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2 

SUMMARY 16 

Plants produce a myriad of specialized metabolites to overcome their sessile habit and combat biotic as 17 

well as abiotic stresses. Evolution has shaped specialized metabolite diversity, which drives many other 18 

aspects of plant biodiversity. However, until recently, large-scale studies investigating specialized 19 

metabolite diversity in an evolutionary context have been limited by the impossibility to identify 20 

chemical structures of hundreds to thousands of compounds in a time-feasible manner. Here, we 21 

introduce a workflow for large-scale, semi-automated annotation of specialized metabolites, and apply 22 

it for over 1000 metabolites of the cosmopolitan plant family Rhamnaceae. We enhance the putative 23 

annotation coverage dramatically, from 2.5 % based on spectral library matches alone to 42.6 % of total 24 

MS/MS molecular features extending annotations from well-known plant compound classes into the dark 25 

plant metabolomics matter. To gain insights in substructural diversity within the plant family, we also 26 

extract patterns of co-occurring fragments and neutral losses, so-called Mass2Motifs, from the dataset; 27 

for example, only the Ziziphoid clade developed the triterpenoid biosynthetic pathway, whereas the 28 

Rhamnoid clade predominantly developed diversity in flavonoid glycosides, including 7-O-29 

methyltransferase activity. Our workflow provides the foundations towards the automated, high-30 

throughput chemical identification of massive metabolite spaces, and we expect it to revolutionize our 31 

understanding of plant chemoevolutionary mechanisms.  32 
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INTRODUCTION 33 

Specialized metabolites, also called secondary metabolites or natural products, are molecules produced 34 

by all higher plants; and deployed for the survival in a competitive environment (Hartmann, 2007). The 35 

chemical diversity in the plant kingdom has been accumulated over evolutionary time. Therefore, the 36 

distribution of specialized metabolites across the plant kingdom is an important aspect of phenotyping 37 

that can, for example, provide us with insights about the evolution of biosynthetic pathways (Wink, 2003). 38 

However, directly assessing plant chemical diversity is extremely challenging and several bottlenecks 39 

have limited large-scale studies investigating the evolutionary history of plant specialized metabolism. 40 

Chemotaxonomic studies assessing the relationship between plant morphological characters and 41 

chemical composition have largely depended on literature surveys, which do not only require a large 42 

investment in time and labor but also involve a lot of biases. For example, there is a general emphasis 43 

towards single isolated plant specialized metabolites that exhibit biological activities with 44 

pharmaceutical interest (Harvey, 2008); also, it is common practice not to publish chemical structural 45 

information of molecules, which do not exhibit structural novelty or biological activities of interest. 46 

Experimentally assessing chemical diversity among plants has been limited by the inability to automate 47 

chemical structural characterization, something that is still an inherently slow and largely manual process 48 

that needs expert knowledge.  49 

Here, we introduce a scalable workflow to digitize diversity and distribution of plant specialized 50 

metabolites using mass spectrometry (MS) in combination with a series of computational mass 51 

spectrometry data analysis tools. In theory, tandem mass spectrometry (MS/MS) contains a lot of 52 

information that can be used to gain structural insight into the molecules that are detected (Ernst et al., 53 

2014). However, annotation, classification and identification of metabolites that are detected by MS is 54 

still a significant obstacle in plant metabolomics workflows, in contrast to high-throughput 55 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2018. ; https://doi.org/10.1101/463620doi: bioRxiv preprint 

https://doi.org/10.1101/463620
http://creativecommons.org/licenses/by/4.0/


4 

characterization of DNA, RNA, and proteins where annotation and classification have become much 56 

more routine even when MS/MS is employed (Nakabayashi and Saito, 2013). Computational tools such 57 

as in silico fragmentation predictors and combinatorial fragmentators (Allen et al., 2014, Duhrkop et al., 58 

2015, Ruttkies et al., 2016, da Silva et al., 2018) and molecular networking (Watrous et al., 2012, Wang 59 

et al., 2016) combined with library matching to reference spectra have enabled automated chemical 60 

structure annotations in recent years. Even with those advances, only ~2–5 % of the MS/MS spectra can 61 

be annotated in an experiment (da Silva et al., 2015, Wang et al., 2016, Aksenov et al., 2017). To enhance 62 

the coverage of putative annotation on MS/MS spectra, we developed a scalable semi-automated 63 

approach towards the characterization of plant specialized metabolites by integrating several 64 

computational MS/MS data analysis methods (Figure 1). Most previous in silico annotation methods 65 

focused on putative identification of individual molecules of interest; in contrast, our workflow putatively 66 

annotates molecular families (groups of molecules having common chemical scaffolds; Nguyen et al., 67 

2013). Combining information on both full structures and predicted substructures of multiple molecules, 68 

and the motifs and fragmentation patterns associated with these, allows our workflow to greatly extend 69 

the number of spectra that can be annotated. We developed a scalable semi-automated approach towards 70 

the chemotaxonomic characterization of plants, and demonstrate the efficiency of our workflow on a 71 

unique collection of extracts of 70 species from the Rhamnaceae family. Rhamnaceae is a cosmopolitan 72 

plant family of ~50 genera and 900 species (Richardson et al., 2004). Rhamnaceae species are known for 73 

their exceptional morphological diversity and high genetic variation, likely as evolutionary consequences 74 

associated with its wide geographic distribution and many different habitats (Hardig et al., 2000, 75 

Hauenschild et al., 2016a, Hauenschild et al., 2016b). Although there are some family-specific 76 

metabolites such as ceanothane-type triterpenoids (Kang et al., 2016) and cyclopeptide alkaloids 77 

(Tuenter et al., 2017), little chemistry is known from this family. We employed next generation 78 
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metabolomics data analysis strategies to provide structural insight into hundreds of specialized 79 

metabolites both at the level of chemical class and diversified scaffolds.  80 

 81 

Figure 1. Schematic data analysis workflow for comprehensive plant specialized metabolites 82 

phenotyping using MS/MS. MS/MS spectra are analyzed for spectral similarity and visualized as a 83 

molecular network, which clusters similar spectra as “molecular families”. Network annotation 84 

propagation (NAP) provides in silico annotation candidates for individual spectra. These candidates are 85 

chemically classified using ClassyFire, then molecular families are putatively annotated based on the 86 

most predominant chemical classes per molecular family. Meanwhile, the distribution of co-occurring 87 

fragments and neutral losses (Mass2Motifs) are analyzed by MS2LDA, and these provide information 88 

about substructure diversity and distribution between samples. 89 

 90 
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RESULTS AND DISCUSSION 91 

The Rhamnaceae chemical space 92 

To take an inventory of the Rhamnaceae plant family, we submitted LC–MS/MS data from 70 93 

representative Rhamnaceae species extracts to mass spectral molecular networking through the Global 94 

Natural Products Social Molecular Networking (GNPS) web platform (https://gnps.ucsd.edu)(Wang et 95 

al., 2016). The resulting molecular network consisted of 2,268 mass spectral nodes organized into 141 96 

independent molecular families (two or more connected nodes of a graph; Nguyen et al., 2013). We 97 

investigated chemical diversity in relation to the most recent phylogenetic study (Sun et al., 2016). Based 98 

on this phylogenetic hypothesis, our 70 Rhamnaceae species spanned 15 genera. These 15 genera are 99 

further grouped into two major phylogenetic clades, the Rhamnoid clade, comprising 8 genera and the 100 

Ziziphoid clade, comprising a total of 7 genera (Richardson et al., 2000, Sun et al., 2016) (Figure 2(b)). 101 

Phylogenetically closely related genera were assigned similar colors, so that phylogenetic relationships 102 

could be visualized on the mass spectral molecular network (Figure 2(a)). We observed that specialized 103 

metabolite classes tend to be constrained to specific taxa. For example, more than 90% of the metabolites 104 

within the molecular families A and B were predominantly found in one phylogenetic clade; Rhamnoid 105 

for A and Ziziphoid for B (Figure 2(c)). Furthermore, molecular family C exhibits molecules found in 106 

representatives of both clades and several genera, suggesting widespread occurrence of certain 107 

metabolite classes within Rhamnaceae species. We further detected species or genera-specific chemical 108 

analogues. For example, some spectral nodes within the molecular family B are unique to the genus 109 

Gouania, while the others are found only in Colubrina species. This finding reveals the presence of 110 

closely related yet different chemical structures across members of these two genera. 111 
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 112 

Figure 2. The Rhamnaceae molecular network and mass spectrometry detected chemical space. (a) 113 

Global Rhamnaceae mass spectral molecular network with nodes colored according to the mean ion 114 

intensity per genus of origin. Molecular families A–E (A, various phenolics; B, triterpene glycosides; C, 115 

flavone O-glycosides; D, triterpene esters; E, cyclopeptide alkaloids) are highlighted. (b) Schematic 116 

representation of Rhamnaceae phylogenetic tree retrieved from Richardson et al., 2000 and Sun et al., 117 

2016. Phylogenetically closely related genera were assigned similar colors. (c) Distribution of 118 

metabolites within the Ziziphoid and Rhamnoid clades across the global mass spectral molecular network 119 
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and molecular families A, B, and C. Differential abundance was assessed based on binary counts of MS1 120 

ions in each species. 121 

Metabolite annotation at the subclass level 122 

The MS/MS spectral library search through GNPS as described in the Experimental section resulted in 123 

51 hits to reference MS/MS spectra. These are level 2 or 3 annotations according to the 2007 124 

metabolomics standards initiative (MSI) (Sumner et al., 2007). This is about 2.5 % of the observed 125 

Rhamnaceae chemical space. Most of the library hits belong to the molecular families of flavonoid 126 

glycosides (e.g. A and C), because experimental MS/MS spectra in public spectral libraries are not 127 

equally distributed across different chemical classes. There is a strong bias in the public libraries towards 128 

commercially available molecules and more abundant metabolites as this facilitates isolation and 129 

structure elucidation. To amplify the chemical knowledge that we can obtain from the data, we applied 130 

in silico structure prediction (network annotation propagation, NAP) to obtain in silico fragmentation-131 

based metabolite annotation candidates from relevant compound databases, through reranking candidate 132 

molecular annotations based on the network topology (da Silva et al., 2018). Except for 87 MS/MS 133 

spectra, NAP assigned candidate structures to the majority of the nodes. Matching failures are usually a 134 

result of lack of candidate structures within the corresponding compound libraries. 135 

Molecular networking utilizes spectral similarity to group metabolites with the implicit assumption 136 

that similar molecular structures will generate similar fragmentation spectra; thus, molecular families 137 

comprising structurally similar molecules can likely be interpreted as distinct chemical classes. Based on 138 

this hypothesis, structures annotated by NAP were classified based on their chemical scaffolds using 139 

ClassyFire (Djoumbou Feunang et al., 2016). ClassyFire assigned chemical structures to a chemical 140 

ontology consisting of up to 11 different levels, and the most frequent consensus classifications per 141 

molecular family were retrieved (Figure 3(a)). Reliability of the ClassyFire analysis was validated using 142 
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two different scores. At first, the ratio of nodes returning any database hit from NAP, the coverage score, 143 

was calculated for all molecular families. 90.78 % of all molecular families within our global network 144 

showed a coverage score of over 0.7, indicating high structural library coverage of our samples (Figure 145 

S10). Meanwhile, the consistency score, defined as the % of nodes that make up a molecular family, 146 

indicates how coherent the ClassyFire classifications are (Figure 3(a)). The NAP annotated molecular 147 

families varied in their consistency. NAP is dependent on structural library hits, and many molecules that 148 

can be detected are not covered in structural libraries. Some network clusters consist of different classes 149 

of metabolites, while others show higher coherence for their identified structures. For example, the 150 

ClassyFire result revealed that molecular families A and C were primarily composed of flavonoid 151 

glycosides. The consistency score of A was 0.394, indicating that 39.4% of all structural matches in A 152 

were classified as flavonoid glycosides; on the other hand, molecular family C showed a score of 0.688. 153 

Manual inspection of A and C support the classification results as diverse subgroups of related phenolic 154 

(e.g. flavonoids, anthraquinones, and naphthopyrones) glycosides were found in A, while most nodes in 155 

C were annotated as flavonoid glycosides (Data S1, Supporting Information). This indicates that the 156 

annotation of chemical classes could be a broad strategy for exploring the chemical space and diversity 157 

of large metabolomics datasets.  158 

Based on the putative chemical classification of molecular families, the normalized distribution pattern 159 

of different classes of metabolites were visualized as a heatmap (Figure 3(b)). On the y-axis, we plotted 160 

the samples, and on the x-axis the putative chemical classes. The colour scheme in the heatmap represents 161 

Z-scores per sample. It was revealed that Ziziphoid species exhibit various triterpenoids and triterpenoid 162 

glycosides, while Rhamnoid species show more diversified flavonoids, carbohydrates, and 163 

anthraquinones. However, most of chemical classes did not show very conserved patterns in specific 164 

genera or tribes, being suggestive of convergent evolution in specialized metabolism. This finding would 165 

corroborate with the extraordinary convergent genetic diversity of Rhamnaceae caused by their 166 
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worldwide distribution, especially in Mediterranean-type ecosystems (Onstein et al., 2015, Onstein and 167 

Linder, 2016). 168 

 169 
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Figure 3. Structural annotation of Rhamnaceae specialized metabolites at the chemical subclass level. 170 

(a) Chemical structures annotated by NAP were automatically classified for their chemical scaffolds 171 

using ClassyFire, and the most frequent consensus classifications per network cluster were retrieved to 172 

assign putative chemical subclass annotation to each molecular family. (b) The ClassyFire consistency 173 

score which indicates the coherence of the ClassyFire chemical classification across each molecular 174 

family was calculated to estimate the accuracy of putative annotations. (c) Heatmap of the normalized 175 

putatively identified molecular features illustrating distribution of specialized metabolite classes across 176 

70 Rhamnaceae species. Each column represents a specialized metabolite class while each row represents 177 

a species. For visualization purposes, a few differentially expressed chemical classes are highlighted. 178 

The complete heatmap can be found in Figure S11. 179 

Metabolite annotation at the scaffold diversity level 180 

Plant specialized metabolite profiles often show a pattern in which a few major metabolites occur widely 181 

in certain level of taxa, and those major compounds are accompanied by several minor derivatives (Wink, 182 

2003). Although more than 200,000 natural products are known to be synthesized by plants, all of those 183 

are based on only a few biosynthetic pathways and key primary metabolites. Therefore, a small portion 184 

of metabolites tend to be observed universally across the plant kingdom, while minor derivatives of them 185 

show more specific distributions caused by independently evolved downstream pathways. Substructure 186 

recognition topic modeling (MS2LDA) (van der Hooft et al., 2016) was applied on our MS/MS dataset 187 

for extraction of information on substructural diversity within each metabolite class. MS2LDA reveals 188 

patterns of co-occurring fragments and neutral losses (called Mass2Motifs) from multiple MS/MS 189 

spectra (van der Hooft et al., 2016). 200 motifs were retrieved from the dataset with MS2LDA - of which 190 

we could annotate 25 with chemical substructures using the MS2LDAviz web app (Wandy et al., 2017). 191 

Figure 4 visualizes the distribution of MS/MS spectra containing each Mass2Motif, which represents 192 
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substructural diversity among the tested species. This provides insights about how scaffold diversity has 193 

evolved in this family. For example, Mass2Motif 179 which is related to rhamnetin (7-O-methylquercetin) 194 

is only observed in Rhamnoid species, while quercetin-related metabolites are observed across the entire 195 

family. It suggests that quercetin 7-O-methyltransferase is active only in Rhamnoid species, while it is 196 

silent or has not evolved in Ziziphoid species. Although we cannot validate this hypothesis due to low 197 

coverage of the Rhamnaceae genome (Liu et al., 2014), our approach provides a very straightforward 198 

way to phenotype-based hypotheses within plant specialized metabolism. 199 

  Our workflow provides insights on plant specialized metabolism on a systemic level; however, both 200 

NAP and MS2LDA work on each individual spectrum. Thus, this workflow can also be exploited for the 201 

annotation of specific molecules of interests, which especially agrees with interests of natural product 202 

chemists. Figure 5(a) describes a summary of the metabolite annotations in molecular family A. It shows 203 

the synergism of using both NAP and MS2LDA for annotation of MS/MS spectra. Mass2Motif 164 could 204 

be annotated as rhamnocitrin (7-O-methylkaempferol)-related motif based on the putative annotation of 205 

node 1 as rhamnocitrin-3-O-rhamninoside, while rhamnetin-related Mass2Motif 179 were extracted from 206 

spectral nodes 2 (rhamnazin-3-O-rhamninoside), 3 (rhamnetin-3-O-rhamninoside), and 4 (rhamnetin-3-207 

O-rutinoside). Distribution mapping of Mass2Motifs 40, 64,141, and 168 also revealed scaffold 208 

differences of emodin, norrubrofusarin, and torachrysone in MS/MS spectral nodes clustered as the 209 

molecular family A (Figure 5(a)). Figure 5(b) shows another example; molecular family D was putatively 210 

identified as a family of triterpene esters. Different phenolic moieties such as protocatchuate, vanillate, 211 

and coumarate were easily recognized in D, by analyzing the distribution of Mass2Motifs 28, 117, 120, 212 

and 191. We validated 8 molecular annotations classified as flavonoids, anthraquinones, triterpenoids, 213 

and peptides using reference standards, and all of them were confirmed as the correct structural 214 

annotation (Result S2, Supporting Information) thus promoting them to MSI level 1 identifications 215 

(spectra are available in GNPS public library – see Result S2). Therefore, we suggest that the workflow 216 
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introduced in this article will enhance both the efficiency of dereplication, the process of identifying 217 

“unknown knowns” from complex mixtures, and illumination of the “unknown unknown” dark 218 

metabolic matter, both critical steps for the natural product drug discovery process. 219 

 220 

Figure 4. Heatmap of the molecular features illustrating distribution of different Mass2Motifs across 70 221 

Rhamnaceae species (The counts of molecular features related to Mass2Motifs were filtered with the 222 

probability > 0.3). Each column represents a Mass2Motif while each row represents a species. Selected 223 

substructures related to annotated Mass2Motifs are highlighted drawn below the heatmap. The complete 224 

heatmap can be found in Figure S12. 225 
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 226 

Figure 5. NAP/MS2LDA-driven metabolite annotation of (a) diverse phenolics (molecular family A) 227 

and (b) triterpene esters (molecular family D). Mass2Motifs, mapped with different colors of spectral 228 

nodes, reveal diversity of chemical scaffolds (a) and substructural moieties (b). Chemical structures 229 

drawn here are top-candidates suggested by the NAP analysis. Colored parts for structures represent the 230 

substructures related to Mass2Motifs. The annotated structures of compounds 9–12 were authenticated 231 

using reference standards. 232 
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CONCLUSIONS 233 

Although metabolomics is a rapidly growing discipline in plant science, its application is still relatively 234 

limited, compared to genomics or transcriptomics. The lack of a high-throughput annotation method is 235 

one of the major reasons for it. Using the integrative workflow based on MS/MS molecular networking, 236 

we were able to putatively annotate and classify metabolites in high-throughput. Although most 237 

annotations still need to be inspected and validated manually, we can reach consensus and higher 238 

confidence in chemical structural data interpretation by using two different, complementary 239 

computational approaches, MS2LDA and automated chemical classification of in silico annotated 240 

structures within the mass spectral molecular networks. Therefore, we expect that this workflow, in 241 

addition to expansion of public spectral databases coverages, in silico annotation tools' accuracy 242 

improvement and comprehensive substructure annotation to accelerate the application of metabolomics 243 

approaches to plant biology. These advances are likely to reproduce what the GenBank (Benson et al., 244 

2018), Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990) and Gene ontology broad 245 

usage (Ashburner et al., 2000) did for genomics studies. Based on the putative annotations, we were able 246 

to characterize, analyze, and visualize the chemical space of the Rhamnaceae family, allowing us to 247 

digitize the diversity and distribution of metabolites. Considering that most species used in this study 248 

have not been engaged in any phytochemical studies, we expect that our method will accelerate chemical 249 

identification of uncharted plant metabolite space. There have been other approaches for accelerating 250 

plant metabolite identification, such as candidate substrate-product pair (CSPP) network (Morreel et al., 251 

2014), ISDB-molecular networking (Allard et al., 2016), MatchWeiz (Shahaf et al., 2016), or PlantMAT 252 

(Qiu et al., 2016). However, all these approaches not only rely on compound database content like our 253 

approach but also previous knowledge such as reported phytochemical composition or metabolic 254 

pathways. Unfortunately, this information is hard to obtain for many taxa; as there still is a large number 255 
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of plants whose metabolomic composition has never been investigated. Recent studies revealed that 256 

convergent evolution can lead to identical specialized metabolites biosynthesized through different 257 

unrelated pathways (Huang et al., 2016, Zhao et al., 2016). Therefore, researchers should consider the 258 

risk of drawing incorrect conclusions when they apply specialized metabolic pathways established in 259 

different plants. In this context, our approach has an advantage in digitizing and visualizing the chemical 260 

space of both previously investigated as well as uninvestigated plants, because it does not have any 261 

taxonomic bias using only MS/MS data and available molecular structures from compound databases. 262 

Hence, our approach facilitates metabolomics studies with massive datasets from uninvestigated species 263 

for botany, ecology, evolutionary biology, and natural products discovery. Currently the workflow is 264 

available for all users by using the scripts (available at 265 

https://github.com/DorresteinLaboratory/supplementary-Rhamnaceae), and the work is ongoing to wrap 266 

up the analysis workflow in one package minimizing the number of scripts needed to get to an enhanced 267 

molecular network. 268 

EXPERIMENTAL PROCEDURES 269 

Plant materials 270 

Aerial parts of 70 Rhamnaceae plant species were collected in Cambodia, China, Costa Rica, Ecuador, 271 

Indonesia, Laos, Mongolia, Nepal, and Vietnam. Samples were extracted with MeOH or 95 % EtOH, 272 

after drying and pulverizing. Extraction solvents were immediately removed by freeze-drying, and the 273 

dried extracts were stored at − 20 °C until analyses. The samples were authenticated by collectors, and 274 

voucher specimens are deposited in the International Biological Material Research Center (IBMRC) of 275 

Korea Research Institute of Bioscience and Biotechnology (KRIBB), together with the extract library. 276 

Detailed location and date for collection are listed in Table S1.  277 
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Liquid chromatography coupled tandem mass spectrometry (LC–MS/MS) 278 

Dried extracts were re-dissolved in MeOH at a concentration of 5mg/mL and analyzed using an 279 

ACQUITY ultra-high performance liquid chromatography (UPLC) system (Waters Co., Milford, MA, 280 

USA) coupled to a Xevo G2 QTOF mass spectrometer (Waters MS Technologies, Manchester, UK) 281 

equipped with an electrospray ionization (ESI) interface. Chromatographic separation was performed on 282 

an ACQUITY UPLC BEH C18 (100 mm × 2.1 mm, 1.7 μm, Waters Co.) column eluted with a linear 283 

gradient of 0.1% formic acid in H2O (A) and acetonitrile (B) with increasing polarity (0.0 to 14.0 min, 284 

10% to 90% B). The column was maintained at 40 °C, the flow rate was 0.3 mL/min, and the linear 285 

gradient elution was followed by a 3 min washout phase at 100% B and a 3 min re-equilibration phase 286 

at 10% B. Analyses of the extract samples (1.0 μL injected into the partial loop in the needle overfill 287 

mode) were performed in negative ion automated data-dependent acquisition (DDA) mode, in which full 288 

MS scans from m/z 100–1500 Da are acquired as MS1 survey scan (scan time: 150 ms) and then MS/MS 289 

scans for the three most intense ion follow (scan time: 100 ms). MS/MS acquisition was set to be 290 

activated when TIC of MS1 survey scan rose and switched back to survey scan after two scans of MS/MS. 291 

The ESI conditions were set as follows: capillary voltage 2.5 kV, con voltage 20 V, source temperature 292 

120 °C, desolvation temperature 350 °C, cone gas flow 50 L/h, and desolvation gas flow 800 L/h. High-293 

purity nitrogen was used as the nebulizer and auxiliary gas, and argon was used as the collision gas. Data 294 

were acquired in centroid mode, and the [M − H]− ion of leucine enkephalin at m/z 554.2615 was used 295 

as the lock mass to ensure mass accuracy and reproducibility. Collision energy gradient was 296 

automatically set according to m/z values of precursor ions: 20 to 40 V for 100 Da to 60 to 80 V for 1500 297 

Da. 298 
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LC–MS/MS data processing 299 

Waters.raw dataset were directly imported into Mzmine 2.30 (Pluskal et al., 2010). The extracted ion 300 

chromatograms (XICs) were built with ions showing a minimum time span of 0.01 min, minimum height 301 

of 4000, and m/z tolerance of 0.001 (or 5.0 ppm). The chromatographic deconvolution was achieved by 302 

the baseline cut-off algorithm, with the following parameters: minimum peak height of 2500, peak 303 

duration range of 0.02–0.20 min, and baseline level of 500. Deconvoluted XICs were deisotoped using 304 

the isotopic peaks grouper algorithm with a m/z tolerance of 0.006 (or 10.0 ppm) and a retention time 305 

(tR) tolerance of 0.15 min. XICs were aligned together into a peak table, using the join aligner module 306 

(m/z tolerance at 0.006 (or 10.0 ppm), absolute tR tolerance at 0.2 min, weight for m/z of 70, and weight 307 

for tR of 30); ions from MS contaminants identified by blank injection and duplicate peaks were manually 308 

removed from the aligned peak table. The filtered peak table was eventually gap-filled with the peak 309 

finder module (intensity tolerance at 30.0 %, m/z tolerance at 0.001 Da (or 5.0 ppm), and absolute tR 310 

tolerance of 0.2 min). 311 

LC–MS/MS data analyses 312 

The preprocessed chromatograms were exported to GNPS (https://gnps.ucsd.edu) for molecular 313 

networking (Wang et al., 2016). MS/MS spectra were window filtered by choosing only the top six peaks 314 

in the ± 50Da window throughout the spectrum. A network was then created where edges were filtered 315 

to have a cosine score above 0.70 and more than four matched peaks. Further edges between two nodes 316 

were kept in the network and only if each of the nodes appeared in each other's respective top 10 most 317 

similar nodes. The spectra in the network were then searched against the spectral library of GNPS; the 318 

library spectra were filtered in the same manner as the input data. The molecular network was visualized 319 

using Cytoscape 3.5.1 (Shannon et al., 2003). Peak area data from the Mzmine-processed LC–MS 320 
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peaktable were combined with the spectral network, and visualized by plotting pie charts. Phylogenetic 321 

information was mapped on the network, by assigning unique colors to each genus. The constructed 322 

molecular network was further analyzed using the Network Annotation Propagation (NAP; accessible 323 

through the GNPS web-platform) tool for structural annotation of spectral nodes. NAP utilizes MetFrag 324 

in silico fragmentation tool to search the structural databases of GNPS, Dictionary of Natural Products 325 

(DNP), and Super Natural II (Banerjee et al., 2015). All precursor ions were hypothesized to be 326 

deprotonated molecular ions [M − H]−, and accuracy for exact mass candidate search was set to 10. 327 

Fusion and Consensus scores were calculated based on 10-first candidates in the network propagation 328 

phase. 329 

The preprocessed LC–MS/MS peaklist file was also subjected to MS2LDA (https://MS2LDA.org) 330 

(Wandy et al., 2017) for extracting MS2motifs. Parameters for the MS2LDA experiment were set as 331 

follows: input format MGF, m/z tolerance 5.0 ppm, tR tolerance 10.0 s, minimum MS1 intensity 0 a.u., 332 

minimum MS2 intensity 50.0 a.u., no duplicate filtering, number of iterations 1000, number of 333 

Mass2Motifs 200. 334 

All scripts used for data analyses platform integration are publically accessible at: 335 

https://github.com/DorresteinLaboratory/supplementary-Rhamnaceae.  336 

Data availability 337 

LC–MS/MS raw data, the preprocessed peaklist file, and the integrated Cytoscape network file are 338 

deposited in the Mass spectrometry Interactive Virtual Environment (https://massive.ucsd.edu) with the 339 

accession number MSV000081805, which is accessible via the following link: 340 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=36f154d1c3844d31b9732fbaa72e9284 341 

The molecular network and NAP result of Rhamnaceae extracts can be found at the GNPS website 342 

with the following links: 343 
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https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e9e02c0ba3db473a9b1ddd36da72859b 344 

https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=6b515b235e0e4c76ba539524c8b4c6d8 345 

The MS2LDA results are accessible through the following link: 346 

http://ms2lda.org/basicviz/summary/566; the summary for all Mass2Motifs from this study is 347 

available as Table S2. 348 
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