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Humans have long wondered about the function of mental imagery and its relationship
to vision. Although visual representations are utilized during imagery, the computa-
tions they subserve are unclear. Building on a theory that treats vision as inference
about the causes of sensory stimulation in an internal generative model, we propose
that mental imagery is inference about the sensory consequences of predicted or re-
membered causes. The relation between these complementary inferences yields a rela-
tion between the brain activity patterns associated with imagery and vision. We show
that this relation has the formal structure of an echo that makes encoding of imagined
stimuli in low-level visual areas resemble the encoding of seen stimuli in higher areas.
To test for evidence of this echo effect we developed imagery encoding models—a new
tool for revealing how imagined stimuli are encoded in brain activity. We estimated im-
agery encoding models from brain activity measured with fMRI while human subjects
imagined complex visual stimuli, and then compared these to visual encoding models
estimated from a matched viewing experiment. Consistent with an echo effect, imagery
encoding models in low-level visual areas exhibited decreased spatial frequency pref-
erence and larger, more foveal receptive fields, thus resembling visual encoding models
in high-level visual areas where imagery and vision appeared to be almost interchange-
able. Our findings support an interpretation of mental imagery as a predictive infer-
ence that is conditioned on activity in high-level visual cortex, and is related to vision
through shared dependence on an internal model of the visual world.

Why do humans have mental images, and how do mental images differ from the ones we see? Two
millennia of efforts to explain mental imagery have yielded wildly varying and inconsistent answers to
these questions (1, 2). However, the relatively recent ability to measure activity in the brains of humans
as they imagine has narrowed the range of possible answers around some key empirical facts: imagery
engages the same brain areas as vision (3, 4), and activity in these areas encodes unambiguously visual
representations (5–8). Nonetheless, the visual system appears to operate in a different regime during
imagery, exhibiting altered (relative to vision) functional connectivity (9, 10), dynamics (11), and activ-
ity patterns (12, 13). A successful theory of mental imagery must thus explain what computations are
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subserved by visual representations that emerge independently of visual input, and are encoded in brain
activity patterns that differ markedly from those observed during vision.

Here we formalize and test a theory of mental imagery that builds on an influential theory of vi-
sion (14–17). Under the theory, activity patterns in distinct visual areas, r0, . . . , rL, co-occur with the
same probability as the features they encode co-occur in the real world (18). The joint distribution that
specifies these probabilities p(r0, . . . , rL), is a hierarchical generative model (HGM), so-called because
features at one stage of the hierarchy (say rL) are causally responsible for generating the features at lower
stages (rl<L) in the way that, for example, the feature “sky” generates the feature “blue” (14). Seeing
an image s corresponds to conditioning—or “clamping”—activity at the bottom of the hierarchy (e.g.,
the retina) so that r0 = s while the remaining activity patterns are sampled from a posterior distribution
p(r1, . . . , rL|r0 = s). The average activity state for the lth visual area

µvis
l = Ep(r1,...,rL|r0=s)[rl]

therefore encodes the expected cause of the retinal stimulus.
We treat mental imagery as a subtly but importantly different conditional inference within the same

HGM. Specifically, we propose that imagining s corresponds to clamping activity in at least one visual
area to the expected activity pattern evoked by seeing s, rk = µvis

k , while clamping the retina to some
uninformative value (e.g., r0 = 0). Activity in the visual system is then distributed according to the
conditional probability distribution p(rl\{0,k}|rk = µvis

k , r0 = 0). The average activity pattern for the lth

visual area
µimg
l = Ep(rl\{0,k}|rk=µvisk ,r0=0)[rl]

therefore encodes an expected consequence of the cause specified by clamping activity in a high-level
visual area.

Treating mental imagery as an inference complementary to vision implies a compelling answer to the
question of why humans have mental images: we have them because inferring the visual consequences
of a predicted or remembered cause is useful during both deliberate cognition and ongoing perception of
visual stimuli (19,20). The particular form of inference we propose has face-validity, as it is an effective
procedure for synthesizing images from abstract representations (21). Perhaps most importantly, it leads
to testable predictions about how activity differs between imagery and vision. To make this clear we note
that, in general, the expected activity pattern during vision at some higher stage l + d can be expressed
as some (nonlinear) transformation µvis

l+d = T 0
l+d[s] of the activity pattern at stage 0 (i.e., the stimulus

s) to an activity pattern at l + d. Furthermore, in a strictly hierarchical architecture the transformation
from any one stage to another can be decomposed into transformations between intervening stages (Fig.
1a), e.g., T 0

l+d = T ll+d ◦ T 0
l . Since during imagery the dominant source of variance is the clamped layer,

rl+d = µvis
l+d, it follows that

µimg
l = T̄ l+dl [µvis

l+d] = T̄ l+dl ◦ T ll+d︸ ︷︷ ︸
Ωl,l+d

◦T 0
l [s] = Ωl,l+d[µ

vis
l ].

where T̄ transforms activity patterns from stage l+ d to l (we use bar notation to indicate transforms
from a higher to a lower stage). The mean activity pattern during imagery thus differs from the mean
activity pattern during vision by a transformation, denoted Ωl,l+d, that is formally an echo. Under the
echo transformation, an imagery activity pattern at any one stage will resemble a visual activity pattern
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that has been fed forward to the clamped stage, then fed back to the original stage. Unless this fed-back
echo of the visual activity pattern is lossless, the encoding of imagined stimuli in the imagery activity
pattern beneath the clamped stage will more closely resemble the encoding of seen stimuli at the clamped
stage (22). This effect will appear strongest in the stage most distant from the clamped one, because it is
there that the encoding of seen stimuli will be most different from encoding at the clamped stage. These
echo effects are the titular signatures we expect to observe if mental imagery and vision correspond to
the distinct forms of inference we hypothesize.

Note that expressions for both the visual and imagery activity patterns define two distinct encoding
models (23), µvis

l = T 0
l [s] and µimg

l = Ωl,l+d ◦ T 0
l [s], that differ only by an echo. It should therefore

be possible to test for an echo effect on activity patterns in the human brain by estimating and then
comparing visual and imagery encoding models (note that these expressions direct us to train and test
each type of model using the same visual stimuli). If an echo effect holds then tuning to imagined
features revealed by imagery encoding models in lower visual areas should be significantly different
from the tuning to seen features revealed by visual encoding models. In particular, tuning to imagined
features in lower visual areas should more closely resemble tuning to seen features in higher areas.

To illustrate the echo effect we compared visual and imagery encoding models estimated from the
activities of units in an HGM (21) as it performed the distinct conditional inferences corresponding to
vision and mental imagery. By design, the tuning of units to basic visual features varied across the
model hierarchy in a manner consistent with known variation in tuning across the hierarchy of areas
in human visual cortex. Thus, during vision units at higher stages exhibited lower spatial frequency
preference, and larger receptive fields with correspondingly greater foveal coverage than units at lower
stages (Fig. 1B,S4A, top panels). In contrast, during imagery units below the clamped stage exhibited—
relative to vision—reductions in spatial frequency preference, increases in receptive field size and shifts
of receptive field center toward the fovea (Figs. 1B, S4D). Thus tuning to imagined features at lower
stages more closely resembled tuning to seen features at the clamped stage (Fig. 1B, bottom). The size
of these changes increased with distance from the clamped stage (Fig. S4).

We conducted an fMRI experiment to determine if these and other signatures of inference in an
HGM could be observed during mental imagery in the human brain (Fig. 1C). We measured whole-brain
BOLD activity as participants viewed and then in separate sessions were cued to imagine previously
memorized pictures of objects at different positions in the visual field. Distinct voxelwise visual and
imagery encoding models (24) were estimated from activity measured during viewing and imagery ses-
sions, respectively (Fig. 1C). Encoding models specified tuning to spatial frequency and a receptive field
location and size for each voxel. Any voxel sensitive to the cues was discarded.

Predictions made by imagery encoding models exceeded a threshold on accuracy for many voxels
(subsequent analyses refer to above-threshold voxels only) in all visual cortical areas considered here
(Fig. 2A–C). Importantly, predictions of the imagery encoding models were accurate enough to identify
the position of (Fig. 2D) and object in (Fig. 2E) the imagined stimuli (5, 25). Accurate identification of
imagined objects would not be possible if variation in spatial attention, eye position or visual cues were
the determinants of prediction accuracy. These results thus license us to inspect the parameters of the
imagery encoding models for differences in the encoding of imagined and seen stimuli.

If an echo effect were induced by clamping in a high-level visual area, we should expect prediction
accuracy of imagery and visual encoding models to be close to parity in this area. This was true in
intraparietal sulcus (IPS), a collection of visual areas at the highest stage of processing considered here
(Fig. 3A,B). Relative prediction accuracy of the imagery encoding model decreased with descent toward
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primary visual cortex (V1). This gradient in relative encoding model prediction accuracy is most likely
due to a matched gradient in relative signal-to-noise (SNR; Fig. 3C). Interestingly, our theory predicts
this gradient in relative SNR, and that the loss of SNR during imagery depends only on a reduction in
signal amplitude, since clamping at an additional stage during imagery will reduce noise during imagery
relative to vision (Fig. S3). Distinct signal (Fig. 3D) and noise (Fig. 3E) measures were consistent with
this prediction.

When an echo is induced by clamping at a high-level visual area, imagery spatial frequency prefer-
ence during imagery should decrease relative to visual spatial frequency preference with descent toward
V1 (Fig. 1B bottom panels, S4D). Imagery spatial frequency tuning peaks were consistent with this echo
effect. Unlike encoding model prediction accuracy, loss of SNR in early visual areas cannot account for
these effects (Fig. S11).

Another effect of an echo induced by high-level clamping is that imagery receptive field sizes should
move (relative to vision) toward the fovea and dilate with descent toward V1 (Fig. 1B, top two panels,
S4A–C). Although receptive field attributes were highly variable across subjects these position (Fig. 4F–
H) and size (Fig. 4I) effects were observed in combined subject data. Imagery receptive fields were
relatively more foveal and larger in V1 for each subject.

The observed differences between visual and imagery activation amplitudes, noise levels, spatial
frequency preference, receptive field location and size offer support for our formulation of mental im-
agery as inference in a generative model. To test this formulation we have introduced clamping (i.e.,
conditional inference in a generative model) as a potential mechanism by which high level visual areas
may exert control over areas lower in the visual hierarchy. Our results suggest that in these experiments
clamping occurred at least as high as V4; at and above V4 the effects of mental imagery on receptive
field and tuning properties were much weaker than in areas lower on the hierarchy.

High-level clamping may explain why mental images lack the specificity of seen ones. High-level
areas provide a poor substitute for the visual detail supplied by the retina during vision. This places an
upper bound on the specificity of mental images that is most clearly revealed, in our analysis, by the
reduced spatial frequency preference observed in lower areas during imagery. Our results thus suggest
that limits to the specificity of mental images are built into the representational hierarchy of the visual
system, and should remain even if the memories that specify mental images are perfectly encoded and
recalled.

It is unclear how or if clamping relates to other forms of visual cognition, such as attention, that
are difficult to cleanly disentangle from mental imagery. However, we note that across all subjects and
analyses, the effects we attribute to clamping are strongest in lower areas, where the effects commonly
attributed to attention are weakest (26–28). Interestingly, although the the differences between imagery
and visual encoding models are small at and above V4, they do not entirely vanish; it is possible the subtle
but significant differences in high-level areas reflect mechanisms related to attention, which are known
to affect receptive field location and size in areas such as V3A/B (29) and those within IPS (30, 31).

By tying mental imagery to inference we have provided a potential explanation for how mental im-
agery could utilize visual representations but encode them in qualitatively different activity patterns.
We have also given empirical support to the intuition that we imagine to “see” the visual consequences
of visual predictions and memories. Our work also extends the power and relevance of the genera-
tive perspective on vision: while previous results relating vision to posterior inference have supplied
evidence that representations in biological visual systems are adapted to the structure of the visual envi-
ronment (18, 32, 33), the current results provide new evidence that these representations, once acquired,
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can emerge independently of retinal input (18), allowing the visual system to reason coherently about the
visual environment even when there is nothing to see.
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Figure 1: Characterizing differences in the encoding of seen and imagined stimuli with visual and im-
agery encoding models (A) Activity patterns in a hierarchical generative model (HGM). During vision
the visual activity pattern at a processing stage, rl+d, is determined by a transformation T 0

l+d (long blue
arrow) of activity (denoted s for stimulus) at the sensor stage 0. T 0

l+d is equivalent to a composition of
transformations (shorter blue arrows) of activity patterns between intervening stages. During imagery
s = 0 but at least one processing stage (rl+d in this example) is clamped to its visual activity pattern.
Imagery activity patterns beneath the clamped stage (e.g., rl) differ from their visual activity patterns by
an echo Ω. The echo is a transformation from the current to the clamped layer (T ll+d, shortest blue ar-
row) and from the clamped layer back (T̄ l+dl , orange arrow). (B) The echo effect in an HGM. Receptive
fields (top panels) and spatial frequency tuning functions (bottom) for vision and imagery are identical
near the clamped stage (far right panel) but diverge beneath it (left panels). (C) Data and procedures
for estimating visual (left, vEM) and imagery (right, iEM) encoding models. Whole-brain fMRI (7T)
measured BOLD activity as subjects viewed or imagined 64 unique stimuli at 8 distinct locations (left).
The color of the six-letter cue for each stimulus coded a location bounded by a visible bracket. Model
estimation (center) was applied separately to visual and imagery data, resulting in a distinct vEM and
iEM for each voxel. Model prediction accuracy was k-fold cross-validated by computing Pearson corre-
lation between predicted and measured activities on held-out data. (D) iEM (orange) and vEM (blue) for
single voxels that exemplify population-level trends in visual area V1, V2, lateral occipital cortex (LO)
and intraparietal sulcus (IPS).
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Figure 2: Validation of imagery encoding models. (A) Joint histogram (green) and marginal histogram
of prediction accuracy for imagery (orange) and visual (blue) encoding models across all voxels for sub-
jects 1-3. The imagery encoding model (iEM) makes accurate predictions of imagery activity (Pearson
correlation ≥ 0.16, p < .01; dashed grey lines) in all subjects. (B) Prediction accuracy (colorbar) of the
visual encoding model (vEM) mapped on the flattened cortical surface. (C) iEM prediction accuracy.
(D) Imagined location identification. Curves show percentage of correct pairwise identification (colored
shading indicates ± SE; gray shading indicates statistical significance threshold of p < .01 (permutation
test)) for subpopulations of 500 voxels in visual area. Ordering along x-axis is by lowest prediction
accuracy of all voxels in each subpopulation. (E) Imagined object identification. Format as in D.
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Figure 4: Differences between spatial frequency, receptive field location and size during vision and
imagery. (A) Visual (blue) and imagery (orange) spatial frequency tuning curves for single voxels and
population tuning curves (bottom) for V1. (B) Top: Population tuning curves during vision for all voxels
in the indicated area that have an accurate vEM. Bottom: Population tuning curves during imagery for
voxels that have an accurate iEM. Populations in top (blue circle in Venn diagram) and bottom (orange
circle) plots are overlapping but not identical. (C) Population tuning curves for all voxels in the indicated
area that have an accurate vEM and iEM. All subsequent panels use this population. (D) Peak spatial
frequency. (E) Difference between peak spatial frequency during imagery and vision. (F) Example
visual and imagery receptive fields (RF) (G) Orientation and magnitude (line segments) and direction
(colorwheel at far left) of RF location shifts (same voxels as in D,E) from vision to imagery. (H) Average
signed magnitude of shift in RF location from vision to imagery. Negative values indicate a shift toward
fovea. (I) Average signed change in RF size from vision to imagery. Positive (negative) values indicate
dilation (shrinkage). The red shaded area in E, H and I indicates significance level p < .01 (permutation
test) for combined subject data (orange curve). In all panels asterix indicates significant difference from
null value (red line, p < .01, permutation test; red shading indicates significance threshold for combined
data); shading on curves indicates ± SE.
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