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Abstract 41 

We present a statistical modeling framework to evaluate the spatial-temporal dynamics of the 2016-2017 42 
dengue outbreak in the Negombo region of Sri Lanka as a function of human mobility, land-use, and 43 
climate patterns. The analysis was conducted at a 1 km × 1 km spatial resolution and a weekly temporal 44 
resolution. Our results indicate human mobility to be a significantly stronger indicator for local outbreak 45 
clusters than land-use or climate variables, thus highlighting the potential value of using travel data to 46 
target vector control within a region. The minimum daily temperature was identified as the most 47 
influential climate variable on dengue cases in the region; while among the set of land-use patterns 48 
considered, urban areas were found to be most prone to dengue outbreak, followed by areas with stagnant 49 
water and coastal areas. The results are shown to be robust across spatial resolutions. In addition to 50 
illustrating the relative relationship between various potential risk factors for dengue outbreaks, the results 51 
of our study can be used to predict where and when new cases of dengue are likely to occur within a 52 
region, and thus help more effectively and innovatively, plan for disease surveillance and vector control.  53 
 54 
Keywords: dengue; outbreaks; risk factors; human mobility; climate; land-use; spatial-temporal dynamics; 55 
statistical modeling, Sri Lanka  56 
 57 
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1. Introduction 60 

Dengue is a mosquito-borne viral disease that infects approximately 390 million people globally every 61 
year, particularly in tropical and subtropical countries (1, 2). The high number of infections combined 62 
with the lack, as yet, of an effective vaccine has made dengue a notorious public health problem (2, 3). 63 
  64 
Dengue spreads through the bite of infected Ades mosquitoes, especially Aedes aegypti– the primary 65 
vector, with an estimated 15 to 17-day delay between the primary and secondary human infections (4). 66 
Dengue outbreak control is a challenge for policy makers because Aedes aegypti mosquitoes are well 67 
adapted to high density urban environments and actively feed during the day (5-7), thus presenting an 68 
elevated risk to humans. Urban settings provide an ideal habitat for Aedes aegypti breeding due to an 69 
abundance of discarded trash bags, plastic bottles, tires, and other containers that enable the formation of 70 
stagnant shallow water surfaces after precipitation (8). Urban regions in developing countries are 71 
particularly vulnerable due to a lack of indoor plumbing infrastructure that, in conjunction with a lack of 72 
air-conditioning, results in higher human-mosquito exposure rates during the day. Additionally, because 73 
of the daytime feeding behaviors of Aedes aegypti, common vector control measures that work for 74 
night-biting mosquitoes, such as bed nets, fail to effectively control dengue transmission. Given these 75 
challenges, there is a need to better understand and predict dengue outbreaks and transmission risk within 76 
urban regions in developing countries so that vector control and surveillance resources can be optimally 77 
allocated.  78 
 79 
Previous studies highlighted human mobility as a critical factor for dengue transmission (9-15), which 80 
contrasts the more minor role travel plays in the spread of vector-borne diseases transmitted by 81 
night-biting mosquitoes (15). While Aedes aegypti mosquitoes have a hard time dispersing geographically 82 
across large areas because they rarely travel more than 400m from where they emerge as adults (16-19), 83 
humans regularly travel much longer distances on a daily basis. As new dengue cases and clusters are 84 
regularly reported kilometers apart, it is likely that human mobility play a critical role in the spread of 85 
dengue outbreaks, i.e., infected humans introduce dengue into new mosquito populations at their trip ends. 86 
As an example, Vazquez-Prokopec, Montgomery (12) studied the pattern of dengue transmission using 87 
location-based contact tracing on infected dengue patients during a dengue outbreak centered at Cairns, 88 
Australia. They collected locations that the patients frequently traveled to during the daytime and 2-4 89 
weeks prior to the onset of symptoms through phone interviews. The contact locations with a proximity of 90 
100 meters and a separation of 20 days were spatial-temporally linked into pairs and then chains to 91 
identify the plausible sites of dengue virus transmission. They showed that the complex pattern of dengue 92 
transmission was primarily driven by human mobility, and that targeted residual spaying could potentially 93 
reduce the probability of dengue transmission up to 96%. Their study highlights the importance of 94 
understanding dengue transmission patterns to optimize the allocation of dengue prevention and 95 
vector-control measures.   96 
 97 
In addition to human mobility, recent studies have pointed to a strong association between climate 98 
conditions and dengue outbreaks at various locations and across different temporal resolutions (8, 20-24). 99 
Precipitation, mean temperature and temperature fluctuation were revealed to affect the population 100 
dynamics of Aedes aegypti mosquitoes and the dengue virus extrinsic incubation period (25-29). 101 
Specifically, a suitable average temperature and moderate temperature fluctuations are often favorable for 102 
dengue transmission (25), while an increase in precipitation is strongly associated with the onset of a 103 
dengue outbreak (22). Humidity, a combined effect of precipitation and temperature, is also a common 104 
climate index to evaluate the environmental capacity for dengue emergence (20, 21, 30, 31). Wesolowski, 105 
Qureshi (13) accounted for both climate and mobility in a study of dengue virus transmission over a large 106 
dengue outbreak period in Pakistan. They developed an epidemiological model that included temperature 107 
and relative humidity as input parameters for mosquito dynamics, as well as biting rate to capture the 108 
interactions between human and mosquito hosts. Human mobility was captured using mobile phone data 109 
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of ~40 million subscribers to estimate the spatially explicit travel volume, albeit not differentiating 110 
infected and non-infected people. They showed that the emergence of dengue epidemics in a new region 111 
could be predicted using aggregated travel patterns from endemic areas in combination with the 112 
developed epidemiological model. While climatic factors were found to be significant for prediction, this 113 
was in part due to the large study region, i.e., country level, which has variable climatic suitability for the 114 
mosquito vector. The study region considered in our work is much smaller and has minimal climactic 115 
variability, thus alternative methods are required to distinguish site-specific risk. 116 
 117 
Land-use patterns — indicators of human activities and potential breeding habitats — have also been 118 
linked to dengue outbreaks (32-37). Previous studies investigated the effect of land-use patterns on the 119 
spread of dengue and found that human settlements, water bodies, and mixed horticulture are the top three 120 
associated land-use patterns for dengue emergence in Malaysia (35). In another study (36), areas 121 
surrounded by rice paddies and marshes/swamps were associated with a significantly higher population of 122 
dengue vectors during the rainy season in Thailand. Orchards (which often contain artificial water 123 
containers) and irrigation fields have also been shown to play an important role in dengue infections; 124 
however, their role varies given different local conditions. Sometimes, land-use type can be a proxy for 125 
other features, such as socio-economic factors, which may have a contradictory effect on dengue 126 
infections (37). 127 
 128 
In this study, we present a statistical modeling framework to evaluate the relative role of human travel 129 
patterns, climate conditions, and land-use patterns on dengue outbreak dynamics in Negombo, Sri Lanka 130 
(Figure 1). With more than 80,000 dengue cases including 215 deaths reported nationally in less than 131 
seven months at the beginning of 2017, the recent dengue outbreak in Sri Lanka increased the number of 132 
reported cases by 4.3 times compared to the average number over 2010-2016 (38). The region of 133 
Negombo, located in the Western province, experienced the greatest number of dengue cases in the 134 
country; approximately 45% of the cases nationwide by July 2017 (Figure 1). We applied a mixed-effects 135 
model, where the mobility data bridges the time-varying, spatially-invariant climate variables and the 136 
rasterized spatially explicit, time-invariant population and land-use variables, to capture the 137 
spatial-temporal dynamics of dengue transmission. Our model framework differs from previous studies 138 
that simulated the transmission process (12, 13, 39), and instead focuses on estimating the timing and 139 
location of new case introductions though a non-process based statistical model. Specifically, we focus on 140 
modeling the home locations of (newly infected) dengue patients, and assume dengue is introduced in 141 
new areas by infected individuals who travel to the area. This assumption is consistent with previous 142 
studies that have shown visits to a household by infected people determines the infection risk in that 143 
household (11). In addition, the study was conducted at a fine-grained spatial and temporal resolution — 144 
1 km × 1 km spatially and one week temporally — providing an improved understanding of the role of 145 
mobility in the spread of dengue. While previous work studied the impact of mobility (12, 13), climate (8, 146 
20, 22, 25), and land-use (35-37) separately on dengue, the authors are unaware of any existing study that 147 
considers these factors within a single integrated framework. Thus, previous studies have been unable to 148 
quantify the relative contribution of each factor on the spatial-temporal patterns of dengue transmission as 149 
we do. The results from our study indicate that mobility is a much more significant predictor of new 150 
dengue case clusters compared with land-use and climate data alone. Furthermore, the case study in Sri 151 
Lanka provides critical insights into effective application of dengue prevention and vector control 152 
measures in developing regions. 153 
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 154 

Fig. 1. Land-use groups and the climate station in the study region of Negombo, Sri Lanka (left), and the 155 
total number of dengue cases at the district level in Sri Lanka (40) during the months from October 2016 156 
to June 2017 that cover our study period (right). 157 

2. Data and Methods 158 

A statistical model is applied to investigate the spatial-temporal dynamics of dengue outbreak with 159 
respect to a range of potential explanatory variables. The complete set of potential explanatory variables 160 
is listed in Table 1. Detailed descriptions of the data followed by a description of the methodology are 161 
provided below.   162 
 163 
(a) Case and Mobility Data  164 
A patient survey was conducted among dengue patients in the Negombo region of Sri Lanka over an 165 
approximately 8-month period during a major outbreak spanning from end of October 2016 to early July 166 
2017. Data were collected from all patients admitted to the special High Dependency Unit (HDU) for 167 
critically ill dengue patients within the Clinical Centre for Managing Dengue and Dengue Haemorrhagic 168 
Fever (CCMDDHF) at the Negombo Hospital in Negombo, Sri Lanka. Specifically, the date of admission, 169 
home address, the complete set of locations visited, and corresponding trips made between all locations 170 
during the 10-days prior to hospital admission were collected from all HDU CCMDDHF admitted 171 
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patients for the entire study period. The case data provide spatial-temporal information on the outbreak 172 
patterns, while the mobility data collected captures daily travel activity of the admitted dengue patients. 173 
The data were collected by trained students and supervised by a Senior House Officer on site. For 174 
weekday admissions the patients were surveyed upon admittance, for night admissions data were 175 
collected the following day, and for weekend admissions on the following Monday. The majority of 176 
admissions were 48 to 72 hours following the onset of fever. Dengue infection was confirmed for the 177 
patient set using either NS1 antigen or IgM antibody diagnostic test.  178 
 179 
(b) Climate Data  180 
We used the Global Surface Summary of the Day (GSOD) daily weather data (41) from a station in 181 
Negombo (Figure 1) to explore the impact of climate factors on the dengue outbreak. The location of the 182 
weather station (7.18ºN, 79.87ºE) is approximately in the center of the study region and it is the only 183 
station that falls into our study region with a comprehensive set of climate data available during the study 184 
period. There are several global reanalysis products that provide spatial-explicit climate data during the 185 
study period; however, upon evaluation against the station observations, these globally gridded data sets 186 
did not provide accurate representations of the local climate variables, particularly at a daily time-step 187 
(Figure S1). Hence, the weather data are assumed to be representative for the region which has relatively 188 
homogeneous weather patterns (42). We selected a range of potential climate variables based on previous 189 
studies (8, 20-22, 25-31), including daily mean temperature (Tavg), daily maximum temperature (Tmax), 190 
daily minimum temperature (Tmin), diurnal temperature range (DTR), precipitation (Pre), the number of 191 
raining days (RD), and relative humidity (RH) to analyze climatic influence for the weeks before and 192 
during the same period of analysis that the mobility data was collected.  193 
    194 
(c) Population and Land-use Data  195 
We used a global population data layer based on Landscan 2016 (43), that is available at an 196 
approximately 1 km × 1 km resolution to represent the population distribution spatially. We aggregated 197 
the data to 5 km × 5 km grid for additional analysis with a coarser spatial resolution. Land-use data (44) 198 
were obtained from the Sri Lanka Survey Department which performed an initial survey in 2000 and has 199 
since continuously updated the maps. The map was extracted for our region of interest and reclassified 200 
into several groups (Figure 1): Sea, Standing Water (StWtr), Flowing Water (FlwWtr), Coconut, Marsh, 201 
Paddy, Built-up (BuiltUp), Scrubland, Homesteads, Forest, Rubber, Rock/Sand (RockS), Other 202 
Agriculture (OthAg), and Other. Water bodies were categorized depending on the potential effect on 203 
dengue transmission dynamics. Additional details on land-use classification groupings and processing is 204 
available in the supplementary material. 205 
 206 
(d) Data Processing and Statistical Model 207 
 We divided the study region (Figure 1) into a grid at a 1 km × 1 km resolution and aggregated daily data 208 
into a 1-weekly resolution. The number of patients who were admitted to the hospital during each week of 209 
the recorded time period was used to generate the weekly number of newly admitted dengue patients in 210 
each cell based on their home locations.  211 
 212 
To incorporate the role of mobility into the model we used the travel itineraries provided by the patients 213 
to generate a time-dependent connectivity matrix, which represented the total number of trips made by 214 
dengue infected patients between each pair of cells for each week of the study period. The travel data 215 
included all destinations visited each day during the 10 days preceding hospital admittance (the time 216 
interval that the patient is assumed to be able to spread the disease) for each patient. The number of daily 217 
trips between each pair of cells was summed over all patients, to provide daily trip volumes between cells, 218 
and then aggregated to the weekly level. For each cell the total incoming weekly trips was summed to 219 
define our ‘trip’ variable, which is the total number of trips made by infected dengue patients entering a 220 
given cell i in a given week t, 𝑉𝑡

𝑖, and was used as a spatial-temporal explanatory variable in the model. 221 
The same method was used for the 5 km × 5 km analysis. 222 
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 223 
Climate variables were averaged or aggregated temporally to a weekly resolution, including weekly 224 
average Tavg, Tmin, Tmax, DTR, RH, weekly total Pre, and RD. Land-use data were aggregated spatially 225 
to match the targeted spatial grid resolution. The population data were in an original resolution that 226 
matched the 1 km × 1 km grid. For land-use, the percentage of occupied land of each type was determined 227 
for each 1 km × 1km grid cell. Both were subsequently aggregated to a 5 km × 5 km grid. 228 

A mixed-effects model combined with backward elimination of insignificant fixed effects was applied to 229 
investigate the spatial-temporal dynamics of dengue outbreak with the potential explanatory variables at a 230 
weekly time step and 1 km × 1 km spatial resolution. In building the model we first conducted sensitivity 231 
analysis to identify the optimal set of climatic variables to include in the model, and corresponding time 232 
lag for each of them. Among the climate variables, significant correlations were observed for weekly 233 
averaged daily mean temperature (Tavg), daily minimum temperature (Tmin), and diurnal temperature 234 
range (DTR) with a lead time ranging from 7 days to 17 days prior to the weekly admitted number of 235 
patients (Nt), where the lead time (dc) is the lag in days between the climate variable and Nt (Figure S2). 236 
Regression models based on different combinations of the climate variables and lead time were developed 237 
and compared; the best performance model was select based on F-test and adjusted-R

2
. As a result, Tmin 238 

with an optimal lead time of 10 days was included in the final set of mixed-effects models to account for 239 
the partial influence of climate on the dengue outbreak (R

2
 = 0.248; adj. R

2
 = 0.226). This is consistent 240 

with previous findings (29) that daily minimum temperature were associated with increase in the larval 241 
abundance. We assumed a relatively homogenous climate over the study region, thus Tmin does not vary 242 
spatially over the study region. 243 
 244 
Along with the chosen climate variable, Tmin, the remaining set of potential explanatory variables (Table 245 
1) was taken into the mixed-effects model initially, with population included in the spatial random effects. 246 
Population density was incorporated using random effects in the model because population is likely to 247 
have spatially heterogeneous effects on dengue outbreaks (39, 45). For example, high population areas 248 
may imply access to tap water and better living conditions which could restrict dengue transmission (46), 249 
while the higher density of population facilitates disease spread. Furthermore, there could be spatial 250 
variance in the distribution of people living in a particular area. In addition to mobility, climate, and 251 
land-use variables; the number of new cases in a given cell in the weeks prior were added as explanatory 252 
variables to account for autocorrelations in the case data. Subsequently, the variable with the most 253 
insignificant fixed-effects coefficient was eliminated each iteration, until only variables with significant 254 
coefficients (at 95% significance level) remained in the model. A range of lead time for 𝑉𝑡

𝑖 prior to the 255 
admitted week was also tested. A separate analogous process was conducted using a 5 km × 5 km 256 
resolution, to test the sensitivity of model results across spatial resolutions, and the robustness of the 257 
modeling framework and findings. 258 
 259 
Thus, the mathematical representation of the model is given by:  260 
 261 

, c

i i i i i i i i

t l c t d u t u w t w t

l L c C u w

N l c V N a b P     

 

            262 

 263 
Where 264 
 265 
i is the cell index; i = 1, 2, …. 266 
l is the land-use variable, which belongs to the land-use group set �̅�, where �̅� includes Sea, StWtr, FlwWtr, 267 
Coconut, Marsh, Paddy, BuiltUp, Scrubland, Homesteads, Forest, Rubber, RockS, OthAg, and Other. 268 
𝑙𝑖 is the occupation percentage of land-use group l in cell i, time-invariant.  269 
𝑃𝑖  is the population in cell i, time-invariant 270 
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t is the time index at weekly resolution; t = 1, 2, …. 271 
𝑁𝑡

𝑖  is the number of patients who are admitted to the hospital during week t, whose home locations are in 272 
cell i  273 
𝑁𝑡−𝑤

𝑖  is the number of patients who are admitted to the hospital during week t-w, whose home locations 274 
are in cell i, where w is measured in weeks; w = 1, 2, … 275 
𝑉𝑡−𝑢

𝑖  is the number of total number of trips made into cell i during the week t-u, where u is measured in 276 
weeks; u = 1, 2, … 277 
c is the climate variable which belongs to the climate variable set 𝐶̅. 𝐶̅ includes Tavg, Tmax, Tmin, DTR, 278 
Pre, RD, and RH. 279 
𝑐𝑡,𝑑𝑐

 is the climate variable during the week that begins 𝑑𝑐  days prior to the start of week t. 𝑑𝑐  ranges 280 

from 7 to 17 days and can be different for different climate variables. Multiple climate variables can be 281 
included in the model.  282 
𝜀𝑡

𝑖 is the model residuals associated with cell i and week t. 283 
𝛼𝑙  is the estimated fixed-effects coefficient for l.  284 
𝛽𝑐  is the estimated fixed-effects coefficient for c. 285 
𝛾𝑢 is the estimated fixed-effects coefficient for 𝑉𝑡−𝑢

𝑖 . 286 
δ𝑤  is the estimated fixed-effects coefficient for 𝑁𝑡−𝑤

𝑖 . 287 
𝑎𝑖 is the intercept associated with cell i. 288 
𝑏𝑖 is the estimated spatial random-effects coefficient for 𝑃𝑖.  289 

3. Results 290 

(a) Data Analysis 291 
The number of admitted dengue patients aggregated over the study region peaks during December and 292 
June (Figure 2), aligned with the monsoon months (47). Figure 2A illustrates the relationship between the 293 
total number of dengue patients, Nt, admitted during each week t and the total number of recorded patient 294 
trips during the same week (Vt). Figure 2B illustrates Nt and the weekly averaged minimum daily 295 
temperature in week t (𝑇min𝑡). It shows a lagged relationship of Nt with 𝑇min𝑡, mostly in the same 296 
direction. For the purposes of these graphics, the variables are aggregated over the entire study region. 297 
 298 
(A)                                              (B) 299 

 300 

Fig. 2. The number of admitted dengue patients in week t (Nt) and (A) the number of recorded trips in 301 
week t (Vt) summed over the entire study region, and (B) the weekly averaged minimum daily 302 
temperature (𝑇min𝑡). 303 

 304 
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The travel destinations recorded in our study include medical facilities, homes, workplaces, schools, and 305 
others (Figure S3). Additional analysis performed reveals that a vast majority of trips were longer than the 306 
distance a mosquito can travel. Specifically, 96.6% of the trips were longer than 0.4 km (Table S1; Figure 307 
S4), outside the range of a mosquito’s maximum travel distance (16-19), further supporting the role 308 
human mobility is likely to play in the outbreak. 309 
 310 
Figure 3 illustrates both the spatial-temporal distribution of dengue patients’ home locations over the 311 
course of the outbreak, and the corresponding travel patterns of the patients during 5-week periods. The 312 
patient home locations were well distributed over the area of the study region for the first few months of 313 
the outbreak, with correspondingly scattered travel patterns. However, as the outbreak progressed, the 314 
recorded case locations and the trip ends of newly infected dengue patients became more concentrated 315 
near the town center and just above the lake. There were also a large amount of trips (>100) within the 316 
cell near the town center. 317 

318 
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(A) Weeks 2-6      (B) Weeks 7-11         (C) Weeks 12-16 319 

   320 
(D) Weeks 17-21     (E) Weeks 22-26         (F) Weeks 27-31 321 

   322 

 323 

Fig. 3. Weekly number of patients and the number of trips summed over 5-week intervals for a 5 km × 5 324 
km resolution. Patient home locations are plotted as the case location. The size of the circle indicates the 325 
number of patients admitted during the time period. The color of the circle indicates the number of trips 326 
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that end in the grid cell during the time period. The thickness of the line is proportional to the number of 327 
trips made between two locations. Week 2 begins on October 27, 2016 and week 31 begins on May 18, 328 
2017. For visual clarity, the 5 km × 5 km resolution was used for the figure, instead of 1 km × 1 km. 329 

 330 
(b) Model Results 331 
A mixed-effects model was developed to estimate the number of new dengue cases in a given cell in a 332 
given week as a function of the mobility patterns of individuals infected with dengue in the preceding 333 
week(s), as well as land-use and climate data from days prior.  334 

Table 1: Summary of potential explanatory variables  335 

 336 
Variables Description Properties 

𝑙𝑖 occupation percentage of land-use group l in cell i (%) 

spatially-explicit, 

time-invariant 

 BuiltUp urban area 

 Coconut coconut cultivation land 

 Homesteads homesteads and garden 

 Paddy rice cultivation land 

 Sea ocean 

 StWtr standing water 

  FlwWtr flowing water 

𝑐𝑡,𝑑𝑐
 weekly value of climate variable in week t with a lag of dc 

time-varying, spatially 

-invariant 

 Tavg weekly averaged daily mean temperature 

 Tmax weekly averaged maximum daily temperature 

 Tmin weekly averaged minimum daily temperature 

 DTR weekly averaged diurnal temperature range 

 Pre weekly total precipitation 

 RD weekly number of raining days 

  RH weekly averaged daily relative humidity 

𝑃𝑖 population in cell i 
spatially -explicit, 

time-invariant 

𝑉𝑡−𝑢
𝑖  number of trips made to cell i in week t-u 

spatially -explicit, 

time-varying 

𝑁𝑡−𝑤
𝑖  

number of patients admitted to hospital who live in cell i in 

week t-w 

spatially -explicit, 

time-varying 

 337 
Note: t, u, and w in weeks, dc in days. For notation, variable superscripts in Table 1 denote spatial indices 338 
and subscripts denote time indices. 339 
 340 
Multiple models with explanatory variables representing land-use, climate, and mobility were created, 341 
and the three representative models are presented here. The three models vary based on the type of 342 
mobility variable included, specifically how far back in time travel is accounted for. The first model 343 
includes the mobility patterns one-week prior (u = 1), the second model includes the mobility patterns 344 
two-weeks prior (u = 2), and the third model excludes mobility altogether (“Exclude V”). The final set of 345 
climate and land-use variables found to be significant varies between models. All explanatory variables 346 
were standardized to a mean of zero and a standard deviation of one in the mixed-effects model. The 347 
fixed-effects coefficients (Table 2) therefore reflect the relative influence of each explanatory variable on 348 
the dengue outbreak dynamics.  349 
 350 
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The results (Table 2) for each of the three models are presented for both a 1 km × 1 km and 5 km × 5 km 351 
resolution, and reveal that the mobility patterns of dengue patients, specifically the number of trips made 352 
into a cell in a given week, to be the most reliable predictor of new dengue cases in that cell the following 353 
week. Under the spatial resolution of 1 km × 1 km, the fixed-effects coefficient for the trips one week 354 
prior (u = 1) is 0.483, which is considerably greater than the fixed-effects coefficients for other 355 
explanatory variables, suggesting human mobility plays a critical role in dengue outbreak dynamics. 356 
Results also illustrate a decrease in explanatory power of mobility patterns further than a week in advance, 357 
with the magnitude of the trips variable coefficient drastically decreased with a lead time of two weeks (u 358 
= 2) to 0.078. This result highlights the importance of collecting and utilizing mobility data within an 359 
appropriate lead time for the purposes of outbreak prediction modeling. When mobility data is excluded 360 
from the model altogether, the adjusted R

2
 decreases from 0.419 to 0.262. In general, the power of the 361 

number of trips in predicting dengue cases deteriorates with longer lead time, with the number of trips 362 
two-weeks prior showing little advantage over other explanatory variables. The same conclusion is 363 
applicable for the results under the 5 km × 5 km resolution, as shown in Table 2. 364 
  365 
Among the seven land-use groups (see variable descriptions in Table 1) under the 1 km × 1 km resolution, 366 
only BuiltUp shows significant positive fixed effects on dengue cases, but only when the mobility 367 
variable one week prior was excluded (Table 2). Under the coarser spatial rasterization of 5 km × 5 km, 368 
StWtr and Sea also show significant positive fixed effects, in addition to BuiltUp. Whereas BuiltUp shows 369 
significant fixed effects in all three models with the coefficients ranging from 0.032 to 0.050, StWtr 370 
shows significant coefficients of 0.031 and 0.032 in two of the models, and Sea shows the significant 371 
coefficient of 0.029 only in the model with the trip variable excluded. It indicates that urban areas, areas 372 
with standing water, and areas near the coastline are associated with a higher risk of dengue infections; 373 
the effect is stronger under the 5 km × 5 km spatial resolution. In contrast, human mobility is shown to be 374 
a significant and robust predictor of dengue dynamics for both spatial resolutions.  375 
  376 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/462150doi: bioRxiv preprint 

https://doi.org/10.1101/462150


Table 2: Fixed-effects coefficients and standard error of the mixed-effects model outputs based on 377 
the 1 km × 1 km and 5 km × 5 km resolution, respectively. The presented results are post-completion 378 
of the backward elimination of nonsignificant fixed effects. Variables without coefficients listed in 379 
the table were eliminated during the backwards elimination procedure for each model (each 380 
column). Variable descriptions are listed in Table 1. 381 

    1 km × 1 km       5 km × 5 km   

  u = 1 u = 2 Exclude V   u = 1 u = 2 Exclude V 

BuiltUp   0.050*** 0.053***   0.032* 0.034* 0.050** 

    (0.013) (0.014)   (0.014) (0.014) (0.016) 

                

Sea             0.029* 

            
 

(0.013) 

                

StWtr           0.031** 0.032** 

            (0.011) (0.011) 

                

min,min
Tt dT   0.030*** 0.028*** 0.026***   0.032*** 0.024* 0.021* 

  (0.0066) (0.0074) (0.0074)   (0.0088) (0.010) (0.0098) 

                

1

i

tV    0.483***      0.417*** 
 

  

  (0.0080)      (0.015)    

                

2

i

tV     0.078***      0.059**   

   (0.010)      (0.018)   

                

1

i

tN    0.085*** 0.162*** 0.195***   0.204*** 0.330*** 0.0359*** 

 (0.0076) (0.0095) (0.0083)   (0.016) (0.020) (0.016) 

                

2

i

tN    0.156*** 0.206*** 0.217***   0.258*** 0.394*** 0.403*** 

 
(0.0074) (0.0085) (0.0082)   (0.015) (0.017) (0.016) 

                

                

R
2
 0.419 0.268 0.262   0.783 0.728 0.727 

Adj. R
2
 0.419 0.267 0.262   0.782 0.728 0.727 

No. obs 13532 13134 13532   2856 2772 2856 

Standard errors are reported in parentheses.          

t is in weeks, dTmin = 10 days, and all variables are normalized. 

*, **, *** indicates significance at the 95%, 99%, and 99.9% level, respectively.   

4. Discussion 382 

The results from this study illustrate the dominant contribution of human mobility on the location and 383 
timing of new dengue cases, relative to land-use and climate variables. The results are sensitive to the 384 
temporal patterns of travel during the week immediately preceding the appearance of new case reports. 385 
This was the variable with the greatest predictive power. Travel patterns two weeks prior still showed a 386 
significant effect on dengue outbreaks, but this effect was weaker and comparable to the effects of 387 
land-use and climate patterns. Our results are consistent with Stoddard, Forshey (11), who concluded that 388 
visits to households by dengue infected individuals determines the infection risk, further validating our 389 
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use of patient home locations in the model. Furthermore, the significance of mobility in outbreak 390 
prediction was found to be robust under both spatial resolutions of 1 km × 1 km and 5 km × 5 km. 391 
 392 
In contrast to the role of mobility, which we found to be a consistently significant indicator of new 393 
dengue cases, the effect of land-use patterns on the number of new cases is sensitive to the spatial 394 
resolution of the models. Land-use variables played a larger explanatory role at the coarser spatial 395 
resolution of 5 km × 5 km (compared to the finer 1 km × 1 km resolution), particularly for smaller 396 
spatially-dominant land-use patterns such as Sea and StWtr. BuiltUp showed the strongest positive effect 397 
overall, indicating urbanization is associated with an increased risk of dengue outbreak (which is 398 
consistent with multiple previous findings (48, 49)). StWtr also showed significant positive effect, which 399 
is to be expected because standing water provides suitable mosquito breeding habitat (19). The positive 400 
effect of Sea only appeared significant when human mobility was excluded from the model. Given the 401 
significant positive correlation between Sea and the number of trips (Table S2), it is likely that the large 402 
travel volume towards the area near the coastline makes the study region prone to dengue outbreaks. If 403 
this pattern holds in other regions, as seems likely, that fact can be used for the spatial prioritization of 404 
resource allocation for disease case and vector surveillance and control. 405 
 406 
Among the climate factors, temperature-related variables including Tavg, Tmin, and DTR, were more 407 
strongly associated with the outbreak emergence than precipitation-related variables including Pre and 408 
RD, or RH, which is related to both. This finding is in accordance with (22), which concluded that 409 
“rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) 410 
while temperature modulates the annual number of dengue fever cases.” Based on regression analysis, we 411 
found Tmin with a 10-day lead time to be the best climate-based predictor of new weekly dengue cases. 412 
Given the likely robustness of this result in other regions, this fact can be used for the temporal 413 
prioritization of resources. 414 
 415 
In addition to human mobility, climate, and land-use variables, which were included as fixed effects, 416 
population density was incorporated using random effects in the model because population is likely to 417 
have spatially heterogeneous effects on dengue outbreaks, as noted in the Data and Methods. Based on 418 
the model results, the random-effects coefficients for population are mostly positive, as expected, 419 
indicating that higher population density is associated with a higher number of dengue cases (Figure S5). 420 
The most significant positive effect is seen north of the lagoon along the coastline, highlighting 421 
potentially high risk areas, where higher populations are likely to facilitate the emergence of dengue 422 
outbreaks. A few cells resulted in negative random-effects coefficients, which may be due to confounding 423 
interactions between different variables included in the model, or alternative factors not captured in the 424 
model; these cells were few in number, and only occurred in the model when the dominant mobility 425 
variable was included. It is possible the dominant role of mobility could over compensate for the impact 426 
of population, e.g., because people are likely to travel to crowded downtown areas, along the lagoon, or 427 
near the ocean where the large number of trips made to those regions has the ability to offset the impact of 428 
population. That the random-effects coefficients for population density are positive and negative lends 429 
support to the modeling decision to treat it as having enough stochasticity to qualify as a random-effects 430 
variable. 431 
 432 
The results of this analysis have implications that are relevant to the design of measures to control dengue 433 
cases, such as allocation of resources for mosquito vector control. Previous global modeling of ecological 434 
suitability for dengue vector mosquito species (both Aedes aegypti and Aedes albopictus) have shown that 435 
the entire study area is a prime habitat for these species (50, 51). This conclusion drawn from the global 436 
models finds validation in our analysis, which shows that climate and land-use variables are not the most 437 
strongly associated with dengue case outbreaks. Consequently, epidemiological risk based on vector 438 
ecology may be insufficient for the purposes of optimizing vector control resource allocation, as it is 439 
unable to distinguish between potential sites to target within the study area. Because travel into the sites is 440 
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the most important predictor of new case clusters, it may well be time to optimize vector control resources 441 
based on mobility data, with the aim to prevent exposure to the day-biting mosquitoes, i.e., Aedes aegypti, 442 
at the highest risk locations. To the best of our knowledge, such a design for dengue control measures has 443 
not yet been tried in the field. 444 
 445 
Finally, various limitations of this study should be noted. First, only dengue patients admitted to the 446 
CCMDDHF at the Negombo Hospital were included and surveyed in this study. Thus mild or 447 
asymptomatic cases, which account for the majority of dengue cases (1), were not accounted for in the 448 
study. Second, some patients infected in the study region may have gone to hospitals in other districts, 449 
and would therefore not be included. Third, the mobility data was based on patients’ recollections over a 450 
10-day period prior to hospital admission, and therefore may have inaccuracies due to human error in 451 
recalling the information. However, detailed analysis of the travel data revealed the vast majority of trips 452 
recorded represent daily commuting routines. Thus, while some trips may be excluded due to human error, 453 
we believe the relative connectivity between cells is accurately captured by the survey responses. Fourth, 454 
the distance traveled and the time spent in a certain location were not considered due to the unavailability 455 
of relevant data; however these factors have been shown to have little influence on dengue transmission 456 
(11), and thus their exclusion does not invalidate the methodology used in this analysis. Fifth, by utilizing 457 
all the mobility data collected, we made an implicit assumption that the patients were infectious during 458 
the entire 10-day period prior to hospital admittance. This period does fall within the combined intrinsic 459 
incubation period (4-10 days) (52) and the early symptomatic period before admitted to the hospital. A 460 
sixth assumption was that the patients were infected at or around their home locations. This assumption is 461 
consistent with a wide variety of previous studies that revealed homes as the primary point of contact for 462 
dengue transmission (11, 53, 54). Vazquez-Prokopec, Montgomery (12) tried to identify the most 463 
plausible transmission locations based on reported contact locations from a dengue outbreak in Cairns, 464 
Australia and found that only 10.2% of the identified transmission sites were at out-of-home locations, 465 
and a notable portion of them were actually within 1 km of the home locations. Given that our objective 466 
was not to model the transmission chains of dengue as in (12), assuming home locations as the site of 467 
infection provides reasonable support for predicting where infected individuals reside, and therefore the 468 
risk posed around homes of infected individuals. Lastly, the climate data were obtained from a single 469 
station, thus a homogenous climatic region was assumed for our study region. Therefore, the role of 470 
climate factors on the dengue outbreak may be underestimated. 471 
  472 
While the modeling framework used here is readily applicable to other contexts, future work should 473 
investigate how widely transferable the model results are. More specifically using general mobility data 474 
(tracking movements for all residents); such as using mobile phone data as in (13), or transport planning 475 
data, which may be more readily available and cost effective; should be compared to the use of patient 476 
mobility surveys as in this study. 477 
 478 
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