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ABSTRACT 25 

Premise of the Study -  Male gametophytes of seed plants deliver sperm to eggs via a pollen 26 

tube. Pollen tube growth rate (PTGR) may evolve rapidly due to pollen competition and haploid 27 

selection, but many angiosperms are currently polyploid and all have polyploid histories. 28 

Polyploidy should initially accelerate PTGR via “genotypic effects” of increased gene dosage 29 

and heterozygosity on metabolic rates, but “nucleotypic effects” of genome size on cell size 30 

should reduce PTGR. How are such cell-level consequences of genome size change related to the 31 

evolution of orders-of-magnitude faster PTGRs in angiosperms versus gymnosperms? 32 

Methods -  We assembled a phylogenetic tree of 451 species with known PTGRs and added 33 

ploidy and DNA content values from the literature. We then used comparative phylogenetic 34 

methods to detect phylogenetic signal, differences in selective optima, and correlated evolution 35 

of PTGR and genome size. 36 

Key Results - Gymnosperms had significantly higher C-value and slower PTGR optima than 37 

angiosperms. DNA content was negatively correlated with PTGR in gymnosperms, but non-38 

significant in angiosperms. Among angiosperms, model-based analyses indicated a single PTGR 39 

selective optimum for diploids and polyploids. Sister-taxon and intraspecific-cytotype 40 

comparisons indicated either no difference or slower PTGRs in polyploids than diploids. 41 

Conclusions – Results from closely-related taxa indicate nucleotypic effects are initially equal to 42 

or outweigh genotypic effects, and none of the analyses found that genome duplication 43 

accelerated PTGR. Thus, our results suggest that gradual and sustained expansion of PTGRs in 44 

angiosperms has mostly occurred in diploid or diploidized species, where pollen tubes are most 45 

subject to haploid selection. 46 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/462663doi: bioRxiv preprint 

https://doi.org/10.1101/462663
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Keywords: DNA content, evolution of development, gametophyte, growth rate, 47 

macroevolution, pollen competition, pollen tube, polyploidy, whole genome duplication.  48 

  49 

50 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/462663doi: bioRxiv preprint 

https://doi.org/10.1101/462663
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

INTRODUCTION 51 

 In seed plants, the male gametophyte is a highly-reduced haploid organism, developing 52 

within the pollen grain until pollination, when it germinates and a pollen tube emerges to invade 53 

maternal tissues. The pollen tube has been recruited for the novel function of siphonogamy, the 54 

transport of non-motile sperm cells to the egg-bearing female gametophyte, in conifers and 55 

Gnetales (two related gymnosperm groups) and in angiosperms (Friedman, 1993). In 56 

siphonogamous groups, pollen germination speed and pollen tube growth rate (PTGR) together 57 

determine fertilization timing. Much of the haploid genome of the male gametophyte is 58 

expressed during pollen tube development and also after fertilization, in the diploid sporophyte 59 

generation (Tanksley et al., 1981; Twell et al., 2006; Otto et al. 2015). Pollen competition is 60 

thought to be much more intense in angiosperms, causing greater exposure to haploid selection 61 

and faster evolution of genes for pollen germination speed and tube growth rate (Mulcahy, 1979; 62 

Snow, 1990; Arunkumar et al. 2013; Otto et al. 2015). Indeed, angiosperms have evolved orders-63 

of-magnitude faster pollen tube growth rates than gymnosperms (Williams 2009, 2012). 64 

One complication with the idea that pollen performance genes have evolved rapidly 65 

under haploid selection is that whole genome duplications (WGDs) have been especially 66 

common in angiosperms relative to gymnosperms (Leitch & Leitch, 2012, 2013). WGDs elevate 67 

pollen tube gene expression above the haploid level, which has consequences for growth rates. 68 

First, WGDs mask haploid selection on pollen-expressed genes via the effects of heterosis 69 

(sheltering of deleterious alleles and/or new allelic interactions) (Lande and Schemske, 1985; 70 

Husband and Schemske, 1997; Comai, 2005; Birchler et al. 2010; Husband, 2016). Secondly, 71 

WGDs enable gene dosage effects that could increase the capacity for protein synthesis and 72 

hence increase metabolic rates (Stebbins, 1974; Comai, 2005; Conant and Wolfe, 2008). Thirdly, 73 
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large changes in DNA content (whether by WGD or other processes) are known to have 74 

“nucleotypic” effects on nuclear size, cell size and the duration of the cell cycle, independent of 75 

“genotypic” effects at individual loci (Bennett, 1971, 1972; Cavalier-Smith, 1978; Price 1988; 76 

Cavalier-Smith, 2005).  77 

We know surprisingly little about the mechanistic effects of WGDs on gametophyte 78 

performance in general, and how they might balance each other out in any one species, or if there 79 

are any universal effects of WGDs on pollen performance specifically. Almost all studies of the 80 

effects of increased DNA content on cell size and growth rate have been on relatively isotropic 81 

cells with isotropic growth (Commoner, 1964; Holm-Hansen, 1969; Price et al., 1973; Grime, 82 

1983; Shuter et al., 1983; Beaulieu et al., 2008). In these, increases in DNA content, whether by 83 

WGDs or other mechanisms are known to have the following effects: 1) a longer S-phase is 84 

required to replicate more DNA (Van’t Hof, 1965; Bennett, 1972), and 2) a longer period of cell 85 

growth is needed to grow a larger cell, because more DNA requires a larger nucleus and a 86 

proportionally larger cytoplasm (Gregory, 2001; Cavalier-Smith, 2005). As a result, in cell 87 

populations, including multicellular tissues, the population (tissue) growth rate is slower because 88 

the cell cycles of cell lineages are longer. Importantly, the volumetric growth rate of individual 89 

cells is rarely of interest, and may in fact stay the same after WGD, if the longer duration of the 90 

cell cycle is proportional to the increase in cell size. 91 

If increases in cell cycle duration and cell size are disproportionate after an increase in 92 

DNA content, then volumetric growth rate of an individual isotropic cell must also evolve. Most 93 

roughly isotropic plant cells grow by diffuse growth, in which cell wall construction occurs 94 

simultaneously across the entire expanding plasma membrane surface (Albersheim et al., 2011). 95 

In such cells, surface area increases as the 2/3 power of volume, and consequently ever more cell 96 
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wall material must be made per unit time during growth. This means that wall and plasma 97 

membrane production rates must either keep increasing just to maintain a constant rate of 98 

volumetric growth or that volumetric growth rate slows down as surface area increases. Diffuse-99 

growing plant cells can partially reduce this problem by delaying some of their cell wall 100 

production until after they reach mature size (Cosgrove, 2005; Albersheim et al., 2011). But a 101 

large increase in cell size, such as after WGD, is expected to cause a disproportionate amount of 102 

extra construction costs, making it likely that a slower cell growth (expansion) rate will be the 103 

consequence. 104 

The problem is quite different for anisometric, tip-growing cells, such root hairs and 105 

pollen tubes. First, pollen tubes are terminally-differentiated cells, so their cell growth rate is 106 

entirely restricted to G1 of the cell cycle. Secondly, as shown in Fig. 1, new cell wall production 107 

in a pollen tube occurs only in a very small region near the elongating tube apex (Chebli et al., 108 

2012), and growth rate is directly determined by the rate of wall production (Rounds et al., 109 

2011). Thus, in a pollen tube, cell surface area and cell volume are directly proportional to each 110 

other throughout growth, because the area of active wall synthesis remains constant during 111 

growth (Fig. 1). Given a constant nutrient supply and temperature, PTGR is also constant 112 

(Brewbaker and Majumder, 1961). Tube diameter is determined as the tube tip is formed and 113 

after germination a tube of constant diameter is maintained by self-similar growth (Fayant et al., 114 

2010; Geitmann, 2011; Nezhad et al., 2013). This means the same amount of work is done at all 115 

stages of elongation, and consequently wall production rate does not become limiting at later 116 

stages and larger sizes as it does in isotropic, diffuse-growing cells. Furthermore, since a pollen 117 

tube only functions during growth, rather than as a mature cell, wall production is not delayed 118 

until after mature size is attained. In sum, the volumetric growth rate of a pollen tube directly 119 
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reflects the amount of wall material being produced per unit of time (Williams et al., 2016). For 120 

a neo-diploid pollen tube relative to its haploid ancestor, the nucleotypic effect on PTGR will not 121 

depend on cell cycle duration or mature cell size per se, but only on the degree to which the 122 

amount of wall materials has been modified to accommodate its new DNA content (Fig. 1). 123 

How should the nucleotypic effect play out in a cell that only functions during growth? In 124 

isotropic, diffuse-growing cells, genome size scales with cell size because the nucleo-125 

cytoplasmic ratio is thought to be conserved for optimal function of the mature cell (Bennett, 126 

1972; Cavalier-Smith, 1978; Price, 1988; Cavalier-Smith, 2005; Barow, 2006). In a pollen tube 127 

(Fig. 1), most of the functional cytoplasm, including the sperm cells, tube nucleus, and 128 

organelles, are confined to a space of constant size between the leading edge of the enlarging 129 

tube vacuole and the elongating tip (Hepler and Winship, 2015). Hence, a reasonable expectation 130 

is that the volume per unit of tube length of a growing diploid pollen tube would be up to double 131 

that of its progenitor haploid tube. Doubling volume per unit length results in a 41% increase in 132 

tube diameter and circumference (Fig. 1). That value is consistent with in vivo observations of a 133 

39% larger diameter tube in an allotetraploid Nicotiana relative to the mean of its presumed 134 

diploid progenitors (Kostoff & Prokofieva, 1935), or of 8-53% larger tube diameters in tetraploid 135 

versus diploid species of Gossypium (Iyengar, 1938). 136 

Tube shank wall thickness is generally seen as being near its minimal value to function in 137 

resisting turgor pressure and compression stress (Parre & Geitmann, 2005). Wall thickness did 138 

not scale with tube diameter in several angiosperms (Williams et al. 2016), and turgor did not 139 

scale with either tube diameter in fungal hyphae (Harold et al., 1996) or with PTGR lily (Benkert 140 

et al., 1997). Therefore, all else being equal, nucleotypic effects of genome doubling are 141 
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expected to cause up to a 41% increase in the amount of wall material needed to extend a pollen 142 

tube tip a unit of length, which in turn is predicted to slow PTGR by up to 41%,. 143 

Genome doubling can also affect PTGR by its genotypic effects on pollen tube 144 

energetics, which ultimately affect the rate of wall synthesis. Pollen tube energetics are still not 145 

well understood, and there are redundant aerobic and anaerobic respiratory systems (Rounds et 146 

al. 2010, 2011; Colaço et al., 2012; Obermeyer et al., 2013; Selinski and Scheibe, 2014). Yet it is 147 

well accepted that most of the metabolic energy expended by a growing pollen tube is allocated 148 

in one way or another to the production of new wall material (Bove et al., 2008). Genome 149 

duplication might be expected to increase wall production rates because of the effect of increased 150 

gene dosage on metabolic processes. Although gene expression levels can become rapidly 151 

modified during and after polyploidization due to gene loss, gene silencing, and dosage 152 

compensation (Freeling et al., 2015; Schoenfelder and Fox, 2015; Dong et al., 2016; Panchy et 153 

al., 2016), there is evidence that dosage effects have played an important role in the evolution of 154 

metabolic rates. For example, in yeast cells, alcohol dehydrogenase activity per cell increased 155 

linearly with ploidy across four ploidy levels (Dilorio et al., 1987). In plant tissues, 156 

endopolyploidy is common in cells that have secretory or transfer functions and endopolyploid 157 

cells have higher metabolic rates (d’Amato, 1984; Galbraith et al., 1991; Scholes & Paige, 158 

2015). Finally, WGD-generated paralogs involved in metabolic pathways, such as glycolysis, 159 

can be preferentially retained as genomes undergo gene losses after WGD (Conant and Wolfe 160 

2007). 161 

 Another genetic consequence of WGD on PTGR occurs via the fitness effects of diploidy 162 

over haploidy at the gene level. Diploidy is expected to initiate or maintain faster PTGRs for two 163 

reasons. First, via the sheltering of deleterious performance alleles that were present in one or 164 
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both haploid ancestors or that arose after WGD (Husband and Schemske, 1997; Husband, 2016). 165 

Secondly, via the effect of heterozygosity (overdominance), which is known to cause heterosis 166 

for growth rates of sporophytes in intra- and inter-specific hybrids (Lippman and Zamir, 2007; 167 

Feys et al., 2018). These potential effects of diploidy on PTGR are expected in all neo-polyploids 168 

(Lande and Schemske, 1985), but the heterotic effects of allelic interactions and sheltering 169 

become more evident as genetic variation in the polyploid increases. Still, in all but the special 170 

case where there is no genetic variation, diploidization of an ancestrally haploid pollen tube 171 

predicts genetic effects on performance speed to result in greater than or equal to ancestral 172 

haploid speed. 173 

 The predicted effects of WGDs on pollen performance speed are summarized in Fig. 2. 174 

Increases in DNA content, by WGD or any other process, are expected to reduce PTGR by 175 

nucleotypic effects, primarily that of increased tube cell size on wall volume. In contrast, 176 

increases in DNA content by WGD involves genome-wide gene duplication, and are expected to 177 

increase PTGR through the genotypic effects of gene dosage and heterosis. Given that haploid 178 

selection on pollen tubes has been seen as an important arbiter of the evolution of flowering plant 179 

sporophytes, how robust has pollen tube growth and development been to WGDs? Is there 180 

evidence that WGDs been involved in generating the pattern of accelerated PTGRs within 181 

angiosperms? 182 

 In this study, we test the hypothesis that changes in DNA content have affected PTGR by 183 

asking if there are consistent macroevolutionary patterns that might distinguish among the 184 

alternative predictions described above. Specifically, we tested for differences in PTGR between 185 

diploids and polyploids at the intraspecific, sister-taxon, and macroevolutionary scale; and for 186 

correlations between PTGR and DNA content at the macroevolutionary scale. We examined the 187 
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macroevolutionary pattern at the level of all plants that have pollen tubes (seed plants), and 188 

within the two major lineages that have different pollen tube cell biology and vastly different 189 

levels of species diversity, gymnosperms and angiosperms. 190 

MATERIALS AND METHODS 191 

Data collection – Data on PTGRs were taken from Williams (2012) and more recent literature 192 

(cited in Supplemental Information). Consistent with other comparative analyses of 193 

physiological traits, and with the way researchers measure PTGR from the longest pollen tubes, 194 

PTGR values for each species represent an average of maximum in vivo growth rates, or if there 195 

was more than one report for a species the average of those values (see Williams 2012 for 196 

details). PTGRs were taken from within-diploid or within-polyploid (i.e., never interploidy) 197 

crosses, in keeping with our overall goal of finding mechanisms underlying the pattern of PTGR 198 

evolution in stabilized polyploids. DNA content was analyzed using C-value: the amount of 199 

nuclear DNA in the unreplicated gametic nucleus, irrespective of ploidy level (Swift, 1950; 200 

Bennett and Leitch, 2012). While DNA content is equivalent to genome size in diploid 201 

organisms, it is a multiple of genome size in polyploids, thus we use the term DNA content 202 

throughout. C-value data was collected from the Kew Royal Botanic Gardens Plant C-Value 203 

Database (Bennett and Leitch, 2012). Ploidy level data was extracted from the same source as 204 

PTGR data where possible, and otherwise from the Kew Plant C-Value Database, TRY 205 

databases, or the Index to Plant Chromosome Numbers. As ploidy level is determined either by 206 

chromosome count or segregation pattern in these data, paleopolyploids and ancient duplication 207 

events are not included. 208 

 Tree Construction and Dating – GenBank accessions for 16 gene regions (rbcL, matK, 209 

trnL-F, 18s_rDNA, atpB, ndhF, adh, trnL, rpl32, trnT-L, psbA-trnH, rpl32-trnL, ITS, 210 
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5.8s_rRNA, rps16, and 26s_rDNA) for the 451 seed plant species with pollen tube growth rate 211 

data were retrieved, cleaned, and assembled into multiple gene alignments using PHLAWD and 212 

phyutility (Smith and Donoghue, 2008; Smith and Dunn, 2008). Tree inference was performed 213 

using maximum likelihood in RAxML version 8 (Stamatakis, 2014) on CIPRES. A pruned 214 

version of the seed plant tree from Magallón et al. (2015) was used as a guide tree to enforce 215 

topology of major clades. The resulting maximum likelihood estimate of the tree was rooted and 216 

ultrametricized using the ape (Paradis et al., 2004) and geiger packages in R (Harmon et al., 217 

2008). Time-calibration was performed using the Congruification method (Eastman et al., 2013). 218 

 Character scoring- The PTGR value used for each species represents an estimate of 219 

maximum sustained growth rate. Since each PTGR value represents a species mean obtained 220 

from multiple measurements, we attempted to incorporate error into phylogenetic comparative 221 

analyses. OUwie allows for incorporating estimates of standard error (SE), and since species 222 

means were log-transformed for analysis, log-transformed SEs are required. As there is no 223 

reliable way to calculate the log-transformed SE from the literature without the original data for 224 

each species, we used the following conservative approximation. First, we assumed all species 225 

had similar SEs in PTGR, and we applied an empirically-determined SE from an exemplar 226 

species to all. Magnolia grandiflora has an average PTGR of 828 (±141) µm h-1 (N = 25 227 

outcrosses), close to the angiosperm median of 587 µm h-1 (Williams, 2012 and this study) 228 

(Table S1). The standard deviation (SD) of log-transformed data was calculated and divided by 229 

the mean of the log-transformed data to acquire a coefficient of variation (CV) of 0.0237. We 230 

then multiplied the log-transformed mean PTGR of each species by 0.0237 to provide an 231 

estimate of taxon-specific standard deviation. The standard deviation was used as a conservative 232 

estimate of error because sample sizes were generally not available for calculating SE. We also 233 
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performed a sensitivity analysis by running the OUwie analyses with hypothetical error values 234 

obtained set as 0, 0.05, 0.1, 0.25, and 0.5 (Table S2). Unless otherwise noted, all measures of 235 

uncertainty around parameter estimates are in standard error.  236 

We analyzed two different sets of ploidy data. In the first, ‘restricted dataset’ (N = 273 237 

taxa), we recognized only ploidy levels as stated in the literature. In the second ‘expanded 238 

dataset’ (N = 335 taxa), we inferred ploidy levels of 62 additional species by comparing their 239 

chromosome count to their generic base count as reported in Wood et al. (2009). Taxa with a 240 

chromosome number equal to or greater than twice the generic base count were considered 241 

polyploid. 242 

 Phylogenetic Comparative Analyses - Phylogenetic signal was assessed for both PTGR 243 

and gametophytic DNA content using Blomberg’s K in the picante package in R (Blomberg et 244 

al., 2003; Kembel et al., 2010). C-values and PTGRs were log10 transformed in this and all other 245 

phylogentic comparative analyses below. To visualize changes in DNA content and PTGR along 246 

tree branches and to generate estimates of node states, ancestral state reconstructions were 247 

performed and plotted using the contMap function in phytools (Felsenstein, 1985; Revell, 2012). 248 

Given many known biological differences between gymnosperms and angiosperms for both 249 

pollen tube growth (Friedman, 1993; Williams, 2008) and DNA content /polyploidy (see 250 

Discussion) (Ohri and Khoshoo, 1986; Leitch et al., 1998), all analyses were performed on 251 

gymnosperms only, angiosperms only, and the full dataset (all spermatophytes). Whether PTGR 252 

evolves under different selective regimes between the two seed plant groups was also evaluated 253 

using the OUwie function (OUwie package) in R (Beaulieu and O’Meara, 2014) to compare 254 

different models of evolution (detailed below). In multiple-regime models, the regimes were 255 
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either gymnosperms (1) or angiosperms (2). The same analysis was used to test for differences in 256 

DNA content evolution between gymnosperms and angiosperms as well. 257 

 To detect whether pollen tube growth rates of polyploid species evolve under a different 258 

selective regime than diploid species, OUwie was used to compare single-regime and two-regime 259 

models. The following models were tested: single-rate Brownian motion (BM1), multi-rate 260 

Brownian Motion (BMS), single-regime Ornstein-Uhlenbeck (OU1), multi-regime OU with 261 

single alpha and sigma^2 estimates (OUM), multi-regime OU with single alpha and multiple 262 

sigma^2 (OUMV), and multi-regime OU with multiple alpha and single sigma^2 (OUMA). 263 

The association between polyploidy and PTGR was also assessed among 20 diploid-264 

polyploid sister taxa on the tree (within-genus or within-family level). Only polyploid taxa with a 265 

single diploid sister were used. The PTGRs of 11 intraspecific diploid-polyploid pairs from the 266 

literature were also compared. A two-tailed binomial (sign) test was used to test significance. 267 

 The relationship between the continuous traits, pollen tube growth rate and gametophytic 268 

DNA content, was assessed with phylogenetic generalized least squares (PGLS) regression using 269 

the phylolm package in R. Gametophytic DNA content was used as the predictor variable and 270 

PTGR the response variable. BM (Grafen, 1989) and OU (Martins and Hansen, 1997) models 271 

were both used, in addition to Pagel’s lambda, kappa, and delta models (Pagel, 1997, 1999). 272 

 To explore the level of convergent evolution within each trait and determine coincidence 273 

of selective regime shifts in PTGR and DNA content, the SURFACE package in R was used 274 

(Ingram and Mahler, 2013). SURFACE adds selective regime shifts to a single regime model in a 275 

stepwise fashion until adding another regime shift decreases the model likelihood. Regimes are 276 

then collapsed in a pairwise fashion until further collapses decrease the likelihood. Nodes that 277 

included a regime shift in both traits were identified. 278 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/462663doi: bioRxiv preprint 

https://doi.org/10.1101/462663
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 279 

RESULTS 280 

PTGR evolution and C-value evolution in angiosperms versus gymnosperms - Blomberg’s K 281 

indicated significant phylogenetic signal across seed plants and within angiosperms, for both the 282 

PTGR and C-value datasets (Table 1). OUwie analyses of seed plants rejected both the Brownian 283 

Motion (BM) and Ornstein-Uhlenbeck (OU) single-optimum models for the evolution of PTGR 284 

and C-value. OU models that allowed separate selective regimes for angiosperms and 285 

gymnosperms accounted for > 99.9 % of the model weight in both PTGR and C-value (Tables 286 

S3, S4). Log10 PTGR selective optima were more than a magnitude of order higher in 287 

angiosperms (2.69 ± 0.048 µm h-1) than in gymnosperms (0.187 ± 0.123 µm h-1). Log10 DNA 288 

content selective optima were more than a magnitude of order smaller in angiosperms (0.184 ± 289 

0.051 pg) than in gymnosperms (1.231 ± 0.041 pg). The maximum likelihood (ML) 290 

reconstructions of angiosperm and gymnosperm common ancestors (CAs) showed a similar 291 

pattern. Ancestral Log10 PTGR for angiosperms was higher than that of gymnosperms, 2.44 µm 292 

h-1 (95% CI: 1.09-3.69) versus 0.215 µm h-1 (95% CI: -1.48-1.92), respectively (Fig. 3), and 293 

ancestral Log10 DNA content was 0.29 pg (95% CI: -0.45-1.04) for angiosperms and 1.10 pg 294 

(95% CI: -0.28-2.47) for gymnosperms. 295 

 Joint evolution of PTGR and ploidy - In the restricted ploidy dataset, the best fitting 296 

OUwie model for angiosperms using the Magnolia error estimate of 0.024 was the single-rate 297 

OU model which had 50.0% of the model weight (Table 2a); whereas the three two-regime OU 298 

models accounted for the remaining 50.0% of the model weight (both BM models were rejected). 299 

This pattern held up for a wide range of error values in the sensitivity analysis (Table S2), except 300 

that when error reached 0.5, a value > 20 times that seen in Magnolia. In the expanded ploidy 301 
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dataset (Table 2b), the weight of the single-regime OU model was 57.2% compared to a 302 

combined 42.8% for the three two-regime models. However, the estimates for the polyploid 303 

selective optima are different from those of the restricted dataset; diploid optima in both datasets 304 

were 2.7 ± 0.07 log10 µm h-1, whereas polyploid optima were 1.4 ± 1.5 log10 µm h-1 in the 305 

restricted dataset versus 2.8 ± 1.00 l og10 µm h-1 in the expanded dataset.  306 

 A survey of intraspecific cytotypes found autopolyploids had slower PTGR than diploids 307 

in 9 of 11 pairs and no difference in the remaining two (Binomial test, P = 0.002; Table S4b). In 308 

the within-genus sister-taxon comparison, polyploids had slower PTGR than diploids in 9 pairs, 309 

faster PTGR in 2, and no difference in two (Two-tailed binomial test, P = 0.065). If expanded to 310 

within-family sisters, there were twelve, six, and two pairs, respectively (P = 0.238; Table S4a).  311 

Joint evolution of PTGR and DNA content - For seed plants, simple linear regression 312 

(SLR) showed a significant negative correlation between DNA content and PTGR (P<0.0001), 313 

but that result was clearly driven by the large DNA contents and slow PTGRs of gymnosperms 314 

relative to angiosperms (Fig. 5), because the PGLS regression was non-significant (P=0.463; 315 

Table 3). Taking these two clades separately, DNA content was negatively correlated with PTGR 316 

in gymnosperms in the PGLS regression (SLR: P = 0.200; PGLS: P < 0.02, OU model; Table 3), 317 

but not SLR (phylogenetic signal was not significant for either trait in gymnosperms; Table 1). 318 

For angiosperms, it was positively correlated using SLR (P=0.0005), but non-significant using 319 

PGLS (P = 0.284; Table 3). In angiosperms, the PGLS regression was non-significant when 320 

polyploids were excluded (P = 0.457, kappa model). 321 

 Detecting coincident regime shifts in PTGR and DNA content within seed plants - The 322 

SURFACE analysis of PTGRs found 13 distinct selective regimes (N = 451 taxon tree), with 51 323 

selective regime shifts (22 to faster and 29 to slower regimes). For C-value, there were 9 distinct 324 
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selective regimes (N = 184 taxon tree), with 4 shifts to larger and 7 shifts to smaller regimes. 325 

Regime shifts in PTGR and DNA content were coincident at only two nodes, a PTGR 326 

acceleration and genome downsizing in the CA of extant angiosperms and a PTGR slowdown 327 

and genome size decrease in the CA of rosids and (Fig. 6). Excluding terminal, branches, all 328 

other regime shifts were at least 3 nodes away from each other. PTGR shifts on the smaller tree 329 

(Fig. 6) were in the same locations as on the larger PTGR tree (not shown). 330 

 331 

DISCUSSION 332 

DNA content variation and the evolution of PTGR in angiosperms versus gymnosperms - We 333 

found that PTGR has evolved around a significantly faster selective optimum in angiosperms 334 

than in gymnosperms. Though it has long been known that most angiosperm PTGRs far exceed 335 

those of gymnosperms, this result provides quantitative support to the near-universal assumption 336 

that shifts to faster angiosperm-like PTGRs began prior to the origin of extant angiosperms. 337 

However, the slow angiosperm-wide selective optimum and reconstructed ancestral PTGRs (both 338 

< 490 µm/h), are consistent with gradual evolution of faster PTGRs in angiosperms. 339 

There are several hypotheses for how and why angiosperms evolved such fast PTGRs. 340 

First, Mulcahy (1979) invoked a shift to much higher intensity of pollen competition in 341 

angiosperms as a driver of the origin and continued evolution of faster growth rates. Notably, no 342 

other type of tip-growing cell (haploid or diploid) in land plants has evolved comparably fast tip-343 

growth rates and none of those cell types, including gymnosperm pollen tubes, experience 344 

intense competition for resources (Williams et al., 2016). Secondly, rapid PTGR may have been 345 

advantageous as angiosperms transitioned to a much faster reproductive cycle (Stebbins, 1974; 346 

Williams, 2012; Williams and Reese, in review). Thirdly, biophysical or physiological attributes 347 
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of pollen tubes may have either constrained PTGRs of gymnosperms to be slow or enabled faster 348 

PTGRs in angiosperms, or both (Hoekstra, 1983; Derksen et al., 1999; Fernando et al., 2005; 349 

Williams, 2008, 2009). A fourth possibility, tested here, is that strong differences in genome-350 

level processes between angiosperms and gymnosperms have impacted the evolution of 351 

angiosperm PTGRs relative to their living and extinct seed plant relatives. 352 

We found that DNA content has evolved around a significantly lower selective optimum 353 

in angiosperms than in gymnosperms, even though angiosperms have a broad range of DNA C-354 

values that encompass the entire range of seed plant genome sizes (Fig. 5; see Leitch and Leitch, 355 

2013 for a larger survey). Paradoxically, angiosperms have great variation in ploidy level, a 356 

history of speciation by polyploidy, and much evidence of past genome duplication in both 357 

diploids and polyploids, including a WGD in a common ancestor of extant angiosperms (Wood 358 

et al., 2009; Husband et al., 2013; Van de Peer et al., 2017; Landis et al., 2018).  Evidence for 359 

more recent WGDs is found in most modern diploids, which is consistent with studies of 360 

experimental WGDs that show that genome duplication is commonly accompanied by rapid loss 361 

of DNA sequences, gene fractionation by large-scale deletions, biased retention of genes with 362 

beneficial dosage effects, and ultimately a return to the diploid state (Conant and Wolfe, 2008; 363 

Conant et al., 2014; Freeling et al., 2015; Dodsworth et al., 2016; Wendel et al., 2018). 364 

In contrast, WGDs have been very rare in gymnosperms (Leitch et al., 2005; Wood et al., 365 

2009; Soltis et al., 2009; Husband et al., 2013; Leitch and Leitch, 2013), and their high DNA 366 

contents are thought to be due mainly to high transposon activity without repeated rounds of 367 

genome duplication (Leitch & Leitch, 2013; Lee and Kim, 2014). Hence, gymnosperms have 368 

experienced the effects of higher DNA content on pollen tube dimensions, which is predicted to 369 
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reduce PTGR, without the potential counter-balancing effects of gene dosage and heterosis 370 

incurred by repeated rounds of genome duplications (Fig. 2), gene sorting, and diploidization. 371 

Angiosperm pollen (Hoekstra, 1983) and sporophytes (Bond, 1989; Feild and Arens, 372 

2005; Beaulieu et al., 2007) are known to have evolved much higher respiration rates than the 373 

pollen and sporophytes of gymnosperms. Respiration rates of angiosperm pollen are ~10 times 374 

higher than those of sporophytic tissues (Tadege and Kuhlemeier, 1997), and other energetic 375 

pathways also function (Rounds et al., 2011; Obermeyer et al., 2013). A major consequence of 376 

WGDs over single-gene duplication events is that WGDs can increase gene dosage of whole 377 

metabolic pathways at once (Conant and Wolfe, 2007). When particular metabolic pathways are 378 

limiting to growth rate, duplication can upregulate the pathway via gene dosage effects, and 379 

positive selection on dosage can shelter gene duplicates, allowing time for sub- or neo-380 

functionalization, and hence much faster evolution of those genes (Kondrashov and Kondrashov, 381 

2006; Conant and Wolfe, 2007). Pollen tube growth rate genes are widespread in the genome, for 382 

example, occurring on every chromosome arm of corn (Sari-Gorla et al., 1992). Thus, PTGR is a 383 

trait governed by many interacting genes that are widespread in the genome, which is exactly the 384 

kind of trait in which WGDs are favored over individual gene duplications or segmental 385 

duplications of chromosomes, due to the need to conserve gene dosage balance (Birchler et al., 386 

2012; Conant et al., 2014; Freeling et al., 2015). 387 

Growth rate evolution in sporophytic systems is consequent on growth of tissues, 388 

populations of cells, and rates and durations of many individual cell cycles. In contrast, PTGR 389 

genes with gametophytic expression govern a very restricted aspect of individual cell growth – 390 

mostly the intracellular transport system and cell wall synthesis machinery operating within a 391 

single, terminal cell cycle stage (G1, or G0) (Russell et al., 2012; Geitmann and Nebenführ, 392 
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2015). This means that the evolution of faster PTGR in angiosperms is likely to have imposed 393 

selection on a restricted set of gametophytically-expressed genes in metabolic and intracellular 394 

transport pathways (Arunkumar et al., 2015; Gossmann et al., 2016). Genes within such 395 

biochemical pathways might be preferentially retained after WGD due to the need to maintain 396 

balanced gene dosage effects (Birchler and Veita, 2012; Conant et al., 2014). Starting with the 397 

origin of flowering plants, WGDs have provided repeated opportunities for genome-wide, gene-398 

level effects (gene sorting via positive and purifying selection, sheltering of deleterious alleles, 399 

and heterosis) to affect PTGR evolution. At the same time, given the small genome sizes of so 400 

many plants with a history of WGDs, the nucleotypic effect of doubled DNA content on cell size 401 

must often have been tempered by rapid genome downsizing following WGD (Freeling et al., 402 

2015; Dodsworth et al., 2016; Wendel et al., 2018).  403 

 In summary, increases in DNA content by any mechanism are expected to initially 404 

decrease PTGR via the nucleotypic effects of larger genome size on cell size and growth, 405 

whereas increases in DNA content by WGD are expected to initially increase PTGR via the 406 

genotypic effects of increased gene/allele numbers (Fig. 2). PTGR evolution of gymnosperms 407 

may have been relatively stagnant for many reasons, such as lack of pollen competition, relaxed 408 

selection on PTGR due to slow reproductive cycles, and developmental constraints on their 409 

pollen tube structure and physiology. However, it may also be that their high degree of 410 

heterochromatin and rarity of WGDs have given them all the limitations of high DNA content 411 

but none of the evolutionary opportunities provided by large-scale redundancy due to WGD and 412 

fractionation cycles. Angiosperm PTGRs have evolved via repeated cycles WGDs, followed by 413 

fractionation, gene retentions due to advantageous dosage effects, sub- or neo-functionalization 414 

of paralogs, and eventually diploidization. Consequently, growth rate genes have alternately 415 
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experienced periods of relaxed selection due to WGD and haploid selection on performance. Our 416 

findings that angiosperms have evolved around a higher optimum PTGR but a lower optimum C-417 

value than gymnosperms, no coincident regime shifts to higher PTGR and higher C-value, and 418 

the lack of evidence for faster PTGRs in polyploids than diploids, suggests that the rapid PTGRs 419 

of angiosperms have largely evolved at the haploid level, in diploid or diploidized species. 420 

 Polyploidy and PTGR evolution within angiosperms - Diploid and polyploid 421 

angiosperms evolved under a single selective regime, irrespective of how ploidy level was 422 

scored. However, in both analyses the three two-regime OU models also accounted for 423 

substantial model weight (43% and 50%), and in these, the polyploid PTGR optimum was 424 

similar or slightly slower than the diploid optimum. Thus, we find no evidence that WGDs result 425 

in higher PTGRs. Two caveats are first, only 13-14% of the taxa in our two analyses were scored 426 

as polyploids versus 25-35% estimated for angiosperms (Wood et al., 2009; Landis et al., 2018); 427 

and secondly, on our tree polyploid taxa were generally recently-derived with relatively short 428 

branches, comprising a very small proportion of the total branch length of the tree. Hence, we 429 

may have had lower power to estimate parameters for polyploids relative to diploids. Still, the 430 

sister-taxon comparisons avoided these weaknesses and were consistent with the model-based 431 

results – polyploids had similar or slightly slower PTGR than diploids in most sister taxa on our 432 

tree. 433 

Neo-polyploid PTGR is affected by the balance between genotypic and nucleotypic 434 

effects (Fig. 2). Since polyploid genetic variation can vary but affects only the potential for 435 

genotypic effects, our species might not have been a random sample of polyploid variation. 436 

Mating systems, modes of polyploid origins, and patterns of chromosomal segregation have 437 

effects on the degree of genetic variation and the nature of recombination in neo-polyploids. Yet, 438 
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among 16 species scored as polyploid in both our analyses, eight were fully outcrossing, seven 439 

were self-compatible (two autogamous, two mixed mating, and four unknown), and 1 was 440 

apomictic – a not unusual distribution (Goodwillie et al., 2005; Gibbs, 2014; Ashman et al., 441 

2014). Whitney et al. (2010) found only a weak correlation between DNA content and mating 442 

system, and this may reflect the fact that genetic variation in polyploids cannot be predicted 443 

easily. For example, autotetraploids originate with a subset of the genetic variation in the diploid 444 

progenitor population but they often outcross and hybridize, whereas allopolyploids can be 445 

highly heterozygous when they originate, but often are highly selfing (Stebbins, 1974; Soltis and 446 

Soltis, 1999; Whitney et al., 2010). In the special case in which there is no genetic variation in a 447 

diploid progenitor and its neo-autopolyploid descendant, PTGR would be solely determined by 448 

the balance between nucleotypic effects and gene dosage effects (which also depend on the 449 

degree of dosage compensation; Guo et al., 1996) (Fig. 2).  450 

The closest approximation of the initial effect of genome duplication on PTGR, 451 

independent of levels of genetic variation, is the comparison of diploids with their intraspecific, 452 

autopolyploid cytotypes. In all 11 pairs, PTGRs of autopolyploid cytotypes were slower than or 453 

equal to those of their intraspecific diploid progenitors. We should re-emphasize that all studies 454 

involved in vivo diploid crosses (1x pollen on 2x pistils) compared to tetraploid crosses (2x 455 

pollen on 4x pistils). The lack of any examples of faster PTGR in neo-autotetraploid cytotypes 456 

than in their diploid progenitors (in which the effects of heterosis are minimized) seems to 457 

suggest that increased gene dosage generally cannot fully offset nucleotypic effects, causing 458 

slower or at best similar PTGR upon autotetraploid formation. 459 

 Disentangling nucleotypic from genotypic effects on PTGR evolution – Genome size is 460 

positively correlated with cell size and often negatively correlated with organismal growth rate 461 
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across all kingdoms of life (Cavalier-Smith, 1978; Gregory, 2001). One major proposed 462 

explanation for the correlation between DNA content (which strongly influences nuclear size) 463 

and cell size in isotropic cells is that there is an optimal ratio of nuclear to cytoplasmic volume 464 

for metabolic efficiency (nucleoskeletal theory) (Cavalier-Smith, 1978, 2005). “Growth rate” in 465 

most studies refers to the doubling time of lineages of cells, and hence to the average duration of 466 

cell cycles, not to individual cell growth rates per se. Cell cycles are longer after genome 467 

duplication due to a longer DNA replication phase and also to the longer growth period needed 468 

to reach a larger size. Thus, the speed of cell enlargement in such studies is conflated with the 469 

duration of S-phase. This is not the case for a pollen tube, which is a terminally-differentiated 470 

cell that only grows and functions in the G1-phase of its cell cycle. Therefore, in pollen tubes, 471 

unlike in diffuse-growing cells of multicellular tissues, volumetric cell growth rate is the primary 472 

target of natural or sexual selection. 473 

Large-scale genome size increases, whether by WGD or any other method, are expected 474 

to increase cell size to maintain the nucleo-cytoplasmic ratio. PTGR is directly determined by the 475 

amount and rate of cell wall production, which depends on tube size (Winship et al. 2010; 476 

Williams et al. 2016). A neo-diploid pollen tube with doubled tube volume must produce 41% 477 

more cell wall material per unit time to maintain its ancestral haploid PTGR (Fig. 1). Size 478 

increases of that order have been observed in diploid over haploid pollen tubes (Kostoff & 479 

Prokofieva, 1935; Iyengar, 1938). Hence, without increases in metabolic rates that could 480 

compensate for that extra work, PTGR and genome size are expected to be negatively correlated.  481 

Importantly, we found such a negative correlation in gymnosperms. Nucleotypic effects 482 

should outweigh genotypic effects in gymnosperms, since the group has experienced large 483 

genome expansions without widespread gene duplication by WGD after their origin (Leitch & 484 
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Leitch, 2013; Lee and Kim, 2014). Similar support for the existence of nucleotypic effects is that 485 

PTGR was generally slower in the youngest angiosperm polyploids (eg. intraspecific cytotypes 486 

or within-genus sisters). Over time, nucleotypic effects remain more or less constant in 487 

polyploids, but positive genotypic effects can accumulate via all the usual population genetic 488 

processes, counterbalancing or outweighing nucleotypic effects. Hence, the lack of correlation 489 

between DNA content and PTGR in angiosperms as a whole should be interpreted as a 490 

consequence of variation in the degree of compensating genotypic effects on PTGR, due to time 491 

since origin and genetic variation. 492 

A weakness of comparative analyses of the question of DNA content and pollen 493 

performance is that all angiosperms, including “diploids” as determined by diploid segregation 494 

of chromosomes or by diploid base chromosome number, have at least one WGD in their 495 

ancestry (Landis, 2018, and reference therein). Thus, the most relevant measures of ploidy level 496 

are probably cryptic. For example, is pollen tube gene expression in a particular taxon haploid or 497 

polyploid? Perhaps a more relevant measure for comparisons is the number of WGDs among 498 

different lineages, traced back from each tip. Such data are already becoming available as more 499 

genomic data is accumulated. 500 

 Conclusions - Studies across the tree of life have consistently shown that ploidy level and 501 

DNA content are correlated with cell size and metabolic rate. Pollen tube dimensions and 502 

energetics affect the amount of cell wall material produced per unit of growth and the rate at 503 

which cell wall is produced, which together determine PTGR. In gymnosperms, PTGR was 504 

negatively correlated with genome size, but in angiosperms, where the effects of WGDs are more 505 

prevalent, PTGR seems to be somewhat robust to genome duplication. Neo-autopolyploids 506 

inherited similar or slower PTGRs than their diploid ancestors, and polyploids compared to their 507 
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diploid near-relatives seem to follow the same pattern. With changes in genome size, nucleotypic 508 

effects act as a brake on growth rate and are always present, but the degree to which genotypic 509 

effects counterbalance these depends on the historical nature and time since genome size 510 

increase in any particular lineage. Understanding causal relationships between genome size, 511 

ploidy and PTGR will involve mechanistic studies of tube cell dimensions and wall synthesis 512 

rates in haploid and polyploid gametophytes. On the other hand, there appears to be great 513 

variation in the tug of war between genotypic and nucleotypic effects, and there are likely to be 514 

deeper evolutionary patterns underlying that variation. 515 

 516 
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FIGURE LEGENDS 827 

Figure 1: Pollen tube wall construction. A primary cell wall is generated at the tip (red/blue 828 

areas), whereas a secondary wall (angiosperms only) is synthesized in a short region behind the 829 

tip (yellow area). Genome duplication is predicted to double the volume of a mature cell, but 830 

since the tube cell is constantly growing and its cytoplasm is largely confined to the tip region, a 831 

pollen tube can only change its effective volume by changing its fixed diameter (circumference) 832 

or its length per time (pollen tube growth rate, PTGR). If wall thickness (W) and PTGR (L/t) are 833 

held constant, a diploid tube cell with doubled volume per unit time will have a 41% larger 834 

circumference. As a result, wall production rate would increase 1.41-fold, not two-fold, over that 835 

of its haploid ancestor: WPR1x (µm3 h-1) = C0 x W x L/t; WPR2x (µm3 h-1) = 1.41C0 x W x L/t 836 

 837 

Figure 2. Predicted direction of effects of WGD on pollen tube growth rate (PTGR). 838 

Genotypic effects (gene dosage and heterozygosity) are predicted to increase PTGR, whereas 839 

nucleotypic effects should decrease PTGR, after transition from a haploid (1x) to a diploid (2x) 840 

pollen tube. The magnitude of genotypic effects is expected to scale with genetic variation in the 841 

polyploid. The ancestral haploid PTGR will be conserved in the derived diploid male 842 

gametophyte when genotypic and nucleotypic effects perfectly offset each other. 843 

 844 

Figure 3: Pollen tube growth rate (PTGR) evolution across Spermatophytes. Contour plot 845 

showing reconstructed history of PTGR. Cool colors indicate PTGRs closer to the minimum 846 

value in seed plants while warm colors indicate PTGRs closer to the maximum value in seed 847 

plants. Scale bar indicates millions of years before present. 848 

 849 
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Figure 4: Pollen tube growth rate (PTGR) and genome size evolution across seed plants. 850 

Contour plot comparing PTGR evolution (left, µm h-1) and c-value evolution (right, picograms). 851 

Scale bars at the bottom of each phylogeny indicate 100 million years. Center bars indicate the 852 

following major groups: gray = gymnosperms, blue = early-divergent angiosperms and 853 

eumagnoliids, green = monocots, orange = asterids, pink = rosids. 854 

 855 

Figure 5: Relationship between pollen tube growth rate (PTGR) and genome size (C-value) 856 

in seed plants. Separate analyses of gymnosperms (green) and angiosperms (blue) were non-857 

significant. Selective optima (with standard errors) for each group (from OUwie analyses; Tables 858 

S3-S4) are included for illustrative purposes.  859 

 860 

Figure 6: Coincident evolution of pollen tube growth rate (PTGR) and DNA content (C-861 

value). Paired SURFACE plot showing selective regime shifts in PTGR (left) versus genome size 862 

(right). Nodes which have experienced a regime shift along the stem leading to it are marked 863 

with magenta x’s. Branch colors – gray = seed plant ancestral selective regime; green = ancestral 864 

selective regime for angiosperms; red = derived selective regimes faster/larger than angiosperm 865 

ancestral regime; and blue = derived selective regimes slower/smaller than angiosperm ancestral 866 

regime. Yellow arrows indicate instances where shifts in PTGR and genome size coincide. Scale 867 

bars at the bottom of each phylogeny indicate 100 million years. Center bars indicate the 868 

following major groups: gray = gymnosperms, blue = early-divergent angiosperms and 869 

eumagnoliids, green = monocots, orange = asterids, pink = rosids. 870 

 871 

Figure S1: Pollen tube growth rate and ploidy level evolution across Spermatophytes. 872 

 873 
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Table S1: Summary statistics for pollen tube growth rate (PTGR) of Magnolia grandiflora. 874 

 875 

Table S2: Sensitivity analysis for pollen tube growth rate (PTGR) error estimates. 876 

 877 

Table S3: Pollen tube growth rate (PTGR) evolution in gymnosperms vs. angiosperms. 878 

 879 

Table S4: C-value evolution in gymnosperms vs. angiosperms. 880 

 881 

Table S5: Sister taxon analyses. 882 

 883 
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Table 1: Phylogenetic signal (Blomberg’s K) for PTGR and C-value. 885 

 K P-value 

PTGR seed plants 0.213 <0.0001 

PTGR angiosperms 0.075 <0.0001 

PTGR gymnosperms 0.060 0.0553 

C-value seed plants 0.146 <0.0001 

C-value angiosperms 0.099 <0.0001 

C-value gymnosperms 0.371 0.169 

 886 
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Table 2: OUwie model comparison and parameter estimates.  888 

 889 

a. Results using “restricted” dataset.   890 

model ΔAICc model 
weight 

Diploid 
σ2 

Diploid 
α 

Polyploid 
σ2 

Polyploid 
α 

Optimum 
(+ SE) 

Diploid 
optimum 

(+ SE) 

Polyploid 
optimum 

(+ SE) 
OU1 [418.4] 0.500 0.078 0.067 0.078 0.067 2.728 + 

0.068 
  

OUM 1.315 0.259 0.078 0.067 0.078 0.067  2.742 + 
0.070 

1.421 + 
1.509 

OUMA 2.765 0.125 0.082 0.070 0.082 0.068  2.744 + 
0.069 

1.246 + 
1.480 

OUMV 2.921 0.116 0.079 0.066 0.059 0.066  2.742 + 
0.070 

1.375 + 
1.343 

BM1 130.164 2.72E-29 0.033 NA 0.033 NA 2.489 + 
0.533 

  

BMS 131.651 1.29E-29 0.034 NA 0.000 NA  2.503 + 
0.556 

1.297 + 
7.097 

 891 
b. Results using “expanded” dataset. 892 

model ΔAICc model 
weight 

Diploid 
σ2 

Diploid 
α 

Polyploid 
σ2 

Polyploid 
α 

Optimum 
(+ SE) 

Diploid 
optimum 

(+ SE) 

Polyploid 
optimum 

(+ SE) 
OU1 [530.8] 0.572 0.076 0.061 0.076 0.061 2.714 + 

0.064 
  

OUM 2.045 0.206 0.076 0.061 0.076 0.061  2.713 + 
0.066 

2.805 + 
1.060 

OUMA 3.155 0.118 0.078 0.061 0.078 0.060  2.713 + 
0.066 

2.797 + 
1.085 

OUMV 3.393 0.105 0.077 0.060 0.058 0.060  2.712 + 
0.067 

2.760 + 
0.973 

BM1 153.391 2.81E-34 0.036 NA 0.036 NA 2.469 + 
0.552 

  

BMS 156.317 6.51E-35 0.037 NA 0.021 NA  2.514 + 
0.572 

-0.589 + 
8.214 
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Table 3: Phylogenetic generalized least squares regression model comparisons of log10 DNA 895 
content versus log10 PTGR. 896 
 897 

Seed plants  Angiosperms only  Gymnosperms only 

Model Weight P  Model Weight P  Model Weight P 

kappa 0.999 0.463  kappa 0.975 0.284  OU 0.265 0.020 

lambda 0.001 0.368  lambda 0.024 0.221  delta 0.257 0.006 

OU 6.26E-28 0.644  OU 2.90E-04 0.005  kappa 0.193 0.445 

delta 1.22E-35 0.471  delta 3.08E-21 0.276  BM 0.121 0.001 

BM 1.48E-42 0.373  BM 2.18E-33 0.365  lambda 0.119 0.327 

EB 5.45E-43 0.373  EB 8.03E-34 0.365  EB 0.044 0.001 

 898 
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Figure 1 900 
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Figure 2 903 
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Figure 3 906 
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Figure 4 909 
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Figure 5 913 
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Figure 6 916 
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