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Abstract: Recent advances in forest ecosystem modeling allow the simulation of a suite of dynamics1

from site- to landscape-scale. In order to scale models efficiently from trees to landscapes, different2

model reduction strategies are employed. Yet, the results of these strategies and the assumptions3

they entail are rarely compared. Here, we conducted a model intercomparison exercise using two4

such forest biogeochemistry models, PPA-SiBGC and LANDIS-II NECN. We simulated past-decade5

conditions at flux tower sites in Harvard Forest, MA, USA and Jones Ecological Research Center, GA,6

USA. We mined the wealth of field data available for both sites to perform model parameterization,7

validation, and intercomparison. We assessed model performance using the following time-series8

metrics: net ecosystem exchange, aboveground net primary production, aboveground biomass, C,9

and N, belowground biomass, C, and N, soil respiration, and, species total biomass and relative10

abundance. We also assessed static observations of soil organic C and N, and concluded with11

an assessment of general model usability, performance, and transferability. Despite substantial12

differences in design, both models achieved good accuracy across the range of metrics. While13

LANDIS-II NECN performed better for interannual NEE fluxes due to its basis in the Century model,14

the PPA-SiBGC model indicated better overall correspondence to observational data for both sites15

across the 11 temporal and 2 static metrics tested (HF-EMS R2 = 0.73,+0.07, RMSE = 4.84,�10.02;16

JERC-RD R2 = 0.76,+0.04, RMSE = 2.69,�1.86).17

Keywords: Perfect Plasticity Approximation; SORTIE-PPA; LANDIS-II; forest ecosystem simulation;18

forest biogeochemistry model; forest landscape model; model intercomparison; Harvard Forest; Jones19

Ecological Research Center20

1. Introduction21

Forest models are thought to have began 350 years ago in China with yield tables known as22

the Lung Ch’uan codes, invented by a women of the Kuo family in Suichuan county, Jiangxi [1]. It23

was not until the 20th century that the first complex mathematical models of forests emerged. Digital24

computers enabled researchers, for the first time, to explicitly model forest dynamics. Following the25

development of matrix models [2] and empirical growth-and-yield models such as Prognosis [3,4],26

a vast array of gap [5], forest landscape [6–10], and terrestrial biosphere models [11–13] have been27

developed. Models of forest ecosystems vary substantially in their representation of crown geometry28

and biogeochemical processes.29

Representation of canopy geometry varies from implicit to a single ’big-leaf’ and detailed30

three-dimensional crown and root geometry (e.g., modern gap models such as MAESPA [14] and31

LES [15]). Models of growth range from simple allometric equations (e.g., growth-and-yield models)32

to light-use efficiency models [16] and first-principles mechanistic models of photosynthesis [17].33

Belowground process models similarly vary in structure, from simple stoichiometric relations to carbon34
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and nitrogen cycling with microbial dynamics to a fully mechanistic representation of energetic and35

biogeochemical processes based on thermodynamics. Current belowground models vary considerably36

in their process representation and accuracy, with much improvement left to be made [18]. Most37

belowground models in use globally rely on a variant of the classical Century model [19,20].38

Model specialization and generalization ranges from pure research applications in narrowly39

defined areas (e.g., [14]) to simulating multiple loosely coupled landscape processes to simulating40

biogeochemical fluxes throughout the world’s forests. A trade-off is thought to exist between realism,41

precision, and generality [21], with more detailed models requiring higher parameterization costs. Yet,42

little is known about the net effects of variation in the structure of these models on the precision and43

accuracy of their predictions across temporal and spatial scales. While such model intercomparisons44

are common within classes of models such as terrestrial biosphere models, they are seldom applied to45

gap or forest landscape models. Models operating at different scales are seldom compared within sites.46

Yet, much can be learned by comparing models that differ in assumptions and structure.47

Existing forest model intercomparison projects, or MIPs, in Europe include the stand-level48

Intersectoral Impact MIP (ISIMIP) [22] and landscape-level Comparison of Forest Landscape Models49

(CoFoLaMo) [23], the latter conducted under the European Union Cooperation on Science and50

Technology (COST) Action FP1304 "Towards robust projections of European forests under climate51

change" (ProFoUnd). Previous efforts in the United States include the Throughfall Displacement52

Experiment (TDE) Ecosystem Model Intercomparison Project at Walker Branch Watershed in Oak53

Ridge, Tennessee [24]. Presently, no other forest model intercomparison project is evident for North54

America. There is a critical need to conduct ongoing forest biogeochemistry model comparisons in55

this and other regions of the world in order to establish the regional foundation for robust global C56

cycle projections. In this work, we aim to begin this process for North America with a comparison57

of the Perfect Plasticity Approximation with Simple Biogeochemistry (PPA-SiBGC) and Landscape58

Disturbance and Succession with Net Ecosystem Carbon and Nitrogen (LANDIS-II NECN) models,59

which provide contrasting model structures for representing stand dynamics.60

Modern forest landscape models are the result of five key model development phases, listed in61

chronological order: (1) growth-and-yield models; (2) fire models; (3) gap models; (4) physiological62

models; (5) hybrid models combining design principles from each [5,25,26]. Terrestrial biosphere63

models similarly trace their roots back to early one-dimensional physiological models, with land64

surface models currently in their third generation and dynamic global vegetation models in their65

second generation [27]. This latest generation of models was intended to address the lack of66

explicit representation of vegetation dynamics - a critical source of model uncertainty in future67

climate scenarios [28]. This inspired the aforementioned forest ecosystem model intercomparisons68

as well as new terrestrial biosphere model designs based on gap models, bypassing the trade-offs of69

medium-resolution forest landscape models.70

Collectively, these efforts yielded a number of new terrestrial biosphere models based on the71

classical gap model, including the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS)72

[29], the Ecosystem Demography model (ED/ED2) [30,31], and Land Model 3 with PPA (LM3-PPA)73

[32], based on the Perfect Plasticity Approximation (PPA) [33,34]. These models represent the current74

state-of-the-art in modeling vegetation dynamics globally. While individual-based global models have75

begun to merge, forest landscape models have remained in between, focused on spatial processes of76

fire, harvest, and biological disturbance. Yet, previous research has shown that such forest landscape77

models are often insensitive to landscape configuration and are therefore aspatial [35], counter to the78

main assumption and selling point of these models.79

While most forest landscape and terrestrial biosphere models lack individual trees, the SAS [30]80

and PPA [33,36,37] model reduction strategies have demonstrated an ability to successfully up-scale81

gap dynamics to forest stands. Other up-scaling strategies exist as well. One recent forest landscape82

model participating in the CoFoLaMo intercomparison scales from individual trees to stands by83

pre-computing light tables [38]. Regardless of the model structure, it is clear that gap, forest landscape,84

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/464578doi: bioRxiv preprint 

https://doi.org/10.1101/464578


Version November 30, 2018 submitted to Journal Not Specified 3 of 40

and terrestrial biosphere models are beginning to merge into new models of the terrestrial biosphere.85

This trend is also attributable to improvements in computational efficiency with new processor designs86

and cluster or cloud computing infrastructure. As few, if any, existing models are designed for highly87

parallel architectures (e.g., general-purpose graphics processing units, or GPGPUs), there remains88

much potential for future model efficiency gains.89

In this forest biogeochemistry model intercomparison, we focus on two sites on the East Coast of90

the United States, Harvard Forest (HF), Massachusetts and Jones Ecological Research Center (JERC),91

Georgia. The two sites were selected for their representativeness of the United States Eastern Seaboard92

and for the availability of data needed to parameterize and validate the models. Harvard Forest is one93

of the most-studied forests in the world, with Google Scholar returning 12,700 results for the site. We94

focus on results for the Environmental Measurement Station (EMS) eddy covariance (EC) flux tower95

site within the Little Prospect Hill tract - the longest-running eddy covariance flux tower in the world.96

Previous research at the EMS EC flux tower site found unusually high rates of ecosystem respiration97

in winter and low rates in mid-to-late summer compared to other temperate forests [39]. While the98

mechanisms behind these observed patterns remains poorly understood, this observation is outside99

the scope of the presented research.100

Between 1992 and 2004, the site acted as a net carbon sink, with a mean annual uptake rate101

of 2.5MgCha�1year�1. Aging dominated the site characteristics, with a 101-115 Mg C ha-1 increase102

in biomass, comprised predominantly of growth of red oak (Quercus rubra). The year 1998 showed103

a sharp decline in net ecosystem exchange (NEE) and other metrics, recovering thereafter [40]. As104

Urbanski et al. [40] note of the Integrated Biosphere Simulator 2 (IBIS2) and similar models at the105

time, "the drivers of interannual and decadal changes in NEE are long-term increases in tree biomass,106

successional change in forest composition, and disturbance events, processes not well represented in107

current models." The two models used in the intercomparison study, a SORTIE-PPA [33,34] variant and108

LANDIS-II with NECN succession [41,42], are intended to directly address these model shortcomings.109

While there have been fewer studies at Jones Ecological Research Center, Georgia, USA, Google110

Scholar returns 1,370 results for the site, reflecting its growing role in forest sciences research. Our111

study focuses on the Red Dirt (RD) EC flux tower site within the mesic sector, for which a handful of112

relevant studies exist. Two recent studies [43,44] indicate that the mesic sector of this subtropical pine113

savanna functions as a moderate carbon sink (NEE = �0.83 Mg C ha�1 year�1; �1.17 Mg C ha�1 year�1),114

reduced to near-neutral uptake during the 2011 drought (NEE = �0.17 Mg C ha�1year�1), and is a115

carbon source when prescribed burning is taken into account. NEE typically recovered to pre-fire rates116

within 30-60 days. The mechanisms behind soil respiration rates here again appear to be complex,117

site-specific, and poorly understood [44].118

Overall, existing research highlights the importance of fire and drought to carbon exchange in119

long-leaf pine (Pinus palustris) and oak (Quercus spp.) savanna systems [43–45] at JERC. This is in120

contrast to the secondary growth-dominated deciduous broadleaf characteristics of Harvard Forest.121

Species diversity at the EMS tower site is 350% greater than that of the JERC-RD site, with 14 species122

from a variety of genera compared to four species from only two genera, Pinus and Quercus.123

In this work, we aim to establish a foundation for future forest biogeochemistry model124

intercomparisons. This includes open-source object-oriented software to facilitate model125

parameterization, validation, intercomparison, and simplified reproducibility of results. We perform126

the model intercomparison for two key research forests in the United States to assess the ability of each127

model to reproduce observed biogeochemistry pools and fluxes over time. We hypothesize that the128

inclusion of forest growth, compositional change, and mortality processes in both models will allow129

for accurate predictions of biomass and NEE dynamics, as suggested in previous research Urbanski130

et al. [40]. Accordingly, we compare both models to observations and to each other for a host of metrics131

related to biomass, C, N, and forest composition at the two research sites.132
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2. Materials and Methods133

LANDIS-II NECN and PPA-SiBGC were parameterized for two forested sites in the eastern United134

States, Harvard Forest, Massachusetts and Jones Ecological Research Center, Georgia. At the HF site,135

we focus on Little Prospect Hill and the EMS EC flux tower (HF-EMS). At the JERC site, we focus on136

the mesic zone and RD EC flux tower (JERC-RD). Both sites provided local EC and meteorological137

measurements to conduct this study. Plots of EC flux and meteorological tower measurements for both138

sites are located in Appendix A; maps of both sites are located in Appendix B.139

Both models were parameterized using data available for each site, including local (i.e., field140

measurements) and general information sources (e.g., species compendiums and other published141

sources). As these empirical or observational values were used to parameterize both models, further142

model calibration (i.e., parameter tuning) was not necessary. This is because tuning parameters away143

from measured values to improve model performance, or defining a separate set of tuning parameters,144

is known to produce model over-fitting (i.e., reduced generality) and thus false improvements in145

model accuracy through reduced parsimony [46]. We explicitly avoided this practice, as it is only146

appropriate when fitting empirical growth-and-yield models such as Prognosis, also known as the147

Forest Vegetation Simulator (FVS) [3,4]. All model parameters are provided in the Appendix C. We148

close the methodology section with descriptions of the metrics, models, and criteria used in the149

intercomparisons.150

2.1. Model Descriptions151

In the following sections, we provide a brief overview of the two forest ecosystem models used in152

this intercomparison study. For detailed information on each model, readers are encouraged to refer to153

the original publications.154

2.1.1. LANDIS-II NECN155

The LANDIS-II model is an extension of the original LANdscape DIsturbance and Succession156

(LANDIS) model [47–49] into a modular software framework [41]. Specifically, LANDIS-II is a model157

core containing basic state information that interfaces or communicates with external user-developed158

models known as "extensions" using a combination of object-oriented and modular design. This design159

makes LANDIS-II a modeling framework rather than a model. The LANDIS family of models, which160

also includes LANDIS PRO [50] and Fin-LANDIS [51,52], are stochastic hybrid models [25] based on161

the vital attributes/fuzzy systems approach of the LANDSIM model genre [53]. Perhaps unknowingly,162

this genre borrows heavily from cellular automata [54] and thus Markov Chains by applying simple163

heuristic rule-based systems, in the form of vital attributes, across two-dimensional grids.164

Models of the LANDSIM genre focus on landscape-scale processes and assume game-theoretic165

vital attribute controls over successional trajectories following disturbance [55]. The LANDSIM model166

genre is thus a reasonable match for the classical forest fire model [56], given its local two-dimensional167

cellular basis. In contrast to the original LANDIS model, LANDIS-II is implemented in Microsoft168

C# rather than ISO C++98 [57], simplifying model development in exchange for a proprietary169

single-vendor software stack [41].170

The latest version of LANDIS-II (v7) supports Linux through use of the Microsoft .NET Core171

developer platform. The modular design of LANDIS-II is intended to simplify the authorship and172

interaction of user-provided libraries for succession and disturbance. The centralized model core173

stores basic landscape and species state information and acts as an interface between succession174

and disturbance models. While there have been numerous forest landscape models over the years175

[6–10], the LANDIS family of models has enjoyed notable longevity and is currently united under the176

LANDIS-II Foundation. Part of its longevity is attributable to the prioritization of model functionality177

over realism in order to appeal to application-minded managers seeking a broad array of functionality.178
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The Net Ecosystem Carbon and Nitrogen (NECN) model [42] is a simplified variant of the classical179

Century model [19,20]. The original ten soil layers in Century have been replaced by a single soil layer,180

with functions for growth and decay borrowed directly from Century v4.5. The NECN succession181

model Figure 1 is thus a process-based model that simulates C and N dynamics along the plant-soil182

continuum at a native monthly timestep.183
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Figure 1. LANDIS-II NECN model structure

Atmospheric effects are included through monthly climate (i.e., temperature maxima, minima,184

means, and standard deviations, and precipitation means and standard deviations). Explicit geometric185

representation of tree canopies is forgone in favor of bounded statistical growth models based186

theoretically on Liebig’s Law of the Minimum. Functions for growth, mortality, and decay are adopted187

from Century [19] while hydrology is based on the simple bucket model [58]. The regeneration function188

is the only new process in NECN and is also based on Liebig’s Law. For a detailed description of189

the NECN model, readers may refer to the original model publication [42]. Parameterization of the190

LANDIS-II model for both sites was based on updating parameters used in recent [59–62] and ongoing191

(Flanagan et al., in review) work.192

2.1.2. PPA-SiBGC193

The PPA-SiBGC model belongs to the SORTIE-PPA family of models [33,36] within the SAS-PPA194

model genre, based on a simple and analytically tractable approximation of the classical SORTIE195

gap model [63,64]. The Perfect Plasticity Approximation, or PPA [33,34], was derived from the dual196

assumptions of perfect crown plasticity (e.g., space-filling) and phototropism (e.g., stem-leaning), both197

of which were supported in empirical and modeling studies [36]. The discovery of the PPA was rooted198

in extensive observational and in silico research [33]. The PPA model was designed to overcome the199
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most computationally challenging aspects of gap models in order to facilitate model scaling from the200

landscape to global scale.201

The PPA and its predecessor, the size-and-age structured (SAS) equations [30,65], are popular202

model reduction techniques employed in current state-of-the-art terrestrial biosphere models [13]. The203

PPA model can be thought of metaphorically as Navier-Stokes equations of forest dynamics, capable of204

modeling individual tree population dynamics with a one-dimensional von Foerster partial differential205

equation [33]. The simple mathematical foundation of the PPA model is provided in Equation 1.206

1 =
Z •

z⇤

k

Â
j=1

Nj(z)Aj(z⇤, z)dz (1)

where k is the number of species, j is the species index, Nj(z) is the density of species j at height z,207

Aj(a⇤, z) is the projected crown area of species j at height z, and dz is the derivative of height. In other208

words, we discard the spatial location of individual trees and calculate the height at which the integral209

of tree crown area is equal to the ground area of the stand. This height is known as the theoretical z⇤210

height, which segments trees into overstory and understory classes [33].211

The segmentation of the forest canopy into understory and overstory layers allows for separate212

coefficients or functions for growth, mortality, and fecundity to be applied across strata, whose first213

moment accurately approximates the dynamics of individual-based forest models. Recent studies have214

shown that the PPA model faithfully reduces the dynamics of the more recent neighborhood dynamics215

(ND) SORTIE-ND gap model [66] and is capable of accurately capturing forest dynamics [67,68].216

In this work, we applied a simple biogeochemistry variant of the SORTIE-PPA model, PPA-SiBGC217
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Empirical observations were relied upon for the C and N content of tree species compartments.219

Stoichiometric relations were used to estimate N from C, based on empirical measurements provided220

for both sites. All values were calculated directly from observations. Previously published equations221

[71] and parameters [72] were used to model crown allometry. Together with inventory data, general222

biomass equations were used to estimated dry weight mass (kg) for tree stems, branches, leaves, and,223

fine and coarse roots [73]. Carbon content is assumed to be 50% of dry mass, supported by data.224

Monthly soil respiration is modeled using the approach of Raich et al. [69], while soil organic C is225

modeled using the simple generalized approach of Domke et al. [70]. Species- and stratum-specific226

parameters for growth, mortality, and fecundity were calculated from observational data available for227

both sites.228

2.2. Site Descriptions229

In the following sections, we describe the two forested sites on the East Coast of the United States:230

HF-EMS and the JERC-RD. A critical factor in the selection of the sites was the availability of eddy231

covariance flux tower data needed to validate NEE in the models.232

2.2.1. HF-EMS233

The HF-EMS EC flux tower is located within the Little Prospect Hill tract of Harvard Forest234

(42.538�N, 72.171�W, 340 m elevation) in Petersham, Massachusetts, approximately 100 km from the235

city of Boston [40]. The tower has been recording NEE, heat, and meteorological measurements since236

1989, with continuous measurements since 1991, making it the longest-running eddy covariance237

measurement system in the world. The site is currently predominantly deciduous broadleaf238

second-growth forests approximately 75-95 years in age, based on previous estimates [74]. Soils239

at Harvard Forest originate from sandy loam glacial till and are reported to be mildly acidic [40].240

The site is dominated by red oak (Quercus rubra) and red maple (Acer rubrum) stands, with241

sporadic stands of Eastern hemlock (Tsuga canadensis), white pine (Pinus strobus), and red pine (Pinus242

resinosa). When the site was established, it contained 100 Mg C ha�1 in live aboveground woody243

biomass [74]. As noted by Urbanski et al. [40], approximately 33% of red oak stands were established244

prior to 1895, 33% prior to 1930, and 33% before 1940. A relatively hilly and undisturbed forest (since245

the 1930s) extends continuously for several km2 around the tower. In 2000, harvest operations removed246

22.5 Mg C ha�1 of live aboveground woody biomass about 300 m S-SE from the tower, with little247

known effect on the flux tower measurements. The 40 biometric plots were designated via stratified248

random sampling within eight 500 m transects Urbanski et al. [40]. The HF-EMS tower site currently249

contains 34 biometric plots at 10 m radius each, covering 10,681 m2, or approximately one hectare, in250

area. Summary statistics for the EMS tower site are provided in Table 1.251

Table 1. HF-EMS site forest inventory summary; DBH in cm and aboveground biomass (BAG) in kg

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Year 7,234 2006.93 3.155 2002 2004 2010 2012
DBH 7,234 24.79 11.63 9.60 15.53 32.37 72.40
BAG 7,234 385.90 507.07 22.50 88.82 470.28 4,216.27

A table of observed species abundances for the 2002-2012 period are provided in Table 2.252
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Table 2. HF-EMS site species abundance

Species Count

ACPE 6
ACRU 2720
BEAL 400
BELE 131
BEPO 64
FAGR 152
FRAM 143
PIGL 251
PIRE 342
PIST 334
PRSE 150
QURU 1366
QUVE 135
TSCA 1012

Data were collected here for a range of studies, as evidenced by the Harvard Forest Data Archive.253

Datasets used in model validation include HF001-04, HF004-02, HF069-09, HF278-04, HF069-06,254

HF015-05, HF006-01, and HF069-13. These include weather station and forest inventory time-series,255

eddy covariance flux tower measurements, soil respiration, soil organic matter, and studies on C:N256

stoichiometry. Standard measurement techniques were used for each. For both sites, local tree species,257

age, depth-at-breast-height (DBH), biomass, soil, and meteorological data were primarily used to258

parameterize the models.259

2.2.2. JERC-RD260

Jones Ecological Research Center at Ichauway is located near Newton, Georgina, USA (31�N,261

84�W, 25-200 m elevation). The site falls within the East Gulf Coastal Plain and consists of flat to262

rolling land sloping to the southwest. The region is characterized by a humid subtropical climate263

with temperatures ranging from 5-34 �C and precipitation averaging 132 cm year-1. The overall site is264

12,000 ha in area, 7,500 ha of which are forested [75]. The site also exists within a tributary drainage265

basin that eventually empties into the Flint River. Soils here are underlain by karst Ocala limestone266

and mostly Typic Quartzipsamments, with sporadic Grossarenic and Aquic Arenic Paleudults [76].267

Soils here often lack well-developed organic horizons [75–77].268

Forests here are mostly second-growth, approximately 65-95 years in age. Long-leaf pine (Pinus269

palustris) dominates the overstory, while the understory is comprised primarily of wiregrass (Aristida270

stricta) and secondarily of shrubs, legumes, forbs, immature hardwoods, and regenerating long-leaf271

pine forests [78]. Prescribed fire is a regular component of management here, with stands often burned272

at regular 1-5 year intervals [75]. This has promoted wiregrass and legumes in the understory,273

while reducing the number of hardwoods [75]. The RD EC flux tower is contained within the274

mesic/intermediate sector. This site consists of only four primary tree species from two genera:275

long-leaf pine (Pinus palustris), water oak (Quercus nigra), southern live oak (Quercus virginiana), and276

bluejack oak (Quercus incana). Measurements for the RD tower are available for the 2008-2013 time277

period. Summary statistics for the RD tower site are provided in Table 3.278

Table 3. JERC-RD site forest inventory summary; DBH in cm and aboveground biomass (BAG) in kg

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Year 1,012 2011.01 1.42 2009 2010 2012 2013
DBH 1,012 31.10 12.73 10.70 18.96 42.25 62.75
BAG 1,012 707.28 564.65 3.91 177.27 1,179.59 2,708.08
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A table of observed species abundances for the 2009-2013 period are provided in Table 4.279

Table 4. JERC-RD site species abundance

Species Count

PIPA 967
QUIN 5
QUNI 10
QUVI 30

Datasets used in model validation at JERC-RD include JC010-02, JC010-01, JC003-04, JC004-01,280

JC003-07, and JC011-01. These include weather station and eddy covariance flux tower measurements,281

forest inventory data, soil respiration, soil organic matter, and studies on C:N stoichiometry. Standard282

measurement techniques were also used for each of these.283

2.3. Site Data284

To conduct this model intercomparison exercise at HF-EMS, we leveraged the large amount of285

data openly available to the public through the Harvard Forest Data Archive:286

http://harvardforest.fas.harvard.edu/harvard-forest-data-archive287

Jones Ecological Research Center has hosted multiple research efforts over the years, collectively288

resulting in the collection of a large data library. However, JERC-RD site data are not made openly289

available to the public and are thus only available by request. One may find contact information290

located within their website:291

http://www.jonesctr.org292

2.4. Scales, Metrics, and Units293

The selection of simulation years was based on the availability of EC flux tower data used in294

model validation. Thus, we simulated the HF-EMS site for the years 2002-2012 and the JERC-RD site295

for the years 2009-2013. For both sites and models, we initialized the model state in the first year of296

simulations using field observations. The PPA-SiBGC model used an annual timestep while LANDIS-II297

NECN used a monthly timestep internally. Both models may be set to other timesteps if desired.298

The areal extent of the single-site model intercomparisons were designed to correspond to299

available field measurements. At both sites, tree inventories were conducted in 10,000 m2, or300

one-hectare, areas. All target metrics were converted to an annual areal basis to ease interpretation,301

comparison, and transferability of results. Importantly, an areal conversion will allow comparison to302

other sites around the world. While flux tower measurements for both sites were already provided303

on an areal (m�2) basis, many other variables were converted to harmonize metrics between models304

and study sites. For example, moles CO2 measurements were converted to moles C through305

well-described molecular weights, all other measures of mass were converted to kg, and all areal and306

flux measurements were harmonized to m�2. A table of metrics and units used in the intercomparison307

of LANDIS-II and PPA-SiBGC is provided in Table 5.308

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/464578doi: bioRxiv preprint 

https://doi.org/10.1101/464578


Version November 30, 2018 submitted to Journal Not Specified 10 of 40

Table 5. Model intercomparison abbreviations, metrics, and units

Abbreviation Metric Units

NEE Net ecosystem exchange kg C m�2 year�1

BAG Aboveground biomass kg mass m�2

CAG Aboveground C kg C m�2

NAG Aboveground N kg N m�2

BBG Belowground biomass kg mass m�2

CBG Belowground C kg C m�2

NBG Belowground N kg N m�2

CSO Soil organic C kg C m�2

NSO Soil organic N kg N m�2

rsoil Soil respiration C kg C m�2 year�1

ANPP Aboveground net primary production kg mass m�2 year�1

BSp Species aboveground biomass kg mass m�2

nSp Species relative abundance %

In the subsequent section, we describe the model intercomparison methodology.309

2.5. Model Intercomparison310

Intercomparison of the PPA-SiBGC and LANDIS-II models at the HF-EMS and JERC-RD EC311

flux tower sites was conducted using a collection of object-oriented functional programming scripts312

written in the R language for statistical computing [79]. These scripts were designed to simplify model313

configuration, parameterization, operation, calibration/validation, plotting, and error calculation. The314

scripts and our parameters are available on GitHub (https://github.com/adam-erickson/ecosystem-315

model-comparison), making our results fully and efficiently reproducible. The R scripts are also316

designed to automatically load and parse the results from previous model simulations, in order to317

avoid reproducibility issues stemming from model stochasticity. We use standard regression metrics318

applied to the time-series of observation and simulation data to assess model fitness. The metrics319

used include the coefficient of determination (R2), root mean squared error (RMSE), mean absolute320

error (MAE), and mean error (ME) or bias, calculated using simulated and observed values. Our321

implementation of R2 follows the Bravais-Pearson interpretation as the squared correlation coefficient322

between observed and predicted values [80]. This implementation is provided in Equation 2.323

R2 = r2 =

0

@ Ân
i=1(yi � y)(ŷi � ŷ)q

Ân
i=1(yi � y)2(ŷi � ŷ)2

1

A
2

(2)

where n is the sample size, yi is the ith observed value, ŷi is the ith predicted value, y is the mean324

observed value, and ŷ is the mean predicted value. The calculation of RMSE follows the standard325

formulation, as shown in Equation 3.326

RMSE =

s
1
n

n

Â
t=1

e2
t (3)

where n is the sample size and et is the error for the tth value, or the difference between observed327

and predicted values. The calculation of MAE is similarly unexceptional, per Equation 4.328

MAE =
1
n

n

Â
t=1

|et| (4)

where again n is the sample size and et is the error for the tth value. Our calculation of mean329

error (ME) or bias is the same as MAE, but without taking the absolute value.330

331
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While Nash-Sutcliffe efficiency (NSE) is often used in a simulation model context, we selected332

the Bravais-Pearson interpretation of R2 over NSE to simplify the interpretation of results. The NSE333

metric replaces 1 � (SSpredictions/SSobservations) with (SSobservations � SSpredictions)/SSobservations, where334

SS is the sum of squares. Thus, NSE is analogous to the standard R2 coefficient of determination used335

in regression analysis [81]. The implementation of R2 that we selected is important to note, as its336

results are purely correlative and quantify only dispersion, ranging in value between 0 and 1. This has337

some desirable properties in that no negative or large values are produced, and that it is insensitive to338

differences in scale. Regardless of the correlation metric used, complementary metrics are needed to339

quantify the direction (i.e., bias) and/or magnitude of error. We rely on RMSE and MAE to provide340

information on error or residual magnitude, and ME to provide information on bias. We utilize a341

visual analysis to assess error directionality over time, as this can be poorly characterized by a single342

coefficient, masking periodicity.343

We compute R2, RMSE, MAE, and ME for time-series of the metrics described in Table 5 on344

page 10. These include NEE, above- and below-ground biomass, C, and N, soil organic C and N, soil345

respiration (rsoil), aboveground net primary production (ANPP), and, species aboveground biomass346

and relative abundance. All of these metrics are pools with the exception of NEE, rsoil , and ANPP347

fluxes. Finally, we diagnose the ability of both models to meet a range of logistical criteria related to348

deployment: model usability, performance, and transferability. Model usability is assessed per four criteria:349

1. Ease of installation350

2. Ease of parameterization351

3. Ease of program operation352

4. Ease of parsing outputs353

Model software performance is assessed per a single metric: the speed of program execution354

for each site for the predefined simulation duration. The durations are 11 years and 5 years for the355

HF-EMS and JERC-RD EC flux tower sites, respectively. Simulation results are output at annual356

temporal resolution, the standard resolution for both models; while NECN operates on a monthly357

timestep, most other modules of LANDIS-II are annual. Finally, model transferability is assessed per358

the following five criteria:359

1. Model generalizability360

2. Availability of parameterization data361

3. Size of the program362

4. Cross-platform support363

5. Ease of training new users364

Each of these logistical criteria are compared in a qualitative analysis, with the exception of365

software performance.366

3. Results and Discussion367

Both PPA-SiBGC and LANDIS-II NECN showed strong performance for pools at the two model368

intercomparison sites, frequently achieving R2 values approaching unity. Yet, both models showed369

weak performance for fluxes. The models failed to accurately predict ANPP, while PPA-SiBGC showed370

stronger rsoil performance and LANDIS-II NECN showed stronger NEE performance. The R2 values371

for both models and sites are visualized in Figure 3.372
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Figure 3. Overall model performance (R2) for both models and sites; left = HF-EMS; right = JERC-RD;
periwinkle = PPA-SiBGC; pink = LANDIS-II NECN; violet = intersection

On average, PPA-SiBGC outperformed LANDIS-II NECN across the sites and metrics tested,373

showing higher correlations, lower error, and less bias overall (HF-EMS R2 = 0.73,+0.07, RMSE =374

4.84,�0.39, ME = �1.18,�3.70; JERC-RD R2 = 0.76,+0.04, RMSE = 2.69,�0.17, ME = 0.78,+0.53).375

This result is based on calculating mean values for R2, RMSE, MAE, and ME in order to clearly translate376

the overall results. The two models produced the following mean values for each of the four statistical377

metrics and two sites:378

Table 6. Overall mean values across each of the sites and metrics tested

PPA-SiBGC LANDIS-II NECN

Metric R2 RMSE MAE ME R2 RMSE MAE ME

Mean 0.74 3.77 3.58 -0.20 0.69 9.60 8.73 2.31

As shown in Table 6, PPA-SiBGC yielded higher R2 values and lower RMSE, MAE, and ME values379

in comparison to LANDIS-II, on average, across all sites and metrics tested. Below, we provide model380

intercomparison results individually for the two sites, HF-EMS and JERC-RD.381

3.1. HF-EMS382

For the HF-EMS site, PPA-SiBGC showed higher R2 values and lower RMSE, MAE, and ME values383

compared to LANDIS-II NECN across the range of metrics. While PPA-SiBGC predicted NEE and384

species relative abundance showed weaker correlations with observed values compared to LANDIS-II385

NECN, the magnitude of error was lower, as evidenced by lower RMSE, MAE, and ME values. While386

LANDIS-II NECN showed a lower magnitude of error for belowground N, this is the only metric387

where this is the case, while the correlation of this metric to observed values was also lower than that388

of PPA-SiBGC. Overall results for the HF-EMS site model intercomparison are shown in Table 7.389
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Table 7. Model fitness for HF-EMS

PPA-SiBGC LANDIS-II NECN

Metric R2 RMSE MAE ME R2 RMSE MAE ME

NEE 0.05 0.19 0.16 -0.03 0.44 0.49 0.44 0.44
BAG 1.00 10.12 10.11 10.11 0.98 2.48 2.48 -2.48
CAG 1.00 0.03 0.03 -0.02 0.98 1.24 1.24 -1.24
NAG 0.99 1.44 1.44 -1.44 0.12 1.99 1.99 -1.99
BBG 1.00 9.09 9.08 9.08 0.97 2.82 2.82 -2.82
CBG 1.00 7.82 7.81 -7.81 0.93 9.87 9.86 -9.86
NBG 0.99 0.56 0.56 0.56 0.78 0.12 0.12 -0.12
rsoil 0.17 0.63 0.62 -0.62 0.06 1.10 1.10 -1.10

ANPP 0.02 0.20 0.20 -0.20 0.0002 0.82 0.79 0.73
CSO ... 26.49 26.49 -26.49 ... 36.63 36.63 -36.63
NSO ... 1.33 1.33 -1.33 ... 1.60 1.60 -1.60
BSp 1.00 5.02 2.89 2.89 0.97 133.70 119.87 119.87
nSp 0.82 0.05 0.03 0 0.99 0.29 0.22 0.22

Mean 0.73 4.84 4.67 -1.18 0.66 14.86 13.78 4.88

Time-series figures allow a visual analysis of the temporal dynamics between observations and390

model predictions in order to assess the ability of models to capture interannual variability. Both391

models effectively captured temporal dynamics in biomass, C, and, species biomass and abundance.392

In Figure 4, the temporal differences in modeled NEE and aboveground C are shown for the two393

models in comparison to observations for the HF-EMS site. While LANDIS-II NECN predicted NEE394

showed a higher correlation with observations, the magnitude of error and bias were also higher.395

Furthermore, LANDIS-II NECN predicted that the HF-EMS site is a net C source, rather than sink, in396

contrary to observations. Meanwhile, PPA-SiBGC outperformed LANDIS-II NECN in aboveground C397

per both R2 and RMSE. Both models overpredicted species cohort biomass, while LANDIS-II NECN398

underpredicted total aboveground C.399
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Figure 4. Simulated and observed NEE and aboveground C; observations = blue; simulations = red; a
= PPA-SiBGC NEE; b = LANDIS-II NECN NEE; c = PPA-SiBGC CAG; d = LANDIS-II NECN CAG

An analysis of simulated species biomass and abundance also shows greater fidelity of the400

PPA-SiBGC model to data, as shown in Figure 5. As LANDIS-II NECN does not contain data on401

individual trees, species relative abundance is calculated based on the number of cohorts of each402

species. Two species were simulated in LANDIS-II NECN, as there are no explicit trees in the model403

and the number of cohorts appears to have no effect on the total biomass. Results for PPA-SiBGC404

indicate that species relative abundance may be improved in future studies by optimizing mortality405

and fecundity rates. Meanwhile, species biomass predictions output by LANDIS-II NECN were406

inverted from those of the observations.407
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Figure 5. HF-EMS: Simulated and observed species aboveground biomass and relative abundance; a =
biomass; b = abundance; left = observations, middle = PPA-SiBGC, right = LANDIS-II NECN; note that
different scales are used for biomass

3.2. JERC-RD408

For the JERC-RD site, both models showed stronger fidelity to data than for the HF-EMS site.409

Again, PPA-SiBGC showed higher R2 values and lower RMSE and MAE values compared to LANDIS-II410

NECN across the range of metrics tested. Yet, the margin between models was smaller for the JERC411

RD site. While PPA-SiBGC demonstrated higher correlations and lower errors for most metrics tested,412

LANDIS-II NECN outperformed PPA-SiBGC in a few cases. This includes lower error magnitude413

for NEE, aboveground N, belowground biomass, SOC, and SON. However, PPA-SiBGC showed414

correlations equal or higher for all metrics tested, and lower errors for all other metrics. Overall results415

for the JERC-RD site model intercomparison are shown in Table 8.416

Table 8. Model fitness for JERC-RD

PPA-SiBGC LANDIS-II NECN

Metric R2 RMSE MAE ME R2 RMSE MAE ME

NEE 0.30 1.68 1.64 -1.64 0.09 0.13 0.11 -0.05
BAG 0.96 1.48 1.47 1.47 0.96 9.77 9.76 -9.76
CAG 0.96 1.63 1.63 -1.63 0.96 4.88 4.88 -4.88
NAG 0.99 0.29 0.29 0.29 0.96 0.05 0.05 -0.05
BBG 0.96 10.84 10.83 10.83 0.96 1.37 1.20 1.20
CBG 0.96 5.26 5.26 -5.26 0.96 6.46 6.46 -6.46
NBG 0.98 1.44 1.44 -1.44 0.96 1.60 1.60 -1.60
rsoil 0.19 0.78 0.71 -0.67 0.05 2.40 2.40 -2.40

ANPP 0.03 0.39 0.37 -0.37 0.03 0.48 0.46 0.25
CSO ... 4.30 4.30 4.30 ... 0.17 0.17 -0.17
NSO ... 0.38 0.38 0.38 ... 0.12 0.12 0.12
BSp 1.00 6.47 3.90 3.90 0.98 28.97 20.52 20.52
nSp 1.00 0.02 0.01 -0 1.00 0.09 0.09 -0.02

Mean 0.76 2.69 2.48 0.78 0.72 4.34 3.68 -0.25

While both models showed higher performance at the JERC-RD site, an analysis of simulated417

species biomass and abundance again indicates greater fidelity of the PPA-SiBGC model to data, as418
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shown in Figure 6. While LANDIS-II NECN overpredicts the rate of longleaf pine growth, PPA-SiBGC419

nearly perfectly matches observed species abundance and biomass trajectories for all species present.420

While the correlations are high, PPA-SiBGC overpredicts the magnitude of biomass here.421
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Figure 6. JERC-RD: Simulated and observed species aboveground biomass and relative abundance; a
= biomass; b = abundance; left = observations, middle = PPA-SiBGC, right = LANDIS-II NECN; note
that different scales are used for biomass

Our results for the HF-EMS and JERC-RD site model intercomparison exercise clearly indicate422

strong performance for both models at both sites. Results for the JERC-RD site are particularly close423

between the two models. Next, we assess results related to the logistics of model deployment to new424

computers, users, and modeling sites.425

3.3. Model Usability, Performance, and Transferability426

While the two models share a similar basis in forest dynamics and biogeochemistry modeling,427

they differ in important practical and conceptual terms. The command-line version of the PPA-SiBGC428

model used in this work, version 5.0, consists of approximately 500 lines of R code and is thus429

readily cross-platform, including cloud providers. Meanwhile, the LANDIS-II model core and NECN430

succession extension are an estimated 2,000 and 0.5 million lines of code, respectively. While this431

version of PPA-SiBGC fuses an explicit tree canopy geometry model with empirical data on fecundity,432

growth, mortality, and stoichiometry, the NECN extension of LANDIS-II borrows heavily from the433

process-based Century model [20], similar to the MAPSS-Century-1 (MC1) model [82]. This carries434

important implications for model parameterization needs. While PPA-SiBGC relies on typical forest435

inventory data, including tree species, age/size, and densities, LANDIS-II relies on species age/size436

and traits in the form of vital attributes, in addition to NECN parameters. Below, we summarize our437

findings regarding the logistics of model deployment.438

3.3.1. Model Usability439

In the following section, we provide an assessment of model usability based on four criteria.440

1. Ease of installation441

While LANDIS-II NECN requires the installation of two Windows programs, depending on the442

options desired, PPA-SiBGC is contained in a single R script and requires only a working R443

installation.444
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2. Ease of parameterization445

While both models can be difficult to parameterize for regions with little to no observational data,446

the simple biogeochemistry in PPA-SiBGC requires an order of magnitude fewer parameters than447

LANDIS-II NECN. In addition, PPA-SiBGC uses commonly available forest inventory data while448

NECN requires a number of parameters that may be difficult to locate.449

3. Ease of program operation450

Both models use a command-line interface and are thus equally easy to operate. Yet, PPA-SiBGC451

is cross-platform and uses comma-separated-value (CSV) files for input tables, which are easier452

to work with than multiple tables nested within an unstructured text files. This additionally453

allows for simplification in designing model application programming interfaces (APIs), or454

model wrappers, a layer of abstraction above the models. These abstractions are important for455

simplifying model operation and reproducibility, and enable a number of research applications.456

4. Ease of parsing outputs457

All PPA-SiBGC outputs are provided in CSV files in a single folder while LANDIS-II NECN458

generates outputs in multiple formats in multiple folders. While the PPA-SiBGC format is simpler459

and easier to parse, the image output formats used by LANDIS-II carry considerable benefit for460

spatial applications. Both models may benefit by transitioning spatiotemporal data to the NetCDF461

scientific file format used by most general circulation and terrestrial biosphere models.462

3.3.2. Model Performance463

Next, we assess model performance in terms of the speed of operation on a consumer-off-the-shelf464

(COTS) laptop computer with a dual-core 2.8 GHz Intel Core i7-7600U CPU and 16 GB of DDR4-2400465

RAM. We focus on a single performance metric, the timing of simulations. Other aspects of model466

performance in the form of precision and accuracy are described in previous sections. As shown in467

Table 9, PPA-SiBGC was between 1,200 and 2,800% faster than LANDIS-II NECN in our timing tests.468

This was surprising given that PPA-SiBGC models true cohorts (i.e., individual trees) in an interpreted469

language while LANDIS-II models theoretical cohorts (i.e., cohorts without a physical basis) in a470

compiled language. The difference in speed is likely attributable to the parsimony of the PPA-SiBGC471

model.472

Table 9. Simulation timing results

Site Model Duration (years) Elapsed (sec)

HF-EMS PPA-SiBGC 11 8.51
HF-EMS LANDIS-II NECN 11 101.15
JERC-RD PPA-SiBGC 5 2.25
JERC-RD LANDIS-II NECN 5 61.51

3.3.3. Model Transferability473

Here, we discuss model transferability. In this section, we assess the effort required to transfer474

the models to new locations, new computer systems, or new users. All three are important logistical475

criteria for effective model deployment.476

1. Model generalization477

Both models appear to generalize effectively to different forested regions of the world, as both478

have shown strong performance in this study and others. No clear winner is evident in this regard.479

In terms of model realism, PPA-SiBGC has a more realistic representation of forest canopies while480

LANDIS-II NECN has more realistic processes, as it is a Century model variant.481

2. Availability of parameterization data482

While LANDIS-II NECN requires substantially greater parameterization data compared to483

PPA-SiBGC, it may often be possible to rely on previously published parameters. Meanwhile,484
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the growth, mortality, and fecundity parameters used by PPA-SiBGC are easy to calculate using485

common field inventory data. PPA-SiBGC is simpler to transfer in this regard given the wide486

availability of forest inventory data.487

3. Size of the program488

PPA-SiBGC is approximately 500 lines of R code, while LANDIS-II NECN is estimated at 0.5489

million lines of C# code.490

4. Cross-platform support491

While Linux support may soon be supported with Microsoft .NET Core, LANDIS-II NECN is492

written in C# and is thus limited to Microsoft Windows platforms. Meanwhile, PPA-SiBGC is493

written in standard R code and is fully cross-platform.494

5. Ease of training new users495

While both models have a learning curve, the practical simplicity of PPA-SiBGC may make it496

easier to train new users. While LANDIS-II NECN contains more mechanistic processes and497

related parameters, these come at the cost of confusing new users. The model wrapper library we498

developed as part of this work vastly eases the operation of both models. Future studies should499

measure the time required for new users to effectively operate both models.500

3.4. Discussion501

On average, the PPA-SiBGC model outperformed LANDIS-II NECN for the sites and metrics502

tested, showing stronger correlations, lower error, and less bias. Despite being a parsimonious model,503

PPA-SiBGC contains more realistic representation of stand canopy dynamics. Meanwhile, LANDIS-II504

NECN contains more realistic representation of biogeochemical processes, as a simplified variant of505

the Century model. These differences together with the results lend support to our hypothesis that506

vegetation dynamics drive biogeochemical pools to a higher degree than one-dimensional processes,507

while the latter better capture fluxes. This is evidenced by the higher performance of PPA-SiBGC in508

predicting pools and LANDIS-II NECN in predicting fluxes.509

Empirical coefficients for the first moment of processes (e.g., growth, mortality, and fecundity)510

were used to parameterize the PPA-SiBGC model, while LANDIS-II NECN required a multitude of511

parameters for biogeochemical processes, some of which are often treated as tuning parameters. Yet,512

for this validation and intercomparison exercise, fully mechanistic processes were not required; both513

models required a host of empirical parameters that limit their prognostic abilities in their current form.514

Future developments with both models should improve upon this by adopting more mechanistic515

processes.516

Replacing the simple biogeochemistry approach of PPA-SiBGC with mechanistic processes would517

vastly improve the energetic and biogeochemical realism of the PPA-SiBGC model. Meanwhile,518

LANDIS-II NECN and other variants of the Century model may improve their structural realism by519

incorporating canopy representations with a physical basis. This is because Century was not designed520

to be a plant production model [83] and contains no physically realistic representation of trees or521

canopies. Currently, the forest production model of Century is based theoretically on Liebig’s Law522

(i.e., limiting factors), employing allometric and stoichiometric relations with empirical constraints. In523

other words, plant production is strongly constrained by site-specific limits even though the Century524

model is mechanistic in other ways. Meanwhile, a lack of canopy representation strongly limits the525

potential number and resolution of modeled processes. In short, combining the approaches of both526

models may yield a more optimal solution.527

In addition, our results suggest that improving the representation of forest dynamics in models528

may yield accurate biogeochemistry predictions even when simple allometric and stoichiometric529

biogeochemistry relations are used, as evidenced by the performance of PPA-SiBGC. This finding530

supports the current widespread focus on improving the representation of vegetation dynamics in531

global terrestrial biosphere models [27,28,84]. The PPA provides a uniquely efficient and tractable532

manner of incorporating three-dimensional canopy dynamics in global models. While many533
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mechanistic processes may be considered mature, models of soil respiration are critical to accurate C534

projections and require continued development [18]. In order to achieve high levels of accuracy and535

precision, given the recent success of aboveground model approximations, next-generation models536

may require a similar breakthrough in belowground processes.537

Future studies should expand upon the PPA with a first-principles representation of energetic538

and biogeochemical above- and below-ground processes in a modern component-based software539

framework. This work should fuse the new state-of-the-art forest biogeochemistry model with a model540

wrapper API written in R or Python, in order to expand native model functions to include sampling541

from parameter probability distributions, Monte Carlo methods, machine-learning model emulation,542

robust loss functions, and optimization. This would combine a high-performance forest model written543

in a compiled language with a user-friendly interface in an interpreted language.544

3.5. Limitations545

This study, similar to other forest modeling studies, was limited by the availability of observational546

data. The lack of temporal depth in this data poses substantial challenges in modeling the long-term547

effects of forest succession, as these processes can operate on a century timescale or longer. However,548

assessing succession predictions was not the aim of this study, as we instead focus on near-term549

validation of forest models using field measurements and EC flux tower data. Another limitation550

is that these methods may be challenging to implement for sites that are less well-characterized,551

particularly in the absence of EC flux tower data and/or tree species parameters. A combination of552

tower-based and remote sensing observations may help overcome this challenge in the coming years553

with advances in machine learning.554

4. Conclusions555

In conclusion, the PPA-SiBGC and LANDIS-II NECN models represent vegetation dynamics556

previously absent in modeling studies at these sites. These include, "...long-term increases in tree557

biomass, successional change in forest composition, and disturbance events, processes not well558

represented in current models," which drive interannual variation in NEE [40]. While the timescale559

of our simulations were decidedly short-term due to data limitations, both models showed good560

performance. While PPA-SiBGC showed stronger performance across the range of metrics tested,561

including the logistics of model deployment, LANDIS-II NECN also performed well across the metrics562

tested. Further studies are needed to compare more aspects of these and other models based on an563

array of performance criteria.564

Ultimately, we hope that this study serves as the foundation for future forest ecosystem model565

intercomparisons for the North American continent, similar in spirit to the former TDE Ecosystem566

Model Intercomparison project [24]. This may help create the impetus for a Global Forest Model567

Intercomparison Project (ForestMIP) together with modeling groups on other continents. The aims568

of this research were not to determine which model is ’best’ for prognosis at two locations, but to569

improve the capabilities of existing models across a range of locations in order to advance earth system570

models. In this regard, there are beneficial aspects to both modeling approaches and the trade-offs571

presented largely depend on the desired application. Counter to the classical modeling trade-off of572

Levins [21], improvements in precision and generality resulted from realism.573

Supplementary Materials: Parameter tables for both models and sites are provided in Appendix 4. All model,574

parameter, script files used in this model intercomparison exercise are available for download at the following575

public GitHub repository:576

https://github.com/adam-erickson/ecosystem-model-comparison577

The repository provides tables containing parameter values and climate drivers used in the PPA-SiBGC and578

LANDIS-II NECN model simulations for the two model intercomparison sites. Tree species codes are adopted579

from the USDA PLANTS database, accessible at the following URL:580

https://plants.sc.egov.usda.gov581

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/464578doi: bioRxiv preprint 

https://doi.org/10.1101/464578


Version November 30, 2018 submitted to Journal Not Specified 20 of 40

Scripts provided include a simple object-oriented forest biogeochemistry model wrapper library582

implemented in the R language [79]. The model wrapper library includes a number of features for simplifying the583

operation of this class of models, including functions for cleaning up and parsing model outputs into memory584

in a common format for comparison. Importantly, the wrapper library enables full reproducibility of results585

through the hf_ems.r and jerc_rd.r scripts. Using these scripts with the object-oriented classes.r model wrapper, it586

is possible to load pre-computed model results and calculate all intercomparison metrics for verification. The587

directory structure of the repository is shown in Figure 7.588
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figures
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extensions
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climate
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logs
metadata

jerc_rd
extensions

succession
necn

climate
maps

outputs
succession

necn
logs
metadata

ppa_bgc
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Figure 7. Directory structure of the GitHub repository
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Abbreviations610

The following abbreviations are used in this manuscript:611

ANPP Aboveground net primary production
API Application programming interface
BGC Biogeochemistry
COST Cooperation in Science and Technology
CPU Central processing unit
CSV Comma-separated values
DoD Department of Defense
EC Eddy covariance
ED Ecosystem Demography model
EMS Environmental Measurement Station
FVS Forest Vegetation Simulator
GPGPU General-purpose graphics processing unit
HF Harvard Forest
IBIS2 Integrated Biosphere Simulator 2
JERC Jones Ecological Research Center
L-systems Lindenmayer systems
LANDIS-II Landscape Disturbance and Succession model 2
LM3 Land Model 3
LPJ-GUESS Lund-Potsdam-Jena General Ecosystem Simulator
MAE Mean absolute error
MC1 MAPSS-Century-1 model
NECN Net Ecosystem Carbon and Nitrogen model
NEE Net ecosystem exchange
NSE Nash-Sutcliffe efficiency
PPA Perfect Plasticity Approximation model
ProFoUnd Towards robust projections of European forests under climate change
RAM Random access memory
RD Red Dirt
RMSE Root mean squared error
SAS Size- and age-structured equations
SOC Soil organic carbon
SON Soil organic nitrogen
TDE Throughfall Displacement Experiment

612

References613

1. Vuokila, Y. Functions for variable density yield tables of pine based on temporary sample plots. Technical614

report, Finnish Forest Research Institute, Helsinki, Finland, 1965.615

2. Usher, M.B. A Matrix Approach to the Management of Renewable Resources, with Special Reference to616

Selection Forests. Journal of Applied Ecology 1966, 3, 355–367. doi:10.2307/2401258.617

3. Stage, A.R. Prognosis model for stand development. Res. Pap. INT-RP-137. Technical report, U.S. Dept. of618

Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA, 1973.619

4. Crookston, N.L.; Dixon, G.E. The forest vegetation simulator: A review of its structure,620

content, and applications. Computers and Electronics in Agriculture 2005, 49, 60–80.621

doi:https://doi.org/10.1016/j.compag.2005.02.003.622

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/464578doi: bioRxiv preprint 

https://doi.org/10.1101/464578


Version November 30, 2018 submitted to Journal Not Specified 22 of 40

5. Systems, N.; Products, W.; Bugmann, H.; Yan, X.; Sykes, M.; Martin, P.; Lindner, M.; Desanker, P.; Cumming,623

S. A comparison of forest gap models: Model structure and behaviour. Climatic Change 1996, 34, 289–313.624

doi:10.1007/BF00224640.625

6. Keane, R.E.; Cary, G.J.; Davies, I.D.; Flannigan, M.D.; Gardner, R.H.; Lavorel, S.; Lenihan, J.M.; Li, C.; Rupp,626

T. A classification of landscape fire succession models: spatial simulations of fire and vegetation dynamics.627

Ecological Modelling 2004, 179, 3 – 27. doi:https://doi.org/10.1016/j.ecolmodel.2004.03.015.628

7. Mladenoff, D.J. LANDIS and forest landscape models. Ecological Modelling 2004, 180, 7–19.629

doi:10.1016/j.ecolmodel.2004.03.016.630

8. He, H.S. Forest landscape models: Definitions, characterization, and classification. Forest Ecology and631

Management 2008, 254, 484–498. doi:10.1016/j.foreco.2007.08.022.632

9. Xi, W.; Coulson, R.N.; Birt, A.G.; Shang, Z.B.; Waldron, J.D.; Lafon, C.W.; Cairns, D.M.; Tchakerian, M.D.;633

Klepzig, K.D. Review of forest landscape models: Types, methods, development and applications. Acta634

Ecologica Sinica 2009, 29, 69–78. doi:10.1016/j.chnaes.2009.01.001.635

10. Shifley, S.R.; He, H.S.; Lischke, H.; Wang, W.J.; Jin, W.; Gustafson, E.J.; Thompson, J.R.; Thompson, F.R.;636

Dijak, W.D.; Yang, J. The past and future of modeling forest dynamics: from growth and yield curves to637

forest landscape models. Landscape Ecology 2017, 32, 1307–1325. doi:10.1007/s10980-017-0540-9.638

11. Sellers, P.J.; Mintz, Y.; Sud, Y.C.; Dalcher, A. A Simple Biosphere Model (SIB) for Use639

within General Circulation Models. Journal of the Atmospheric Sciences 1986, 43, 505–531.640

doi:10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2.641

12. Fisher, J.B.; Huntzinger, D.N.; Schwalm, C.R.; Sitch, S. Modeling the Terrestrial Biosphere. Annual Review642

of Environment and Resources 2014, 39, 91–123. doi:10.1146/annurev-environ-012913-093456.643

13. Fisher, R.A.; Koven, C.D.; Anderegg, W.R.L.; Christoffersen, B.O.; Dietze, M.C.; Farrior, C.E.; Holm,644

J.A.; Hurtt, G.C.; Knox, R.G.; Lawrence, P.J.; Lichstein, J.W.; Longo, M.; Matheny, A.M.; Medvigy, D.;645

Muller-Landau, H.C.; Powell, T.L.; Serbin, S.P.; Sato, H.; Shuman, J.K.; Smith, B.; Trugman, A.T.; Viskari, T.;646

Verbeeck, H.; Weng, E.; Xu, C.; Xu, X.; Zhang, T.; Moorcroft, P.R. Vegetation demographics in Earth System647

Models: A review of progress and priorities. Global Change Biology 2018, 24, 35–54. doi:10.1111/gcb.13910.648

14. Duursma, R.A.; Medlyn, B.E. MAESPA: a model to study interactions between water limitation,649

environmental drivers and vegetation function at tree and stand levels, with an example application to650

CO2 x drought interactions. Geoscientific Model Development 2012, 5, 919–940. doi:10.5194/gmd-5-919-2012.651

15. Liénard, J.; Strigul, N. An individual-based forest model links canopy dynamics and shade tolerances652

along a soil moisture gradient. Royal Society Open Science 2016, 3.653

16. Landsberg, J.J.; Waring, R.H. A generalised model of forest productivity using simplified concepts of654

radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management 1997, 95, 209–228.655

doi:http://dx.doi.org/10.1016/S0378-1127(97)00026-1.656

17. Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in657

leaves of C3 species. Planta 1980, 149, 78–90. doi:10.1007/BF00386231.658

18. Sulman, B.N.; Moore, J.A.M.; Abramoff, R.; Averill, C.; Kivlin, S.; Georgiou, K.; Sridhar, B.; Hartman, M.D.;659

Wang, G.; Wieder, W.R.; Bradford, M.A.; Luo, Y.; Mayes, M.A.; Morrison, E.; Riley, W.J.; Salazar, A.; Schimel,660

J.P.; Tang, J.; Classen, A.T. Multiple models and experiments underscore large uncertainty in soil carbon661

dynamics. Biogeochemistry 2018, 141, 109–123. doi:10.1007/s10533-018-0509-z.662

19. Parton, W. Simulation of organic matter formation and mineralization in semi-arid agroecosystems.663

Nutrient Cycling in Agricultural Ecosystems Specl. Publ. 23 1983, pp. 533–550.664

20. Parton, W.J.; Schimel, D.S.; Cole, C.V.; Ojima, D.S. Analysis of Factors Controlling Soil Organic665

Matter Levels in Great Plains Grasslands1. Soil Science Society of America Journal 1987, 51, 1173–1179.666

doi:10.2136/sssaj1987.03615995005100050015x.667

21. Levins, R. The Strategy of Model Building in Population Biology. American Scientist 1966, 54, 421–431.668

22. Warszawski, L.; Frieler, K.; Huber, V.; Piontek, F.; Serdeczny, O.; Schewe, J. The Inter-Sectoral Impact Model669

Intercomparison Project (ISI–MIP): Project framework. Proceedings of the National Academy of Sciences 2014,670

111, 3228–3232, [http://www.pnas.org/content/111/9/3228.full.pdf]. doi:10.1073/pnas.1312330110.671

23. Lischke, H.; Speich, M.; Schmatz, D.; Vacchiano, G.; Mairota, P.; Leronni, V.; Schuler, L.; Bugmann, H.;672

Bruna, J.; Thom, D.; Seidl, R.; Reineking, B. CoFoLaMo: Comparing forest landscape model simulations673

under different climate, interaction- and land use scenarios. EGU General Assembly Conference Abstracts,674

2016, Vol. 18, EGU General Assembly Conference Abstracts, pp. EPSC2016–13867.675

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/464578doi: bioRxiv preprint 

https://doi.org/10.1101/464578


Version November 30, 2018 submitted to Journal Not Specified 23 of 40

24. Hanson, P.J.; Amthor, J.S.; Wullschleger, S.D.; Wilson, K.B.; Grant, R.F.; Hartley, A.; Hui, D.; Hunt, E.R.;676

Johnson, D.W.; Kimball, J.S.; King, A.W.; Luo, Y.; McNulty, S.G.; Sun, G.; Thornton, P.E.; Wang, S.; Williams,677

M.; Baldocchi, D.D.; Cushman, R.M. Oak Forest Carbon and Water Simulations: Model Intercomparisons678

and Evaluations against Independent Data. Ecological Monographs 2004, 74, 443–489.679

25. Kimmins, J.; Mailly, D.; Seely, B. Modelling forest ecosystem net primary production: the hybrid simulation680

approach used in forecast. Ecological Modelling 1999, 122, 195–224. doi:10.1016/S0304-3800(99)00138-6.681

26. Kimmins, H.; Blanco, J.A.; Seely, B.; Welham, C.; Scoullar, K. Forecasting Forest Futures: A Hybrid Modelling682

Approach to the Assessment of Sustainability of Forest Ecosystems and Their Values; Taylor & Francis Group,683

2010; p. 296.684

27. Fisher, R.; McDowell, N.; Purves, D.; Moorcroft, P.; Sitch, S.; Cox, P.; Huntingford, C.; Meir, P.; Ian685

Woodward, F. Assessing uncertainties in a second-generation dynamic vegetation model caused by686

ecological scale limitations. New Phytologist 2010, 187, 666–681. doi:10.1111/j.1469-8137.2010.03340.x.687

28. Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B. Importance of vegetation dynamics for future terrestrial688

carbon cycling. Environmental Research Letters 2015, 10, 054019.689

29. Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.;690

Sykes, M.T.; Thonicke, K.; Venevsky, S. Evaluation of ecosystem dynamics, plant geography and terrestrial691

carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 2003, 9, 161–185.692

doi:10.1046/j.1365-2486.2003.00569.x.693

30. Moorcroft, P.R.; Hurtt, G.C.; Pacala, S.W. A method for scaling vegetation dynamics:694

The ecosystem demography model (ED). Ecological Monographs 2001, 71, 557–586.695

doi:10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2.696

31. Medvigy, D.; Wofsy, S.C.; Munger, J.W.; Hollinger, D.Y.; Moorcroft, P.R. Mechanistic scaling of ecosystem697

function and dynamics in space and time: Ecosystem Demography model version 2. Journal of Geophysical698

Research: Biogeosciences 2009, 114. doi:10.1029/2008JG000812.699

32. Weng, E.S.; Malyshev, S.; Lichstein, J.W.; Farrior, C.E.; Dybzinski, R.; Zhang, T.; Shevliakova, E.;700

Pacala, S.W. Scaling from individual trees to forests in an Earth system modeling framework using701

a mathematically tractable model of height-structured competition. Biogeosciences 2015, 12, 2655–2694.702

doi:10.5194/bg-12-2655-2015.703

33. Strigul, N.; Pristinski, D.; Purves, D.; Dushoff, J.; Pacala, S. Scaling from trees to forests:704

tractable macroscopic equations for forest dynamics. Ecological Monographs 2008, 78, 523–545,705

[http://www.esajournals.org/doi/pdf/10.1890/08-0082.1]. doi:10.1890/08-0082.1.706

34. Purves, D.W.; Lichstein, J.W.; Strigul, N.; Pacala, S.W. Predicting and understanding forest dynamics707

using a simple tractable model. Proceedings of the National Academy of Sciences 2008, 105, 17018–17022,708

[http://www.pnas.org/content/105/44/17018.full.pdf]. doi:10.1073/pnas.0807754105.709

35. Davis, A.V. Testing LANDIS-II to stochastically model spatially abstract vegetation trends in the contiguous710

United States. Thesis, University of Southern California, 2013.711

36. Strigul, N. Individual-based models and scaling methods for ecological forestry: implications of tree712

phenotypic plasticity. In Sustainable Forest Management; Garcia, J.; Casero, J., Eds.; InTech: Rijeka, Croatia,713

2012; pp. 359–384. http://dx.doi.org/10.5772/29590.714

37. Liénard, J.; Strigul, N. An individual-based forest model links canopy dynamics and shade tolerances715

along a soil moisture gradient. Royal Society Open Science 2016, 3, 150589.716

38. Seidl, R.; Rammer, W.; Scheller, R.M.; Spies, T.a. An individual-based process model to717

simulate landscape-scale forest ecosystem dynamics. Ecological Modelling 2012, 231, 87–100.718

doi:10.1016/j.ecolmodel.2012.02.015.719

39. Giasson, M.A.; Ellison, A.M.; Bowden, R.D.; Crill, P.M.; Davidson, E.A.; Drake, J.E.; Frey, S.D.;720

Hadley, J.L.; Lavine, M.; Melillo, J.M.; Munger, J.W.; Nadelhoffer, K.J.; Nicoll, L.; Ollinger, S.V.;721

Savage, K.E.; Steudler, P.A.; Tang, J.; Varner, R.K.; Wofsy, S.C.; Foster, D.R.; Finzi, A.C. Soil722

respiration in a northeastern US temperate forest: a 22-year synthesis. Ecosphere 2013, 4, art140,723

[https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/ES13.00183.1]. doi:10.1890/ES13.00183.1.724

40. Urbanski, S.; Barford, C.; Wofsy, S.; Kucharik, C.; Pyle, E.; Budney, J.; McKain, K.; Fitzjarrald,725

D.; Czikowsky, M.; Munger, J.W. Factors controlling CO2 exchange on timescales from726

hourly to decadal at Harvard Forest. Journal of Geophysical Research: Biogeosciences 2007, 112,727

[https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006JG000293]. doi:10.1029/2006JG000293.728

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/464578doi: bioRxiv preprint 

https://doi.org/10.1101/464578


Version November 30, 2018 submitted to Journal Not Specified 24 of 40

41. Scheller, R.M.; Domingo, J.B.; Sturtevant, B.R.; Williams, J.S.; Rudy, A.; Gustafson, E.J.; Mladenoff,729

D.J. Design, development, and application of LANDIS-II, a spatial landscape simulation730

model with flexible temporal and spatial resolution. Ecological Modelling 2007, 201, 409–419.731

doi:10.1016/j.ecolmodel.2006.10.009.732

42. Scheller, R.M.; Hua, D.; Bolstad, P.V.; Birdsey, R.A.; Mladenoff, D.J. The effects of forest harvest intensity in733

combination with wind disturbance on carbon dynamics in Lake States Mesic Forests. Ecological Modelling734

2011, 222, 144–153. doi:https://doi.org/10.1016/j.ecolmodel.2010.09.009.735

43. Whelan, A.; Mitchell, R.; Staudhammer, C.; Starr, G. Cyclic Occurrence of Fire and Its Role in Carbon736

Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems. PLOS ONE 2013, 8, 1–15.737

doi:10.1371/journal.pone.0054045.738

44. Wiesner, S.; Staudhammer, C.L.; Loescher, H.W.; Baron-Lopez, A.; Boring, L.R.; Mitchell, R.J.; Starr,739

G. Interactions Among Abiotic Drivers, Disturbance and Gross Ecosystem Carbon Exchange on Soil740

Respiration from Subtropical Pine Savannas. Ecosystems 2018. doi:10.1007/s10021-018-0246-0.741

45. Starr, G.; Staudhammer, C.L.; Loescher, H.W.; Mitchell, R.; Whelan, A.; Hiers, J.K.; O’Brien, J.J. Time series742

analysis of forest carbon dynamics: recovery of Pinus palustris physiology following a prescribed fire. New743

Forests 2015, 46, 63–90. doi:10.1007/s11056-014-9447-3.744

46. Hawkins, D.M. The Problem of Overfitting. Journal of Chemical Information and Computer Sciences 2004,745

44, 1–12. doi:10.1021/ci0342472.746

47. Mladenoff, D.J.; Host, G.E.; Boeder, J.; Crow, T.R. LANDIS: a spatial model of forest landscape disturbance,747

succession, and management. Second International Conference on Integrating Modelling and GIS, 1993.748

48. Mladenoff, D.J.; He, H.S. Design, behavior and application of LANDIS, an object-oriented model of749

forest landscape disturbance and succession. In Spatial Modeling of Forest Landscape Change: Approaches and750

Applications; Cambridge University Press: Cambridge, UK, 1999; pp. 125–162.751

49. He, H.S.; Mladenoff, D.J.; Boeder, J. An object-oriented forest landscape model and its representation of752

tree species. Ecological Modelling 1999, 119, 1–19. doi:10.1016/S0304-3800(99)00041-1.753

50. Wang, W.J.; He, H.S.; Fraser, J.S.; Thompson, F.R.; Shifley, S.R.; Spetich, M.A. LANDIS754

PRO: a landscape model that predicts forest composition and structure changes at regional scales.755

Ecography 2014, 37, 225–229, [https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-0587.2013.00495.x].756

doi:10.1111/j.1600-0587.2013.00495.x.757

51. Pennanen, J.; Kuuluvainen, T. A spatial simulation approach to natural forest landscape758

dynamics in boreal Fennoscandia. Forest Ecology and Management 2002, 164, 157–175.759

doi:https://doi.org/10.1016/S0378-1127(01)00608-9.760

52. Pennanen, J.; Greene, D.F.; Fortin, M.J.; Messier, C. Spatially explicit simulation of long-term761

boreal forest landscape dynamics: incorporating quantitative stand attributes. Ecological Modelling762

2004, 180, 195–209. Modelling disturbance and succession in forest landscapes using LANDIS,763

doi:https://doi.org/10.1016/j.ecolmodel.2004.02.023.764

53. Roberts, D.W.; Betz, D.W. Simulating landscape vegetation dynamics of Bryce Canyon National Park with765

the vital attributes/fuzzy systems model VAFS/LANDSIM. In Spatial Modeling of Forest Landscape Change:766

Approaches and Applications; Cambridge University Press: Cambridge, UK, 1999; pp. 99–123.767

54. Von Neumann, J.; Burks, A.W.; others. Theory of self-reproducing automata. IEEE Transactions on Neural768

Networks 1966, 5, 3–14.769

55. Noble, I.; Slatyer, R. The use of vital attributes to predict successional changes in plant communities subject770

to recurrent disturbances. Succession 1980.771

56. Rothermel, Richard C. A mathematical model for predicting fire spread in wildland fuels. Res. Pap.772

INT-115. Technical report, U.S. Department of Agriculture, Intermountain Forest and Range Experiment773

Station, Ogden, Utah, USA, 1972.774

57. ISO. ISO/IEC 14882:1998: Programming languages — C++; pub-ISO: pub-ISO:adr, 1998; p. 732. Available in775

electronic form for online purchase at http://webstore.ansi.org/ and http://www.cssinfo.com/.776

58. Manabe, S. Climate and the Ocean Circulation. Monthly Weather Review 1969, 97, 739–774.777

doi:10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2.778

59. Thompson, J.R.; Foster, D.R.; Scheller, R.; Kittredge, D. The influence of land use and climate change on779

forest biomass and composition in Massachusetts, USA. Ecological applications : a publication of the Ecological780

Society of America 2011, 21, 2425–44.781

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/464578doi: bioRxiv preprint 

https://doi.org/10.1101/464578


Version November 30, 2018 submitted to Journal Not Specified 25 of 40

60. Duveneck, M.J.; Thompson, J.R.; Gustafson, E.J.; Liang, Y.; de Bruijn, A.M.G. Recovery dynamics782

and climate change effects to future New England forests. Landscape Ecology 2017, 32, 1385–1397.783

doi:10.1007/s10980-016-0415-5.784

61. Duveneck, M.J.; Scheller, R.M.; White, M.A.; Handler, S.D.; Ravenscroft, C. Climate change effects785

on northern Great Lake (USA) forests: A case for preserving diversity. Ecosphere 2014, 5, art23.786

doi:10.1890/ES13-00370.1.787

62. Lucash, M.S.; Scheller, R.M.; J. Gustafson, E.; R. Sturtevant, B. Spatial resilience of forested landscapes under788

climate change and management. Landscape Ecology 2017, 32, 953–969. doi:10.1007/s10980-017-0501-3.789

63. Pacala, S.W.; Canham, C.D.; Jr., J.A.S. Forest models defined by field measurements: I. The design of a790

northeastern forest simulator. Canadian Journal of Forest Research 1993, 23, 1980–1988. doi:10.1139/x93-249.791

64. Ribbens, E.; Silander, J.A.; Pacala, S.W. Seedling recruitment in forests: calibrating models to predict792

patterns of tree seedling dispersion. Ecology 1994, 75, 1794–1806. doi:10.2307/1939638.793

65. Hurtt, G.C.; Moorcroft, P.R.; And, S.W.P.; Levin, S.A. Terrestrial models and794

global change: challenges for the future. Global Change Biology 1998, 4, 581–590,795

[https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2486.1998.t01-1-00203.x].796

doi:10.1046/j.1365-2486.1998.t01-1-00203.x.797

66. Robbins, Z.; Scheller, R.; Case, B.; Strigul, N. The parameterization of PPA formulas using a SORTIE-ND798

Model for Harvard Forest. Abstracts of the AMS Spring Western Sectional Meeting, 2018. http://www.799

ams.org/amsmtgs/2248_abstracts/1137-92-206.pdf.800

67. García, O. Can plasticity make spatial structure irrelevant in individual-tree models? Forest Ecosystems801

2014, 1, 16.802

68. Lee, M.J.; García, O. Plasticity and extrapolation in modeling mixed-species stands. Forest Science 2016,803

62, 1–8.804

69. Raich, J.W.; Potter, C.S.; Bhagawati, D. Interannual variability in global805

soil respiration, 1980–94. Global Change Biology 2002, 8, 800–812,806

[https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2486.2002.00511.x].807

doi:10.1046/j.1365-2486.2002.00511.x.808

70. Domke, G.M.; Perry, C.H.; Walters, B.F.; Nave, L.E.; Woodall, C.W.; Swanston, C.W. Toward809

inventory-based estimates of soil organic carbon in forests of the United States. Ecological810

Applications 2017, 27, 1223–1235, [https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/eap.1516].811

doi:10.1002/eap.1516.812

71. Canham, C.D.; Coates, K.D.; Bartemucci, P.; Quaglia, S. Measurement and modeling of spatially explicit813

variation in light transmission through interior cedar-hemlock forests of British Columbia. Canadian Journal814

of Forest Research 1999, 29, 1775–1783, [https://doi.org/10.1139/x99-151]. doi:10.1139/x99-151.815

72. Case, B.S.; Buckley, H.L.; Barker-Plotkin, A.A.; Orwig, D.A.; Ellison, A.M. When a foundation816

crumbles: forecasting forest dynamics following the decline of the foundation species Tsuga canadensis.817

Ecosphere 2017, 8, e01893, [https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecs2.1893].818

doi:10.1002/ecs2.1893.819

73. Chojnacky, D.C.; Heath, L.S.; Jenkins, J.C. Updated generalized biomass equations for North820

American tree species. Forestry: An International Journal of Forest Research 2014, 87, 129–151,821

[/oup/backfile/contentpublic/journal/ f orestry/87/1/10.1093/ f orestry/cpt053/2/cpt053.pd f ].822

doi:10.1093/forestry/cpt053.823

74. Barford, C.C.; Wofsy, S.C.; Goulden, M.L.; Munger, J.W.; Pyle, E.H.; Urbanski, S.P.; Hutyra,824

L.; Saleska, S.R.; Fitzjarrald, D.; Moore, K. Factors Controlling Long- and Short-Term825

Sequestration of Atmospheric CO2 in a Mid-latitude Forest. Science 2001, 294, 1688–1691,826

[http://science.sciencemag.org/content/294/5547/1688.full.pdf]. doi:10.1126/science.1062962.827

75. HENDRICKS, J.J.; HENDRICK, R.L.; WILSON, C.A.; MITCHELL, R.J.; PECOT, S.D.; GUO, D. Assessing the828

patterns and controls of fine root dynamics: an empirical test and methodological review. Journal of Ecology829

2005, 94, 40–57, [https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2745.2005.01067.x].830

doi:10.1111/j.1365-2745.2005.01067.x.831

76. Drew, M.B.; Kirkman, L.K.; Angus K. Gholson, J. The Vascular Flora of Ichauway, Baker County, Georgia:832

A Remnant Longleaf Pine/Wiregrass Ecosystem. Castanea 1998, 63, 1–24.833

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/464578doi: bioRxiv preprint 

https://doi.org/10.1101/464578


Version November 30, 2018 submitted to Journal Not Specified 26 of 40

77. Goebel, P.C.; Hix, D.M. Changes in the composition and structure of mixed-oak, second-growth forest834

ecosystems during the understory reinitiation stage of stand development. Ecoscience 1997, 4, 327–339,835

[https://doi.org/10.1080/11956860.1997.11682412]. doi:10.1080/11956860.1997.11682412.836

78. Mitchell, R.J.; Kirkman, L.K.; Pecot, S.D.; Wilson, C.A.; Palik, B.J.; Boring, L.R. Patterns and837

controls of ecosystem function in longleaf pine - wiregrass savannas. I. Aboveground net primary838

productivity. Canadian Journal of Forest Research 1999, 29, 743–751, [https://doi.org/10.1139/x99-051].839

doi:10.1139/x99-051.840

79. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical841

Computing, Vienna, Austria, 2018.842

80. Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment.843

Advances in Geosciences 2005, 5, 89–97. doi:10.5194/adgeo-5-89-2005.844

81. Nash, J.; Sutcliffe, J. River flow forecasting through conceptual models part I — A discussion of principles.845

Journal of Hydrology 1970, 10, 282–290. doi:https://doi.org/10.1016/0022-1694(70)90255-6.846

82. Bachelet, D.; Lenihan, J.M.; Daly, C.; Neilson, R.P.; Ojima, D.S.; Parton, W.J. MC1: a dynamic vegetation847

model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients,848

and water. Pacific Northwest Station General Technical Report PNW-GTR-508 2001.849

83. Metherell, A.K.; Harding, L.A.; Vernon, C.C.; J, P.W. CENTURY Soil Organic Matter Model Environment,850

Agroecosystem Version 4.0, Technical Report No. 4. Technical report, USDA-ARS, Great Plains System851

Research Unit, Fort Collins, CO, USA, 1996.852

84. Friend, A.D.; Lucht, W.; Rademacher, T.T.; Keribin, R.; Betts, R.; Cadule, P.; Ciais, P.; Clark, D.B.; Dankers,853

R.; Falloon, P.D.; Ito, A.; Kahana, R.; Kleidon, A.; Lomas, M.R.; Nishina, K.; Ostberg, S.; Pavlick, R.;854

Peylin, P.; Schaphoff, S.; Vuichard, N.; Warszawski, L.; Wiltshire, A.; Woodward, F.I. Carbon residence855

time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2.856

Proceedings of the National Academy of Sciences 2014, 111, 3280–3285. doi:10.1073/pnas.1222477110.857

Appendix A. Eddy covariance flux tower measurements858

Appendix A.1. HF-EMS EC Flux Tower859

Recent historical mean daily fluxes of temperature (� C), ecosystem respiration (µmol CO2 m�2),860

and NEE (µmol C m�2) for the HF-EMS tower are shown in Figure A1.861
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Figure A1. HF-EMS tower daily averages

Patterns in daytime and nighttime NEE are shown in Figure A2. This was calculated by taking862

daily mean NEE values for three-hour windows surrounding noon and midnight, respectively863

(1100-1300 and 2300-0100 hours). These patterns are important to diagnose, as they demonstrate864

responses to a gradient of light and temperature conditions.865
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Figure A2. HF-EMS tower daily diurnal averages

Appendix A.2. JERC-RD EC Flux Tower866

Recent historical mean daily fluxes of latent heat flux (LE) (W m�2), ecosystem respiration867

(µmol CO2 m�2), and NEE (µmol C m�2) for the RD flux tower are shown in Figure A3.868
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Figure A3. JERC-RD tower daily averages

Patterns of daytime and nighttime NEE are shown in Figure A4. Again, this was calculated by869

taking daily mean NEE values for three-hour windows surrounding noon and midnight, respectively870

(1100-1300 and 2300-0100 hours).871
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Figure A4. JERC-RD tower daily diurnal averages

Appendix B. Site maps872

Below, we provide maps of the two research sites for reference. First is the HF-EMS EC flux tower873

with landcover classes Figure A5.874
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Next is the JERC-RD flux tower with landcover classes Figure A6.875
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Figure A6. JERC-RD flux tower and landcover classes
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Appendix C. Model Parameters876

Appendix C.1. HF-EMS877

Appendix C.1.1. PPA-SiBGC878

Table A1. Species crown allometry parameters

Species Type hcoe f f cr1 cr2 cd

ACPE adult 0.063 0.108 1 0.490
ACRU adult 0.063 0.108 1 0.490
BEAL adult 0.063 0.109 1 0.540
BELE adult 0.024 0.109 1 0.540
BEPO adult 0.063 0.109 1 0.540
FAGR adult 0.035 0.152 1 0.664
FRAM adult 0.056 0.095 1 0.319
PIGL adult 0.033 0.087 1 0.413
PIRE adult 0.033 0.087 1 0.413
PIST adult 0.033 0.087 1 0.413
PRSE adult 0.045 0.116 1 0.370
QURU adult 0.042 0.119 1 0.413
QUVE adult 0.042 0.119 1 0.413
TSCA adult 0.024 0.100 1 0.846
ACPE sapling 0.062 0.107 1 0.580
ACRU sapling 0.063 0.108 1 0.490
BEAL sapling 0.063 0.109 1 0.540
BELE sapling 0.024 0.109 1 0.540
BEPO sapling 0.063 0.109 1 0.540
FAGR sapling 0.035 0.152 1 0.664
FRAM sapling 0.056 0.095 1 0.319
PIGL sapling 0.033 0.087 1 0.413
PIRE sapling 0.033 0.087 1 0.413
PIST sapling 0.033 0.087 1 0.413
PRSE sapling 0.045 0.116 1 0.370
QURU sapling 0.042 0.119 1 0.413
QUVE sapling 0.042 0.119 1 0.413
TSCA sapling 0.024 0.100 1 0.846

Table A2. Species biomass equation parameters

Species b0 b1 fstem fbranch flea f froot fsoil

ACPE �2.047 2.385 0.700 0.230 0.070 0.240 0.680
ACRU �2.047 2.385 0.700 0.230 0.070 0.240 0.680
BEAL �1.810 2.348 0.700 0.230 0.070 0.240 0.680
BELE �1.810 2.348 0.700 0.230 0.070 0.240 0.680
BEPO �2.227 2.451 0.700 0.230 0.070 0.240 0.680
FAGR �2.070 2.441 0.700 0.230 0.070 0.240 0.680
FRAM �1.838 2.352 0.700 0.230 0.070 0.240 0.680
PIGL �2.136 2.323 0.700 0.230 0.070 0.240 0.680
PIRE �2.618 2.464 0.700 0.230 0.070 0.240 0.680
PIST �2.618 2.464 0.700 0.230 0.070 0.240 0.680
PRSE �2.212 2.413 0.700 0.230 0.070 0.240 0.680
QURU �2.070 2.441 0.700 0.230 0.070 0.240 0.680
QUVE �2.070 2.441 0.700 0.230 0.070 0.240 0.680
TSCA �2.348 2.388 0.700 0.230 0.070 0.240 0.680
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Table A3. Biomass carbon fraction parameters

fstem fbranch flea f froot fsoil

0.500 0.500 0.500 0.500 0.143

Table A4. Species DBH increment parameters

Species Type IDBH

ACPE adult 0.277
ACRU adult 0.312
BEAL adult 0.280
BELE adult 0.198
BEPO adult 0.103
FAGR adult 0.303
FRAM adult 0.149
PIGL adult 0.274
PIRE adult 0.390
PIST adult 0.277
PRSE adult 0.120
QURU adult 0.420
QUVE adult 0.322
TSCA adult 0.563
ACPE sapling 0.895
ACRU sapling 0.269
BEAL sapling 0.520
BELE sapling 0.201
BEPO sapling 0.300
FAGR sapling 0.530
FRAM sapling 0.500
PIGL sapling 0.353
PIRE sapling 0.350
PIST sapling 0.350
PRSE sapling 0.200
QURU sapling 0.098
QUVE sapling 0.100
TSCA sapling 0.509
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Table A5. Species mortality parameters

Species Type pmortality

ACPE adult 0.115
ACRU adult 0.030
BEAL adult 0.035
BELE adult 0.009
BEPO adult 0.032
FAGR adult 0.015
FRAM adult 0.004
PIGL adult 0.074
PIRE adult 0.023
PIST adult 0.010
PRSE adult 0.009
QURU adult 0.007
QUVE adult 0.001
TSCA adult 0.022
ACPE sapling 0.001
ACRU sapling 0.873
BEAL sapling 0.001
BELE sapling 0.667
BEPO sapling 0.001
FAGR sapling 0.354
FRAM sapling 0.001
PIGL sapling 0.001
PIRE sapling 0.001
PIST sapling 0.001
PRSE sapling 0.001
QURU sapling 0.001
QUVE sapling 0.001
TSCA sapling 0.821

Table A6. Species fecundity parameters

Species Fecundity

ACPE 2
ACRU 29
BEAL 16
BELE 8
BEPO 2
FAGR 11
FRAM 5
PIGL 3
PIRE 3
PIST 11
PRSE 8
QURU 29
QUVE 9
TSCA 17
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Table A7. Species C:N ratio parameters

Species CNstem CNbranch CNlea f CNlitter CNroot CNsoil

ACPE 548.590 71.460 30.460 58.800 68.548 23.087
ACRU 548.590 71.460 30.460 58.800 68.548 23.087
BEAL 548.590 71.460 22.420 58.800 68.548 23.087
BELE 548.590 71.460 21.200 58.800 68.548 23.087
BEPO 548.590 71.460 21.560 58.800 68.548 23.087
FAGR 548.590 71.460 22.420 58.800 68.548 23.087
FRAM 548.590 71.460 21.910 58.800 68.548 23.087
PIGL 548.590 71.460 38 58.800 68.548 23.087
PIRE 548.590 71.460 33 58.800 68.548 23.087
PIST 548.590 71.460 38 58.800 68.548 23.087
PRSE 548.590 71.460 21.500 58.800 68.548 23.087
QURU 548.590 71.460 21.920 58.800 68.548 23.087
QUVE 548.590 71.460 21.920 58.800 68.548 23.087
TSCA 548.590 71.460 42.520 58.800 68.548 23.087

Appendix C.1.2. LANDIS-II NECN879

Table A8. NECN adjustment parameters

Parameter Value

pest modifier 0.1
Nmineral initial 3.0
Fuels f ine initial 0.1
Natmos slope 0.007
Natmos intercept 0.011
Latitudedeg 43.3
rdenitri f ication 0.001
rdecay surface 0.65
rdecay SOM1 1.0
rdecay SOM2 0.125
rdecay SOM3 0.0002

Table A9. NECN maximum LAI parameters

Classshade LAImax

1 1
2 2.5
3 3.5
4 6
5 8

Table A10. NECN light establishment parameters

Classshade Shade0 Shade1 Shade2 Shade3 Shade4 Shade5

1 1 1 0.25 0.1 0 0
2 0.5 0.5 1 0.25 0.1 0
3 0.1 0.5 1 1 0.5 0.1
4 0.1 0.25 0.5 0.5 1 0.25
5 0 0.1 0.25 0.25 0.5 1
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Table A11. NECN species parameters

Species PFT Nf ix GDDmin GDDmax Tmin Dmax Longlea f Repi Llea f Lroot f Lwood Lrootc CNlea f CNroot f CNwood CNrootc CNlitter ANPPmax Bmax

ACRU 3 N 1260 6600 -18 0.23 1 N 0.183 0.334 0.125 0.312 28.20 26 565 50 55 440 25000
QURU 2 N 1100 4571 -17 0.2025 1 N 0.249 0.334 0.225 0.303 18.50 58 398 113 32 380 25000

Table A12. Functional group parameters

PFT Index Tmean Tmax Tshape Tshape fC f BTOLAI kLAI LAImax PPRPTS2 PPRPTS3 rdecayw mwood mshape dropmonth frootc froot f

Oaks 2 25 40 1.5 2.5 0.6 -0.9 10000 9 0.1 0.8 0.5 0.0006 15 9 0.2 0.5
NorthHardwoods 3 25 40 1.5 2.5 0.6 -0.9 7000 10 1.5 0.96 0.7 0.0006 15 9 0.2 0.5

Table A13. Fire reduction parameters; inactive

Classseverity Reductionwood Reductionlitter ReductionSOM

1 0.0 0.5 1.0
2 0.05 0.75 1.0
3 0.2 1.0 1.0
4 0.5 1.0 1.0
5 0.8 1.0 1.0

Table A14. Harvest reduction parameters; inactive

Class Reductionwood Reductionlitter ReductionSOM Removallea f Removalwood

HandThinning 0.05 1.0 1.0 1.0 1.0
MechThinning 0.05 1.0 1.0 0.85 1.0
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Table A15. Species parameters; only ACRU and QURU were simulated

Species Longevity Maturity Tshade Tf ire De f f Dmax pveg Smin Smax R f ire

ABBA 200 25 5 1 30 160 0 0 0 none
ACRU 235 5 4 1 100 200 0.75 0 150 none
ACSA 300 40 5 1 100 200 0.1 0 60 none
BEAL 300 40 3 2 100 400 0.1 0 180 none
BELE 250 40 4 2 100 400 0.1 0 0 none
BEPA 150 40 4 2 100 600 0.75 0 150 none
BEPO 150 40 4 2 100 400 0.1 0 0 none
CAGL 200 30 3 2 50 100 0.25 0 200 resprout
FAGR 350 10 5 1 30 300 0.4 10 200 resprout
FRAM 300 30 2 1 70 140 0.1 0 70 none
FRNI 150 30 4 2 200 2000 0.8 10 140 resprout
LALA 180 35 2 2 100 400 0.2 0 0 none
OSVI 110 25 4 2 100 200 0.15 0 100 resprout
PIGL 300 25 3 2 30 200 0 0 0 none
PIMA 215 30 3 3 79 158 0 0 0 none
PIRU 350 15 5 2 80 125 0 0 0 none
PIRE 250 15 2 4 100 275 0.1 0 20 none
PIRI 200 10 2 4 90 150 0.5 10 100 resprout
PIST 400 25 3 3 60 210 0 0 0 none
POBA 150 10 1 2 100 200 0.8 10 80 resprout
POGR 110 20 1 1 1000 5000 0.9 0 100 resprout
POTR 110 20 1 1 1000 5000 0.9 0 100 resprout
PRSE 200 10 2 3 100 200 0.5 20 90 resprout
QUAL 400 25 3 2 30 800 0.1 20 200 resprout
QUCO 150 20 2 3 50 100 0.5 20 100 resprout
QUPR 300 20 3 3 50 150 0.5 10 200 resprout
QURU 250 30 3 2 30 800 0.5 20 200 resprout
QUVE 120 20 3 2 70 150 0.1 20 90 resprout
THOC 800 30 2 1 45 100 0.5 0 200 none
TIAM 250 15 4 1 75 150 0.8 10 240 resprout
TSCA 500 20 5 2 30 100 0 0 0 none
ULAM 85 20 4 2 90 400 0.3 5 70 resprout

Appendix C.2. JERC-RD880

Appendix C.2.1. PPA-SiBGC881

Table A16. Species crown allometry parameters

Species Type hcoe f f cr1 cr2 cd

PIPA adult 0.033 0.087 1 0.413
QUIN adult 0.042 0.119 1 0.413
QUNI adult 0.042 0.119 1 0.413
QUVI adult 0.042 0.119 1 0.413
PIPA sapling 0.033 0.087 1 0.413
QUIN sapling 0.042 0.119 1 0.413
QUNI sapling 0.042 0.119 1 0.413
QUVI sapling 0.042 0.119 1 0.413
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Table A17. Species biomass equation parameters

Species b0 b1 fstem fbranch flea f froot fsoil

PIPA -3.051 2.647 0.700 0.230 0.070 0.240 0.680
QUIN -2.070 2.441 0.700 0.230 0.070 0.240 0.680
QUNI -2.070 2.441 0.700 0.230 0.070 0.240 0.680
QUVI -2.070 2.441 0.700 0.230 0.070 0.240 0.680

Table A18. Biomass carbon fraction parameters

fstem fbranch flea f froot fsoil

0.500 0.500 0.500 0.500 0.143

Table A19. Species DBH increment parameters

Species Type IDBH

PIPA adult 0.261
QUIN adult 0.119
QUNI adult 0.994
QUVI adult 0.276
PIPA sapling 0.197
QUIN sapling 0.100
QUNI sapling 0.440
QUVI sapling 0.271

Table A20. Species mortality parameters

Species Type pmortality

PIPA adult 0.001
QUIN adult 0.001
QUNI adult 0.001
QUVI adult 0.001
PIPA sapling 0.174
QUIN sapling 0.333
QUNI sapling 0.143
QUVI sapling 0.111

Table A21. Species fecundity parameters

Species Fecundity

PIPA 2
QUIN 0
QUNI 0
QUVI 0
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Table A22. Species C:N ratio parameters

Species CNstem CNbranch CNlea f CNlitter CNroot CNsoil

PIPA 133.721 133.721 255.103 255.103 133.721 23.087
QUIN 96.370 96.370 85.259 85.259 96.370 23.087
QUNI 96.370 96.370 85.259 85.259 96.370 23.087
QUVI 96.370 96.370 85.259 85.259 96.370 23.087

Appendix C.2.2. LANDIS-II NECN882

Table A23. NECN adjustment parameters

Parameter Value

pest modifier 0.4
Nmineral initial 0.5
Fuels f ine initial 0.1
Natmos slope 0.004
Natmos intercept 0.017
Latitudedeg 31.220731
rdenitri f ication 0.02
rdecay surface 0.70
rdecay SOM1 0.81
rdecay SOM2 0.05
rdecay SOM3 0.00006

Table A24. NECN maximum LAI parameters

Classshade LAImax

1 1
2 2.5
3 3.5
4 6
5 8

Table A25. NECN light establishment parameters

Classshade Shade0 Shade1 Shade2 Shade3 Shade4 Shade5

1 1 1 0.25 0.1 0 0
2 0.5 0.5 1 0.25 0.1 0
3 0.1 1 1 1 0.5 0.1
4 0.1 0.25 0.5 0.5 1 0.25
5 0 0.1 0.25 0.25 0.5 1
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Table A26. NECN species parameters

Species PFT Nf ix GDDmin GDDmax Tmin Dmax Longlea f Repi Llea f Lroot f Lwood Lrootc CNlea f CNroot f CNwood CNrootc CNlitter ANPPmax Bmax

QUIN 2 N 3915 7000 1 0.423 1 N 0.293 0.23 0.23 0.35 24 48 500 333 55 250 15000
QULA 2 N 3915 7000 1 0.423 1 N 0.293 0.23 0.23 0.35 24 48 500 333 55 250 15000
PIPA 1 N 3915 7000 1 0.423 2 N 0.2 0.2 0.35 0.35 50 50 380 170 100 500 15000

Table A27. Functional group parameters

PFT Index Tmean Tmax Tshape Tshape fCf BTOLAI kLAI LAImax PPRPTS2 PPRPTS3 rdecayw mwood mshape monthdrop frootc froot f

Pine 1 28 45 3.0 2.5 0.37 -0.9 2000 10 1 0.8 0.6 0.001 15 9 0.31 0.56
Oaks 2 27 45 2.2 2.5 0.5 -0.9 2000 20 0.1 0.75 0.6 0.001 15 9 0.21 0.59

Table A28. Fire reduction parameters; inactive

Classseverity Reductionwood Reductionlitter ReductionSOM

1 0.0 0.5 1.0
2 0.05 0.75 1.0
3 0.2 1.0 1.0
4 0.5 1.0 1.0
5 0.8 1.0 1.0

Table A29. Harvest reduction parameters; inactive

Classseverity Reductionwood Reductionlitter ReductionSOM Removallea f Removalwood

HandThinning 0.05 1.0 1.0 1.0 1.0
MechThinning 0.05 1.0 1.0 0.85 1.0

Table A30. Species parameters

Species Longevity Maturity Tshade Tf ire De f f Dmax pveg Smin Smax R f ire

QUIN 150 10 4 5 50 3000 0.75 5 40 resprout
QULA 150 20 4 3 50 3000 0.75 5 40 resprout
PIPA 400 20 1 5 20 200 0.0 0 5 none
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