RD site data are not made openly
200 available to the public and are thus only available by request. One may find contact information
201 located within their website:

202 http:/ /www.jonesctr.org

203 2.4. Scales, Metrics, and Units

208 The selection of simulation years was based on the availability of EC flux tower data used in
20s model validation. Thus, we simulated the HF-EMS site for the years 2002-2012 and the JERC-RD site
206 for the years 2009-2013. For both sites and models, we initialized the model state in the first year of
207 simulations using field observations. The PPA-SiBGC model used an annual timestep while LANDIS-II
202 NECN used a monthly timestep internally. Both models may be set to other timesteps if desired.

200 The areal extent of the single-site model intercomparisons were designed to correspond to
s0  available field measurements. At both sites, tree inventories were conducted in 10,000 m?2, or
s0  one-hectare, areas. All target metrics were converted to an annual areal basis to ease interpretation,
32 comparison, and transferability of results. Importantly, an areal conversion will allow comparison to
s03  other sites around the world. While flux tower measurements for both sites were already provided
s0s On an areal (m~2) basis, many other variables were converted to harmonize metrics between models
s0s and study sites. For example, moles CO, measurements were converted to moles C through
s0s well-described molecular weights, all other measures of mass were converted to kg, and all areal and
sor  flux measurements were harmonized to m~2. A table of metrics and units used in the intercomparison
s0s  of LANDIS-II and PPA-SiBGC is provided in Table 5.
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Table 5. Model intercomparison abbreviations, metrics, and units

Abbreviation Metric Units
NEE Net ecosystem exchange kg Cm=2 year™!
Buc Aboveground biomass kg mass m=2
Cac Aboveground C kgCm™2
Nag Aboveground N kg Nm=2
Bgg Belowground biomass kg mass m=2
Cpg Belowground C kgCm™2
Npg Belowground N kg Nm~2
Cso Soil organic C kgCm=2
Nso Soil organic N kg Nm=2
Ts0il Soil respiration C kgC m=2 yeurfl
ANPP Aboveground net primary production kg mass m~2 year~!

Bsp Species aboveground biomass kg mass m=2
nsp Species relative abundance Y%

300 In the subsequent section, we describe the model intercomparison methodology.

s10 2.5, Model Intercomparison

a11 Intercomparison of the PPA-SiBGC and LANDIS-II models at the HF-EMS and JERC-RD EC
a2 flux tower sites was conducted using a collection of object-oriented functional programming scripts
a1z written in the R language for statistical computing [79]. These scripts were designed to simplify model
as  configuration, parameterization, operation, calibration/validation, plotting, and error calculation. The
a5 scripts and our parameters are available on GitHub (https:/ /github.com/adam-erickson/ecosystem-
a6 model-comparison), making our results fully and efficiently reproducible. The R scripts are also
a1z designed to automatically load and parse the results from previous model simulations, in order to
s1e  avoid reproducibility issues stemming from model stochasticity. We use standard regression metrics
a0 applied to the time-series of observation and simulation data to assess model fitness. The metrics
s20 used include the coefficient of determination (R?), root mean squared error (RMSE), mean absolute
sz error (MAE), and mean error (ME) or bias, calculated using simulated and observed values. Our
522 implementation of R? follows the Bravais-Pearson interpretation as the squared correlation coefficient
s23  between observed and predicted values [80]. This implementation is provided in Equation 2.

2
R2_,2_ Yai—y@i—9) )
VI (0~ 720 — 92
324 where 1 is the sample size, y; is the ith observed value, ; is the ith predicted value, ¥ is the mean

225 observed value, and § is the mean predicted value. The calculation of RMSE follows the standard
a2 formulation, as shown in Equation 3.

1&,
RMSE =, |- t; e7 @)
327 where 7 is the sample size and e¢; is the error for the tth value, or the difference between observed

s2s  and predicted values. The calculation of MAE is similarly unexceptional, per Equation 4.

1 n
MAE = =) |ey| 4)
n
=1
320 where again 7 is the sample size and ¢; is the error for the tth value. Our calculation of mean

a0 error (ME) or bias is the same as MAE, but without taking the absolute value.
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332 While Nash-Sutcliffe efficiency (NSE) is often used in a simulation model context, we selected
s33  the Bravais-Pearson interpretation of R? over NSE to simplify the interpretation of results. The NSE
3« metric replaces 1 — (Sspredictions/Ssobservutions) with (SSopservations — Sspredictions)/SsobservationS/ where
s3s 5SS is the sum of squares. Thus, NSE is analogous to the standard R? coefficient of determination used
s3¢  in regression analysis [81]. The implementation of R? that we selected is important to note, as its
;37 results are purely correlative and quantify only dispersion, ranging in value between 0 and 1. This has
s3s  some desirable properties in that no negative or large values are produced, and that it is insensitive to
;30 differences in scale. Regardless of the correlation metric used, complementary metrics are needed to
s0  quantify the direction (i.e., bias) and /or magnitude of error. We rely on RMSE and MAE to provide
;a1 information on error or residual magnitude, and ME to provide information on bias. We utilize a
sz visual analysis to assess error directionality over time, as this can be poorly characterized by a single
a3 coefficient, masking periodicity.

344 We compute R2, RMSE, MAE, and ME for time-series of the metrics described in Table 5 on
as  page 10. These include NEE, above- and below-ground biomass, C, and N, soil organic C and N, soil
a6 Tespiration (), aboveground net primary production (ANPP), and, species aboveground biomass
sz and relative abundance. All of these metrics are pools with the exception of NEE, r4,;, and ANPP
as  fluxes. Finally, we diagnose the ability of both models to meet a range of logistical criteria related to
a0 deployment: model usability, performance, and transferability. Model usability is assessed per four criteria:

sso 1. Ease of installation

s 2. Ease of parameterization

2 3. Ease of program operation

sss 4. Ease of parsing outputs

384 Model software performance is assessed per a single metric: the speed of program execution

sss  for each site for the predefined simulation duration. The durations are 11 years and 5 years for the
sse  HF-EMS and JERC-RD EC flux tower sites, respectively. Simulation results are output at annual
sz temporal resolution, the standard resolution for both models; while NECN operates on a monthly
s timestep, most other modules of LANDIS-II are annual. Finally, model transferability is assessed per
30 the following five criteria:

Model generalizability

Availability of parameterization data
Size of the program

Cross-platform support

Ease of training new users

w
I3
N

D+ & .I': .

365 Each of these logistical criteria are compared in a qualitative analysis, with the exception of
ses  software performance.

sez 3. Results and Discussion

368 Both PPA-SiBGC and LANDIS-II NECN showed strong performance for pools at the two model
seo intercomparison sites, frequently achieving R? values approaching unity. Yet, both models showed
370 weak performance for fluxes. The models failed to accurately predict ANPP, while PPA-SiBGC showed
s stronger 4, performance and LANDIS-II NECN showed stronger NEE performance. The R? values
sz for both models and sites are visualized in Figure 3.
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Figure 3. Overall model performance (R?) for both models and sites; left = HF-EMS; right = JERC-RD;
periwinkle = PPA-SiBGC; pink = LANDIS-II NECN; violet = intersection

373 On average, PPA-SiBGC outperformed LANDIS-II NECN across the sites and metrics tested,
s7a  showing higher correlations, lower error, and less bias overall (HF-EMS R2 = 0.73,4+0.07, RMSE =
s 4.84,-0.39, ME = —1.18, —3.70; JERC-RD R2 = (.76, +0.04, RMSE = 2.69, —0.17, ME = 0.78, +0.53).
s7e  This result is based on calculating mean values for R?, RMSE, MAE, and ME in order to clearly translate
a7 the overall results. The two models produced the following mean values for each of the four statistical
s7e  metrics and two sites:

Table 6. Overall mean values across each of the sites and metrics tested

PPA-SiBGC LANDIS-II NECN
Metric R? RMSE MAE ME R? RMSE MAE ME
Mean 0.74 3.77 3.58 -0.20 0.69 9.60 8.73 2.31
370 As shown in Table 6, PPA-SiBGC yielded higher R? values and lower RMSE, MAE, and ME values

ss0  in comparison to LANDIS-II, on average, across all sites and metrics tested. Below, we provide model
se1  intercomparison results individually for the two sites, HF-EMS and JERC-RD.

sz 3.1. HF-EMS

383 For the HE-EMS site, PPA-SiBGC showed higher R? values and lower RMSE, MAE, and ME values
;s compared to LANDIS-II NECN across the range of metrics. While PPA-SiBGC predicted NEE and
;s species relative abundance showed weaker correlations with observed values compared to LANDIS-II
sss  NECN, the magnitude of error was lower, as evidenced by lower RMSE, MAE, and ME values. While
;e LANDIS-II NECN showed a lower magnitude of error for belowground N, this is the only metric
ss  Where this is the case, while the correlation of this metric to observed values was also lower than that
s Of PPA-SiBGC. Overall results for the HF-EMS site model intercomparison are shown in Table 7.
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Table 7. Model fitness for HF-EMS

PPA-SiBGC LANDIS-II NECN

Metric R? RMSE MAE ME R? RMSE MAE ME
NEE 0.05 0.19 0.16 -0.03 0.44 0.49 0.44 0.44
Bag 1.00 10.12 10.11 10.11 0.98 248 2.48 -2.48
Cac 1.00 0.03 0.03 -0.02 0.98 1.24 1.24 -1.24
Nac 0.99 1.44 1.44 -1.44 0.12 1.99 1.99 -1.99
Bgg 1.00 9.09 9.08 9.08 0.97 2.82 2.82 -2.82
Cgc 1.00 7.82 7.81 -7.81 0.93 9.87 9.86 -9.86
Npg 0.99 0.56 0.56 0.56 0.78 0.12 0.12 -0.12
Tsoil 0.17 0.63 0.62 -0.62 0.06 1.10 1.10 -1.10

ANPP 0.02 0.20 0.20 -0.20 0.0002 0.82 0.79 0.73
Cso 26.49 26.49 -26.49 36.63 36.63 -36.63
Nso 1.33 1.33 -1.33 1.60 1.60 -1.60
Bsy 1.00 5.02 2.89 2.89 0.97 133.70 119.87 119.87
nsp 0.82 0.05 0.03 0 0.99 0.29 0.22 0.22
Mean 0.73 4.84 4.67 -1.18 0.66 14.86 13.78 4.88

390 Time-series figures allow a visual analysis of the temporal dynamics between observations and

s model predictions in order to assess the ability of models to capture interannual variability. Both
302 models effectively captured temporal dynamics in biomass, C, and, species biomass and abundance.
a2 In Figure 4, the temporal differences in modeled NEE and aboveground C are shown for the two
s0s  models in comparison to observations for the HF-EMS site. While LANDIS-II NECN predicted NEE
305 showed a higher correlation with observations, the magnitude of error and bias were also higher.
s0s Furthermore, LANDIS-II NECN predicted that the HF-EMS site is a net C source, rather than sink, in
307 contrary to observations. Meanwhile, PPA-SiBGC outperformed LANDIS-II NECN in aboveground C
s per both R?> and RMSE. Both models overpredicted species cohort biomass, while LANDIS-II NECN
390 underpredicted total aboveground C.
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Figure 4. Simulated and observed NEE and aboveground C; observations = blue; simulations = red; a
= PPA-SiBGC NEE; b = LANDIS-II NECN NEE; ¢ = PPA-SiBGC C4¢; d = LANDIS-II NECN C x4

400 An analysis of simulated species biomass and abundance also shows greater fidelity of the
a0 PPA-SiBGC model to data, as shown in Figure 5. As LANDIS-II NECN does not contain data on
«02 individual trees, species relative abundance is calculated based on the number of cohorts of each
a3 species. Two species were simulated in LANDIS-II NECN, as there are no explicit trees in the model
s0s and the number of cohorts appears to have no effect on the total biomass. Results for PPA-SiBGC
«0s indicate that species relative abundance may be improved in future studies by optimizing mortality
s0s and fecundity rates. Meanwhile, species biomass predictions output by LANDIS-II NECN were
207 inverted from those of the observations.


https://doi.org/10.1101/464578

bioRxiv preprint doi: https://doi.org/10.1101/464578; this version posted December 2, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

n
o

ACPE
ACRU
BEAL

n

oS
)
S

200 BELE

| B
|
|
B o
100 M Fre
M st

Version November 30, 2018 submitted to Journal Not Specified 15 of 40
B erse
B ovru

—— ]
B oue

2004 2007 2010 2004 2007 2010 2004 2007 2010 TSCA

=) o
n N
=] S

o
Biomass AG (kg dry mass m?)

Biomass AG (kg dry mass m)
Biomass AG (kg dry mass m?)

o
o
<)

—_
+¥]
[lanii

0.75

)
N
o

0.

Abundance (%)
3

Abundance (%)
g

Abundance (%)
g

0.

N
a
o
N
@

ACRU
I B Fer

. B Fram

B o

. PIRE

0.25 . PIST

= B Prse

|| B ovru

Year Year Year

1.00 1.00 1.00 ACPE

BEAL

0.75 BELE

. BEPO

0.00 0.00 0.00 B oue

2004 2007 2010 2004 2007 2010 2004 2007 2010 TSCA

[b] Year Year Year

Figure 5. HF-EMS: Simulated and observed species aboveground biomass and relative abundance; a =
biomass; b = abundance; left = observations, middle = PPA-SiBGC, right = LANDIS-II NECN; note that

different scales are used for biomass

sws 3.2. JERC-RD

409 For the JERC-RD site, both models showed stronger fidelity to data than for the HF-EMS site.
a0 Again, PPA-SiBGC showed higher R? values and lower RMSE and MAE values compared to LANDIS-II
s NECN across the range of metrics tested. Yet, the margin between models was smaller for the JERC
a1z RD site. While PPA-SiBGC demonstrated higher correlations and lower errors for most metrics tested,
a3 LANDIS-II NECN outperformed PPA-SiBGC in a few cases. This includes lower error magnitude
as for NEE, aboveground N, belowground biomass, SOC, and SON. However, PPA-SiBGC showed
as  correlations equal or higher for all metrics tested, and lower errors for all other metrics. Overall results
a1 for the JERC-RD site model intercomparison are shown in Table 8.

Table 8. Model fitness for JERC-RD

PPA-SiBGC LANDIS-II NECN

Metric R RMSE MAE ME R? RMSE MAE ME
NEE 0.30 1.68 1.64 -1.64 0.09 0.13 0.11 -0.05
Bag 0.96 1.48 1.47 1.47 0.96 9.77 9.76 -9.76
Cac 0.96 1.63 1.63 -1.63 0.96 4.88 4.88 -4.88
Nag 0.99 0.29 0.29 0.29 0.96 0.05 0.05 -0.05
Bpg 0.96 10.84 10.83 10.83 0.96 1.37 1.20 1.20
Cpg 0.96 5.26 5.26 -5.26 0.96 6.46 6.46 -6.46
Npg 0.98 1.44 1.44 -1.44 0.96 1.60 1.60 -1.60
Feoil 0.19 0.78 0.71 0.67 0.05 2.40 2.40 2.40
ANPP 0.03 0.39 0.37 -0.37 0.03 0.48 0.46 0.25
Cso 4.30 4.30 4.30 0.17 0.17 -0.17
Nso 0.38 0.38 0.38 0.12 0.12 0.12
By 1.00 6.47 3.90 3.90 0.98 28.97 20.52 20.52
nsp 1.00 0.02 0.01 -0 1.00 0.09 0.09 -0.02
Mean 0.76 2.69 248 0.78 0.72 4.34 3.68 -0.25
a7 While both models showed higher performance at the JERC-RD site, an analysis of simulated

a1s  species biomass and abundance again indicates greater fidelity of the PPA-SiBGC model to data, as
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a0 shown in Figure 6. While LANDIS-II NECN overpredicts the rate of longleaf pine growth, PPA-SiBGC
«20 nearly perfectly matches observed species abundance and biomass trajectories for all species present.
a2 While the correlations are high, PPA-SiBGC overpredicts the magnitude of biomass here.
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Figure 6. JERC-RD: Simulated and observed species aboveground biomass and relative abundance; a
=biomass; b = abundance; left = observations, middle = PPA-SiBGC, right = LANDIS-II NECN; note
that different scales are used for biomass

a22 Our results for the HF-EMS and JERC-RD site model intercomparison exercise clearly indicate
a3 strong performance for both models at both sites. Results for the JERC-RD site are particularly close
a2a between the two models. Next, we assess results related to the logistics of model deployment to new
425 computers, users, and modeling sites.

aze  3.3. Model Usability, Performance, and Transferability

az7 While the two models share a similar basis in forest dynamics and biogeochemistry modeling,
«2s they differ in important practical and conceptual terms. The command-line version of the PPA-SiBGC
a0 model used in this work, version 5.0, consists of approximately 500 lines of R code and is thus
a0 readily cross-platform, including cloud providers. Meanwhile, the LANDIS-II model core and NECN
a1 succession extension are an estimated 2,000 and 0.5 million lines of code, respectively. While this
a2 version of PPA-SiBGC fuses an explicit tree canopy geometry model with empirical data on fecundity,
a3 growth, mortality, and stoichiometry, the NECN extension of LANDIS-II borrows heavily from the
4 process-based Century model [20], similar to the MAPSS-Century-1 (MC1) model [82]. This carries
a5 important implications for model parameterization needs. While PPA-SiBGC relies on typical forest
a6 inventory data, including tree species, age/size, and densities, LANDIS-II relies on species age/size
a7 and traits in the form of vital attributes, in addition to NECN parameters. Below, we summarize our
«  findings regarding the logistics of model deployment.

a3 3.3.1. Model Usability
440 In the following section, we provide an assessment of model usability based on four criteria.

a1 1. Ease of installation
42 While LANDIS-II NECN requires the installation of two Windows programs, depending on the

443 options desired, PPA-SiBGC is contained in a single R script and requires only a working R
444 installation.
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ws 2. Ease of parameterization

4246 While both models can be difficult to parameterize for regions with little to no observational data,
447 the simple biogeochemistry in PPA-SiBGC requires an order of magnitude fewer parameters than
448 LANDIS-II NECN. In addition, PPA-SiBGC uses commonly available forest inventory data while
440 NECN requires a number of parameters that may be difficult to locate.

a0 3.  Ease of program operation

451 Both models use a command-line interface and are thus equally easy to operate. Yet, PPA-SiBGC
452 is cross-platform and uses comma-separated-value (CSV) files for input tables, which are easier
453 to work with than multiple tables nested within an unstructured text files. This additionally
54 allows for simplification in designing model application programming interfaces (APIs), or
ass model wrappers, a layer of abstraction above the models. These abstractions are important for
as6 simplifying model operation and reproducibility, and enable a number of research applications.
a7 4. Ease of parsing outputs

ass All PPA-SiBGC outputs are provided in CSV files in a single folder while LANDIS-II NECN
as0 generates outputs in multiple formats in multiple folders. While the PPA-SiBGC format is simpler
160 and easier to parse, the image output formats used by LANDIS-II carry considerable benefit for
461 spatial applications. Both models may benefit by transitioning spatiotemporal data to the NetCDF
462 scientific file format used by most general circulation and terrestrial biosphere models.

w3 3.3.2. Model Performance

464 Next, we assess model performance in terms of the speed of operation on a consumer-off-the-shelf
a5 (COTS) laptop computer with a dual-core 2.8 GHz Intel Core i7-7600U CPU and 16 GB of DDR4-2400
s RAM. We focus on a single performance metric, the timing of simulations. Other aspects of model
a7 performance in the form of precision and accuracy are described in previous sections. As shown in
sz lable 9, PPA-SiBGC was between 1,200 and 2,800% faster than LANDIS-II NECN in our timing tests.
a0 This was surprising given that PPA-SiBGC models true cohorts (i.e., individual trees) in an interpreted
azo  language while LANDIS-II models theoretical cohorts (i.e., cohorts without a physical basis) in a
a1 compiled language. The difference in speed is likely attributable to the parsimony of the PPA-SiBGC
a2 model.

Table 9. Simulation timing results

Site Model Duration (years) Elapsed (sec)
HF-EMS PPA-SiBGC 11 8.51
HF-EMS LANDIS-II NECN 11 101.15

JERC-RD PPA-SiBGC 5 2.25
JERC-RD LANDIS-II NECN 5 61.51

a3 3.3.3. Model Transferability

a7a Here, we discuss model transferability. In this section, we assess the effort required to transfer
a5 the models to new locations, new computer systems, or new users. All three are important logistical
a7e  criteria for effective model deployment.

ar 1. Model generalization

478 Both models appear to generalize effectively to different forested regions of the world, as both
a70 have shown strong performance in this study and others. No clear winner is evident in this regard.
480 In terms of model realism, PPA-SiBGC has a more realistic representation of forest canopies while
as1 LANDIS-IT NECN has more realistic processes, as it is a Century model variant.

w2 2. Availability of parameterization data

483 While LANDIS-II NECN requires substantially greater parameterization data compared to

484 PPA-SiBGC, it may often be possible to rely on previously published parameters. Meanwhile,
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a8s the growth, mortality, and fecundity parameters used by PPA-SiBGC are easy to calculate using
486 common field inventory data. PPA-SiBGC is simpler to transfer in this regard given the wide
a87 availability of forest inventory data.

s 3.  Size of the program

480 PPA-SiBGC is approximately 500 lines of R code, while LANDIS-II NECN is estimated at 0.5
490 million lines of C# code.

w1 4. Cross-platform support

402 While Linux support may soon be supported with Microsoft NET Core, LANDIS-II NECN is
493 written in C# and is thus limited to Microsoft Windows platforms. Meanwhile, PPA-SiBGC is
404 written in standard R code and is fully cross-platform.

ws 5. Ease of training new users

406 While both models have a learning curve, the practical simplicity of PPA-SiBGC may make it
497 easier to train new users. While LANDIS-II NECN contains more mechanistic processes and
408 related parameters, these come at the cost of confusing new users. The model wrapper library we
199 developed as part of this work vastly eases the operation of both models. Future studies should
500 measure the time required for new users to effectively operate both models.

so1  3.4. Discussion

502 On average, the PPA-SiBGC model outperformed LANDIS-II NECN for the sites and metrics
sos tested, showing stronger correlations, lower error, and less bias. Despite being a parsimonious model,
sos  PPA-SiBGC contains more realistic representation of stand canopy dynamics. Meanwhile, LANDIS-II
sos  NECN contains more realistic representation of biogeochemical processes, as a simplified variant of
sos the Century model. These differences together with the results lend support to our hypothesis that
sz vegetation dynamics drive biogeochemical pools to a higher degree than one-dimensional processes,
sos while the latter better capture fluxes. This is evidenced by the higher performance of PPA-SiBGC in
soo  predicting pools and LANDIS-IT NECN in predicting fluxes.

510 Empirical coefficients for the first moment of processes (e.g., growth, mortality, and fecundity)
s11 - were used to parameterize the PPA-SiBGC model, while LANDIS-II NECN required a multitude of
sz parameters for biogeochemical processes, some of which are often treated as tuning parameters. Yet,
s for this validation and intercomparison exercise, fully mechanistic processes were not required; both
s« models required a host of empirical parameters that limit their prognostic abilities in their current form.
s1is. Future developments with both models should improve upon this by adopting more mechanistic
516 processes.

517 Replacing the simple biogeochemistry approach of PPA-SiBGC with mechanistic processes would
sie  vastly improve the energetic and biogeochemical realism of the PPA-SiBGC model. Meanwhile,
s LANDIS-II NECN and other variants of the Century model may improve their structural realism by
s20 incorporating canopy representations with a physical basis. This is because Century was not designed
sz to be a plant production model [83] and contains no physically realistic representation of trees or
s22  canopies. Currently, the forest production model of Century is based theoretically on Liebig’s Law
s (i.e., limiting factors), employing allometric and stoichiometric relations with empirical constraints. In
s2  other words, plant production is strongly constrained by site-specific limits even though the Century
s2s  model is mechanistic in other ways. Meanwhile, a lack of canopy representation strongly limits the
s2¢ potential number and resolution of modeled processes. In short, combining the approaches of both
sz models may yield a more optimal solution.

528 In addition, our results suggest that improving the representation of forest dynamics in models
s20 may yield accurate biogeochemistry predictions even when simple allometric and stoichiometric
s:0  biogeochemistry relations are used, as evidenced by the performance of PPA-SiBGC. This finding
s supports the current widespread focus on improving the representation of vegetation dynamics in
sz global terrestrial biosphere models [27,28,84]. The PPA provides a uniquely efficient and tractable
s13 manner of incorporating three-dimensional canopy dynamics in global models. While many
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s« mechanistic processes may be considered mature, models of soil respiration are critical to accurate C
s projections and require continued development [18]. In order to achieve high levels of accuracy and
s, precision, given the recent success of aboveground model approximations, next-generation models
s37  May require a similar breakthrough in belowground processes.

538 Future studies should expand upon the PPA with a first-principles representation of energetic
s  and biogeochemical above- and below-ground processes in a modern component-based software
se0 framework. This work should fuse the new state-of-the-art forest biogeochemistry model with a model
sax wrapper API written in R or Python, in order to expand native model functions to include sampling
sz from parameter probability distributions, Monte Carlo methods, machine-learning model emulation,
sa3  Tobust loss functions, and optimization. This would combine a high-performance forest model written
sas  in a compiled language with a user-friendly interface in an interpreted language.

sas 3.5, Limitations

540 This study, similar to other forest modeling studies, was limited by the availability of observational
sz data. The lack of temporal depth in this data poses substantial challenges in modeling the long-term
sas  effects of forest succession, as these processes can operate on a century timescale or longer. However,
se0  assessing succession predictions was not the aim of this study, as we instead focus on near-term
sso  validation of forest models using field measurements and EC flux tower data. Another limitation
ss1 is that these methods may be challenging to implement for sites that are less well-characterized,
ss2  particularly in the absence of EC flux tower data and/or tree species parameters. A combination of
sss  tower-based and remote sensing observations may help overcome this challenge in the coming years
ssa  with advances in machine learning.

sss 4. Conclusions

556 In conclusion, the PPA-SiBGC and LANDIS-II NECN models represent vegetation dynamics
ss7  previously absent in modeling studies at these sites. These include, "...long-term increases in tree
sss  biomass, successional change in forest composition, and disturbance events, processes not well
sso represented in current models,” which drive interannual variation in NEE [40]. While the timescale
seo  Of our simulations were decidedly short-term due to data limitations, both models showed good
ses  performance. While PPA-SiBGC showed stronger performance across the range of metrics tested,
se2 including the logistics of model deployment, LANDIS-II NECN also performed well across the metrics
ses tested. Further studies are needed to compare more aspects of these and other models based on an
ses array of performance criteria.

s6s Ultimately, we hope that this study serves as the foundation for future forest ecosystem model
ses intercomparisons for the North American continent, similar in spirit to the former TDE Ecosystem
sev - Model Intercomparison project [24]. This may help create the impetus for a Global Forest Model
ses Intercomparison Project (ForestMIP) together with modeling groups on other continents. The aims
seo  Of this research were not to determine which model is ‘best” for prognosis at two locations, but to
s improve the capabilities of existing models across a range of locations in order to advance earth system
sn models. In this regard, there are beneficial aspects to both modeling approaches and the trade-offs
sz presented largely depend on the desired application. Counter to the classical modeling trade-off of
s Levins [21], improvements in precision and generality resulted from realism.

574 Supplementary Materials: Parameter tables for both models and sites are provided in Appendix 4. All model,
575 parameter, script files used in this model intercomparison exercise are available for download at the following
sz6  public GitHub repository:

577 https://github.com/adam-erickson/ecosystem-model-comparison

578 The repository provides tables containing parameter values and climate drivers used in the PPA-SiBGC and
sz LANDIS-II NECN model simulations for the two model intercomparison sites. Tree species codes are adopted
sso  from the USDA PLANTS database, accessible at the following URL:

581 https:/ /plants.sc.egov.usda.gov
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s82 Scripts provided include a simple object-oriented forest biogeochemistry model wrapper library
sss implemented in the R language [79]. The model wrapper library includes a number of features for simplifying the
ssa  Operation of this class of models, including functions for cleaning up and parsing model outputs into memory
sss  in a common format for comparison. Importantly, the wrapper library enables full reproducibility of results
sss through the hf_ems.r and jerc_rd.r scripts. Using these scripts with the object-oriented classes.r model wrapper, it
ss7  is possible to load pre-computed model results and calculate all intercomparison metrics for verification. The
sss  directory structure of the repository is shown in Figure 7.

ecosystem-model-comparison
| figures
| models
| landis_2
| hf_ems
extensions
succession
Lnecn
climate
maps
outputs
succession
Lnecn

t logs
metadata
| _jerc_rd

extensions

succession
L necn
climate
maps
outputs
succession
L necn
. ppa_bgc

t logs
metadata
hf_ems

t lut
outputs

erc_rd
E lut
outputs

| scripts

Figure 7. Directory structure of the GitHub repository
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e10 Abbreviations

e11  The following abbreviations are used in this manuscript:

ANPP Aboveground net primary production
API Application programming interface
BGC Biogeochemistry

COST Cooperation in Science and Technology
CPU Central processing unit

csv Comma-separated values

DoD Department of Defense

EC Eddy covariance

ED Ecosystem Demography model

EMS Environmental Measurement Station
FVS Forest Vegetation Simulator

GPGPU General-purpose graphics processing unit
HF Harvard Forest

IBIS2 Integrated Biosphere Simulator 2

JERC Jones Ecological Research Center

L-systems Lindenmayer systems
ei2 LANDIS-II  Landscape Disturbance and Succession model 2

LM3 Land Model 3

LPJ-GUESS  Lund-Potsdam-Jena General Ecosystem Simulator
MAE Mean absolute error

MC1 MAPSS-Century-1 model

NECN Net Ecosystem Carbon and Nitrogen model

NEE Net ecosystem exchange

NSE Nash-Sutcliffe efficiency

PPA Perfect Plasticity Approximation model
ProFoUnd  Towards robust projections of European forests under climate change
RAM Random access memory

RD Red Dirt

RMSE Root mean squared error

SAS Size- and age-structured equations

SOC Soil organic carbon

SON Soil organic nitrogen

TDE Throughfall Displacement Experiment
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sso  Appendix A.1. HF-EMS EC Flux Tower

860 Recent historical mean daily fluxes of temperature (° C), ecosystem respiration (umol CO, m~2),
ser and NEE (umol C m~2) for the HF-EMS tower are shown in Figure Al.
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Figure Al. HF-EMS tower daily averages

862 Patterns in daytime and nighttime NEE are shown in Figure A2. This was calculated by taking
ses daily mean NEE values for three-hour windows surrounding noon and midnight, respectively
ses  (1100-1300 and 2300-0100 hours). These patterns are important to diagnose, as they demonstrate
ses Tesponses to a gradient of light and temperature conditions.
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Figure A2. HF-EMS tower daily diurnal averages

ses  Appendix A.2. JERC-RD EC Flux Tower

867 Recent historical mean daily fluxes of latent heat flux (LE) (W m=2), ecosystem respiration
ses  (umol COy m~2), and NEE (umol C m~2) for the RD flux tower are shown in Figure A3.
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869 Patterns of daytime and nighttime NEE are shown in Figure A4. Again, this was calculated by

sro  taking daily mean NEE values for three-hour windows surrounding noon and midnight, respectively
ern (1100-1300 and 2300-0100 hours).
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ez Appendix B. Site maps

s73 Below, we provide maps of the two research sites for reference. First is the HF-EMS EC flux tower
e7a  with landcover classes Figure A5.
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875 Next is the JERC-RD flux tower with landcover classes Figure A6.
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s7e  Appendix C. Model Parameters
sz Appendix C.1. HF-EMS

e7e  Appendix C.1.1. PPA-SiBGC

Table Al. Species crown allometry parameters

Species Type heoefs crq cry cd

ACPE adult 0.063  0.108 1 0.490
ACRU adult 0.063  0.108 1 0.490
BEAL adult 0.063  0.109 1 0.540
BELE adult 0.024  0.109 1 0.540
BEPO adult 0.063  0.109 1 0.540
FAGR adult 0.035  0.152 1 0.664
FRAM adult 0.056  0.095 1 0.319
PIGL adult 0.033  0.087 1 0.413
PIRE adult 0.033  0.087 1 0.413
PIST adult 0.033  0.087 1 0.413
PRSE adult 0.045 0.116 1 0.370
QURU adult 0.042  0.119 1 0.413
QUVE adult 0.042  0.119 1 0.413
TSCA adult 0.024  0.100 1 0.846
ACPE sapling 0.062 0.107 1 0.580
ACRU sapling ~ 0.063  0.108 1 0.490
BEAL sapling 0.063 0.109 1 0.540
BELE sapling ~ 0.024  0.109 1 0.540
BEPO sapling ~ 0.063  0.109 1 0.540
FAGR sapling 0.035 0.152 1 0.664
FRAM sapling 0.056 0.095 1 0.319
PIGL sapling ~ 0.033  0.087 1 0.413
PIRE sapling 0.033 0.087 1 0.413
PIST sapling  0.033 0.087 1 0.413
PRSE sapling  0.045 0.116 1 0.370
QURU sapling ~ 0.042  0.119 1 0.413
QUVE sapling ~ 0.042  0.119 1 0.413
TSCA sapling ~ 0.024  0.100 1 0.846

Table A2. Species biomass equation parameters

Species b0 b1 ftem Soranch flmf froot fsoil
ACPE —2.047 2385 0.700 0.230 0.070 0.240 0.680
ACRU —2.047 2385 0.700 0.230 0.070 0.240 0.680
BEAL —1.810 2.348 0.700 0.230 0.070 0.240 0.680
BELE —1.810 2.348 0.700 0.230 0.070 0.240 0.680
BEPO —2.227 2.451 0.700 0.230 0.070 0.240 0.680
FAGR —2.070 2.441 0.700 0.230 0.070 0.240 0.680
FRAM —1.838 2.352 0.700 0.230 0.070 0.240 0.680
PIGL —2.136 2.323 0.700 0.230 0.070 0.240 0.680
PIRE —2.618 2.464 0.700 0.230 0.070 0.240 0.680
PIST —2.618 2.464 0.700 0.230 0.070 0.240 0.680
PRSE —2.212 2413 0.700 0.230 0.070 0.240 0.680
QURU —2.070 2.441 0.700 0.230 0.070 0.240 0.680
QUVE —2.070 2.441 0.700 0.230 0.070 0.240 0.680

TSCA —2.348  2.388 0.700 0.230 0.070  0.240 0.680
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Table A3. Biomass carbon fraction parameters

fstem fbmnch fleaf fmot fsoil
0.500 0.500 0.500 0.500 0.143

Table A4. Species DBH increment parameters

Species Type IpBH

ACPE adult 0.277
ACRU adult 0.312
BEAL adult 0.280
BELE adult 0.198
BEPO adult 0.103
FAGR adult 0.303
FRAM adult 0.149
PIGL adult 0.274
PIRE adult 0.390
PIST adult 0.277
PRSE adult 0.120

QURU adult 0.420
QUVE adult 0.322
TSCA adult 0.563
ACPE sapling  0.895
ACRU sapling  0.269
BEAL sapling  0.520
BELE sapling  0.201
BEPO sapling  0.300
FAGR sapling  0.530
FRAM sapling  0.500
PIGL sapling  0.353
PIRE sapling  0.350
PIST sapling  0.350
PRSE sapling 0.200
QURU sapling  0.098
QUVE sapling  0.100
TSCA sapling  0.509
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Table A5. Species mortality parameters

Species Type Pmortality

ACPE adult 0.115
ACRU adult 0.030
BEAL adult 0.035
BELE adult 0.009
BEPO adult 0.032
FAGR adult 0.015
FRAM adult 0.004
PIGL adult 0.074
PIRE adult 0.023
PIST adult 0.010
PRSE adult 0.009
QURU adult 0.007
QUVE adult 0.001
TSCA adult 0.022

ACPE sapling 0.001
ACRU sapling 0.873
BEAL sapling 0.001
BELE sapling 0.667
BEPO sapling 0.001
FAGR sapling 0.354
FRAM sapling 0.001
PIGL sapling 0.001
PIRE sapling 0.001
PIST sapling 0.001
PRSE sapling 0.001
QURU sapling 0.001
QUVE sapling 0.001
TSCA sapling 0.821

Table A6. Species fecundity parameters

Species  Fecundity

ACPE 2
ACRU 29
BEAL 16
BELE 8
BEPO 2
FAGR 11
FRAM 5
PIGL 3
PIRE 3
PIST 11
PRSE 8
QURU 29
QUVE 9

TSCA 17
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Table A7. Species C:N ratio parameters

SpeCieS CNstem Cmench CNleaf CNIitter CNioot CNsoil

ACPE 548.590 71.460 30.460 58.800 68.548 23.087
ACRU 548.590 71.460 30.460 58.800 68.548 23.087
BEAL 548.590 71.460 22.420 58.800 68.548 23.087
BELE 548.590 71.460 21.200 58.800 68.548 23.087
BEPO 548.590 71.460 21.560 58.800 68.548 23.087
FAGR 548.590 71.460 22.420 58.800 68.548 23.087
FRAM 548.590 71.460 21.910 58.800 68.548 23.087

PIGL 548.590 71.460 38 58.800 68.548 23.087
PIRE 548.590 71.460 33 58.800 68.548 23.087
PIST 548.590 71.460 38 58.800 68.548 23.087

PRSE 548.590 71.460 21.500 58.800 68.548 23.087
QURU 548.590 71.460 21.920 58.800 68.548 23.087
QUVE 548.590 71.460 21.920 58.800 68.548 23.087
TSCA 548.590 71.460 42.520 58.800 68.548 23.087

e Appendix C.1.2. LANDIS-II NECN

Table A8. NECN adjustment parameters

Parameter Value
Pest modifier 0.1
Npineral initial 3.0
Fuelsfine initial 0.1
Natmos slope 0.007
Natmos intercept 0.011
Latitudeg,q 43.3
7/denitrificati(m 0.001
Tdecay Surface 0.65
Tdecay SOM1 1.0
Ydecay SOM2 0.125
Tdecay SOM3 0.0002

Table A9. NECN maximum LAI parameters

Classgpag, LALpax

1 1
2 2.5
3 35
4 6
5 8

Table A10. NECN light establishment parameters

Classspade Shade Shadeq Shade, Shades Shadey Shades

1 1 1 0.25 0.1 0 0
2 0.5 0.5 1 0.25 0.1 0
3 0.1 0.5 1 1 0.5 0.1
4 0.1 0.25 0.5 0.5 1 0.25
5 0 0.1 0.25 0.25 0.5 1
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Table A11. NECN species parameters

Species PFT  Nyiy  GDDyin  GDDwax  Twin  Dmax  Longieap  Repi Licas  Lroot,  Lwood  Lroot.  CNiear  CNyoot;  CNuwood  CNroot.  CNiitter ANPPyax  Bpax

ACRU 3 N 1260 6600 -18 0.23 1 N 0183 0334 0125 0312 2820 26 565 50 55 440 25000
QURU 2 N 1100 4571 -17  0.2025 1 N 0249 0334 0225 0303 1850 58 398 113 32 380 25000

Table A12. Functional group parameters

PET Index  Tear  Twax  Touwpe Tuape fof BTOLAL KLAI _LAlygs PPRPTS; PPRPTS3 Faway® Muood  Msiape  droPuonti  frootC frootf
Oaks 2 25 40 1.5 25 0.6 -0.9 10000 9 0.1 0.8 0.5 0.0006 15 9 02 0.5
NorthHardwoods 3 25 40 1.5 25 0.6 -0.9 7000 10 1.5 0.96 0.7 0.0006 15 9 0.2 0.5

Table A13. Fire reduction parameters; inactive

Classseerity Reduction g, Reductionjy,, Reductiongop

1 0.0 0.5 1.0
2 0.05 0.75 1.0
3 0.2 1.0 1.0
4 0.5 1.0 1.0
5 0.8 1.0 1.0

Table A14. Harvest reduction parameters; inactive

Class Reductiony,eg Reductionyser Reductiongpopm Removaljy, g Removal 04

HandThinning 0.05 1.0 1.0 1.0 1.0
MechThinning 0.05 1.0 1.0 0.85 1.0
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Table A15. Species parameters; only ACRU and QURU were simulated

Species Longevity Maturity Tshade Tfire Deff Diax Poeg Simin Smax Rfire
ABBA 200 25 5 1 30 160 0 0 0 none
ACRU 235 5 4 1 100 200 0.75 0 150 none
ACSA 300 40 5 1 100 200 0.1 0 60 none
BEAL 300 40 3 2 100 400 0.1 0 180 none
BELE 250 40 4 2 100 400 0.1 0 0 none
BEPA 150 40 4 2 100 600 0.75 0 150 none
BEPO 150 40 4 2 100 400 0.1 0 0 none
CAGL 200 30 3 2 50 100 0.25 0 200 resprout
FAGR 350 10 5 1 30 300 0.4 10 200 resprout
FRAM 300 30 2 1 70 140 0.1 0 70 none
FRNI 150 30 4 2 200 2000 0.8 10 140 resprout
LALA 180 35 2 2 100 400 0.2 0 0 none
OSsVI 110 25 4 2 100 200 0.15 0 100 resprout
PIGL 300 25 3 2 30 200 0 0 0 none
PIMA 215 30 3 3 79 158 0 0 0 none
PIRU 350 15 5 2 80 125 0 0 0 none
PIRE 250 15 2 4 100 275 0.1 0 20 none
PIRI 200 10 2 4 90 150 0.5 10 100 resprout
PIST 400 25 3 3 60 210 0 0 0 none
POBA 150 10 1 2 100 200 0.8 10 80 resprout
POGR 110 20 1 1 1000 5000 0.9 0 100 resprout
POTR 110 20 1 1 1000 5000 0.9 0 100 resprout
PRSE 200 10 2 3 100 200 0.5 20 90 resprout
QUAL 400 25 3 2 30 800 0.1 20 200 resprout
QucCo 150 20 2 3 50 100 0.5 20 100 resprout
QUPR 300 20 3 3 50 150 0.5 10 200 resprout
QURU 250 30 3 2 30 800 0.5 20 200 resprout
QUVE 120 20 3 2 70 150 0.1 20 90 resprout
THOC 800 30 2 1 45 100 0.5 0 200 none
TIAM 250 15 4 1 75 150 0.8 10 240 resprout
TSCA 500 20 5 2 30 100 0 0 0 none
ULAM 85 20 4 2 90 400 0.3 5 70 resprout

s Appendix C.2. JERC-RD

sn  Appendix C.2.1. PPA-SiBGC

Table A16. Species crown allometry parameters

Species Type heoef crl cr2 cd

PIPA adult 0.033 0.087 1 0.413
QUIN adult 0.042 0.119 1 0.413
QUNI adult 0.042 0.119 1 0.413
QUVI adult 0.042 0.119 1 0.413
PIPA sapling 0.033 0.087 1 0.413
QUIN sapling 0.042 0.119 1 0.413
QUNI sapling 0.042 0.119 1 0.413
QUVI sapling 0.042 0.119 1 0.413
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Table A17. Species biomass equation parameters

SPeCies b0 b1 fstem fbmnch fleaf fraot fsoil

PIPA -3.051 2.647 0.700 0.230 0.070 0.240 0.680
QUIN -2.070 2.441 0.700 0.230 0.070 0.240 0.680
QUNI -2.070 2.441 0.700 0.230 0.070 0.240 0.680
QUVI -2.070 2.441 0.700 0.230 0.070 0.240 0.680

Table A18. Biomass carbon fraction parameters

fstem Soranch fleaf froot fsoil
0.500 0.500 0.500 0.500 0.143

Table A19. Species DBH increment parameters

Species Type IppH

PIPA adult 0.261
QUIN adult 0.119
QUNI adult 0.994
QUVI adult 0.276
PIPA sapling  0.197
QUIN sapling  0.100
QUNI sapling  0.440
QUVI sapling 0.271

Table A20. Species mortality parameters

Species Type Pmortality

PIPA adult 0.001
QUIN adult 0.001
QUNI adult 0.001
QUVI adult 0.001

PIPA sapling 0.174
QUIN sapling 0.333
QUNI sapling 0.143
QUVI sapling 0.111

Table A21. Species fecundity parameters

Species  Fecundity

PIPA 2
QUIN 0
QUNI 0
QUVI 0



https://doi.org/10.1101/464578

bioRxiv preprint doi: https://doi.org/10.1101/464578; this version posted December 2, 2018. The copyright holder for this preprint (which was

882

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Version November 30, 2018 submitted to Journal Not Specified

Table A22. Species C:N ratio parameters

Species CNstem CNpranch CNleaf CNiitter CNioot CNipil
PIPA 133.721 133.721 255.103  255.103  133.721  23.087
QUIN 96.370 96.370 85.259 85.259 96.370 23.087
QUNI 96.370 96.370 85.259 85.259 96.370 23.087
QUVI 96.370 96.370 85.259 85.259 96.370 23.087
Appendix C.2.2. LANDIS-II NECN
Table A23. NECN adjustment parameters
Parameter Value
Pest modifier 04
Nmineml initial 0.5
Fuelsyiy, initial 0.1
Natmos slope 0.004
Natmos intercept 0.017
Latitude e 31.220731
Tdenitrification 0.02
Tdecay Surface 0.70
Tdecay SOM1 0.81
T decay SOM2 0.05
T decay SOM3 0.00006
Table A24. NECN maximum LAI parameters
Classspage LAIpax
1 1
2 2.5
3 3.5
4 6
5 8
Table A25. NECN light establishment parameters
Classgp,age Shade Shadeq Shade, Shades Shadey Shades
1 1 1 0.25 0.1 0 0
2 0.5 0.5 1 0.25 0.1 0
3 0.1 1 1 1 0.5 0.1
4 0.1 0.25 0.5 0.5 1 0.25
5 0 0.1 0.25 0.25 0.5 1

39 of 40


https://doi.org/10.1101/464578

bioRxiv preprint doi: https://doi.org/10.1101/464578; this version posted December 2, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Version November 30, 2018 submitted to Journal Not Specified 40 of 40
Table A26. NECN species parameters
Species PFT N GDDyin_ GDDuss  Twin Duax  Longir  Repi Licar  Lroot, Luoot  Lwote  CNiag  CNioot,  CNuood  CNooot,  CNiier  ANPPuas B
QUIN 2 N 3915 7000 1 0.423 1 N 0293 023 0.23 0.35 24 48 500 333 55 250 15000
QULA 2 N 3915 7000 1 0.423 1 N 0293 023 0.23 0.35 24 48 500 333 55 250 15000
PIPA 1 N 3915 7000 1 0.423 2 N 0.2 0.2 0.35 0.35 50 50 380 170 100 500 15000
Table A27. Functional group parameters
PFT  Index Tuean Twsx Towpe Tuwpe fo, BTOLAI KLAI LAlys PPRPTS; PPRPTS; Fiwayy Musod Mupe MONthiop froot, froots
Pine 1 28 45 30 25 037 09 2000 10 1 08 06 0001 15 9 031 056
Oaks 2 27 45 22 25 05 09 2000 20 0.1 0.75 06 0001 15 9 021 059
Table A28. Fire reduction parameters; inactive
Classseverity Reductiony,og Reductionjse, Reductiongop
1 0.0 0.5 1.0
2 0.05 0.75 1.0
3 0.2 1.0 1.0
4 0.5 1.0 1.0
5 0.8 1.0 1.0
Table A29. Harvest reduction parameters; inactive
Classseyerity Reductiony,p,g Reductionjse, Reductiongop Removalje, Removal 04
HandThinning 0.05 1.0 1.0 1.0 1.0
MechThinning 0.05 1.0 1.0 0.85 1.0
Table A30. Species parameters
Species  Longevity  Maturity  Tyjqq. Tfire Dy Diax Poeg Smin Smax Rfire
QUIN 150 10 4 5 50 3000 0.75 5 40 resprout
QULA 150 20 4 3 50 3000 0.75 5 40 resprout
PIPA 400 20 1 5 20 200 0.0 0 5 none
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