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Abstract5

Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and6

disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides7

both programmatic and graphical interfaces to develop data-driven multiscale network models in8

NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide9

specifications at a high level via a standardized declarative language, e.g., a connectivity rule, instead10

of tens of loops to create millions of cell-to-cell connections. Users can then generate the NEURON11

network, run efficiently parallelized simulations, optimize and explore network parameters through12

automated batch runs, and use built-in functions for visualization and analysis – connectivity matrices,13

voltage traces, raster plots, local field potentials, and information theoretic measures. NetPyNE also14

facilitates model sharing by exporting and importing using NeuroML and SONATA standardized15

formats. NetPyNE is already being used to teach computational neuroscience students and by modelers16

to investigate different brain regions and phenomena.17

1 Introduction18

The worldwide upsurge of neuroscience research through the BRAIN Initiative, Human Brain Project, and19

other efforts is yielding unprecedented levels of experimental findings from many different species, brain20

regions, scales and techniques. As highlighted in the BRAIN Initiative 2025 report,1 these initiatives21

require computational tools to consolidate and interpret the data, and translate isolated findings into an22

understanding of brain function. Biophysically-detailed multiscale modeling (MSM) provides a unique23

method for integrating, organizing and bridging these many types of data. For example, data coming from24

brain slices must be compared and consolidated with in vivo data. These data domains cannot be25

compared directly, but can be potentially compared through simulations that permit one to switch readily26

back-and-forth between slice-simulation and in vivo simulation. Furthermore, these multiscale models27

permit one to develop hypotheses about how biological mechanisms underlie brain function. The MSM28

approach is essential to understand how subcellular, cellular and circuit-level components of complex neural29

systems interact to yield neural function and behavior.2–4 It also provides the bridge to more compact30

theoretical domains, such as low-dimensional dynamics, analytic modeling and information theory.5–731

NEURON is the leading simulator in the domain of multiscale neuronal modeling.8 It has 648 models32

available via ModelDB,9 and over 2,000 NEURON-based publications33

(neuron.yale.edu/neuron/publications/neuron-bibliography). However, building data-driven large-scale34

networks and running parallel simulations in NEURON is technically challenging,10 requiring integration of35

custom frameworks needed to build and organize complex model components across multiple scales. Other36

key elements of the modeling workflow such as ensuring replicability, optimizing parameters and analyzing37

results also need to be implemented separately by each user.11,12 Lack of model standardization makes it38

hard to understand, reproduce and reuse many existing models and simulation results.39

We introduce a new software tool, NetPyNE†. NetPyNE addresses these issues and relieves the user40

from much of the time-consuming coding previously needed for these ancillary modeling tasks, automating41

†NetPyNE: Network specification, simulation and analysis using Python and NEURON.
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many network modeling requirements for the setup, run, explore and analysis stages. NetPyNE enables42

users to consolidate complex experimental data with prior models and other external data sources at43

different scales into a unified computational model. Users can then simulate and analyze the model in the44

NetPyNE framework in order to better understand brain structure, brain dynamics and ultimately brain45

structure-function relationships. The NetPyNE framework combines: 1. flexible, rule-based, high-level46

standardized specifications covering scales from molecule to cell to network; 2. efficient parallel simulation47

both on stand-alone computers and in high-performance computing (HPC) clusters; 3. automated data48

analysis and visualization (e.g., connectivity, neural activity, information theoretic analysis);49

4. standardized input/output formats, importing of existing NEURON cell models, and conversion to/from50

NeuroML;13,14 5. automated parameter tuning (molecular to network levels) using grid search and51

evolutionary algorithms. All tool features are available programmatically or via an integrated graphical52

user interface (GUI). This centralized organization gives the user the ability to interact readily with the53

various components (for building, simulating, optimizing and analyzing networks), without requiring54

additional installation, setup, training and format conversion across multiple tools.55

NetPyNE’s high-level specifications are implemented as a declarative language designed to facilitate56

the definition of data-driven multiscale network models by accommodating many of the intricacies of57

experimental data, such as complex subcellular mechanisms, the distribution of synapses across58

fully-detailed dendrites, and time-varying stimulation. Contrasting with the obscurity of raw-code59

descriptions used in many existing models,15 NetPyNE’s standardized language provides transparent and60

manageable descriptions. Model specifications are then translated into the necessary NEURON components61

via built-in algorithms. This approach cleanly separates model specifications from the underlying technical62

implementation. Users avoid complex low-level coding, preventing implementation errors, inefficiencies and63

flawed results that are common during the development of complex multiscale models. Crucially, users64

retain control of the model design choices, including the conceptual model, level of biological detail, scales65

to include, and biological parameter values. The NetPyNE tool allows users to shift their time, effort and66

focus from low-level coding to designing a model that matches the biological details at the chosen scales.67

NetPyNE is one of several tools that facilitate network modeling with NEURON: neuroConstruct,1668

PyNN,17 Topographica,18 ARACHNE19 and BioNet.20 NetPyNE differs from these in terms of the range69

of scales, from molecular up to large networks and extracellular space simulation – it is the only tool that70

supports NEURON’s Reaction-Diffusion (RxD) module.21,22 It also provides an easy declarative format for71

the definition of complex, experimentally-derived rules to distribute synapses across dendrites. NetPyNE is72

also unique in integrating a standardized declarative language, automated parameter optimization and a73

GUI designed to work across all these scales.74

NetPyNE therefore streamlines the modeling workflow, consequently accelerating the iteration75

between modeling and experiment. By reducing programming challenges, our tool also makes multiscale76

modeling highly accessible to a wide range of users in the neuroscience community. NetPyNE is publicly77

available from www.netpyne.org, which includes installation instructions, documentation, tutorials,78

example models and Q&A forums. The tool has already been used by over 40 researchers in different labs79

to train students and to model a variety of brain regions and phenomena (see80

www.netpyne.org/models).23–26 Additionally, it has also been integrated with other tools in the81
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neuroscience community: the Human Neocortical Neurosolver (https://hnn.brown.edu/),27,28 Open Source82

Brain29 (www.opensourcebrain.org),14 and the Neuroscience Gateway30 (www.nsgportal.org).83

2 Results84

2.1 Tool overview and workflow85

Figure 1: Overview of NetPyNE components and workflow. Users start by specifying the network

parameters and simulation configuration using a high-level JSON-like format. Existing NEURON and Neu-

roML models can be imported. Next, a NEURON network model is instantiated based on these specifications.

This model can be simulated in parallel using NEURON as the underlying simulation engine. Simulation

results are gathered in the master node. Finally, the user can analyze the network and simulation results us-

ing a variety of plots; save to multiple formats or export to NeuroML. The Batch Simulation module enables

automating this process to run multiple simulations on HPCs and explore a range of parameter values.

NetPyNE’s workflow consists of four main stages: 1. high-level specification, 2. network instantiation,86

3. simulation and 4. analysis and saving (Fig. 1). The first stage involves defining all the parameters87

required to build the network, from population sizes to cell properties to connectivity rules, and the88

simulation options, including duration, integration step, variables to record, etc. This is the main step89
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requiring input from the user, who can provide these inputs either programmatically with NetPyNE’s90

declarative language, or by using the GUI. NetPyNE also enables importing of existing cell models for use91

in a network.92

The next stages can be accomplished with a single function call – or mouse click if using the GUI. The93

network instantiation step consists of creating all the cells, connections and stimuli based on the high-level94

parameters and rules provided by the user. The instantiated network is represented as a Python95

hierarchical structure that includes all the NEURON objects required to run a parallel simulation. This is96

followed by the simulation stage, where NetPyNE takes care of distributing the cells and connections across97

the available nodes, running the parallelized simulation, and gathering the data back in the master node.98

Here, NetPyNE is using NEURON as its back-end simulator, but all the technical complexities of parallel99

NEURON are hidden to the user. In the final stage, the user can plot a wide variety of figures to analyze100

the network and simulation output. The model and simulation output can be saved to common file formats101

and exported to NeuroML, a standard description for neural models.14 This enables exploring the data102

using other tools (e.g. MATLAB) or importing and running the model using other simulators (e.g., NEST).103

An additional overarching component enables users to automate these steps to run batches of104

simulations to explore model parameters. The user can define the range of values to explore for each105

parameter and customize one of the pre-defined configuration templates to automatically submit all the106

simulation jobs on multi-processor machines or supercomputers.107

Each of these stages is implemented in modular fashion to make it possible to follow different108

workflows such as saving an instantiated network and then loading and running simulations at a later time.109

The following sections provide additional details about each simulation stage.110

2.2 High-level specifications111

A major challenge in building models is combining the data from many scales. In this respect, NetPyNE112

offers a substantial advantage by employing a human-readable, clean, rule-based shareable declarative113

language to specify networks and simulation configuration. These standardized high-level specifications114

employ a compact JSON-compatible format consisting of Python lists and dictionaries (Fig. 2). The115

objective of the high-level declarative language is to allow users to accurately describe the particulars and116

patterns observed at each biological scale, while hiding all the complex technical aspects required to117

implement them in NEURON. For example, one can define a probabilistic connectivity rule between two118

populations, instead of creating potentially millions of cell-to-cell connections with Python or hoc for119

loops. The high-level language enables structured specification of all the model parameters: populations,120

cell properties, connectivity, input stimulation and simulation configuration.121

2.2.1 Population and cell parameters122

Users define network populations, including their cell type, number of cells or density (in cells/mm3), and123

their spatial distribution. Fig. 2A-i,ii show setting of yrange and alternatively setting numCells or density124

for two cell types in the network. Morphological and biophysical properties can then be applied to subsets125
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of cells using custom rules. This enables, for example, setting properties for all cells in a population with a126

certain “cell type” attribute or within a spatial region. The flexibility of the declarative rule-based method127

allows the heterogeneity of cell populations observed experimentally to be captured. It also allows the use128

of cell implementations of different complexity to coexist in the same network, useful in very large models129

where full multi-scale is desired but cannot be implemented across all cells due to the computational size of130

the network. These alternative implementations could include highly simplified cell models such as131

Izhikevich, AdEx or precalculated point neuron models.31–33 These can be combined in the same network132

model or swapped in and out: e.g., 1. explore overall network dynamics using simple point-neuron models;133

2. re-explore with more biologically realistic complex models to determine how complex cell dynamics134

contribute alters network dynamics. We also note that order of declaration is arbitrary; as here, one can135

define the density of typed cells before defining these types. In Fig. 2A-iii,iv, we define the two different136

PY R models whose distribution was defined in A-i,ii. The simple model is simple enough to be fully137

defined in NetPyNE – 1 compartment with Hodgkin-Huxley (hh) kinetics with the parameters listed (here138

the original hh parameters are given; typically these would be changed). More complex cells could also be139

defined in NetPyNE in this same way. More commonly, complex cells would be imported from hoc140

templates, Python classes or NeuroML templates, as shown in Fig. 2A-iv. Thus, any cell model available141

online can be downloaded and used as part of a network model (non-NEURON cell models must first be142

translated into NMODL/Python).34 Note that unlike the other statements, Fig. 2A-iv is a procedure call143

rather than the setting of a dictionary value. The importCellParams() procedure call creates a new144

dictionary with NetPyNE ’s data structure, which can then be modified later in the script or via GUI,145

before network instantiation.146

NetPyNE’s declarative language also supports NEURON’s reaction-diffusion RxD specifications of147

Regions, Species and Reactions.21,22 RxD simplifies the declaration of the chemophysiology – intracellular148

and extracellular signaling dynamics – that complements electrophysiology. During network instantiation,149

RxD declarative specifications are translated into RxD components within or between cells of the150

NetPyNE-defined network. This adds additional scales – subcellular, organelle, extracellular matrix – to151

the exploration of multiscale interactions, e.g., calcium regulation of HCN channels promoting persistent152

network activity.35,36153

2.2.2 Connectivity and stimulation parameters154

NetPyNE is designed to facilitate network design – connectivity rules are flexible and broad in order to155

permit ready translation of many different kinds of experimental observations. Different subsets of pre- and156

post-synaptic cells can be selected based on a combinations of attributes such as cell type and spatial157

location (Fig. 2A-v,vi) Users can then select the target synaptic mechanisms (e.g., AMPA, AMPA/NMDA,158

GABAA). In the case of multicompartment cells, synapses can be distributed across a list of cell locations159

Multiple connectivity functions are available including all-to-all, probabilistic, fixed convergence and fixed160

divergence. The connectivity pattern can also be defined by the user via a custom connectivity matrix.161

Alternatively, connectivity parameters, typically including weight, probability and delay, can be specified162

as a function of pre- and post-synaptic properties. This permits instantiation of biological correlations such163

as the dependence of connection delay on distance, or a fall-off in connection probability with distance.164
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Figure 2: High-level specification of network parameters. A) Programmatic parameter specification

using standardized declarative JSON-like format. i,ii: specification of two populations iii,iv: cell parameter

definitions; v,vi connectivity rules. B) GUI-based parameter specification, showing the definition of popu-

lations equivalent to those in panel A. C) Schematic of network model resulting from the specifications in

A.

Electrical gap junctions and learning mechanisms – including spike-timing dependent plasticity and165

reinforcement learning – can also be incorporated.166

NetPyNE supports specification of subcellular synaptic distribution along dendrites. This allows167

synaptic density maps obtained via optogenetic techniques to be directly incorporated in networks. Fig. 3A168

left shows the layout for one such technique known as sCRACM (subcellular Channelrhodopsin-2-Assisted169

Circuit Mapping).37 A density map of cell activation measured from the soma is determined through light170
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stimulation at the points on the grid in a slice whose presynaptic boutons from a particular projection, in171

this case from thalamus, have been tagged with channelrhodopsin (Fig. 3A). NetPyNE places synapses172

randomly based on location correspondence on a dendritic tree which can be either simple or173

multicompartmental (Fig. 3B). Here again, the automation of synapse placements permits models of174

different complexity to be readily swapped in and out. Depending on the data type and whether one wants175

to use averaging, the location maps may be based on 1D, 2D, or 3D tissue coordinates, with the major176

y-axis reflecting normalized cortical depth (NCD) from pia to white matter. Alternatively, NetPyNE can177

define synapse distributions based on categorical information for dendritic subsets: e.g., obliques or spine178

densities, or on path distance from the soma, apical nexus or other point. As with the density maps, these179

rules will automatically adapt to simplified morphologies. NetPyNE permits visualization of these various180

synaptic-distribution choices and cellular models via dendrite-based synapse density plots (Fig. 3C), which181

in this case extrapolates from the experimental spatial-based density plot in Fig. 3A.37–40182

Network models often employ artificial stimulation to reproduce the effect of afferent inputs that are183

not explicitly modeled, e.g., ascending inputs from thalamus and descending from V2 targeting a V1184

network. NetPyNE supports a variety of stimulation sources, including current clamps, random currents,185

random spike generators or band-delimited spike or current generators. These can be placed on target cells186

using the same flexible, customizable rules previously described for connections. Users can also employ187

experimentally recorded input patterns.188

2.2.3 Simulation configuration189

Up to here, we have described the data structures, that defines network parameters: popParams,190

cellParams, connParams, etc. Next, the user will configure parameters related to a particular simulation191

run, such as simulation duration, time-step, parallelization options, etc. These parameters will also control192

output: variables to plot or to record for graphing – e.g., voltage or calcium concentration from particular193

cells, LFP recording options, file save options, and in what format, etc. In contrast to network and cell194

parameterization, all simulation options have default values so only those being customized are required.195

2.3 Network instantiation196

NetPyNE generates a simulatable NEURON model containing all the elements and properties described by197

the user in the rule-based high-level specifications. As described above, declarations may include molecular198

processes, cells, connections, stimulators and simulation options. After instatiation, the data structures of199

both the original high-level specifications and the resultant network instance can be accessed200

programmatically or via GUI.201

Traditionally, it has been up to the user to provide an easy way to access the components of a202

NEURON network model, e.g., the connections or stimulators targeting a cell, the sections in a cell, or the203

properties and mechanisms in each section. This feature is absent in many existing models. Hence,204

inspecting these models requires calling multiple NEURON functions (e.g., SectionList.allroots(),205

SectionList.wholetree() and section.psection()). Other models include some form of indexing for206
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Figure 3: Specification of dendritic distribution of synapses. A) Optogenetic data provides synapse

density across the 2D grid shown at left.38 B) Data are imported directly into NetPyNE which automatically

calculates synapse location in simplified or full multicompartmental representations of a pyramidal cell. C)

Corresponding synaptic density plot generated by NetPyNE.

the elements at some scales, but, given this is not enforced, their structure and naming can vary207

significantly across models.208

In contrast, all networks generated by NetPyNE are consistently represented as a nested Python209

structure. The root of the instantiated network is the net object (Fig. 4). net contains a list of cells; each210

cell contains lists or dictionaries with its properties, its sections, its stimulators. Each section sec contains211

dictionaries with its morphology and mechanisms. For example, once the network is instantiated, the212

sodium conductance parameter for cell#5 can be accessed as net.cells[5].secs.soma.mechs.hh.gbar.213

This data structure also includes all the NEURON objects – Sections, NetCons, NetStims, IClamps, etc.214

embedded hierarchically, and accessible via the hObj dictionary key of each element.215

2.4 Parallel simulation216

Computational needs for running much larger and more complex neural simulations are constantly217

increasing as researchers attempt to reproduce fast-growing experimental datasets.2,4, 10,23,41,42218

Fortunately, parallelization methods and high performance computing (HPC, supercomputing) resources219

are becoming increasingly available to the average user.30,43–48220

The NEURON simulator provides a ParallelContext module, which enables parallelizing the simulation221

computations across different nodes. However, this remains a complex process that involves distributing222

computations across nodes in a balanced manner, gathering and reassembling simulation results for223

post-processing, and ensuring simulation results are replicable and independent of the number of processors224

used. Therefore, appropriate and efficient parallelization of network simulations requires design,225

implementation and deployment of a variety of techniques, some complex, many obscure, mostly226

inaccessible to the average user.10227
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Figure 4: Instantiated network hierarchical data model. The instantiated network is represented

using a standardized hierarchically-organized Python object that differs from the NetPyNE data structure

of Fig. 1. Defined NEURON simulator objects are represented as boxes with red borders and correspond to

the object type accessed via h.objName. These objects provide direct to all elements, state variables and

parameters to be simulated.

NetPyNE manages these burdensome tasks so that the user can run take a serial to a parallelized228

simulations with a single function call or mouse click. Cells are distributed across processors using a229

round-robin algorithm, which generally results in balanced computation load on each processor.10,49 After230

the simulation has run, NetPyNE gathers in the master all the network metadata (cells, connections, etc.)231

and simulation results (spike times, voltage traces, LFP signal, etc.) for analysis. As models scale up, it232

becomes unfeasible to store the simulation results on a single centralized master node. NetPyNE offers233

distributed data saving methods that reduce both the runtime memory required and the gathering time.234

Distributed data saving means multiple compute nodes can write information in parallel, either at intervals235

during simulation runtime, or once the simulation is completed. The output files are later merged for236

analysis.237

Random number generators (RNGs) are often problematic in hand-written parallelized code; careful238

management of seeds is required since use of the same seed or seed-sets across nodes will result in different239

random streams when the number of nodes is changed. Since random values are used to generate cell240

locations, connectivity properties, spike times of driving inputs, etc., inconsistent streams will cause a241

simulation to produce different results when going from serial to parallel or when changing the number of242

nodes. In NetPyNE, RNGs are initialized based on seed values created from associated pre- and243
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post-synaptic cell global identifiers (gids) which ensures simulation stable results across different numbers244

of cores. Specific RNG streams are associated to purposive seeds (e.g., connectivity or locations) and to a245

global seed, allowing different random, but replicable, networks to be run with change of the single global246

seed. Similarly, manipulation of purposive seeds can be used to run, for example, a network with identical247

wiring but different random driving inputs.248

We previously performed parallelization performance analyses that demonstrated run time scales249

appropriately as a function of number of cells (tested up to 100,000) and compute nodes (tested up to250

512).10 Simulations were developed and executed using NetPyNE and NEURON on the XSEDE Comet251

supercomputer via the Neuroscience Gateway30 (www.nsgportal.org). The Neuroscience Gateway, which252

provides neuroscientists with free and easy access to supercomputers, includes NetPyNE as one of the tools253

available via their web portal. Larger-scale models – including the M1 model with 10k multicompartment254

neurons and 30 million synapses23 and the thalamocortical model with over 80k point neurons and 300255

million synapses24,50 – have been simulated in both the XSEDE Comet supercomputer and Google Cloud256

supercomputers. Run time to simulate one second of the multicompartment-neuron network required 47257

minutes on 48 cores, and 4 minutes on 128 cores for the point-neuron network.258

2.5 Analysis of network and simulation output259

To extract conclusions from neural simulations it is necessary to use further tools to process and present260

the large amounts of raw data generated. NetPyNE includes built-in implementations of a wide range of261

visualization and analysis functions commonly used in neuroscience (Fig. 5). All analysis functions include262

options to customize the desired output. Functions to visualize and analyze network structure are available263

without a simulation run: 1. intracellular and extracellular RxD species concentration in a 2D region;264

2. matrix or stacked bar plot of connectivity; 3. 2D representation of cell locations and connections; and265

4. 3D cell morphology with color-coded variable (e.g., number of synapses per segment). After a simulation266

run, one can visualize and analyze simulation output: 1. time-resolved traces of any recorded cell variable267

(e.g., voltage, synaptic current or ion concentration); 2. relative and absolute amplitudes of post-synaptic268

potentials; 3. spiking statistics (boxplot) of rate, the interspike interval coefficient of variation (ISI CV)269

and synchrony;51 4. power spectral density of firing rates; and 5. information theory measures, including270

normalized transfer entropy and Granger causality.271

A major feature of our tool is the ability to place extracellular electrodes to record LFPs at any272

arbitrary 3D locations within the network, similar to the approach offered by the LFPy52 and LFPsim53
273

add-ons to NEURON. The LFP signal at each electrode is obtained by summing the extracellular potential274

contributed by each neuronal segment, calculated using the ”line source approximation” and assuming an275

Ohmic medium with conductivity.53,54 The user can then plot the location of each electrode, together with276

the recorded LFP signal and its power spectral density and spectrogram (Fig. 6). The ability to record and277

analyze LFPs facilitates reproducing experimental datasets that include this commonly used measure.54278
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Figure 5: NetPyNE visualization and analysis plots for a simple 3-layer network example A)

Connectivity matrix, B) stacked bar graph, C) 2D representation of cells and connnetions, D) voltage traces

of 3 cells, E) raster plot, F) population firing rate statistics (boxplot).

Figure 6: LFP recording and analysis. A) LFP signals (left) from 10 extracellular recording electrodes

located around a morphologically detailed cell (right) producing a single action potential (top-right). B)

LFP signals, PSDs and spectrograms (left and center) from 4 extracellular recording electrodes located at

different depths of a network of 120 5-compartment neurons (right) producing oscillatory activity (top-left).

2.6 Data saving and exporting279

NetPyNE permits saving and loading of all model components and results separately or in combination:280

high-level specifications, network instance, simulation configuration, simulation data, and simulation281
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analysis results. Saving network instances enables loading a specific saved network with all explicit cells282

and connections, without the need to re-generate these from the high-level connectivity rules. NetPyNE283

supports several standard file formats: pickle, JSON, MAT, and HDF5. The use of common file formats284

allows network structure and simulation results to be easily analyzed using other tools such as MATLAB285

or Python Pandas.286

Network instances can also be exported to or imported from NeuroML,14 a standard declarative287

format for neural models, and SONATA (https://github.com/AllenInstitute/sonata), a format standard for288

neural models proposed by the Blue Brain Project and Allen Institute for Brain Science. These formats are289

also supported by other simulation tools, so that models developed using NetPyNE can be exported,290

explored and simulated in other tools including Brian,55 MOOSE,56,57 PyNN,17 Bionet20 or Open Source291

Brain.29 Similarly simulations from these other tools can be imported into NetPyNE . This feature also292

enables any NetPyNE model to be visualized via the Open Source Brain portal, and permits a NeuroML293

model hosted on the portal to be parallelized across multiple cores (e.g., on HPC) using NetPyNE.294

Long simulations of large networks take a long time to run. Due to memory and disk constraints, it is295

not practical to save all state variables from all cells during a run, particularly when including signaling296

concentrations at many locations when using the reaction-diffusion module. Therefore, NetPyNE includes297

the option of recreating single cell activity in the context of spike inputs previously recorded from a298

network run. These follow-up simulations do not typically require an HPC since they are only running the299

one cell. The user selects a time period, a cell number, and a set of state variables to record or graph.300

2.7 Parameter optimization and exploration via batch simulations301

Parameter optimization involves finding sets of parameters that lead to a desired output in a model. This302

process is often required since both single neuron and network models include many not-fully constrained303

parameters that can be modified within a known biological range of values. Network dynamics can be304

highly sensitive, with small parameter variations leading to large changes. This then requires searching305

within complex multidimensional spaces to match experimental data, with degeneracy such that multiple306

parameter sets may produce matching activity patterns.58–60 A related concept is that of parameter307

exploration. Once a model is tuned to reproduce biological features, it is common to explore individual308

parameters to understand their relation to particular model features, e.g., how synaptic weights affect309

network oscillations,61 or the effect of different pharmacological treatments on pathological symptoms.26,62310

Many different approaches exist to perform parameter optimization and exploration. Manual tuning311

usually requires expertise and a great deal of patience.63,64 Therefore, NetPyNE provides built-in support312

for several automated methods that have been successfully applied to both single cell and network313

optimization: grid-search and various types of evolutionary algorithms (EAs).2,65–70 Grid search refers to314

evaluating combinations on a fixed set of values for a chosen set of parameters, resulting in gridded315

sampling of the multidimensional parameter space. EAs search parameter space more widely and are316

computationally efficient when handling complex, non-smooth, high-dimensional parameter spaces.64 They317

effectively follow the principles of biological evolution: here a population of models evolves by changing318

parameters in a way that emulates crossover events and mutation over generations until individuals reach a319
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desired fitness level.320

NetPyNE provides an automated parameter optimization and exploration framework specifically321

tailored to multiscale biophysically-detailed models. Our tool facilitates the multiple steps required:322

1. parameterizing the model and selecting appropriate value ranges; 2. providing a fitness functions;323

3. customizing the optimization/exploration algorithm options; 4. running the batch simulations; and324

5. managing and analyzing batch simulation parameters and outputs. To facilitate parameter selection, all325

of the network specifications are available to the user via the NetPyNE declarative data structure – from326

molecular concentrations and ionic channel conductances to long-range input firing rates – freeing the user327

from having to identify parameters or state variables at the simulator level.328

Both parameter optimization and exploration involve running many instances of the network with329

different parameter values, and thus typically require parallelization. For these purposes, NetPyNE330

parallelization is implemented at two levels: 1. simulation level – cell computations distributed across331

nodes as described above; and 2. batch level – many simulations with different parameters executed in332

parallel.65 NetPyNE includes predefined execution setups to automatically run parallelized batch333

simulations on different environments: 1. multiprocessor local machines or servers via standard message334

passing interface (MPI) support; 2. the Neuroscience Gateway (NSG) online portal, which includes335

compressing the files and uploading a zip file via RESTful services; 3. HPC systems (supercomputers) that336

employ job queuing systems such as PBS Torque or SLURM (e.g., Google Cloud Computing HPCs). Users337

will be able to select the most suitable environment setup and customize options if necessary, including any338

optimization algorithm metaparameters such as population size, mutation rate for EAs. A single high-level339

command will then take care of launching the batch simulations to optimize or to explore the model.340

2.8 Graphical User Interface (GUI)341

The GUI enables users to more intuitively access NetPyNE functionalities. It divides the workflow into two342

tabs: network definition and network exploration, simulation and analysis. From the first tab it is possible343

to define – or import from various formats – the high-level network parameters/rules and simulation344

configuration (Fig. 2B). Parameter specification is greatly facilitated by having clearly structured and345

labeled sets of parameters, graphics to represent different components, drop-down lists, autocomplete forms346

and automated suggestions. The GUI also includes an interactive Python console and full bidirectional347

synchronization with the underlying Python-based model – parameters changed via the Python console348

will be reflected in the GUI, and vice versa. In the second tab the user can interactively visualize the349

instantiated network in 3D, run parallel simulations and display all the available plots to analyze the350

network and simulation results. An example of a multiscale model visualized, simulated and analyzed using351

the GUI is shown in Fig. 7. The code and further details of this example are available at352

https://github.com/Neurosim-lab/netpyne/tree/development/examples/rxd net.353

The GUI is particularly useful for beginners, students or non-computational researchers who can354

rapidly build networks without knowledge of coding and without learning NetPyNE’s declarative syntax.355

From there, they can simulate and explore multiscale subcellular, cellular and network models with varying356

degrees of complexity, from integrate-and-fire up to large-scale simulations that require HPCs. The GUI is357
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also useful for modelers, who can easily prototype new models graphically and later extend the model358

programmatically using automatically generated Python scripts. Finally, the GUI is useful – independently359

of expertise level – to explore and visualize existing models developed by oneself, developed by other users360

programmatically, or imported from other simulators. Understanding unfamiliar models is easier if users361

can navigate through all the high-level parameters in a structured manner and visualize the instantiated362

network structure, instead of just looking at the model definition code.71363

Figure 7: NetPyNE graphical user interface (GUI) showing a multiscale model. Background shows

3D representation of example network with 6 populations of multi-channel multi-compartment neurons (back-

ground); plots from left to right: cell traces (voltage, intracellular and extracellular calcium concentration,

and potassium current); raster plot; extracellular potassium concentration; LFP signals recorded from 3

electrodes; and 3D location of the LFP electrodes within network.

2.9 Application examples364

Our recent model of primary motor cortex (M1) microcircuits23,26,66 constitutes an illustrative example365

where NetPyNE enabled the integration of complex experimental data at multiple scales: it simulates over366

10,000 biophysically detailed neurons and 30 million synaptic connections. Neuron densities, classes,367

morphology and biophysics, and connectivity at the long-range, local and dendritic scale were derived from368

published experimental data.38–40,72,73,73–79 Results yielded insights into circuit information pathways,369

oscillatory coding mechanisms and the role of HCN in modulating corticospinal output.23 A scaled down370

version (180 neurons) of the M1 model is illustrated Fig. 8.371

Several models published in other languages have been converted into NetPyNE to increase their372
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Figure 8: Model of M1 microcircuits developed using NetPyNE (scaled down version). NetPyNE

GUI showing 3D representation of M1 network (background), raster plot and population firing rate statistics

(top left), voltage traces (bottom left) and firing rate power spectral density (top right).

usability and flexibility. These include models of cortical circuits exploring EEG/MEG signals373

(https://hnn.brown.edu/),27,28 interlaminar flow of activity24,50 (Fig. 9A) and epileptic activity62
374

(Fig. 9B); a dentate gyrus network80,81 (Fig. 9C); and CA1 microcircuits82,83 (Fig. 9D). As a measure of375

how compact the model definition is, we compared the number of source code lines (excluding comments,376

blank lines, cell template files and mod files) of the original and NetPyNE implementations (see Table 2.9).377

378

Model description Original language Original num lines NetPyNE num lines

Dentate gyrus80 NEURON/hoc 1029 261

CA1 microcircuits82 NEURON/hoc 642 306

Epilepsy in thalamocortex62 NEURON/hoc 556 201

EEG/MEG in cortex (HNN model)27,28 NEURON/Python 2288 924

Motor cortex with RL65 NEURON/Python 1171 362

Cortical microcircuits50 PyNEST 689 198

379

380

3 Discussion381

NetPyNE is a high-level Python interface to the NEURON simulator that facilitates the definition, parallel382

simulation, optimization and analysis of data-driven brain circuit models. NetPyNE provides a systematic,383
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Figure 9: Published models converted to NetPyNE. All figures were generated using the NetPyNE

version of the models. A) Raster plot and boxplot statistics of the Potjans and Diesmann thalamocortical

network originally implemented in NEST.24,50 B) Raster plot and voltage traces of a thalamocortical net-

work exhibiting epileptic activity originally implemented in NEURON/hoc.62 C) 3D representation of the

cell types and network topology, and raster plots of dentate gyrus model originally implemented in NEU-

RON/hoc.80,81 D) Connectivity rules (top) and voltage traces of 2 cell types (bottom) of a hippocampal

CA1 model originally implemented in NEURON/hoc.82,83

standardized approach to biologically-detailed multiscale modeling. Its broad scope offers users the option384

to evaluate neural dynamics from a variety of scale perspectives: e.g., 1. network simulation in context of385

the brain as an organ – i.e., with extracellular space included; 2. focus at the cellular level in the context of386

the network; 3. evaluate detailed spine and dendrite modeling in the context of the whole cell and the387

network, etc. Swapping focus back-and-forth across scales allows the investigator to understand scale388

integration in a way that cannot be done in the experimental preparation. In this way, multiscale modeling389

17

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/461137doi: bioRxiv preprint 

https://doi.org/10.1101/461137
http://creativecommons.org/licenses/by-nc-nd/4.0/


complements experimentation by combining and making interpretable previously incommensurable390

datasets. In silico models developed with NetPyNE can serve as testbeds that can be probed extensively391

and precisely in ways that parallel experimentation to make testable predictions. Simulation can also go392

beyond the capabilities of physical experimentation to build comprehension and develop novel theoretical393

constructs.2,4, 41,84394

To ensure accessibility to a wide range of researchers, including modelers, students and395

experimentalists, NetPyNE combines many of the modeling workflow features under a single framework396

with both a programmatic and graphical interface. The GUI provides an intuitive way to learn to use the397

tool and explore all the different components and features interactively. Exporting the generated network398

to a Python script enables more advanced users to extend the model programmatically.399

3.1 Multiscale specifications using a declarative language400

By providing support for NEURON’s intracellular and extracellular reaction-diffusion module (RxD),21,22401

NetPyNE helps to couple molecular-level chemophysiology – historically neglected in computational402

neuroscience – to the classical electrophysiology at subcellular, cellular and network scales. RxD allows the403

user to specify and simulate the diffusion of molecules (e.g., calcium, potassium or IP3) intracellularly,404

subcellularly (by including organelles such as endoplasmic reticulum and mitochondria), and extracellularly405

in the context of signaling and enzymatic processing – e.g., metabolism, phosphorylation, buffering, second406

messenger cascades. This relates the scale of molecular interactions with that of cells and networks.407

NetPyNE rules allow users to not only define connections at the cell-to-cell level, but also to408

compactly express highly specific patterns of the subcellular distribution of synapses, e.g., depending on409

the neurite cortical depth or path distance from soma. Such distinct innervation patterns have been shown410

to depend on brain region, cell type and location and are likely to subserve important information411

processing functions and have effects at multiple scales.37,39,85,86 Some simulation tools (GENESIS,56412

MOOSE, PyNN17 and neuroConstruct16) include basic dendritic level connectivity features, and others413

(BioNet20) allow for Python functions that describe arbitrarily complex synapse distribution and414

connectivity rules. However, NetPyNE is unique in facilitating the description of these synaptic415

distribution patterns via flexible high-level declarations that require no algorithmic coding.416

NetPyNE’s high-level language has advantages over procedural description in that it provides a417

human-readable, declarative format, accompanied by a parallel graphical representation, making models418

easier to read, modify, share and reuse. Other simulation tools such as PyNN, NEST, Brian or BioNet419

include high-level specifications in the context of the underlying procedural language used for all aspects of420

model instantiation, running and initial analysis. Procedural languages require ordering by the logic of421

execution rather than the logic of the conceptual model. Since the NetPyNE declarative format is order422

free, it can be cleanly organized by scale, by cell type, or by region at the discretion of the user. This423

declarative description can then be stored in standardized formats that can be readily translated into424

shareable data formats for use with other simulators. High-level specifications are translated into a network425

instance using previously tested and debugged implementations. Compared to creating these elements426

directly via procedural coding (in Python/NEURON), our approach reduces the chances of coding bugs,427
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replicability issues and inefficiencies,428

The trade-off is that users of a declarative language are constrained to express inputs according to the429

standardized formats provided, offering somewhat less flexibility compared to a procedural language.430

However, NetPyNE has been designed so that many fields are agglutinative, allowing multiple descriptors431

to be provided together to hone in on particular subsets of cells, subcells or subnetworks, e.g., cells of a432

certain type within a given spatial region. Additionally, users can add procedural NEURON/Python code433

between the instantiation and simulation stages of NetPyNE in order to customize or add non-supported434

features to the model.435

Developers of several applications and languages, including NeuroML, PyNN, SONATA and NetPyNE,436

are working together to ensure interoperability between their different formats. NeuroML14 is a widely-used437

model specification language for computational neuroscience which can store instantiated networks through438

an explicit list of populations of cells and their connections, without higher level specification rules. We are439

collaborating with the NeuroML developers to incorporate high-level specifications similar to those used in440

NetPyNE, e.g., compact connectivity rules (see github.com/NeuroML/NeuroMLlite). The hope is that441

these compact network descriptions become a standard in the field so that they can be used to produce442

identical network instances across different simulators. To further promote standardization and443

interoperability, we and other groups working on large-scale networks founded the INCF Special Interest444

Group on “Standardized Representations of Network Structures” (www.incf.org/activities/standards-and-445

best-practices/incf-special-interest-groups/incf-sig-on-standardised).446

3.2 Integrated parameter optimization447

A major difficulty in building complex models is optimizing its many parameters within biological448

constrains to reproduce experimental results.63,64 Multiple tools are available to fit detailed single cell449

models to electrophysiological data: BluePyOpt,87 Optimizer,88 Pypet89 or NeuroTune.90 However, these450

optimizers work within a single scale rather than optimizing across scales to study complex cells in complex451

circuits. NetPyNE provides a parameter optimization framework designed specifically to tackle this452

problem, thus enabling and encouraging the exploration of interactions across scales. It also closely453

integrates with the simulator rather than being a standalone optimizer, which would require expertise to454

interface properly. NetPyNE offers multiple optimization methods, including evolutionary algorithms,455

which are computationally efficient for handling the non-smooth high-dimensional parameter spaces found456

in this domain.63,64,91457

3.3 Use of NetPyNE in education458

In addition to the tool itself, we have developed detailed online documentation, step-by-step tutorials459

(www.netpyne.org), and example models. The code has been released as open source460

(github.com/Neurosim-lab/netpyne). Ongoing support is provided via a mailing list (with 50 subscribed461

users) and active Q&A forums (150 posts and over 5,000 views in the first year):462

www.netpyne.org/mailing, www.netpyne.org/forum and netpyne.org/neuron-forum. Users have been able463
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to quickly learn to build, simulate and explore models that illustrate fundamental neuroscience concepts,464

making NetPyNE a useful tool to train students. To disseminate the tool we have also provided NetPyNE465

training at conference workshops and tutorials, summer schools and university courses. Several labs are466

beginning to use NetPyNE to train students and postdocs.467

3.4 Use of NetPyNE in research468

Models being developed in NetPyNE cover a wide range of regions including thalamus, sensory and motor469

cortices,23,26 claustrum,25 striatum, cerebellum, hippocampus. Application areas being explored include470

schizophrenia, epilepsy, transcranial magnetic stimulation (TMS), and electro- and471

magneto-encephalography (EEG/MEG) signals.92 A full list of areas and applications is available at472

www.netpyne.org/models.473

Tools such as NetPyNE that provide insights into multiscale interactions are particularly important474

for the understanding of brain disorders, which always involve interactions across spatial and temporal475

scale domains.93 Development of novel biomarkers, increased segregation of disease subtypes, new476

treatments, and personalized treatments, all require that details of molecular, anatomical, functional, and477

dynamic organization that have been demonstrated in isolation be related to one another. Simulations and478

analyses developed in NetPyNE provide a way to link these scales, from the molecular processes of479

pharmacology, to cell biophysics, electrophysiology, neural dynamics, population oscillations, EEG/MEG480

signals and behavioral measures.481

4 Methods482

4.1 Overview of tool components and workflow483

NetPyNE is implemented as a Python package that acts as a high-level interface to the NEURON484

simulator. The package is divided into several subpackages, which roughly match the components depicted485

in the workflow diagram in Fig. 1. The specs subpackage contains modules related to definition of486

high-level specifications. The sim subpackage contains modules related to running the simulation. It also487

serves as a shared container that encapsulates and provides easy access to the remaining subpackages,488

including methods to build the network or analyze the output, and the actual instantiated network and cell489

objects. From the user perspective, the basic modeling workflow is divided into three steps: defining the490

network parameters (populations, cell rules, connectivity rules, etc) inside an object of the class491

specs.NetParams; setting the simulation configuration options (run time, integration interval, recording492

option, etc) inside an object of the class specs.SimConfig; and passing these two objects to a wrapper493

function (sim.createSimulateAnalyze()) that takes care of creating the network, running the simulation494

and analyzing the output.495
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4.2 Network instantiation496

The following standard sequence of events are executed internally to instantiate a network from the497

high-level specifications in the netParams object: 1. create a Network object and add to it a set of498

Population and Cell objects based on parameters; 2. set cell properties (morphology and biophysics)499

based on cellParams parameters (checking which cells match the conditions of each rule); 3. create500

molecular-level RxD objects based on rxdParams parameters; 4. add stimulation (IClamps, NetStims, etc)501

to the cells based on stimSourceParams and stimTargetParams parameters; and 5. create a set of502

connections based on connParams and subConnParams parameters (checking which presynpatic and503

postsynaptic cells match the conn rule conditions), with the synaptic parameters specified in504

synMechParams. After this process is completed all the resulting NEURON objects will be contained and505

easily accessible within a hierarchical Python structure (object sim.net of the class Network) as depicted506

in Fig. 4.507

The network building task is further complicated by the need to implement parallel NEURON508

simulations in an efficient and replicable manner, independent of the number of processors employed.509

Random number generators (RNGs) are used in several steps of the building process, including cell510

locations, connectivity properties and the spike times of input stimuli (e.g., NetStims). To ensure random511

independent streams that can be replicated deterministically when running on different number of cores we512

employed NEURON’s Random123 RNG from the h.Random class. This versatile cryptographic quality513

RNG94 is initialized using three seed values, which, in our case, will include a global seed value and two514

other values related to unique properties of the cells involved, e.g., for probabilistic connections, the gids of515

the pre- and post-synaptic cells.516

To run NEURON parallel simulations NetPyNE employs a pc object of the class517

h.ParallelContext(), which is created when the sim object is first initialized. During the creation of the518

network, the cells are registered via the pc methods to enable exchange and recording of spikes across519

compute nodes. Prior to running the simulation, global variables, such as temperature or initial voltages520

are initialized, and the recording of any traces (e.g., cell voltages) and LFP is set up by creating521

h.Vector() containers and calling the recording methods. After running the parallel simulation via522

pc.solve(), data (cells, connections, spike times, recorded traces, LFPs, etc ) is gathered into the master523

node from all compute nodes using the pc.py alltoall() method. Alternatively, distributed saving524

enables writing the output of each node to file and combining these files after the simulation has ended.525

After gathering, the built-in analysis functions have direct access to all the network and simulation output526

data via sim.net.allCells and sim.allSimData.527

4.3 Importing and exporting528

NetPyNE enables importing existing cells in hoc or Python, including both templates/classes and529

instantiated cells. To do this NetPyNE internally runs the hoc or Python cell model, extracts all the530

relevant cell parameters (morphology, mechanisms, point processes, synapses, etc) and stores them in the531

NetPyNE JSON-like format used for high-level specifications. The hoc or Python cell model is then532
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completely removed from memory so later simulations are not affected.533

Importing and exporting to other formats such as NeuroML or SONATA requires mapping the534

different model components across formats. To ensure validity of the conversion we have compared535

simulation outputs from each tool, or converted back to the original format and compared to the original536

model. Tests on mappings between NetPyNE and NeuroML can be found at537

https://github.com/OpenSourceBrain/NetPyNEShowcase.538

4.4 Batch simulations539

Exploring or fitting model parameters typically involves running many simulations with small variations in540

some parameters. NetPyNE facilitates this process by automatically modifying these parameters and541

running all the simulations based on a set of high-level instructions provided by the user. The two fitting542

approaches – grid search and evolutionary algorithms – both require similar set up. The user creates a543

Batch object that specifies the range of parameters values to be explored and the run configuration (e.g.,544

use 48 cores on a cluster with SLURM workload manager). For evolutionary algorithms and optionally for545

grid search, the user provides a Python function that acts as the algorithm fitness function, which can546

include variables from the network and simulation output data (e.g., average firing rate of a population).547

The tool website includes documentation and examples on how to run the different types of batch548

simulations.549

Once the batch configuration is completed, the user can call the Batch.run() method to trigger the550

execution of the batch simulations. Internally, NetPyNE iterates over the different parameter551

combinations. For each one, NetPyNE will 1. set the varying parameters in the simulation configuration552

(SimConfig object) and save it to file, 2. launch a job to run the NEURON simulation based on the run553

options provided by the user (e.g., submit a SLURM job), 3. store the simulation output with a unique554

filename, and 4. repeat for the next parameter set, or if using evolutionary algorithms, calculate the fitness555

values and the next generation of individuals (parameter sets).556

To implement the evolutionary algorithm optimization we made use of the Inspyred Python package557

(https://pythonhosted.org/inspyred/). Inspyred subroutines are particularized to the neural environment,558

directly using parameters and fitness values obtained from NetPyNE data structures, and running parallel559

simulations under the NEURON environment either in multiprocessor machines via MPI or560

supercomputers via workload managers.561

4.5 Graphical User Interface562

The NetPyNE GUI is implemented on top of Geppetto,95 an open-source platform that provides the563

infrastructure for building tools for visualizing neuroscience models and data and managing simulations in564

a highly accessible way. The GUI is defined using Javascript, React and HTML5. This offers a flexible and565

intuitive way to create advanced layouts while still enabling each of the elements of the interface to be566

synchronized with the Python model. The interactive Python backend is implemented as a Jupyter567
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Notebook extension which provides direct communication with the Python kernel. This makes it possible568

to synchronize the data model underlying the GUI with a custom Python-based NetPyNE model. This569

functionality is at the heart of the GUI and means any change made to the NetPyNE model in Python570

kernel is immediately reflected in the GUI and vice versa. The tool’s GUI is available at571

https://github.com/MetaCell/NetPyNE-UI and is under active development.572

Acknowledgements573

This work was funded by the following grants: NIH grant U01EB017695, DOH01-C32250GG-3450000, NIH574

R01EB022903, NIH R01MH086638, and NIH 2R01DC012947-06A1. PG was funded by the Wellcome Trust575

(101445). We are thankful to all the contributors that have collaborated in the development of this open576

source tool via GitHub (https://github.com/Neurosim-lab/netpyne).577

Competing Interests578

None of the authors have competing interests.579

References580

1 Cornelia Bargmann, William Newsome, A Anderson, E Brown, K Deisseroth, J Donoghue, P MacLeish,581

E Marder, R Normann, J Sanes, et al. Brain 2025: a scientific vision. Brain Research through Advancing582

Innovative Neurotechnologies (BRAIN) Working Group Report to the Advisory Committee to the583

Director, NIH, 2014.584

2 Henry Markram, Eilif Muller, Srikanth Ramaswamy, Michael W. Reimann, Marwan Abdellah,585

Carlos Aguado Sanchez, Anastasia Ailamaki, Lidia Alonso-Nanclares, Nicolas Antille, Selim Arsever, Guy586

Antoine Atenekeng Kahou, Thomas K. Berger, Ahmet Bilgili, Nenad Buncic, Athanassia Chalimourda,587

Giuseppe Chindemi, Jean-Denis Courcol, Fabien Delalondre, Vincent Delattre, Shaul Druckmann,588

Raphael Dumusc, James Dynes, Stefan Eilemann, Eyal Gal, Michael Emiel Gevaert, Jean-Pierre589

Ghobril, Albert Gidon, Joe W. Graham, Anirudh Gupta, Valentin Haenel, Etay Hay, Thomas Heinis,590

Juan B. Hernando, Michael Hines, Lida Kanari, Daniel Keller, John Kenyon, Georges Khazen, Yihwa591

Kim, James G. King, Zoltan Kisvarday, Pramod Kumbhar, Sébastien Lasserre, Jean-Vincent Le Bé,592
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