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ABSTRACT	33 

Polycystic	 ovary	 syndrome	 (PCOS)	 is	 among	 the	 most	 common	 endocrine	 disorders	 of	34 

premenopausal	 women,	 affecting	 5-15%	 of	 this	 population	 depending	 on	 the	 diagnostic	35 

criteria	 applied.	 It	 is	 characterized	 by	 hyperandrogenism,	 ovulatory	 dysfunction	 and	36 

polycystic	 ovarian	 morphology.	 PCOS	 is	 a	 leading	 risk	 factor	 for	 type	 2	 diabetes	 in	 young	37 

women.	 PCOS	 is	 highly	 heritable,	 but	 only	 a	 small	 proportion	 of	 this	 heritability	 can	 be	38 

accounted	 for	 by	 the	 common	 genetic	 susceptibility	 variants	 identified	 to	 date.	 To	 test	 the	39 

hypothesis	 that	 rare	 genetic	 variants	 contribute	 to	 PCOS	 pathogenesis,	 we	 performed	40 

whole-genome	sequencing	on	DNA	from	62	families	with	one	or	more	daughters	with	PCOS.	41 

We	tested	for	associations	of	rare	variants	with	PCOS	and	 its	concomitant	hormonal	 traits	42 

using	a	quantitative	trait	meta-analysis.	We	found	rare	variants	 in	DENND1A	(P=5.31×10-5,	43 

Padj=0.019)	 that	 were	 significantly	 associated	 with	 reproductive	 and	 metabolic	 traits	 in	44 

PCOS	 families.	 Common	variants	 in	DENND1A	have	previously	 been	 associated	with	PCOS	45 

diagnosis	in	genome-wide	association	studies.	Subsequent	studies	indicated	that	DENND1A	46 

is	 an	 important	 regulator	 of	 human	 ovarian	 androgen	 biosynthesis.	 Our	 findings	 provide	47 

additional	evidence	that	DENND1A	plays	a	central	role	in	PCOS	and	suggest	that	rare	noncoding	48 

variants	contribute	to	disease	pathogenesis.	49 

	50 

INTRODUCTION	51 

Polycystic	 ovary	 syndrome	 (PCOS)	 is	 a	 common	 endocrine	 disorder	 affecting	 5-15%	 of	52 

premenopausal	 women	 worldwide1,	 depending	 on	 the	 diagnostic	 criteria	 applied.	 PCOS	 is	53 

diagnosed	 by	 two	 or	 more	 of	 its	 reproductive	 features	 of	 hyperandrogenism,	 ovulatory	54 

dysfunction,	 and	 polycystic	 ovarian	 morphology.	 It	 is	 frequently	 associated	 with	 insulin	55 

resistance	and	pancreatic	β-cell	dysfunction,	making	it	a	leading	risk	factor	for	type	2	diabetes	56 

in	young	women2.	57 

PCOS	 is	 a	 highly	 heritable	 complex	 genetic	 disorder.	 Analogous	 to	 other	 complex	 traits3,	58 

common	 susceptibility	 loci	 identified	 in	 genome-wide	 association	 studies	 (GWAS)4-8	 account	59 

for	 only	 a	 small	 proportion	 of	 the	 estimated	 genetic	 heritability	 of	 PCOS9.	 As	 GWAS	 were	60 

designed	 to	 assess	 common	 allelic	 variants,	 usually	with	minor	 allele	 frequencies	 (MAF)	 ≥2-61 

5%,	 it	 has	 been	 proposed	 that	 less	 frequently	 occurring	 variants	 with	 greater	 effect	 sizes	62 
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account	for	the	observed	deficit	in	heritability10.	Next	generation	sequencing	approaches	have	63 

identified	rare	variants	that	contribute	to	complex	disease	pathogenesis11-16.		64 

We	 tested	 the	 hypothesis	 that	 rare	 variants	 contribute	 to	 PCOS	 by	 conducting	 family-based	65 

association	 analyses	 using	 whole-genome	 sequencing	 data.	 We	 filtered	 and	 weighted	 rare	66 

variants	(MAF	≤2%)	according	to	 their	predicted	 levels	of	deleteriousness	and	grouped	them	67 

regionally	and	by	genes.	We	not	only	tested	for	associations	with	PCOS	diagnosis,	but	also	with	68 

its	 correlated,	 quantitative	 reproductive	 and	 metabolic	 trait	 levels:	 testosterone	 (T),	69 

dehydroepiandrosterone	 sulfate	 (DHEAS),	 luteinizing	 hormone	 (LH),	 follicle	 stimulating	70 

hormone	 (FSH),	 sex	 hormone	 binding	 globulin	 (SHBG),	 and	 fasting	 insulin	 (I).	 We	 then	71 

combined	the	quantitative	trait	phenotypes	using	a	meta-analysis	approach	to	identify	sets	of	72 

rare	variants	that	associate	with	altered	hormonal	levels	in	PCOS.		73 

	74 

SUBJECTS	AND	METHODS	75 

Subjects	76 

This	 study	 included	 261	 individuals	 from	 62	 families	 with	 PCOS	 who	 were	 Caucasians	 of	77 

European	 ancestry.	 Families	 were	 ascertained	 by	 an	 index	 case	 who	 fulfilled	 the	 National	78 

Institutes	of	Health	(NIH)	criteria	for	PCOS17.	Each	family	consisted	of	at	least	a	proband-parent	79 

trio.	Brothers	were	not	 included	 in	 this	study.	Phenotypic	data	and	some	genetic	analyses	on	80 

these	subjects	have	been	previously	reported18-20.	The	study	was	approved	by	the	Institutional	81 

Review	 Boards	 of	 Northwestern	 University	 Feinberg	 School	 of	 Medicine,	 Penn	 State	 Health	82 

Milton	 S.	 Hershey	 Medical	 Center,	 and	 Brigham	 and	 Women’s	 Hospital.	 Written	 informed	83 

consent	was	obtained	from	all	subjects	prior	to	study.	84 

Phenotyping	 for	 the	 dichotomous	 trait	 analysis	 (affected	 vs.	 unaffected)	 was	 performed	 as	85 

previously	 described21.	 Women	 were	 ages	 14-63	 years,	 in	 good	 health	 and	 not	 taking	86 

medications	known	to	alter	reproductive	or	metabolic	hormone	 levels	 for	at	 least	one	month	87 

prior	 to	 study.	 They	 had	 each	 had	 both	 ovaries	 and	 a	 uterus.	 Exogenous	 gonadal	 steroid	88 

administration	was	discontinued	 at	 least	 three	months	prior	 to	 the	 study.	Thyroid,	 pituitary,	89 

and	adrenal	disorders	were	excluded	by	appropriate	tests21.	Women	were	considered	to	be	of	90 

reproductive	age	if	they	were	between	the	ages	of	at	least	2	years	post-menarche	and	45	years	91 

old,	and	had	FSH	levels	≤40mIU/mL.	Hyperandrogenemia	was	defined	by	elevated	levels	of	T	92 
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(>58	 ng/dL),	 non-SHBG	 bound	 T	 (uT;	 >15	 ng/dL),	 and/or	 DHEAS	 (>2683	 ng/mL).	 Ovarian	93 

dysfunction	was	defined	as	≤6	menses	per	year.	Ovarian	morphology	was	not	assessed	because	94 

it	does	not	correlate	with	the	endocrine	phenotype6,	22.		95 

Reproductive-age	women	with	hyperandrogenemia	and	ovarian	dysfunction	were	assigned	a	96 

PCOS	phenotype.	Reproductive-age	women	with	normal	 androgen	 levels	 and	 regular	menses	97 

(every	 27-35	 days)	 were	 assigned	 an	 unaffected	 phenotype.	 Reproductive-age	 women	 with	98 

hyperandrogenemia	and	regular	menses	were	assigned	a	hyperandrogenemic	(HA)	phenotype.	99 

Because	androgen	levels	do	not	decrease	during	the	menopausal	transition23,	women	between	100 

46	 -63	 years	 with	 HA	 were	 also	 assigned	 the	 HA	 phenotype,	 regardless	 of	 menstrual	 cycle	101 

pattern.	One	 index	case	 fulfilled	 the	criteria	 for	PCOS	when	she	was	45	years	but	she	was	46	102 

years	 when	 enrolled	 in	 the	 study.	 She	 was	 confirmed	 to	 have	 persistent	 HA	 and	 ovarian	103 

dysfunction.	As	done	 in	our	previous	 linkage22	and	 family-based	association	 testing24	studies,	104 

women	with	both	PCOS	and	HA	phenotypes	were	considered	affected.	In	the	present	study,	we	105 

also	 included	 HA	 women	 between	 46-63	 years	 as	 affected.	 Women	 with	 normal	 androgen	106 

levels	 who	 were	 not	 of	 reproductive	 age	 and	 all	 fathers	 in	 the	 study	 were	 not	 assigned	 a	107 

phenotype.	108 

The	 quantitative	 trait	 analysis	 examined	 associations	 between	 rare	 variants	 and	 T,	 DHEAS,	109 

SHBG,	LH,	FSH	and	insulin	levels.	In	addition	to	the	women	included	in	the	dichotomous	trait	110 

analysis,	 women	 were	 included	 for	 quantitative	 trait	 association	 testing	 as	 follows.	 No	111 

additional	 women	 were	 included	 in	 the	 LH	 or	 FSH	 analyses.	 Women	 46-72	 years	 old	 were	112 

included	 in	 the	 analyses	 for	 T	 and	 DHEAS	 since	 androgen	 levels	 do	 not	 change	 during	 the	113 

menopausal	transition23.	These	women	were	also	included	in	the	analysis	of	SHBG	and	insulin.	114 

Women	with	bilateral	oophorectomy	(n=10)	not	 receiving	postmenopausal	hormone	 therapy	115 

were	included	in	the	analysis	of	the	adrenal	androgen,	DHEAS,	and	insulin25,	26.	We	compared	116 

hormonal	traits	in	women	receiving	postmenopausal	hormone	therapy	(n=15)	to	women	from	117 

the	cohort	of	comparable	age	who	were	not	on	receiving	hormonal	therapy	(n=10).	Only	SHBG	118 

levels	 differed	 significantly.	 Therefore,	 women	 receiving	 postmenopausal	 hormone	 therapy	119 

were	included	in	the	analyses	of	T	and	DHEAS.	They	were	not	included	in	the	insulin	analysis	120 

because	of	the	effect	of	estrogen	on	circulating	insulin	levels27.		121 

Fathers	were	included	in	the	insulin	level	association	test	since	there	are	not	sex	differences	in	122 

this	parameter28.	Subjects	receiving	glucocorticoids	(men=0,	women=2)	were	excluded	from	all	123 
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quantitative	 trait	 association	 tests.	 Where	 applicable,	 subjects	 receiving	 anti-diabetic	124 

medications	 (men=6,	 women=7)	 were	 excluded	 from	 the	 T,	 SHBG,	 and	 insulin	 analyses	 but	125 

were	included	in	the	DHEAS	analysis29.	Subjects	with	type	2	diabetes	not	receiving	medications	126 

(men=3,	women=7)	were	excluded	from	the	insulin	analysis	but	the	women	were	included	in	127 

the	T,	DHEAS	and	SHBG	analyses.		128 

Reference	 ranges	 for	hormonal	parameters	 from	concurrently	 studied	 reproductively	normal	129 

control	 subjects	 of	 comparable	 age,	 sex,	 BMI	 and	 ancestry6,	30,	31	 are	 included	 in	Table	 1.	 All	130 

control	 subjects	 had	 normal	 glucose	 tolerance	 with	 a	 75g	 oral	 glucose	 tolerance	 test32.	131 

Reproductive	age	control	women	were	18-45	years	with	regular	menses,	FSH<40	mIU/ml	and	132 

normal	 androgen	 levels.	 Older	 control	 women	 were	 46-65	 years	 with	 a	 history	 of	 regular	133 

menses	and	normal	androgen	levels.	Control	men	were	46-	65	years.	 	 	134 

Hormone	assays	135 

T,	DHEAS,	sex	hormone	binding	globulin	(SHBG),	luteinizing	hormone	(LH),	follicle-stimulating	136 

hormone	(FSH),	and	insulin	levels	were	measured	as	previously	reported6.		137 

Whole-genome	sequencing	(WGS)	138 

Genomic	 DNA	was	 isolated	 from	whole	 blood	 samples	 using	 the	 Gentra	 Puregene	 Blood	 Kit	139 

(Qiagen,	Valencia,	CA).	Whole-genome	sequencing	was	performed	by	Complete	Genomics,	Inc.,	140 

(CGI)	 using	 their	 proprietary	 sequencing	 technology.	 Their	 sequencing	 platform	 employed	141 

high-density	 nanoarrays	 populated	 with	 amplified	 DNA	 clusters	 called	 DNA	 nanoballs.	 DNA	142 

was	read	using	a	novel,	 iterative	hybridization	and	ligation	approach,	which	produces	paired-143 

end	reads	up	to	70	bases	in	length33.	CGI’s	sequencing	service	included	sample	quality	control,	144 

library	construction,	whole	genome	DNA	sequencing,	and	variant	calling.	Reads	were	mapped	145 

to	the	NCBI	Build	37.2	reference	genome	(GRCh37).		146 

Variant	calling	147 

Variant	 calling	was	performed	using	CGI’s	Assembly	Pipeline	 version	2.0.	Although	 raw	 read	148 

data	were	provided,	because	of	the	unique	gapped	read	structure	produced	by	CGI	sequencing,	149 

the	use	of	other	mapping	or	variant-call	software	was	not	recommended	by	CGI.	Results	were	150 

provided	 in	 CGI’s	 unique	 variant-call	 format.	 Variants	 included	 single	 nucleotide	 variants	151 

(SNVs),	 as	 well	 as	 insertions,	 deletions,	 and	 substitutions	 ≤50	 bases	 in	 length.	 Calls	 were	152 

assigned	 confidence	 scores	 assuming	 equal	 allele	 fractions	 for	 the	 diploid	 genome	153 
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(varScoreEAF).	 A	 Bayesian	 probability	model	was	 used	 to	 evaluate	 potential	 locus	 calls.	 The	154 

model	accounted	for	read	depth,	base	call	quality	scores,	mapping/alignment	probabilities,	and	155 

empirical	priors	on	gap	sizes	and	discordance	rates34.	Based	on	the	relative	allele	likelihoods	a	156 

quality	score	was	assigned	for	the	chosen	call:	157 

	 !"#$%&#' = 10 ∙ log!"
! !"## !" !"#$
! !"## !" !"#$% 	 (1)	

Scores	were	therefore	reported	in	decibels	(dB),	where	a	score	of	10dB	represents	a	likelihood	158 

ratio	 of	 10:1,	 20dB	means	 100:1	 likelihood,	 30dB	means	 1000:1,	 etc.	 Quality	 thresholds	 for	159 

reporting	 variants	 were	 minimized	 (≥10dB	 for	 homozygous	 and	 ≥20dB	 for	 heterozygous	160 

variant	calls)	in	order	to	maximize	sensitivity.	Variants	were	assigned	a	basic	high/low	quality	161 

flag	(VQHIGH	or	VQLOW)	based	on	a	quality	score	threshold	of	20dB	for	homozygous	and	40dB	162 

for	heterozygous	variant	calls.	163 

Called	variant	filtering	164 

Variants	were	considered	rare	if	they	appeared	with	a	frequency	≤2%	in	the	Scripps	Wellderly	165 

Genome	Resource,	which	 consisted	of	597	unrelated	participants	of	European	Ancestry	 from	166 

the	Scripps	Wellderly	Study35.	The	Wellderly	study	population	is	composed	entirely	of	elderly	167 

individuals	≥80	years	of	age	with	no	history	of	chronic	disease.	Within	each	sequenced	family,	168 

reported	variants	 that	were	 inconsistent	with	Mendelian	patterns	 inheritance	were	 removed	169 

from	consideration.	A	variant	was	considered	consistent	with	Mendelian	 inheritance	 if	 it	was	170 

called	(VQHIGH)	in	one	or	more	of	the	offspring	and	in	at	least	one	parent.	The	vast	majority	of	171 

DNA	sequencing	errors	can	be	eliminated	using	Mendelian	inheritance	analysis36.	As	previously	172 

described37-40,	an	additional	set	of	filters	was	applied	to	called	variants	for	each	sample	in	order	173 

to	 minimize	 the	 number	 of	 false	 positive	 calls:	 (i)	 variants	 with	 VQLOW	 allele	 tags	 were	174 

removed;	 (ii)	 variants	 in	 microsatellite	 regions	 were	 removed;	 (iii)	 variants	 within	 simple	175 

tandem	repeat	regions	were	removed;	(iv)	 three	or	more	SNPs	clustered	within	a	distance	of	176 

10bp	 were	 removed;	 (v)	 SNPs	 located	 within	 10bp	 of	 an	 insertion	 or	 deletion	 (indel)	 were	177 

removed;	(vi)	calls	located	within	known	regions	of	segmental	duplication	were	removed;	(vii)	178 

calls	 with	 an	 observed	 read	 depth	 greater	 than	 3×	 the	 average	 read	 depth	 (>168)	 were	179 

removed.	180 

	181 
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Selection	of	optimal	read	depth	and	quality	score	thresholds	182 

After	systematically	applying	the	 filter	matrix	outlined	above,	optimal	read	depth	and	quality	183 

score	thresholds	were	determined	for	each	variant	type	by	comparing	calls	between	replicated	184 

samples	for	a	particular	family	that	was	sequenced	twice	by	CGI.	Variants	that	were	concordant	185 

between	offspring	sample	pairs—above	a	given	coverage	depth	and	quality	score	threshold—186 

were	 considered	 as	 true	 positive	 (TP)	 calls,	 while	 those	 that	 were	 discordant	 between	187 

replicates	were	considered	 false	positives	 (FP).	Accordingly,	 concordant	variant	calls	 that	 fell	188 

below	a	given	depth	and	quality	threshold	were	classified	as	false	negative	(FN)	and	discordant	189 

calls	that	fell	below	a	given	depth	and	quality	threshold	were	classified	as	true	negative	(TN).	190 

Optimal	depth	and	quality	score	thresholds	were	determined	by	selecting	the	thresholds	that	191 

yielded	the	greatest	Matthews	correlation	coefficient	(MCC)	values	across	each	variant	type37:	192 

	 !"" =  !"×!" − !"×!"
(!" + !")(!" + !")(!" + !")(!" + !")

	 (2)	

The	 thresholds	chosen	 for	association	 testing	corresponded	with	 the	greatest	MCC	values	 for	193 

each	variant	type	(Table	S2).	194 

Assessing	deleteriousness	195 

After	filtering	for	rare	variants	called	with	high	confidence,	as	described	above,	variants	were	196 

further	characterized	according	to	their	predicted	effects.	Only	variants	that	were	predicted	to	197 

have	 a	 deleterious	 effect	 were	 included	 in	 the	 association	 testing.	 Deleteriousness	 was	198 

primarily	assessed	using	the	Combined	Annotation	Dependent	Depletion	(CADD)	tool41,	which	199 

is	trained	on	output	from	numerous	annotation	programs	to	predict	deleteriousness	based	on	200 

conservation	relative	to	our	ancestral	genome.	Variants	were	retained	if	they	produced	a	CADD	201 

score	 greater	 than	 the	 gene-specific	 mutation	 significance	 cutoff	 (MSC;	 95%	 confidence	202 

interval)	 suggested	 by	 Itan	 et	 al.42.	 For	 variants	 outside	 of	 gene	 regions	 or	 in	 inconsistently	203 

annotated	genes,	the	mean	MSC	(MSCμ	=	12.889)	was	used	as	the	cutoff.	 In	a	further	effort	to	204 

reduce	 false	 positives,	 only	 coding	 variants	 classified	 as	 at	 least	 possibly	 damaging	 by	 the	205 

PolyPhen243	or	SIFT44	variant	effect	prediction	tools	and	noncoding	variants	with	LINSIGHT45	206 

scores	 ≥0.8	 were	 included	 in	 our	 analysis,	 as	 integrating	 individual	 methods	 can	 improve	207 

variant	effect	prediction42,	46-48.	CADD	and	LINSIGHT	are	both	primarily	based	on	evolutionary	208 

conservation,	and	therefore	carry	certain	limitations49.	However,	the	applicability	of	prediction	209 

tools	based	on	functional	annotations	from	specific	cell	types50,	51	is	extremely	limited	for	PCOS	210 
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because	 its	 pathophysiology	 involves	 numerous	 cell	 types	 across	 multiple	 organs52	 and	211 

annotations	for	relevant	cell	types	are	largely	unavailable53-56.		212 

Genome-wide	rare	variant	association	testing	213 

Variants	were	then	grouped	for	association	testing	using	both	gene-based	and	sliding	window	214 

approaches.	 Gene	 regions	 included	 all	 coding	 and	 noncoding	 DNA	 from	 the	 3’	 UTR	 to	 7.5kb	215 

upstream	of	 the	5’	 transcriptional	 start	 site	 (TSS)	 for	all	RefSeq	annotated	genes.	The	sliding	216 

window	 approach	 included	 all	 noncoding	 variation	 contained	 within	 sequential	 windows	217 

across	 the	genome	using	 three	different	window	sizes:	10kb	windows	with	no	overlap,	25kb	218 

windows	with	12.5kb	overlap,	and	100kb	windows	with	75kb	overlap.		219 

In	rare	variant	association	testing,	genes	are	often	filtered	according	to	a	minimum	number	of	220 

rare	 variants	 detected	 per	 gene57-60	 or	 a	 minimum	 cumulative	 variant	 frequency	 (CVF)	 per	221 

gene61-64	 in	 order	 to	 increase	 power	 to	 detect	 disease	 associations.	 In	 this	 study,	 genes	 and	222 

windows	were	 removed	 from	 consideration	 if	 they	 did	 not	 harbor	 deleterious	 variants	 in	 at	223 

least	10%	of	affected	subjects65,	66.	For	the	gene-based	test,	in	order	to	reduce	the	resultant	bias	224 

towards	larger	genes,	the	observed	CVFs	were	adjusted	for	gene	length.	Coding	and	noncoding	225 

CVFs	were	modeled	separately	using	linear	regressions	against	the	coding	sequence	length67,	68	226 

and	the	square	root	of	noncoding	sequence	length69,	70,	respectively.	The	models	also	accounted	227 

for	 gene-level	 GC	 content.	 The	 CVFs	 observed	 in	 affected	 subjects	 for	 each	 gene	 were	 then	228 

adjusted	 accordingly	 prior	 to	 applying	 the	 10%	 threshold.	 Adjusting	 for	 gene	 length	 in	 this	229 

manner	reduced	the	risk	for	erroneous	associations,	as	genes	with	longer	open	reading	frames	230 

are	more	likely	to	be	reported	falsely	as	disease-associated71.	231 

Sequence	kernel	association	test	(SKAT)	statistics	were	computed	using	the	methods	described	232 

in	 Schaid	 et	 al.72,	 which	 account	 for	 pedigree	 information	 in	 calculating	 trait	 associations.	233 

Custom	variant	weights	were	applied	for	each	variant	according	to	their	CADD	Phred	scores:	234 

	 !! =  !! −!"#!
!"#!,!∈!  !! −!"#!

	 (3)	

where	Cv	is	the	CADD	Phred	score	for	variant	v,	g	is	the	gene	or	window,	MSCG	is	the	mutation	235 

significance	 threshold	 for	 g,	and	G	 is	 the	 set	 of	 all	 variants	 within	 the	 genome.	 In	 this	 way,	236 

variants	that	are	more	likely	to	be	deleteriousness	were	weighted	more	heavily	than	variants	237 

where	 the	 functional	 consequences	 are	 less	 likely	 to	be	damaging.	 For	 the	dichotomous	 trait	238 
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analysis,	the	binary	outcome	was	adjusted	for	age	and	body	mass	index	(BMI)	using	a	logistic	239 

regression.		240 

Six	quantitative	traits,	T,	DHEAS,	LH,	FSH,	SHBG,	and	insulin	levels,	were	tested	for	association.	241 

The	trait	distributions	were	each	positively	skewed.	Testing	against	skewed	trait	distributions	242 

can	result	in	heavily	inflated	Type	I	error	rates	in	rare	variant	association	testing73.	Therefore,	243 

each	trait	was	modeled	against	a	gamma	distribution	when	adjusting	for	age	and	BMI,	and	non-244 

normal	 residuals	 (Shapiro-Wilk	 <	 0.05)	 were	 then	 further	 normalized	 using	 a	 rank-based	245 

inverse	 normal	 transformation	 (INT).	 The	 INT	 has	 been	 found	 to	 be	 the	 optimal	method	 for	246 

maintaining	Type	I	error	control	without	sacrificing	power	 in	rare	variant	association	testing	247 

on	non-normally	distributed	traits74.		248 

Quantitative	trait	meta-analysis	249 

For	 complex	 diseases	 with	 multivariate	 phenotypes,	 combining	 multiple	 related	 phenotypic	250 

traits	 into	one	analysis	 can	 increase	power	 in	 finding	disease	associations75,	76.	We	combined	251 

the	 six	 aforementioned	 quantitative	 trait	 associations	 into	 one	 meta-statistic	 using	 a	 Fisher	252 

combination	 function	modified	 to	account	 for	correlated	traits77.	 Inter-trait	correlations	were	253 

determined	using	 the	Pearson	 correlation	 coefficient	 (Fig.	 S4).	 P-values	were	 adjusted	using	254 

Bonferroni	 correction	 according	 to	 the	 number	 of	 variant	 groupings	 that	 were	 tested	 that	255 

contained	at	least	one	variant,	as	well	as	by	the	genomic	inflation	factor,	λ.	Correlation	between	256 

meta-analysis	 association	 results	 and	 dichotomous	 trait	 association	 results	 were	 calculated	257 

using	Spearman’s	coefficient.		258 

The	characteristic	disturbance	of	gonadotropin	secretion	associated	with	PCOS	is	increased	LH	259 

relative	 to	FSH	release78.	For	genes	with	significant	meta-analysis	associations,	LH:FSH	ratios	260 

were	 compared	between	variant	 carriers	 and	non-carriers	using	 a	Wilcoxon’s	 rank	 sum	 test,	261 

adjusted	 for	 multiple	 testing	 (Bonferroni).	 Differences	 in	 LH:FSH	 ratios	 between	 variant	262 

carriers	and	non-carriers	would	indicate	that	the	gene	variants	alter	gonadotropin	signaling.	263 

In	silico	binding	effect	prediction	264 

To	 assess	 the	 potential	 functional	 effects	 of	 noncoding	 variants	 identified	 in	 the	 quantitative	265 

trait	meta-analysis,	we	predicted	 the	 corresponding	 impacts	 to	 transcription	 factor	 (TF)	 and	266 

RNA-binding	 protein	 (RBP)	 binding	 in	 silico.	 For	 each	 noncoding	 SNV	 identified	 in	 the	267 

quantitative	trait	meta-analysis,	transcription	factor	(TF)	binding	affinities	were	calculated	for	268 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/460972doi: bioRxiv preprint 

https://doi.org/10.1101/460972
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 9	

all	subsequences	overlapping	the	SNV	position	on	each	strand	within	a	±20bp	window.	Binding	269 

affinity	scores	were	calculated	using	position	weight	matrices	(PWMs)	derived	from	ENCODE	270 

ChIP-Seq	 experiments71.	 Scores	 were	 determined	 by	 summing	 the	 logged	 frequencies	 for	 a	271 

given	 sequence	 across	 a	motif	 PWM.	Binding	p-values	were	defined	as	 the	probability	 that	 a	272 

sequence	sampled	from	a	genomic	background	distribution	had	an	affinity	score	greater	than	273 

or	 equal	 the	 largest	 affinity	 score	 produced	 from	 one	 of	 the	 tested	 subsequences.	 Genomic	274 

background	sequences	were	generated	using	a	first	order	Markov	model79.	The	significance	of	a	275 

given	 change	 in	 binding	 affinity	 scores	 between	 reference	 and	 SNV	 alleles	 was	 assessed	 by	276 

determining	whether	 the	differences	 in	relative	binding	affinity	rank	between	 the	 two	alleles	277 

was	 significantly	 different	 than	 what	 would	 be	 expected	 by	 chance80,	 81.	 P-values	 were	278 

conservatively	 adjusted	 to	 account	 for	 multiple	 testing	 using	 the	 Benjamini-Hochberg	 (BH)	279 

procedure82.	280 

Once	binding	affinities	were	calculated	for	each	TF	at	each	SNV,	filters	were	applied	to	identify	281 

the	most	 likely	candidates	for	TF	binding	site	disruption.	Instances	in	which	the	predicted	TF	282 

binding	 affinity	 score	 was	 <80%	 of	 the	 maximum	 affinity	 score	 for	 the	 given	 motif	 were	283 

excluded.	 SNVs	 in	which	 the	 reference	 allele	was	 not	 predicted	 to	 bind	 a	 particular	 TF	with	284 

statistical	significance	(PBH<0.05)	were	also	removed	from	consideration,	as	well	as	variants	in	285 

which	 both	 the	 reference	 and	 SNV	 alleles	 were	 predicted	 to	 bind	 a	 TF	 with	 statistical	286 

significance.	Only	TFs	 expressed	 in	 the	ovary	were	 analyzed.	Tissue-specific	 gene	 expression	287 

was	 determined	 using	 GTEx	 data83	 (median	 Reads	 Per	 Kilobase	 of	 transcript	 per	 Million	288 

mapped	reads	[RPKM]	≥0.1).		289 

The	 identified	 SNVs	 were	 likewise	 analyzed	 for	 potential	 alteration	 to	 RNA-binding	 protein	290 

(RBP)	sites	following	the	same	procedure	but	for	a	few	modifications.	RBPs	and	their	binding	291 

affinity	scores	were	determined	using	the	ATtTRACT	database84.	Only	sequences	on	the	coding	292 

strand	were	 evaluated	 as	 to	 reflect	 the	mRNA	sequences.	Additionally,	 significant	 changes	 in	293 

RBP	binding	were	considered	regardless	of	the	direction	of	effect,	such	that	instances	in	which	294 

the	alternate	allele	was	predicted	to	induce	RBP	binding	were	also	included.	295 

	296 
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Supplementary	Methods	297 

For	 additional	 details	 regarding	methodological	 considerations	 and	 rationale,	 please	 refer	 to	298 

the	Appendix.		299 

	300 

RESULTS	301 

Characteristics	of	study	population	302 

The	characteristics	of	the	study	population,	including	counts	and	trait	distributions	by	familial	303 

relation	 and	 the	 numbers	 of	 subjects	 included	 in	 each	 association	 test,	 are	 summarized	 in	304 

Table	1.	305 

Whole-genome	sequencing	and	variant	calling	306 

Genome	 sequencing	 yielded	 average	 genome	 coverage	 of	 96.2%	 per	 sample	 and	 an	 overall	307 

mean	 sequencing	 depth	 of	 56×	 (Fig.	 S1).	 On	 average,	 90.4%	 and	 66.4%	 of	 the	 genome,	308 

including	95.2%	and	78.8%	of	 the	exome,	was	covered	with	at	 least	20×	and	40×	sequencing	309 

depth,	 respectively.	 Approximately	 4.04	 million	 high-confidence	 small	 variant	 calls	 were	310 

reported	per	genome.	By	applying	optimal	read	depth	and	quality	thresholds	as	well	as	a	series	311 

of	genomic	filters37,	we	reduced	the	discrepancy	rate	between	replicate	samples	from	0.23%	to	312 

0.04%	for	rare	variants	(Tables	S1	and		S2).	313 

Association	testing	and	quantitative	trait	meta-analysis	314 

We	found	339	genes	that	had	rare,	deleterious	variants	in	at	least	10%	of	cases	after	adjusting	315 

for	gene	length	and	%GC	content.	No	set	of	rare	variants	reached	genome-wide	significance	for	316 

association	with	PCOS/HA	disease	status	in	the	dichotomous	trait	analysis.	We	found	32	rare	317 

variants	 (2	 coding,	 30	 noncoding)	 in	 the	 DENND1A	 gene	 that	 were	 collectively	318 

significantly	 associated	 with	 quantitative	 trait	 levels	 (P=5.31×10-5,	 Padj=0.019;	 Table	 2),	319 

after	adjusting	for	multiple	testing	and	for	observed	genomic	inflation	(Fig.	 S2).	Women	with	320 

one	 or	 more	 of	 these	DENND1A	variants	 had	 significantly	 higher	 LH:FSH	 ratios	 (P=0.0012).	321 

PCOS/HA	 phenotype	 women	 with	 one	 or	 more	 DENND1A	 variants	 had	 significantly	 higher	322 

LH:FSH	 ratios	 than	 PCOS/HA	 phenotype	 women	 without	 DENND1A	 variants	 (P=0.0060).	323 

Unaffected	 women	 with	 one	 or	 more	 DENND1A	 variants	 had	 higher	 LH:FSH	 ratios	 than	324 

unaffected	women	without	DENND1A	 variants	 (P=0.0586;	Fig.	 1),	 but	 the	difference	was	not	325 
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significant	after	multiple	 test	correction	(P<0.0167).	No	other	gene-based	set	of	rare	variants	326 

reached	genome-wide	significance	for	association	with	quantitative	trait	levels.	The	correlation	327 

between	the	meta-analysis	gene	associations	and	the	dichotomous	trait	gene	associations	was	328 

0.24	(Spearman).		329 

Using	 the	sliding	windows	approach,	we	 found	a	 subset	of	noncoding	variants	within	a	25kb	330 

region	 of	DENND1A	 (chr9:126,537,500-126,562,500)	 that	 were	 significantly	 associated	 with	331 

altered	 quantitative	 trait	 levels	 (P=1.92×10-5,	Padj=9.53×10-3;	Fig.	 S3;	Supplementary	 Data).	332 

The	region	included	three	noncoding	variants	that	were	collectively	present	in	eight	PCOS/HA	333 

subjects	 and	 zero	 unaffected	 subjects.	 One	 of	 these	 variants,	 rs117893097	 (MAFWellderly	 =	334 

0.013),	 was	 homozygous	 in	 one	 of	 the	 subjects.	 This	 25kb	 region	 encompasses	 one	 of	 the	335 

DENND1A	GWAS	risk	variants	(rs10986105;	MAFWellderly	=	0.034;	ORMeta=1.3985),	although	none	336 

of	the	subjects	with	one	of	the	rare	variants	in	the	region	also	had	the	rs10986105	risk	allele.	337 

The	 relative	 positions	 of	 all	 of	 the	 rare	 variants	 found	 in	DENND1A	 are	 shown	 in	Fig.	 2.	 No	338 

other	 windows	 across	 the	 genome	were	 found	 to	 have	 significant	 associations	 with	 disease	339 

state	or	hormonal	levels.	340 

Several	 other	 PCOS	 GWAS	 candidate	 genes	 appeared	 in	 our	 filtered	 set	 of	 genes,	 including	341 

C9orf35,	6,	8	(P=6.14×10-3),	HMGA25	(P=0.062),	ZBTB168	(P=0.20),	TOX35,	8	(P=0.22),	and	THADA4,	342 
5,	 7,	 8	 (P=0.74).	 C9orf3	 had	 the	 4th	 strongest	 association	 overall	 (Supplementary	 Data),	 but	343 

failed	 to	 reach	 genome-wide	 significance	 after	 correction	 for	 multiple	 testing.	 The	 relative	344 

quantitative	trait	associations	for	these	genes	are	illustrated	in	Fig.	3.		345 

Protein	binding	effect	prediction	346 

Nine	of	the	DENND1A	variants	were	predicted	to	significantly	impact	TF	binding	motifs,	while	347 

the	majority	of	variants	were	predicted	to	significantly	alter	RBP	binding	motifs	(17	disrupted,	348 

14	induced).	The	specific	TF	and	RBP	motifs	associated	with	each	noncoding	variant	are	listed	349 

in	Table	 3.	Binding	by	 the	heterogeneous	nuclear	ribonucleoprotein	(hnRNP)	 family	of	RBPs	350 

appeared	to	be	the	most	commonly	impacted.	351 

	352 

DISCUSSION	353 

We	 identified	 rare	 variants	 in	 DENND1A	 that	 were	 significantly	 associated	 with	 altered	354 

reproductive	 and	 metabolic	 hormone	 levels	 in	 PCOS.	 These	 findings	 are	 of	 considerable	355 
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interest	because	common	SNVs	in	DENND1A	were	associated	with	PCOS	diagnosis	in	a	GWAS	of	356 

Han	Chinese	women4;	these	associations	were	subsequently	replicated	in	women	of	European	357 

ancestry86.	Our	 study,	 using	 an	 independent	 family-based	WGS	 analytical	 approach,	 provides	358 

further	 evidence	 that	 DENND1A	 is	 an	 important	 gene	 in	 the	 pathogenesis	 of	 PCOS.	 These	359 

findings	 complement	 the	 studies	 of	 McAllister	 and	 colleagues56,	 87	 that	 have	 shown	 that	360 

DENND1A	plays	a	key	role	in	androgen	biosynthesis	in	human	theca	cells	and	is	upregulated	in	361 

PCOS	theca	cells.	362 

DENND1A	 encodes	 a	 protein	 that	 is	 a	 member	 of	 the	 connecdenn	 family	 of	 proteins,	 which	363 

function	 as	 guanine	 nucleotide	 exchange	 factors	 for	 the	 Rab	 family	 of	 small	 GTPases77.	 The	364 

DENND1A	 protein,	 also	 known	 as	 Connecdenn	 1,	 is	 thought	 to	 link	 Rab35	 activation	 with	365 

clathrin-mediated	endocytosis42.	Following	 its	reported	associations	with	PCOS4,	86,	McAllister	366 

and	 colleagues87	 investigated	 the	 role	 of	 DENND1A	 in	 ovarian	 androgen	 biosynthesis,	 a	 key	367 

biologic	pathway	that	is	disrupted	in	PCOS88.	DENND1A	encodes	two	transcripts	as	the	result	of	368 

alternative	 splicing,	DENND1A.V1	 and	DENND1A.V256.	 The	 encoded	V2	protein	was	 found	 in	369 

ovarian	 theca	 cells	 and	 its	 abundance	was	 correlated	with	 increased	 androgen	 production87.	370 

The	 expression	 of	 V2	 was	 increased	 in	 PCOS	 theca	 cells87.	 Forced	 expression	 of	 the	 V2	371 

transcript	 produced	 a	 PCOS	 phenotype	 in	 normal	 theca	 cells,	 whereas	 knockdown	 of	 V2	 in	372 

PCOS	 theca	 cells	 reduced	 thecal	 androgen	biosynthesis87.	Urine	exosomal	V2	mRNA	was	also	373 

increased	 in	 PCOS	 women87.	 Taken	 together,	 these	 findings	 provide	 strong	 support	 for	 the	374 

hypothesis	that	DENND1A	plays	a	role	in	PCOS	pathogenesis.	The	increased	LH:FSH	ratios	that	375 

we	observed	in	the	DENND1A	rare	variant	carriers	(Fig.	1)	suggest	that	DENND1A	plays	a	role	376 

in	the	regulation	of	gonadotropin	secretion89.		377 

The	 DENND1A	 risk	 variants	 identified	 by	 GWAS	 are	 located	 in	 introns	 and	 the	 functional	378 

consequences	 of	 these	 variants	 are	 unknown56.	 There	 have	 been	 no	 large-scale	 sequencing	379 

studies	 reported	 to	 map	 causal	 variants	 in	 DENND1A85.	 Targeted87,	 90	 and	 whole	 exome	380 

sequencing91	 in	 small	 cohorts	 of	 PCOS	women	 have	 failed	 to	 identify	 any	 coding	 variants	 in	381 

DENND1A	that	were	associated	with	PCOS	or	with	V2	isoform	expression.	Genomic	sequencing	382 

of	 the	 intronic	 region	 where	 V1	 and	 V2	 are	 alternatively	 spliced	 also	 failed	 to	 identify	 any	383 

variants	that	consistently	favored	V2	expression	in	a	study	of	20	normal	and	19	PCOS	women56.	384 

The	GWAS	risk	variants	and	most	of	the	variants	identified	in	our	study	lie	well	upstream	(100-385 

400kb)	of	this	region	(Fig.	2).	386 
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Many	 of	 the	 DENND1A	 variants	 identified	 in	 the	 present	 study	 were	 predicted	 to	 disrupt	387 

conserved	TF	binding	motifs,	which	could	affect	gene	expression,	but	most	of	the	variants	were	388 

predicted	to	alter	affinities	of	RBPs	to	the	mRNA	transcript	(Table	3).	It	is	plausible,	therefore,	389 

that	 the	 rare	 variants	we	 reported	were	 selectively	driving	 the	 expression	of	 the	V2	 splicing	390 

variant	via	post-transcriptional	regulation.	Collectively,	the	DENND1A	variants	identified	in	this	391 

study	were	 found	 in	50%	of	 families,	 but	 each	 individual	 variant	was	 typically	 found	 in	only	392 

one	or	two	families.	Our	findings,	therefore,	support	a	model	of	PCOS	in	which	causal	variants	393 

are	individually	uncommon	but	collectively	tend	to	occur	in	key	genes.	Our	recent	findings92	of	394 

multiple	rare	exonic	rare	variants	 in	the	AMH	gene	that	reduce	its	biologic	activity	 in	~3%	of	395 

women	with	PCOS	is	consistent	with	this	model.	396 

Our	 results	 also	 align	with	 the	 emerging	 evidence	 that	 rare	 coding	 variants	with	 large	 effect	397 

sizes	do	not	play	a	major	role	 in	complex	disease93.	Rather,	 it	appears	that	complex	traits	are	398 

primarily	 driven	 by	 noncoding	 variation94,	 95,	 both	 common	 and	 rare96,	 97.	 Of	 the	 32	 rare	399 

variants	 predicted	 as	 deleterious	 that	 we	 identified	 in	 DENND1A,	 30	 were	 noncoding.	 Rare	400 

variant	 association	 studies	 typically	 require	 very	 large	 sample	 sizes98,	 but	 paired	 WGS	 and	401 

transcriptome	 sequencing	 analysis	 from	 one	 large	 family	 demonstrated	 that	 rare	 noncoding	402 

variants	 have	 strong	 effects	 on	 individual	 gene-expression	 profiles99.	 In	 a	 similarly	 designed	403 

study	to	ours,	Ament	and	colleagues100	identified	rare	variants	associated	with	increased	risk	of	404 

bipolar	 disorder,	 the	 vast	 majority	 of	 which	 were	 noncoding.	 Due	 to	 the	 relative	 cost-405 

effectiveness	 of	 whole	 exome	 sequencing94,	 the	 limited	 availability	 of	 computational	 tools	406 

designed	to	predict	the	effects	of	noncoding	variants	on	phenotypes101,	and	our	relatively	poor	407 

understanding	 of	 regulatory	 mechanisms	 in	 the	 genome102,	 noncoding	 variants	 have	 been	408 

noticeably	understudied	in	complex	trait	genetics.	As	larger	WGS	datasets	are	accumulated	and	409 

the	focus	of	complex	trait	studies	shifts	more	towards	understanding	regulatory	mechanisms,	410 

the	contribution	of	rare	noncoding	variants	in	various	complex	diseases	will	become	clearer.	411 

Several	 established	 PCOS	 candidate	 genes	 besides	DENND1A	 appeared	 among	 the	 top	 gene	412 

associations,	 but	 failed	 to	 reach	 genome-wide	 significance.	 These	 genes	 included	 previously	413 

reported	 PCOS	 GWAS	 susceptibility	 loci,	C9orf3,	HMGA2,	ZBTB16,	TOX3,	and	THADA	 (Fig.	 3).	414 

Two	 additional	 genes	 with	 strong,	 but	 not	 genome-wide-significant,	 associations	 with	 PCOS	415 

quantitative	 traits	 are	 highly	 plausible	 PCOS	 candidate	 genes.	BMP6	had	 the	 third	 strongest	416 

association	 in	 our	 meta-analysis	 (P=4.00×10-3,	 Table	 2).	 It	 is	 a	 member	 of	 the	 bone	417 
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morphogenetic	 protein	 family,	 which	 are	 growth	 factors	 involved	 in	 folliculogenesis.	 BMP6	418 

expression	was	previously	found	to	be	significantly	higher	in	granulosa	cells	from	PCOS	women	419 

compared	 with	 reproductively	 normal	 control	 women103.	 Moreover,	 BMP6	 was	 found	 to	420 

increase	expression	of	the	FSH	receptor,	inhibin/activin	β	subunits,	and	AMH	genes	in	human	421 

granulosa	cells104.	PRDM2	had	the	fifth	strongest	association	in	our	meta-analysis	(P=6.95×10-3,	422 

Table	2).	PRDM2	is	an	estrogen	receptor	co-activator105	 that	 is	highly	expressed	 in	the	ovary	423 

and	pituitary	gland83.	Ligand	bound	estrogen	receptor	alpha	(ERα)	binds	with	PRDM2	to	open	424 

chromatin	 at	 ERα	 target	 genes105,	106.	 PRDM2	 also	 binds	 with	 the	 retinoblastoma	 protein107,	425 

which	has	been	shown	to	play	an	important	role	in	follicular	development	in	granulosa	cells108,	426 
109.	427 

The	central	statistical	challenge	in	studying	rare	variants	is	achieving	adequate	power	to	detect	428 

significant	 associations	while	 controlling	 for	 Type	 I	 error.	 The	 family-based	 structure	 of	 our	429 

cohort	 provided	 an	 enrichment	 of	 individual	 rare	 variants	 and	 enabled	modeling	 of	 familial	430 

segregation110.	To	mitigate	variant	calling	errors,	we	utilized	replicate	samples	from	one	family	431 

to	determine	optimal	 read	depth	 and	quality	 thresholds.	To	 remove	 irrelevant	 variants	 from	432 

consideration,	 we	 applied	 a	 LINSIGHT	 score	 threshold	 and	 gene-specific	 CADD	 score	433 

thresholds72	to	filter	for	deleteriousness.	We	further	prioritized	variants	by	weighting	them	by	434 

their	 relative	 CADD	 scores.	 To	 group	 rare	 variants	 effectively,	 we	 applied	 several	 windows-435 

based	binning	methods,	in	addition	to	the	gene-based	approach,	to	ensure	that	different	kinds	436 

of	 functionally-correlated	 genomic	 regions	 were	 tested,	 both	 of	 fixed	 length	 and	 of	 variable	437 

length.	 To	 limit	 our	 search	 to	 genes	 that	 were	 more	 likely	 to	 have	 specific	 roles	 in	 PCOS	438 

etiology,	we	only	considered	genes	with	rare	deleterious	variants	 in	at	 least	10%	of	cases,	as	439 

causal	rare	variants	are	more	likely	to	accumulate	in	core	disease	genes94.	We	greatly	increased	440 

our	power	to	detect	relevant	disease	genes	and	account	for	pleiotropic	effects	by	consolidating	441 

quantitative	trait	association	results	into	a	meta-analysis75,	76.	In	order	to	reduce	Type	I	error,	442 

in	addition	to	the	variant	calling	quality	control	measures,	we	modeled	the	quantitative	traits	443 

against	skewed	distributions	and	further	normalized	trait	residuals	using	an	INT.		444 

Given	the	size	of	our	cohort,	it	was	necessary	to	apply	relatively	strict	filters	based	on	predicted	445 

variant	 effects	 and	 cumulative	 allele	 frequencies	 in	 order	 to	 detect	 rare	 variant	 associations.	446 

Very	 large	 sample	 sizes	 are	 otherwise	 required	 for	WGS	 studies	 of	 rare	 variants98.	 By	 only	447 

including	 genes	 with	 rare,	 likely-deleterious	 variants	 in	 at	 least	 10%	 of	 cases,	 we	 greatly	448 
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reduced	 the	multiple-testing	 burden	 of	 our	 analysis,	 thereby	 increasing	 our	 power	 to	 detect	449 

core	PCOS	genes111,	112.	Applying	a	priori	hypotheses	regarding	which	variants	and	genes	may	450 

be	relevant	to	disease,	however,	is	analogous	to	a	candidate	gene	approach98.	Any	sets	of	rare	451 

variants	 that	 contribute	 to	PCOS	 in	 smaller	 subpopulations	of	PCOS	women,	 as	we	 found	 for	452 

AMH92,	were	 likely	removed	 from	consideration.	Likewise,	any	causal	rare	variants	 that	were	453 

not	 predicted	 bioinformatically	 to	 be	 deleterious	 based	 on	 existing	 annotations	 and	454 

evolutionary	 conservation41,	45	would	not	 have	been	detected.	 Furthermore,	 because	 variants	455 

were	 filtered	 for	 consistency	 with	 Mendelian	 inheritance,	 de	 novo	 mutations	 were	 not	456 

considered.	457 

Because	 the	number	of	 genetic	 variants	 is	directly	 correlated	with	 the	 size	of	 the	gene71,	 the	458 

CVF	threshold	 introduced	a	bias	 towards	 larger	genes	 in	some	of	 the	analyses.	However,	 this	459 

bias	was	mitigated	by	adjusting	for	gene	length.	Furthermore,	any	such	bias	was	not	applicable	460 

to	our	fixed-length	windows-based	approach,	which	replicated	our	DENND1A	findings.	It	is	also	461 

possible	that	causal	rare	variants	with	larger	effect	sizes	were	omitted	from	the	meta-analysis	462 

because	we	tested	against	normalized	trait	residuals	in	an	effort	to	reduce	Type	I	errors.	Using	463 

normalized	trait	residuals	may	have	excluded	variants	with	large	effects	that	produced	outliers.	464 

However,	 as	 mentioned	 above,	 recent	 evidence	 has	 demonstrated	 that	 complex	 traits	 are	465 

primarily	driven	by	noncoding	variation	with	modest	effect	sizes94,	95.	466 

Despite	 the	 numerous	 steps	 taken	 to	 increase	 power,	 our	 study	 ultimately	 remained	467 

underpowered	to	detect	rare	variant	associations	with	PCOS	diagnosis	in	the	dichotomous	trait	468 

analysis.	Although	an	 association	with	PCOS	quantitative	 traits	 implicates	 genetic	 variants	 in	469 

disease	pathogenesis,	 it	does	not	necessarily	mean	 that	a	gene	 is	associated	with	PCOS	 itself.	470 

The	 correlation	 between	 the	 dichotomous	 trait	 results	 and	 quantitative	 trait	 meta-analysis	471 

results	 was	 0.24.	 The	 noncoding	 variants	 identified	 in	 this	 study,	 despite	 being	 rare	 and	472 

predicted	 to	 be	 deleterious,	 may	 be	 in	 linkage	 disequilibrium	 with	 the	 actual	 pathogenic	473 

variant	 on	 the	 same	 alleles	 that	 were	 removed	 by	 the	 applied	 allele	 frequency	 or	 predicted	474 

effect	 thresholds.	Replication	and	 functional	 studies	are	needed	 to	confirm	 individual	variant	475 

functionality	and	disease	associations.	476 

In	 summary,	 by	 applying	 family-based	 sequence	 kernel	 association	 tests	 on	 filtered	 whole-477 

genome	variant	call	data	from	a	cohort	of	PCOS	families,	we	were	able	to	identify	rare	variants	478 

in	 the	 DENND1A	 gene	 that	 were	 associated	 with	 quantitative	 hormonal	 traits	 of	 PCOS.	 Our	479 
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results	 suggest	 that	 rare	noncoding	variants	 contribute	 to	 the	distinctive	hormonal	profile	of	480 

PCOS.	 This	 study	 also	 demonstrates	 that	 using	 a	 quantitative	 trait	 meta-analysis	 can	 be	 a	481 

powerful	 approach	 in	 rare	 variant	 association	 testing,	 particularly	 for	 complex	diseases	with	482 

pleiotropic	etiologies.		483 
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TABLES	&	FIGURES	

Table	1.	Clinical	and	biochemical	characteristics	of	study	population	

Subject Type 

Age 

(years)a 

BMI 

(kg/m^2) 

Testosterone 

(ng/dL) 

SHBG 

(nmol/L) 

DHEAS 

(ng/mL) 

Insulin 

(µU/mL) 

LH 

(mIU/mL) 

FSH 

(mIU/mL) 

Index Cases 62 29 (19-48) 62 35.6 (27.9-42.7) 62 74 (65-90) 59 56 (36-92) 61 2095 (1638-2710) 62 21 (14-29) 59 14 (7-20) 59 9 (8-11) 

Fathers 62 58 (43-85) 61 28.9 (27.0-32.2)  -   -   -  49 17 (11-26)  -   -  

Mothers                 

HA 6 51 (40-63) 6 34.5 (25.2-38.2) 5 51 (49-72) 5 117 (105-135) 6 2630 (1264-2694) 3 19 (15-22)  -   -  

Unaffected 2 44 (42-45) 2 24.0 (20.6-27.4) 2 32 (27-37) 2 280 (218-342) 2 1081 (901-1260) 2 12 (8-15)  2 7 (6-7)  2 8 (6-10) 

Over 45 yo 54 57 (46-72) 53 28.6 (26.6-35.5) 36 26 (16-34) 25 93 (74-166) 50 645 (501-993) 28 19 (11-25)  -   -  

Sisters                 

PCOS 10 29 (19-36) 10 32.3 (29.0-37.3) 10 63 (49-74) 10 55 (45-104) 10 1665 (807-2774) 10 28 (23-32) 10 10 (5-15) 10 11 (10-12) 

HA 5 32 (15-40) 5 22.3 (22.3-28.5) 5 67 (54-68) 5 126 (69-177) 5 2047 (1509-3775) 5 15 (11-17)  4 4 (3-18)  4 10 (7-14) 

Unaffected 57 32 (14-45) 57 25.1 (22.2-29.3) 57 30 (23-35) 55 128 (90-181) 57 1408 (1028-1814) 55 12 (9-15) 55 5 (3-10) 55 10 (7-12) 

Over 45 yo 3 47 (46-49) 3 26.4 (24.5-32.1) 3 30 (20-48) 3 137 (88-150) 3 772 (765-1588) 3 13 (12-15)  -   -  

Reference Ranges                 

Reproductive Aged Women 346 30 (25-35) 346 28.5 (23.0-35.4) 227 29 (21-37) 188 100 (70-144) 226 1357 (1018-1756) 185 12 (10-16) 173 4 (3-8) 173 9 (7-12) 

Men 55 53 (50-57) 55 28.0 (25.9-31.0)  -  -    -  46 14 (10-17)  -   -  

Older Women 69 56 (52-60) 69 26.4 (23.2-29.6) 69 23 (15-30) 60 102 (75-156) 66 645 (487-1016) 69 13 (10-17) 48 50 (35-69) 49 80 (57-100) 

 

Traits	reported	as	count,	median	(25th-75th	percentiles).	Values	reported	here	are	unadjusted.	Trait	values	were	adjusted	and	normalized	
for	variant	association	testing.	aAge	reported	as	count,	median	(min-max).
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Table 2. Top 5 rare variant associations from quantitative trait meta-analysis 

Chr	 Gene	 Length	 Variants	 Familiesa	 ORb	 p	 p
adj
	

9	 DENND1A	 550kb	 32	 50%	 1.20	
[0.69	–	2.14]	 5.31×10-5	 0.019	

11	 PKNOX2	 269kb	 18	 39%	
1.55	

[0.87	–	2.94]	 7.28×10
-4
	 0.27	

6	 BMP6	 155kb	 11	 35%	
1.41	

[0.65	–	3.27]	 3.98×10
-3
	 1.00	

9	 C9orf3	 421kb	 10	 21%	
2.79	

[1.08	–	8.24]	 6.14×10
-3
	 1.00	

1	 PRDM2	 125kb	 8	 19%	
3.26	

[0.77	–	22.51]	 6.92×10
-3
	 1.00	

	

Rare	variants	exceed	thresholds	of	predicted	deleteriousness.	aFamilies	include	all	that	have	

daughters	with	at	least	one	of	the	rare	variants.	bOdds	ratios	(OR)	shown	with	95%	confidence	

intervals,	estimated	from	logistic	regression	of	gene	variant	count	against	disease	status,	with	equal	

variant	weighting,	adjusted	for	BMI,	not	considering	relatedness.	
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Figure	1.	LH:FSH	ratios	in	DENND1A	variant	carriers.	LH:FSH	ratios	in	DENND1A	rare	

variant	carriers	(+)	and	non-carriers	(-)	in	unaffected	women	and	in	women	with	PCOS/HA.	

Differences	in	group	means	were	analyzed	using	Wilcoxon’s	rank	sum	test	(*	P	≤	0.0167).	
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Figure	2.	Rare	Variants	in	DENND1A.	The	locations	of	deleterious	rare	variants	and	previously	reported	GWAS	SNPs	within	the	
DENND1A	gene,	including	the	two	primary	isoforms	DENND1A.V1	and	DENND1A.V2.	The	25kb	region	significantly	associated	with	
altered	hormone	levels	is	highlighted	in	light	blue.	The	Conservation	track	was	measured	on	multiple	alignments	of	100	vertebrate	
species	by	phyloP113.	The	H3K4Me1	track	shows	enrichment	of	mono-methylation	of	lysine	4	of	the	H3	histone	protein,	which	is	
associated	with	enhancers	and	DNA	regions	downstream	of	transcription	starts,	as	determined	by	ChIP-seq	assay	and	layered	by	different	
cell	types53.	The	DNase	Clusters	track	shows	regions	of	DNase	hypersensitivity,	an	indicator	of	regulatory	activity,	with	darkness	
proportional	to	maximum	signal	strength53.	The	GTEx	eQTL	track	displays	gene	expression	quantitative	trait	loci	for	DENND1A,	as	
identified	from	GTEx	RNA-seq	and	genotype	data,	with	red	and	blue	indicating	positive	and	negative	effects	on	gene	expression,	
respectively114.	The	linkage	disequilibrium	heatmap	was	generated	using	Phase1	CEU	data	from	the	1000	Genomes	Project115.	
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Figure	3.	Trait	associations	for	PCOS	GWAS	genes.	The	relative	quantitative	trait	associations	are	shown	for	PCOS	GWAS	
susceptibility	loci	included	in	meta-analysis	results,	with	meta-analysis	association	ranking.
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Table	3.	Deleterious,	rare	variants	in	DENND1A	

Position rs ID Variant 
Allele Frequency 

CADD LINSIGHT TF – 
(DISRUPTED) 

RBP – 
(DISRUPTED) 

RBP + 
(ENHANCED) Aff1 Unrelb Popc 

9:126,144,390 rs189947178 G à T 0.018 0.020 0.003 11.91 N/A N/A - - 
9:126,154,100 rs147370674 C à T 0.006 0.004 0.004 21.10 0.97 - XPO5 - 

9:126,154,582 rs529224231 T à G 0.006 0.004 0.000 21.30 0.97 MAFK, MAFB, 
NRL - IFIH1, XPO5 

9:126,169,258 rs561100869 C à T 0.000 0.004 0.000 16.94 0.97 IRF1 NOVA1 - 

9:126,180,758 rs750425892 G à C 0.000 0.004 0.000 19.31 0.96 STAT6, MZF1, 
SPI1 

PCBP2 - 

9:126,203,546 - T à C 0.006 0.004 0.000 20.50 0.93 FOXM1 RBMX - 
9:126,225,586 rs538451690 T à A 0.006 0.004 0.002 16.07 0.94 - - RC3H1, XPO5 
9:126,231,902 - C à T 0.006 0.004 0.000 20.20 0.97 - - - 
9:126,247,645 rs543947590 C à A 0.006 0.004 0.003 21.00 0.97 STAT5A - OAS1 
9:126,267,980 rs558809288 C à T 0.006 0.004 0.000 19.97 0.84 ARNT - - 
9:126,284,213 rs149244424 C à T 0.012 0.004 0.008 12.44 0.92 ESRRA, ELF1 - - 
9:126,312,990 rs748274474 A à G 0.006 0.004 0.003 21.10 0.96 - - YBX1 
9:126,313,234 - C à A 0.006 0.004 0.000 17.84 0.97 - SRSF2 - 
9:126,326,081 rs138249397 C à T 0.018 0.016 0.002 9.32 0.88 - OAS1 SRP68 
9:126,331,427 rs184609118 A à C 0.000 0.004 0.002 18.48 0.97 - ELAVL1, SSB CELF2, NOVA1 
9:126,370,689 rs564042790 C à T 0.006 0.004 0.003 16.84 0.89 SMAD3 IFIH1 YBX1 
9:126,402,348 rs182167487 C à T 0.000 0.004 0.000 14.18 0.93 - - - 
9:126,404,312 - G à A 0.006 0.004 0.000 15.72 0.91 - SRP54, SRP68 PTBP1 
9:126,414,365 rs141759269 T à G 0.000 0.004 0.001 26.00 N/A N/A - - 

9:126,440,857 rs147844210 T à C 0.000 0.004 0.008 21.60 0.95 GATA6 - CMTR1, FUS, 
SRSF3, YBX1 

9:126,441,904 rs75342773 T à C 0.006 0.004 0.008 16.64 0.95 - HNRNPH1-2 TRA2B 
9:126,447,680 rs117984673 T à A 0.018 0.016 0.008 17.70 0.94 SOX10, SOX17 NOVA2 - 

9:126,458,124 rs112188193 G à C 0.012 0.008 0.013 14.43 0.92 STAT4, 
STAT5A, TEAD1 

RC3H1 NUDT21 

9:126,480,236 rs543924878 A à C 0.006 0.004 0.004 18.31 0.81 SREBF1 - 
HNRNPH1-3, 
HNRNPF, 
KHSRP, SRP14 

9:126,513,154 rs147058034 A à G 0.006 0.004 0.003 19.81 0.97 
FOXG1, FOXP3, 
FOXO4, FOXO6, 
FOXC1, FOXK1 

CELF1, XPO5 NOVA1 

9:126,549,983 - T à C 0.018 0.004 0.000 19.45 0.81 - - - 

9:126,555,003 rs117893097 C à G 0.030 0.020 0.013 21.40 0.99 - HNRNPH1-3, 
HNRNPF, KHSRP - 

9:126,557,679 rs552299287 A à T 0.006 0.004 0.000 18.00 0.84 STAT5A, STAT6 CELF1-2, RC3H1, 
XPO5 - 

9:126,597,096 - T à C 0.006 0.004 0.000 16.64 0.97 SOX5 
HNRNPA0, 
HNRNPA1, HNRNPD, 
ELAVL1, ZFP36 

XPO5 

9:126,603,402 rs78012023 TTA à ATG 0.018 0.012 0.000 8.99 0.91 - - - 

9:126,625,643 rs116887221 C à A 0.006 0.004 0.008 16.24 0.8 - HNRNPH1-3, 
HNRNPF, KHSRP 

- 

9:126,691,321 rs79740971 G à A 0.006 0.008 0.010 13.52 0.84 ESRRA - - 

 
Positions	correspond	to	GRCh37.	Variant	queries	were	facilitated	by	Kaviar116.	aAffected	cohort	

allele	frequencies	represent	proportion	of	alleles	with	variant	in	PCOS/HA	subjects.	bUnrelated	

cohort	allele	frequencies	represent	proportion	of	variant	alleles	in	parents.	c	Population	allele	

frequencies	correspond	to	Wellderly	cohort.	TF-	shows	transcription	factors	for	which	binding	is	

predicted	to	be	negatively	impacted.	RBP-	and	RBP+	show	RNA-binding	proteins	for	which	binding	

is	predicted	to	be	negatively	impacted	or	enhanced,	respectively.	 
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