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Abstract— Deciphering the neural code involves interpreting
the responses of sensory neurons from the perspective of a
downstream population. Performing such a read-out is an
important step towards understanding how the brain processes
sensory information and has implications for Brain-Machine
Interfaces. While previous work has focused on classification al-
gorithms to identify a stimulus in a predefined set of categories,
few studies have approached a full-stimulus reconstruction task,
especially from calcium imaging recordings. Here, we attempt
a pixel-by-pixel reconstruction of complex natural stimuli from
two-photon calcium imaging of mouse primary visual cortex.
We decoded the activity of 103 neurons from layer 2/3 using
an optimal linear estimator and investigated which factors
drive the reconstruction performance at the pixel level. We
find the density of receptive fields to be the most influential
feature. Finally, we use the receptive field data and simulations
from a linear-nonlinear Poisson model to extrapolate decoding
accuracy as a function of network size. We find that, on this
dataset, reconstruction performance can increase by more than
50%, provided that the receptive fields are sampled more
uniformly in the full visual field. These results provide practical
experimental guidelines to boost the accuracy of full-stimulus
reconstruction.

I. INTRODUCTION

Neural firing patterns in primary sensory areas are com-
monly thought to contain information about the external
world. For example, neurons in mouse primary visual cortex
(V1) are thought to respond differently to natural and phase
scrambled images [1]. To understand how such information
is encoded in the neural responses, it is crucial to investigate
how it can be extracted (decoded) from the firing patterns of
populations of neurons[2]. While this endeavour has often
taken the form of building a classifier to assign discrete cat-
egories to stimuli [1], the entirety of our sensory experience
is not restricted to semantic categories, but extends to fine
stimulus details. Previous work has attempted to address full-
stimulus reconstruction by a variety of means. For example,
Botella-Soler et al. [3] decoded artificial movies from the
rat retina using nonlinear kernel regression, while Naselaris
et al. used Bayes techniques to reconstruct natural movies
from human functional Magnetic Resonance Imaging [4].
Linear decoders were used by Marre et al. [5] and Stanley et
al. [6] to reconstruct low and high-dimensional stimuli from
the salamader retina and the cat lateral geniculate nucleus,
respectively.

This work was supported by the European Commission through the
FP7 Marie Curie Initial Training Network 289146, NETT, and by the
Biotechnology and Biological Sciences Research Council.

S. Garasto, W. Nicola, A. A. Bharath and S. R. Schultz are with the
Department of Bioengineering, Imperial College London, South Kensington,
London SW7 2AZ, UK. email: stef.grs@gmail.com

Here, we investigate the problem of full reconstruction
of natural stimuli from mouse V1 using two-photon calcium
imaging recordings [7]. This problem poses several obstacles,
including the low spatial acuity of mouse vision [8]. To the
best of our knowledge, only one other paper has tackled
the same challenge [9]. While Yoshida et al. [9] focus
on how the information can be robustly represented by
clusters of neurons, in this paper we analyze the influence
of various factors, such as the neurons’ Receptive Fields
(RF) properties and the population size, on the reconstruction
performance. We apply our decoder, an Optimal Linear
Estimator (OLE) [10], to a public dataset and achieve an
average frame-wise (pixel-wise) correlation coefficient of
0.28 (0.51), with a standard deviation of 0.26 (0.14). The
frame-wise OLE accuracy is low, although still significantly
better than chance. To improve performance, it is crucial to
understand what features drive the reconstruction accuracy,
and how should (future) data be collected to favour good de-
coding. Here, we show that RF density seems to be the most
meaningful factor in explaining the quality of reconstruction.
We also use the RF data to extrapolate to larger network
sizes in simulations. Results suggest that, at least on this
set of stimuli, decoding from more neurons could increase
performance by 50% or more, depending on how the RFs
are sampled. Due to the retinotopy of V1, our results imply
that for full-stimulus reconstruction, experimental techniques
should focus on sampling from larger areas of V1, rather than
from more neurons in a patch.

II. MATERIALS AND METHODS

In this study, we used two main sources of data: a
publicly available experimental dataset [11], and in silico
simulations. Both involved the same set of stimuli and had
matching RF and firing rates statistics. The in silico data was
used to explore what if scenarios that could lead to higher
performance.

A. Data Collection

The data were recorded by Antolik et al. [11] and re-
leased under the terms of the Creative Commons Attribu-
tion Licence (https://creativecommons.org/licenses/by/4.0/).
Briefly, the stimulus set is a collection of grey scale static
images from David Attenboroughs BBC documentary Life of
Mammals. Each image was presented for 500ms, interleaved
by 1474ms of blank grey screen. Recordings were made at
7.6Hz and responses to an individual stimuli were computed
as the average number of spikes across 5 consecutive two-
photon imaging frames. A deconvolution algorithm [12]
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was used to infer spike counts for calcium traces. The
final natural images used in the analysis are a patch of
the displayed frames, centered around the location of the
estimated population RFs, and down-sampled to 31× 31
pixels. Details can be found in Antolik et al. [11]. Here, we
used one of their imaging regions, containing 103 individual
neurons. The training dataset, single-trial recordings, consists
of 1800 image patches, while the test dataset, multi-trial
recordings, has 50 image patches.

B. Optimal Linear Estimator

We use a multi-input, multi-output linear estimator to
decode the stimulus from the neural responses [10], [6],
that is ŜSS = RK, where ŜSS ∈ RT×Np is the reconstructed
stimulus, K ∈ R(Nn+1)×Np is the matrix of the linear filters
and R ∈ RT×(Nn+1) is the neural responses matrix. Here,
T is the number of training frames, Np is the number of
pixels in each frame and Nn is the total number of neurons.
The extra column in the R matrix correspond to the bias
term. Finally, the data in R is standardized. We estimate
the optimal linear decoding filters by minimizing the recon-
struction Mean Squared Error (MSE) with L2 regularization.
The solution is given by the Optimal Linear Estimator
(OLE) [10]: K̂ = (RT R+λ I)−1RT S. Here, SSS ∈RT×Np is the
matrix of (training) stimuli. The training dataset was used to
estimate K̂, while performance is measured on the test set.
A 5-fold cross validation was used to find the optimal value
of λ . Performance of the OLE was quantified using the cor-
relation coefficient between target and reconstructed pixels
(ρp) or frames (ρ f ). Neural response shuffling by randomly
assigning the spatial pattern of neural responses between
frames, was used to remove the input-output relationship
between visual stimuli and neural activity. The chance level
performance was measured with 400 repetitions of shuffling.
To assess significance, a Wilcoxon signed rank test was used
to test the hypothesis of equality of medians between shuffled
and unshuffled conditions.

C. Neural Response Models

We model the response ri j of an individual neuron j to
a single stimulus frame i is given by ri j = L(si)h j. In the
linear model, L(si) = si and h j

lm is obtained using a Spike
Triggered Average with Laplacian regularisation [11]. That
is, h j

lm = (ST S+λL)−1ST r j, where L is a discrete Laplacian
operator and r j ∈ RT×1 the full response of neuron j. In
the Pyramid Wavelet Model (PWM) [13], [4], L(si)∈R1×NF

is a nonlinear transform that consists in first projecting the
stimulus frame onto a set of Gabor filters with different
frequencies, locations, phases and orientations, followed by
a point nonlinearity (either a ramp function or the sum of
square from quadrature-phase wavelets, to model both simple
and complex cells). NF is the number of Gabor wavelets
considered (here, 33990). Each entry h j

k of the weight vector
h j

pwm ∈RNF×1 quantifies how much the response of neuron j
depends on feature k. Such a vector was estimated using the
L2boost algorithm with early stopping (via the open source
STRFLab toolbox [14]), to encourage sparseness [13].

D. Receptive Field Estimate

For neurons that were well predicted by the PWM (corre-
lation coefficient between measured and predicted responses
higher than 0.3), a linearized version of the neuron’s RF was
obtained by the sum of all the wavelets used in the PWM,
weighted by the vector h j

pwm. Otherwise, the RF computed
with the linear model (h j

lm) was used, if the model predicted
the neuron’s response with a correlation coefficient better
than 0.3. The neurons that fell below both thresholds did
not contribute a RF to the following analysis. Then, a single
elliptical Gabor function was fit to each RF with a Gaussian
envelope taken as the boundary. The orientation of the
envelope (θ ) was considered to be the preferred orientation
of that RF. If the fit failed, and the neuron exceeded the
PWM threshold, the Gaussian envelope of the base wavelet
corresponding to the highest entry in the weights vector h j

pwm
of the PWM was used. Otherwise, that RF was dropped. A
pixel in a 31×31 frame was considered to belong to a RF
if it was within that RF’s boundary. The RF coverage of a
pixel is the number of RFs that included that pixel.

E. Regression Model of Pixel-wise Performance

We built a multivariate linear regression model to predict
the pixel-wise performance of the OLE (ρp) from 7 different
variables. Three of these features describe the ensemble of
RFs covering each pixel, specifically its cardinality and its
heterogeneity. The latter is given by the average and the
spread (for circular variables) of the preferred orientations
of all the RFs in the ensemble. The other 4 features are
the mean, standard deviation, skewness and kurtosis of the
distribution of intensity values at a particular pixel location
across the test dataset. Dependent and independent variables
were standardized before fitting. We used permutation impor-
tance to quantify the relative contribution of each regressor
to the OLE performance. For each feature, we shuffled its
values and then evaluated the relative change in the adjusted
r-squared of the regression model. We report the mean
relative change in performance for each regressor across
1000 repeats, normalized to a total of 1. Error bars are the
standard deviations over the repetitions, normalized by the
same amount. We also used two different sparsity induc-
ing algorithms – stepwise linear regression (according to
Bayesian Information Criterion) and the LASSO (regularized
elastic-net with alpha = 0.95) – to check which regressors
would survive feature selection. We used the 1-Standard-
Error rule to select the final model.

F. In silico Neurons Generation

To generate in silico data, we first extracted the RFs
parameters (locations, size, orientations, spatial frequency,
phase, amplitude and bias) from the Gabor fits described in
the previous section. Then, we created new RFs by sampling
from these distributions. We simulated two different exper-
imental conditions. In the “worst case” scenario, locations
for the simulated RFs were drawn from the experimental
distributions. In the “best case” scenario, we augmented the
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experimental distributions of RF locations with shifted repli-
cas of itself. Each shift was randomly drawn and correspond
to shifting the RFs in the visual field. The two cases coincide
when we simulate 100 neurons. The sampling of all the other
parameters was the same in both scenarios. Neural responses
were generated using a linear-nonlinear Poisson model: R̃ =
(aSW+b+σN (0,1))+. Here, R̃ are the in silico responses,
W are the simulated RFs, σ is a scalar (set to 2.7 to
match OLE accuracy when using 100 synthetic neurons),
N (0,1) is the standard normal distribution, and (·)+ is the
ramp function. Furthermore, a and b are parameters whose
distributions we estimated from the data using a least-squares
fit on the experimental responses and then sampled during the
simulations. Neurons that exceeded a maximum firing rate
(set by experimental data) were discarded. Responses were
generated to the same set of stimuli used experimentally and
with the same protocol of single- and multi-trial responses
for training and testing data, respectively.

III. RESULTS

A. A Simple Linear Secoder Can Reconstruct Natural Im-
ages from Mouse Primary Visual Cortex

Despite its simplicity, a linear decoder has been shown to
achieve good performance [10], [6], [5] and is compatible
with highly nonlinear encoding mechanisms [2]. Here, we
used an OLE to reconstruct full visual stimuli from two-
photon imaging of mouse V1 (layer 2/3). The optimal linear
decoding filters were computed to minimize the MSE of
the reconstruction, subject to L2-regularization. The relative
weight of the regularization term was computed using cross-
validation. Performance was quantified through the Pearson
correlation coefficient both between each target and recon-
structed pixel (ρp) and between each target and reconstructed
frame (ρ f ). The full distribution of ρ f is shown in Fig 1a,
while that of ρp is shown in the upper histogram of Fig 3a.
The mean values (standard deviations) are 0.28(0.26) and
0.51(0.14) for ρ f and ρp, respectively. Some, but not all, of
the frames are predicted with good accuracy (see Fig 1b),
although the distributions are spread across a broad range
of values. Similarly, some pixels are better decoded than
others (Fig 1c). For completeness, the average MSE between
targets and predictions across frames and pixels is 0.07 (with
a standard deviation of 0.07). To evaluate whether the OLE
performed better than chance, we used a neural shuffling
procedure to destroy the input-output relationship between
the responses and the stimuli and tested the null hypothesis
of chance level performance using a Wilcoxon-signed rank
test. The chance level distribution of ρ f is shown in Fig 1a.
The p-values obtained comparing both correlation coefficient
distributions to their chance level counterparts are lower
than 10−8: the OLE performance are significantly better than
chance.

B. Receptive Field Coverage Explains Reconstruction Accu-
racy

We computed the RFs for the whole population by fitting
a single Gabor filter to the linearized RF obtained after
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Fig. 1. Linear decoder performance. (a) Performance of the linear
decoder across frames, compared with chance level performance. The
presence of three asterisks imply that the OLE is significantly better
than chance with p < 0.0001 (Wilcoxon signed rank test). (b) Two
examples of reconstructed stimuli, at different performance levels. The
colormap range for all frames is between 0 (black) and 1 (white).
(c) Two examples of reconstructed pixels (red solid lines) with their
respective targets (blue dashed lines). Left and right pixels are taken
from the stimulus upper left corner and center, respectively.
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Fig. 2. Neurons’ receptive fields and OLE performance. (a) All
estimated receptive fields from the population. (b) Receptive fields
coverage (normalized between 0, black, and 1, white) as a function of
the spatial location. (c) Two examples of receptive fields and decoding
fields from the same neuron. (d) Linear decoder performance (ρp) as
a function of spatial location.

fitting each neuron with a pyramid wavelet model. If the
model did not predict the neural response sufficiently well, a
laplacian regularised linear model was used, instead. Fig 2a
shows all the RFs from the population superimposed on the
stimulus visual field. Furthermore, Fig 2b shows the level of
RF coverage for each individual pixel, normalized between
0 (black) and 1 (white). The higher the coverage, the more
neurons had a RF localized around that spatial location. It
can be seen that the RFs cluster around the center of the
image, consistently with the experimental protocol described
by Antolik et al. [11]. Two examples RFs are displayed in
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Fig 2c (right column). In the left column, instead, we show
the corresponding decoding filters for the same two neurons.
It can be seen that the linear filters of the encoding and the
decoding model have a considerable overlap, even though
they have been optimized independently. However, not all
neurons showed a similar result, especially those with more
noisy decoding filters.

The clustering of the RFs in the middle of the stimulus is
likely to increase the information content around the central
pixels carried by the whole neural population. Indeed, we
found a strong positive relationship between the performance
of the algorithm at each pixel, and the RF coverage, similarly
to that reported by Botella-Soler et al. [3] (Fig 2d and
3a, correlation coefficient of 0.79). However, while the RF
coverage is likely to explain a large proportion of the OLE
accuracy, a significant role could also be played by other
factors, such as the statistics of each individual pixel which,
given the small sample size of the test dataset, are likely to
be different. To test for this, we computed 6 other potentially
relevant pixel-wise features: the mean and the spread of
the orientation of the local RFs, and the mean, standard
deviation, skewness and kurtosis of the pixel intensity levels.
We then built a multivariate linear regression model (MLR)
to predict ρp from the RF coverage and the 6 quantities
above. Being only interested in the fluctuations around the
mean, we standardized both the independent and the depen-
dent variables, leading to a null intercept. The results from
the model (coefficients are presented with their confidence
intervals) are shown in Table I (first column, the adjusted
R-squared is 0.67), where asterisks indicate statistically sig-
nificant regressors. We then used the permutation importance
technique to quantify the relative contribution of each feature
to the model performance: the outcome is reported in Fig.
3b (bar heights are normalized so that their sum is 1). Both
Table I and Fig. 3b show that the RF coverage is the feature
with the most influence on the reconstruction performance,
followed by the standard deviation of the pixel intensities
and the spread of the RF orientations. Finally, we verified
that the results were insensitive to the regression technique
by using stepwise and LASSO linear regression (see Table
I). These two procedures return the minimal set of features
needed to explain the reconstruction performance.

TABLE I
MULTIVARIATE LINEAR REGRESSION OF THE OLE PERFORMANCE

AGAINST RFS AND IMAGE FEATURES.

MLR step MLR Lasso

RF coverage 0.75±0.04∗ 0.74±0.04∗ 0.71±0.03∗

mean (θ ) −0.02±0.04 0 0
spread (θ ) 0.11±0.04∗ 0.11±0.04∗ 0.08±0.04∗

mean −0.04±0.07 0.06±0.04∗ 0.03±0.04
st. deviation 0.17±0.06∗ 0.17±0.04∗ 0.14±0.04∗

skewness 0.14±0.07∗ 0 0
kurtosis 0.13±0.06∗ 0 0

adj. R-squared 0.67 0.67 0.66

(a)

(b)

R
F c

ov
er

ag
e

m
ea

n 
(θ

)

sp
re

ad
 (
θ)

m
ea

n

st
an

da
rd

 d
ev

ia
tio

n

sk
ew

ne
ss

ku
rto

si
s

0

0.5

1

R
el

at
iv

e 
co

n
tr

ib
u

ti
o

n
C

o
rr

el
at

io
n

 c
o

ef
fi

ci
en

t

Fig. 3. Explaining the OLE performance. (a) Accuracy of the
linear decoder (ρp) as a function of the receptive field coverage, and
respective histograms. (b) Relative contribution of each feature to the
performance of the linear decoder (ρp), using a linear regression model.

C. Effect of Increasing the Number of Neurons

Recording from a larger number of neurons would conse-
quently increase the RF coverage and, thus, reconstruction
performance. We investigated how much of an improvement
could be obtained by generating populations of in silico
neurons of different sizes, yet with RF and firing statistics
extrapolated from the existing data. We tested two different
scenarios: one that corresponds to increasing the neural
density of the imaged cortical area (“worst case”), and
one that is akin to recording from more cortical areas, all
with fixed neural density (“best case”). Both cases result
in more neurons being decoded. Specifically, we simulated
populations between 100 and 4000 neurons, with RF char-
acteristics similar to those of the recorded cells as confirmed
by computing the RF coverage (normalized between 0 and
1) for 100 in silico neurons (Fig. 4a, on the left, to be
compared with Fig. 2b). Gaussian noise was added to match
the experimental performance. However we could only match
ρ f , while ρp was always higher (0.66 on average). The mean
firing rates of the simulated neurons were also generally
higher than for the experimental ones, likely a consequence
of the added noise.

Results for different population sizes are reported in Fig.
4b as the mean and the standard deviation across 20 simula-
tions of the average ρ f . In both scenarios performance im-
prove considerably, quantitatively and qualitatively (example
reconstructions are also shown in Fig. 4b for various numbers
of neurons, color-coded according to the legend in the plot
on top): increasing the population size means that more
features of the stimuli are captured by the reconstructions.
Furthermore, for the “worst case” scenario, accuracy seems
to saturate around 2000 neurons at an average of ρ f = 0.48
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Fig. 4. Effect of increasing numbers of neurons. (a) Receptive fields
coverage (normalized between 0, black, and 1, white) as a function of
spatial location for 100 (left) and 4000 in silico neurons (right, under
the “best case” scenario). (b) Top: semi-log plot of reconstruction
performance versus population size for “best” (red dashed line) and
the “worst case” (black solid line) scenarios. Lines and shaded area
are the average and the standard deviation of the accuracy across 20
simulations. Bottom: example reconstructions for various numbers of
neurons, color-coded according to the legend in the semi-log plot.

(71% increase), while the “best case” line shows an always
positive slope, with ρ f = 0.61 (an increase of more than
100%) for 4000 neurons and ρ f = 0.49 already reached with
500 neurons. The reason for the improved reconstruction
accuracy is likely due to a more uniform coverage of the
visual field by the simulated RFs (Fig. 4a, on the right).

IV. DISCUSSION

In this paper, we used a linear decoder to reconstruct
full visual stimuli from two-photon imaging recordings in
layer 2/3 of mouse V1. The results obtained are significantly
better than chance, although there can be large difference in
accuracy across frames and pixels. We showed that the local
RF coverage was the best predictor for the pixel-wise OLE
performance (as hinted by the strong correlation between

the two features [3]), followed by the standard deviation
of the pixel intensities and the heterogeneity of the RFs.
Using simulations from a linear-nonlinear Poisson model, we
computed the increase in performance accuracy that could
be obtained with larger populations sizes, in two possible
experimental scenarios. Confirming the regression results, we
report a higher accuracy for the case where RFs are more
uniformly distributed across the visual field. While we expect
the actual increase in performance to fall somewhere between
the “worst” and the “best case” scenario, the reported results
could be used to guide future experimental procedure aimed
at full visual stimulus reconstruction. For future work, we
aim at improving the simulations with a more realistic noise
model. Furthermore, it remains to be seen whether a nonlin-
ear decoder [15] could improve reconstruction performance
for the experimental or the simulated data.
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