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ABSTRACT 11 

The revolution in low-cost consumer photography and computation provides fertile 12 

opportunity for a disruptive reduction in the cost of biomedical imaging. Conventional 13 

approaches to low-cost microscopy are fundamentally restricted, however, to modest field of 14 

view (FOV) and/or resolution. We report a low-cost microscopy technique, implemented with 15 

a Raspberry Pi single-board computer and color camera combined with Fourier ptychography 16 

(FP), to computationally construct 25-megapixel images with sub-micron resolution. New 17 

image-construction techniques were developed to enable the use of the low-cost Bayer color 18 

sensor, to compensate for the highly aberrated re-used camera lens and to compensate for 19 

misalignments associated with the 3D-printed microscope structure. This high ratio of 20 

performance to cost is of particular interest to high-throughput microscopy applications, 21 

ranging from drug discovery and digital pathology to health screening in low-income countries. 22 

3D models and assembly instructions of our microscope are made available for open source 23 

use. 24 

Introduction 25 

Low-cost, high-performance portable microscopes are essential tools for disease diagnosis in 26 

remote and resource-limited communities [1]. A fundamental requirement is to combine wide 27 

field of view (FOV) with the high resolution necessary for imaging of sub-cellular features of 28 

biological samples. This underpins efficient inspection of extended, statistically-significant 29 

areas for screening of, for example, cancer, malaria, or sickle cell anemia [2]. In conventional 30 

imaging, the number of pixels in the detector array constitutes a hard limit on the space-31 

bandwidth product (SBP – the number of pixels in a Nyquist-sampled image) [3,4] so that 32 

increased FOV can be achieved only at the expense of reduced spatial resolution. SBP can be 33 

increased using larger detector arrays coupled with higher-performance, wide-field aberration-34 

corrected optics, or by mechanical scanning, but these approaches add complexity, cost and 35 

bulk [5,6].  36 

Several low-cost portable microscopes have been proposed [7–12], but they all suffer 37 

from the problem of small SBP. Early progress towards low-cost microscopy has involved the 38 

use of a high-cost microscope objective lens coupled to a mobile-phone camera [7] and such 39 

instruments tend to suffer from a higher system cost, vignetting, short working distance, small 40 

depth of field (DOF) and narrow FOV. Lower-cost implementations have been reported in 41 

which the microscope objective is replaced by a camera lens from a mobile phone [8], or a ball 42 

lens [9], but their resolving power is limited by the small numerical aperture (NA) and high 43 
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aberrations. Of these implementations, the use of mobile-phone camera lenses as objectives 44 

places an upper limit on the SBP: for example a 4-μm spatial resolution across 9mm2 FOV 45 

corresponding a SBP of 2.25Mpixel [8]. The 4-µm resolution is insufficient for observing sub-46 

cellular features and while a higher NA can be obtained using ball lenses, providing a resolution 47 

around 1.5 m, they suffer from small SBP [8,13]. 48 

We report a low-cost, wide-field, high-resolution Fourier-ptychographic microscope 49 

(FPM) [14], implemented with 3D-printed opto-mechanics and a Raspberry Pi single-board 50 

computer for data acquisition as shown in Fig. 1(a). High-SBP images are constructed from 51 

multiple low-resolution, detector-SBP limited images, captured in time-sequence using oblique 52 

illumination angles yielding a SBP that is much greater than that of the detector. We 53 

demonstrate 25-Megapixel microscopy using a 4-Megapixel detector array. The tilted 54 

illuminations provide translations of higher spatial-frequency bands into the passband of the 55 

objective lens [15].  Stitching of images in the frequency domain is implemented using an 56 

iterative phase-retrieval algorithm to recover high-resolution amplitude and phase of the 57 

sample image [16,17], as well as aberrations due to the objective [14]. Recovery of phase 58 

information enables imaging of unstained transparent samples [18] and computational 59 

calibration of illumination angles during image reconstruction is able to correct errors arising 60 

from misalignment of various components  [19,20], which is of particular importance for 61 

microscopy using low-cost 3D-printed devices. 62 

In previous demonstrations of a low-cost 3D-printed FPM, the SBP was  limited by the 63 

severe off-axis aberrations of the mobile-phone camera lens (1.5 µm resolution across 0.88mm2 64 

FOV giving a SBP of 1.56Mpixels), and employed a science-grade, high-cost monochrome 65 

sensor  [21]. Exploiting the mass market for consumer color sensors in mobile phone cameras, 66 

we demonstrate the first use of a low-cost consumer color camera in FPM, to gain more than 67 

an order-of-magnitude cost reduction for an equivalent SBP. The main difference between the 68 

two sensor types is the spatial-spectral filtering provided by the Bayer filter array, which 69 

encodes recorded images into sparse red, green, and blue channels. While the decoding 70 

processes follows a standard demosaicing procedure (individual RGB channels are interpolated 71 

and stacked into a 3D matrix), the loss in image information due to sparse sampling requires 72 

special treatment within the FPM reconstruction algorithm. We address the sparse sampling 73 

problem and present new robust algorithms for calibrating the 3D printed system for high-74 

quality image reconstruction. In addition, the Raspberry Pi single-board computer used for 75 

controlling the camera and illumination LEDs performs autonomous data acquisition, 76 

providing portability and compactness, such as is required for use inside incubation systems. 77 

In the next section, simulations to study the impact of the Bayer filter array and the 78 

experimental results from our system are presented. Implications of the results and future 79 

directions are discussed in the later sections. The methods section includes descriptions of the 80 

experimental setup, data-acquisition, data processing and calibration procedures. We also 81 

include the necessary CAD files and an instruction set to build the FPM presented in this article 82 

(supplementary material S1). 83 

 84 
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 85 

Figure 1. (a) Experimental setup next to a quarter US dollar for scale. Raspberry Pi 3 single-board 86 
computer board (placed at the bottom) enables wireless image acquisition and data transfer without the 87 
need for a PC. (b) Bayer color filter array indicating RGGB pixel arrangement. (c) In FPM several low-88 
resolution images are obtained in time sequence, each illuminated with a corresponding to the object 89 
illuminated from a different angle. Angular diversity enables to obtain multiple frequency regions, which 90 
can be stitched together into a single high-resolution, wide-field image. 91 

Results 92 

The Raspberry Pi camera (a low-cost device that complements the Raspberry Pi computer) 93 

employs a low-cost CMOS sensor, such as is typically found in mobile phones. It employs a 94 

Bayer filter (red, green and blue filters arranged on a 2D matrix in a 2x2 RGGB pattern [22] 95 

(Fig. 1(b))). This divides pixels on the sensor between the three color-filters resulting in 96 

sparsely sampled images: red channel – 75% empty pixels, green channel – 50% empty pixels 97 

and blue channel – 75% empty pixels. The empty pixels are demosaiced (using bilinear 98 

interpolation) to produce a perceptually acceptable photographic image. 99 
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In FPM, the reconstruction algorithm [18] (see Methods) involves a step to iteratively 100 

recover amplitude and phase of the low-resolution images, where the estimated amplitude is 101 

replaced by the experimentally obtained images. In color cameras, the experimental image has 102 

empty pixels (due to the Bayer filter) whose values are unknown. We have considered two 103 

approaches for mitigation of the sparse sampling due to the Bayer filter. The first, a sparsely-104 

sampled reconstruction  (SSR)  algorithm  [23],  updates only the non-empty image pixels, 105 

relying on the FPM reconstruction to estimate the empty image pixels. This approach increases 106 

the number of unknowns in the system and can have slower convergence or failure to converge. 107 

In a second approach, the empty pixels are estimated instead from demosaicing enabling the 108 

use of a conventional FPM recovery; we refer to this approach as demosaiced reconstruction 109 

(DR). With DR the interpolation errors introduced in demosaicing can introduce artefacts in 110 

the reconstruction. We report below a comparison of image-recovery accuracy using SSR and 111 

DR recovery applied to simulated data. 112 

Convergence of the FPM reconstruction algorithms requires the experimental design 113 

conditions to satisfy Nyquist sampling of the image by the detector array and to have 114 

approximately 50% overlap between the frequency bands selected by adjacent illumination 115 

angles (Fig. 2(c2)) [24]. We assess here using simulations, how these requirements are 116 

modified by the reduced sampling rate associated with the sparse sampling of the Bayer matrix.  117 

Image quality is compared to recovery from non-Bayer-encoded images. 118 

 Using the far-field approximation [15], the image intensity for a color channel can be 119 

written as 120 

𝐼(𝑥, 𝑦) = |F−1 {𝑃(𝑘𝑥 , 𝑘𝑦) ∙ F{𝐴(𝑥, 𝑦)𝑒𝑖𝜙(x,y)}}|
2

∙ 𝐵(𝑥, 𝑦) + 𝑁(𝑥, 𝑦) 
(1) 

where (𝑘𝑥, 𝑘𝑦) are coordinates in frequency space, (𝑥, 𝑦) are coordinates in real space, 𝑃 is the 121 

pupil function, 𝐴 and 𝜙 are the amplitude and phase distributions of the input object 122 

respectively, 𝐵 is a binary mask corresponding to the color channel’s filter arrangement on the 123 

RGGB Bayer matrix, 𝑁 is the added Gaussian image noise and F is the Fourier transform 124 

operator. Since robustness of the reconstruction is strongly dependent on the aberrations 125 

present in the pupil plane, they were simulated by including defocus and spherical optical 126 

aberrations generated using Zernike polynomials. We employed the Root-Mean-Squared 127 

(RMS) error between high-resolution reconstructed image and the expected ideal simulated 128 

image as a metric of image quality. We employed 150 iterations, which was more than 129 

sufficient for the FPM algorithms to converge. 130 

 In an imaging system, the image-sampling frequency is defined as 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 𝑀 𝑃𝑆⁄ , 131 

where 𝑀 is the magnification and 𝑃𝑆 is the pixel size. This sampling frequency must satisfy 132 

the Nyquist sampling criterion, defined as twice the optical cut-off frequency, to avoid aliasing: 133 

fsampling  ≥ fNyquist = 2fcut−off = 2 NAobj λ⁄  (2) 

The image-sampling frequency can be controlled in the experimental design by modifying the 134 

magnification since the pixel size is fixed by the camera sensor characteristics. To achieve the 135 

widest FOV possible without aliasing, the sampling factor (𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡⁄ )must be unity. 136 

For Bayer sensors, intuitively the effective pixel width is 2× larger due to the empty pixels in 137 

each color channel of the Bayer filter array, hence, the magnification needs to be increased by 138 

a factor of two compared to a monochrome detector array to compensate, i.e., the required 139 

sampling factor will be two. Since increasing the magnification reduces the FOV, simulations 140 

were performed (Fig. 2 (b)) to assess whether the FPM reconstruction methods could converge 141 

with under-sampling to achieve the highest SBP. 142 
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Comparison of FPM reconstruction techniques for Bayer images 143 

Sparsely-sampled reconstruction has been shown to be effective for aliased images with 75% 144 

sparsity [23], offering an advantage in terms of maximum achievable SBP compared to 145 

demosaiced reconstruction. However, as can be seen in Fig. 2(a), the image reconstruction from 146 

Nyquist-sampled Bayer images exhibited large RMS errors of 20-30% compared to 10% for 147 

non-Bayer images. Reduced image quality for reconstruction from Bayer-sampled images is 148 

expected due to aliasing artefacts; however, these findings differ from the conclusions in  [23]:  149 

probably due to practical differences in implementation, which did not involve compensation 150 

of optical aberrations and benefitted from low-noise data recorded by science-grade cameras. 151 

This enabled reconstruction of high-resolution images from data with 75% sparsity. However, 152 

in our implementation recovering the system aberrations and dealing with the detector read 153 

noise is crucial, hence, both SSR and DR reconstruction methods require an additional 2× 154 

magnification to satisfy the Nyquist sampling criterion.  155 

In Fig. 2(c1), the requirement for overlap between the spatial frequencies recorded by 156 

two adjacent LEDs is assessed. It suggests that RMS errors for SSR start to converge at ~40% 157 

overlap compared to 50% for DR; this is in agreement with the requirements for non-Bayer 158 

sensors [24]. Since the additional 2× magnification is used in these simulations, the frequency 159 

overlap requirement achieved is similar to the requirement for non-Bayer systems. Using these 160 

two optimal system parameters (2× additional magnification and a 70% frequency overlap), 161 

the overall convergence for DR and SSR and non-Bayer systems is compared in Fig. 2 (d). It 162 

can be observed that DR has better convergence and pupil recovery than SSR. The RMS errors 163 

in the final reconstructions are close for DR and SSR, hence it can be concluded that DR has 164 

better convergence properties despite both reconstruction techniques resulting in similar 165 

reconstruction quality. All reconstructed images are shown in the supplementary material S2. 166 

 167 
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Figure 2. (a) Demosaiced and sparsely-sampled reconstruction accuracy for different sampling factors 

showing that a factor of two is required when using DR and SSR methods; 70% overlap area in the 

frequency domain. (b)  Frequency spectra of monochrome and color sensor images showing frequency 

replicates introduced by the Bayer filter and how it distorts the circular boundary. The boundary becomes 

undistorted only for a sampling factor of 3. (c) Demosaiced and sparse reconstruction accuracy for different 

frequency overlap percentages together with a diagram explaining what is meant by the overlap percentage 

between adjacent frequency regions. As expected, accuracy improves as overlap increases. (d) 

Reconstruction convergence plots for object amplitude and pupil phase (70% overlap and sampling factor 

of 2), indicating better performance of demosaiced reconstruction. (e) Reconstructed simulated images. 
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Algorithmic self-calibration of LED misalignment 168 

Our system is implemented using 3D printed components and intended to be portable; hence, 169 

it may become easily misaligned, affecting primarily the illumination angles (LED positions). 170 

In addition, image distortion and field curvature change the relative LED positions distinctly 171 

across the FOV [25]. We have implemented a recently-developed self-calibration algorithm for 172 

LED position misalignment correction [20], solving the issues of image distortion and 173 

misaligned components with relatively good computational efficiency (see Methods). In this 174 

algorithm the intensity image of an off-axis illuminated brightfield image is Fourier 175 

transformed to produce two overlapping circles, centered around the illumination direction. 176 

Using image processing techniques, we can find centers of these circles providing a better 177 

calibration for the LED positions; hence, the calibration accuracy depends on how well these 178 

circles are delineated. 179 

While a sampling factor of two is sufficient (for a monochrome sensor), our simulations 180 

suggest (Fig. 2(b)) that artefacts introduced by the Bayer matrix require the sampling factor to 181 

be around three to produce an undistorted circular boundary, regardless of demosaicing. The 182 

Bayer pattern can be treated as a periodic grating; hence, it produces frequency replicas (similar 183 

to diffraction orders), a type of aliasing artefact, which distort circle boundaries indicated by 184 

Fig. 2(b). Hence, by increasing the sampling frequency, the separation between these frequency 185 

replicas is increased to preserve the boundaries. In practice, the change in illumination 186 

wavelength varies the sampling factor for a fixed magnification since the sampling frequency 187 

is fixed but the Nyquist frequency changes; hence, 3× sampling factor requirement for red 188 

(630nm) (enough for calibrating LED positions) results in 2× sampling factor in blue, the 189 

minimum required for overcoming Bayer sampling. This suggests that the red channel can be 190 

used for LED position calibration without losing additional SBP due to the increased sampling 191 

requirement. The FOV is divided into several segments and processed independently in FPM, 192 

hence the distortion is tackled by calculating the relative LED positions for each of these 193 

segments independently (see methods for the recovered distortion of the system). 194 

  195 

Experimental results 196 

Our FPM device (Fig. 1(a)) achieves high performance at low cost by use of mass-produced 197 

consumer electronics: a conventional mobile-phone-type color camera (with the lens displaced 198 

from the normal infinite-conjugate imaging position to enable short-range imaging), a 199 

Raspberry Pi single-board computer for data acquisition and an off-the-shelf LED array 200 

(Pimoroni Unicorn Hat HD) for synthesis of a programmable illumination that enables 201 

synthesis of a higher NA. The total component cost is about $150, but mass production of such 202 

a device would further reduce the component cost. The lens from the Raspberry Pi Camera 203 

v2.0 provides 0.15NA and 1.5× magnification when placed 7mm from the object. A 16×16 204 

array of LEDs with 3.3-mm pitch was located 60 mm below the object providing 0.4-NA 205 

illumination to enable synthesis of 0.55-NA FPM images. The FPM yields a 25-megapixel 206 

SBP: that is 870-nm resolution (𝑁𝐴 = 0.55) - sufficient for sub-cellular imaging across a 4mm2 207 

FOV. FPM also enables multiple imaging modalities, including phase-contrast and darkfield 208 

imaging, combined with extended DOF and computational aberration correction [26,27]. 209 

Computational correction of errors due to imperfect calibration (such as component 210 

misalignment and aberrations) is highly dependent on image quality, which is compromised by 211 

the Bayer matrix due to optical attenuation and spectral overlap and spectral leakage between 212 

the RGB channels. While signal-to-noise ratio was maximized by independent optimization of 213 

integration times for each illumination angle, the spectral overlap of the Bayer spectral filters 214 

was mitigated by  each red, green and blue LED in a time sequence rather than simultaneously.  215 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 2, 2018. ; https://doi.org/10.1101/460055doi: bioRxiv preprint 

https://doi.org/10.1101/460055
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

 

Figure 3. Reconstructions of a USAF resolution chart. (a1-a4) Incoherent raw images. (b1-b9) 

Demosaiced reconstructions and (c1-c9) sparsely-sampled reconstructions together with line profiles of 

the smallest resolved USAF target bars. The maximum achieved resolution using the blue LED was 

780nm based on group 10 element 3. (d1-d3) Reconstructed images with RGB LEDs used in parallel 

for illumination demonstrating the reduced reconstruction quality due to the spectral overlap between 

the color channels. The respective color channels are indicated by the red, green and blue borders of the 

left, middle and right images 

 

 

We used a standard USAF resolution test chart (Fig. 3(a)) to quantitively assess the 216 

performance and resolution improvement. Analysis of the reconstructed images shows a 217 

resolution improvement from group 8 element 4 (Fig. 3(a3)) to group 10 element 3 (Fig. 3(b6)) 218 

(using 470nm (blue LED) illumination), which corresponds to a three-fold resolution 219 
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improvement from 2.8μm (incoherent-sum) to 780nm. This resolution improvement is the 220 

result of the large synthetic NA offered by FPM, which is defined as 𝑁𝐴𝐹𝑃𝑀 = 𝑁𝐴𝑖𝑙𝑙 +221 

𝑁𝐴𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒. Experimental results agree with the theoretical predictions, which give an increase 222 

in NA from 𝑁𝐴𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡 = 0.15 (𝑁𝐴𝑖𝑙𝑙 = 0, 𝑁𝐴𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 0.15) to 𝑁𝐴𝐹𝑃𝑀 = 0.55 (𝑁𝐴𝑖𝑙𝑙 =223 

0.4, 𝑁𝐴𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 0.15) . While reconstruction quality shown in Fig. 3(c1-c9, b1-b9) is nearly 224 

identical for both the DR and SSR, the DR offers faster convergence, since the SSR needs to 225 

iteratively recover the missing pixels that are readily available through demosaicing in DR. 226 

The impact of spectral overlap was demonstrated by illuminating the sample using RGB LEDs 227 

simultaneously (white light) and reconstructing each color channel. Artefactual reconstructions 228 

(Fig. 3(d1-d3)) are a result of the broken assumption of monochromatic light that is implicit in 229 

FPM and could be mitigated by a spectral multiplexing algorithm [28]. 230 

 

Figure4. (a) Reconstructed and (b) raw lung carcinoma images. (c1, d1) are the captured raw, low-

resolution images and (c2-c3, d2-d3) intensity and phase reconstructions for two different segments of 

the FOV. (c4, d4) Recovered pupils with aberrations. 

Lastly, we have demonstrated experimentally that our reconstruction algorithms can 231 

compensate for high-levels of optical aberrations associated with the simple low-cost objective 232 

lens. Reconstructed images of a lung carcinoma (Fig. 4(a,b)) show high-quality reconstruction 233 

across the full FOV despite the presence of off-axis aberrations, which are recovered and 234 

corrected within the reconstruction procedure without requiring additional data. It can be 235 

observed clearly in Fig. 4(d1), that the raw image is severely aberrated compared to (c1), but 236 

the reconstruction (d2) is of similar quality to the central FOV section (c2). The phase images 237 

shown in   Fig. 4(c3, d3) demonstrate the capability of imaging unstained samples. It can be 238 
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seen from Fig. 4(a) that without aberration correction the FOV is limited by aberrations to a 239 

central area of ~1mm2 while the FPM correction of imaging aberrations increases the usable 240 

area of the FOV by a factor of four. 241 

Discussion and conclusion 242 

We have described the first demonstration of low-cost FPM, enabled by implementation using 243 

consumer-grade color cameras. We achieved a 4mm2 FOV and 780nm resolution (𝑁𝐴 = 0.55), 244 

giving 25-megapixels SBP recovered from 256, 8-megapixel images. Compared to previous 245 

reports of low-cost, mobile microscopes [8] the resolution of our system is a factor of 5 times 246 

better with the added advantage of a 4-times longer working distance (due to the low-NA 247 

lenses). Compared to systems where mobile-phone cameras are equipped with expensive 248 

microscope objectives [12] our microscope offers 100-fold larger FOV without sacrificing 249 

resolution. Compared to a previously demonstrated 3D-printed FPM [21], we report an 250 

increase in the  FOV area by a factor 5 and resolution by almost a factor of 2, while the use of 251 

a color sensor instead of a more specialist monochrome sensor reduced the cost by 1-2 orders 252 

of magnitude. The improved performance of our system is made possible by improved 253 

aberration correction and calibration strategies capable of coping with simple, low-cost 254 

components [23]. It should be noted that (1) due to the additional magnification required by 255 

the Bayer filtering, the effective SBP achieved from each 8-megapixel image is only 2 256 

megapixels and (2) the 25 megapixels SBP corresponds to the number of pixels in the image, 257 

but each pixel in the reconstructed image contains both amplitude and phase information. 258 

Although the recording of 256 images may seem a high number, this degree of redundancy is 259 

typical and necessary with FPM  [14], but can be reduced by a factor of up to 10 by using 260 

illumination multiplexing [29]. 261 

Our stand-alone microscope weighs only 200 grams and has external dimensions of 6cm 262 

x 9cm x 11cm. Data acquisition is autonomous offering major cost-savings and is ideal for 263 

applications such as cell-culture studies or point-of-care-testing applications that require field-264 

portable devices. The Raspberry Pi 3 computer-board enables wireless image acquisition, data 265 

transfer, and has potential for on-board FPM-based image reconstruction. Since image 266 

reconstruction is currently a computationally-intensive process we transferred the data to an 267 

external PC for processing, but in practice it would be possible to transfer the data onto a server 268 

network to perform the computations. Also, the use of a trained neural network for image 269 

recovery has been shown to improve image reconstruction speed by up to 50 times [30], which 270 

is particularly attractive for systems with lower computational power. However, neural network 271 

use for medical applications requires an investigation into the availability of training datasets,  272 

or data overfitting [31]. 273 

One major shortcoming of FPM is the time-sequential data acquisition, but image 274 

acquisition time of <1s has been demonstrated in FPM using LED multiplexing [18,29], which 275 

offers potential for an order-of-magnitude improvement in imaging speed. Techniques such as 276 

multi-aperture Fourier ptychography [32,33] can further increase throughput, as is essential for 277 

fast biological processes. Reduced image-acquisition times are also facilitated by replacement 278 

of the planar LED array with a dome-shaped array [34], where all LEDs are oriented towards 279 

the sample offering improved illumination efficiency.  Lastly a further factor of 6 increase in 280 

data acquisition speeds could be achieved by removing the high latency introduced during 281 

sequential read-out of our CMOS cameras. 282 

We have demonstrated that Fourier ptychography can be performed by using low-cost 283 

commercial-grade Bayer color sensors, off-the-shelf consumer components and 3D-printed 284 

parts. This is enabled by robust pre-processing and reconstruction strategies. Moreover, we 285 
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used a Raspberry Pi 3 single-board computer for image acquisition and image transfer. The 286 

result is a highly compact, stand-alone microscope, with a component cost of $150, that is 287 

capable of wide-FOV, high-resolution imaging. The proposed microscope is suitable for cell-288 

culture studies (its compactness enables it to fit inside an incubating chamber) and point-of-289 

care diagnostics. Due to the simplicity of our setup, it is suitable for use as a teaching tool for 290 

computational optics in undergraduate labs and in research labs for conducting further research 291 

in FPM.  292 

Methods 293 

Experimental setup 294 

Instructions for construction of our microscope shown in Fig. 1(a) can be found in 295 

supplementary material S1. To minimize the cost of our microscope we used easily accessible 296 

off-the-shelf, low-cost components. We chose a finite-conjugate microscope design because it 297 

requires only a single lens. Sample and focusing stages were custom designed and 3D-printed 298 

using a Ultimaker 2+ 3D printer. A Raspberry Pi V2 NOIR camera module was used (8 299 

megapixels, 1.12um pixel size) which contains a 3-mm focal-length camera lens, which was 300 

remounted and displaced from the sensor to achieve ~1.5× magnification. Frequency overlap 301 

of ~70% was obtained by placing the Unicorn HAT HD 16x16 LED array (3.3mm pitch) 60mm 302 

below the sample stage. The RGB LED array has peak illumination wavelengths of 623nm, 303 

530nm, and 470nm. The low-resolution microscope has 0.15 NA (providing 5-µm resolution 304 

at 470nm), 2.42×1.64mm2 FOV, and a 7-mm working distance. The synthetic NA achieved 305 

after FPM reconstruction was 0.55. Since the lens is used away from the intended infinite-306 

conjugate position, the aberrations become progressively more severe toward the edges of the 307 

FOV. This could be mitigated be use of two back-to-back, co-aligned lenses  [8] with the 308 

penalty of reduced working distance and added experimental complexity. 309 

Data acquisition 310 

Experimental low-resolution images were obtained using all 256 LEDs in the LED array. The 311 

Python 3.6 programming language was used for the image acquisition via picamera 312 

package [35], which enables the capture of raw 10-bit Bayer images [36]. Adaptive integration 313 

times for individual LEDs (longer for the off-axis LEDs towards the edges of the array) enabled 314 

enhancement of the dynamic range and image signal-to-noise ratio. We chose to transfer all 315 

256 images obtained by the microscope from the Raspberry Pi 3 computer onto a desktop 316 

Windows computer to speed up the reconstruction. Reconstruction could also be performed on 317 

the Raspberry Pi with necessary optimization of recovery algorithms. 318 

Image reconstruction 319 

Recorded images were demosaiced using bilinear interpolation from the OpenCV processing 320 

package [37] within the Python 3.6 programming language. Before the reconstruction, the 321 

images were pre-processed by subtracting dark-frames to remove fixed pattern noise and all 322 

images were normalized according to their exposure times. The pre-processed images were 323 

divided into 128x128 pixel sub-images with an overlap of 28 pixels between adjacent image 324 

segments to aid in seamless stitching of the high-resolution reconstructions. Finally, LED-325 

position calibration is performed independently on each image segment as described in the next 326 

section. 327 

The FPM reconstruction algorithm is performed on each section of the FOV referred to 328 

as 𝐼(𝑖)(𝒓), where 𝒓 is the coordinate vector in object space and 𝑖 is the index corresponding to 329 

the LED used to illuminate and obtain the image. Before the reconstruction a high-resolution, 330 

wide-field object 𝑜(𝒓) and its Fourier spectrum 𝑂(𝒌) = ℱ{𝑜(𝒓)} are initialized by 331 

interpolating one of the low-resolution images to the required dimensions, where 𝒌 is the 332 
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coordinate vector in k-space and 𝓕 is the Fourier transform operator. The reconstruction steps 333 

described below are repeated for multiple iterations and within an nth iteration, images obtained 334 

from illumination angles 𝑖 are stitched together using the following steps: 335 

1. Create a low-resolution target image Fourier spectrum estimate 𝛹(𝒌) by low-336 

pass filtering the high-resolution, wide-field spectrum estimate with the pupil 337 

function 𝑃(𝒌) 338 

𝛹𝑛
(𝑖)(𝒌) = 𝑂𝑛(𝒌 − 𝒌𝑖)𝑃𝑛(𝒌) (2) 

where 𝒌𝑖 is the k-space vector corresponding to angular LED illumination with 339 

an index 𝑖. 340 

2. Create a low-resolution target estimate  𝜓𝑛
(𝑖)(𝒓) = ℱ−1{𝛹𝑛

(𝑖)
(𝒌)} and use it to 341 

create the updated low-resolution estimate 𝜙𝑛
(𝑖)

(𝒓) by replacing its amplitude 342 

with the experimentally obtained one  343 

ϕn,SSR
(i) (𝐫) = (√I(i)(𝐫) ∙ B(𝐫) + |ψn

(i)(𝐫) ∙ (1 − B(𝐫))|)
ψn

(i)(𝐫)

|ψn
(i)(𝐫)|

, 
(3) 

where B(𝐫) is the binary Bayer matrix for the color channel being reconstructed. 344 

This is required if SSR is used [23], otherwise, if DR is being used then setting 345 

B(𝐫) = 1 results in the standard amplitude update step 346 

ϕn,DR
(i) (𝐫) = √I(i)(𝐫)

ψn
(i)(𝐫)

|ψn
(i)(𝐫)|

, 
(4) 

 347 

3. Create an updated low-resolution Fourier spectrum  348 

𝛷𝑛
(𝑖)

(𝒌) = ℱ {ϕn
(i)

(𝐫)}. (5) 

4. Update the high-resolution object Fourier spectrum 𝑂(𝐤) using a second-order 349 

quasi Newton algorithm [38] together with embedded pupil recovery 350 

(EPRY) [16] and adaptive steps-size [39] schemes to improve convergence  351 

On+1(𝐤) = On(𝐤) + αn
|Pn(𝐤 + 𝐤i)|Pn

∗(𝐤 + 𝐤i)

|Pn(𝐤)|max (|Pn(𝐤 + 𝐤i)|2 + δ1)
Δ, 

(6) 

Pn+1(𝐤) = Pn(𝐤) + βn
|On(𝐤 − 𝐤i)|On

∗ (𝐤 − 𝐤i)

|On(𝐤)|max (|On(𝐤 − 𝐤i)|2 + δ2)
Δ, 

(7) 

Δ = 𝛷𝑛
(𝑖)

(𝒌) − Ψn
(i)(𝐤), (8) 

where 𝛿1, 𝛿2 are regularization parameters and 𝛼, 𝛽 are adaptive-step size 352 

constants which are selected to improve convergence. More details on the pupil-353 

aberration recovery framework are given in the following sections. 354 

All reconstructed sections were stitched together to produce a full-FOV reconstructed 355 

image. Alignment and contrast variations were corrected prior to stitching. Histogram 356 

equalization with the central section is performed to remove contrast variations across the FOV 357 

for both amplitude and phase. Finally, all sections are blended together using ImageJ (using 358 

the Fiji plugin package) [40] to produce full-FOV images with seamless stitching. 359 
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All steps described above were performed for each of the red, green and blue channels 360 

independently and the final color image was assembled using linear image alignment with the 361 

scale-invariant feature transform (SIFT, part of the Fiji plugin package within ImageJ) [40] for 362 

each channel and mapping them into RGB color panes.  363 

 364 

 

Figure 5. (a) Frequency space of a brightfield image obtained using an oblique illumination angle. Blue 

and green dots indicate initial and corrected LED positions respectively. (b1) Aberrations recovered 

from each section are used as initial estimates for neighboring sections, starting from the center of the 

FOV towards the edges. (b2, b3) Examples of recovered aberrations throughout the full-FOV indicating 

spatially-varying aberrations. (c) Implementing LED calibration on each segment across the FOV 

enabled us to find the spatially varying distortion by measuring the global LED position shift. 

Computational calibration of LED positions  365 

An LED self-calibration method based on frequency-spectrum analysis of bright-field 366 

images [20] was used to locate pupil positions in spatial-frequency space for every 128x128 367 

pixel section of the image, in order to accurately estimate the angle of illumination at the sample 368 

associated with each LED. A microscope objective acts as a low-pass filter and off-axis 369 

illumination shifts the frequencies in the object plane corresponding to the frequencies 370 

transmitted by the objective, enabling recording of higher spatial frequencies. These higher 371 

frequencies within the brightfield region appear as two overlapping circles in the Fourier 372 
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transform of the intensity image, centered at the spatial frequency of the illumination angle. 373 

Finding the center of these circles yields the LED positions with sub-pixel accuracy, for every 374 

brightfield illumination angle [20] (Fig. 5(a)). After finding position displacements for each 375 

bright-field LED, a homographic transformation matrix that best represents the misalignment 376 

of the LED array is derived. This transformation matrix is applied to dark-field LEDs as well. 377 

However, non-linear distortions, such as field curvature [25],  make LED positions appear to 378 

be distorted differently across the FOV. To mitigate this problem, we split the full FOV image 379 

into 128x128 pixel sections and apply LED calibration for each section individually. If non-380 

linear distortions are present, then each section will have a different LED array translation 381 

shown in Fig. 5(c). These distortions were corrected using an affine transformation that best 382 

represents corrections for each section of the FOV. 383 

Computational aberration correction 384 

Spatially-varying aberrations for each segment of the FOV are recovered using the EPRY 385 

algorithm [16] to enable FPM reconstruction of the images. However, our microscope suffers 386 

from aberrations that increase progressively towards the edges of the FOV, and the EPRY 387 

algorithm fails for the more highly aberrated sections. A good initial estimate of the aberrations 388 

is required for the EPRY algorithm to converge. Therefore, starting with the central 128x128 389 

section of the FOV, we run the EPRY recovery step for 40 iterations, reset the recovered image 390 

intensity and phase while retaining the aberrations, and iterate the algorithm for 3 more times. 391 

The reset step forces the algorithm to escape from local minima and enables convergence 392 

towards a global solution. We use the recovered central aberrations as an initial estimate for 393 

the surrounding sections (Fig. 5(b)). This update process continues until aberrations for every 394 

section of the FOV are recovered. 395 

Low-cost lenses, such as the ones we have used, tend to suffer from severe chromatic 396 

aberrations. We found that when the microscope is focused using one color of LED, the 397 

chromatic aberration (primarily defocus) for images recorded using other colors was significant 398 

to cause the reconstruction algorithms to fail. The aberrations recovered from the central 399 

section of the color where the microscope is focused are used as an initial estimate for the 400 

defocused color that is being processed. This involved decomposition of recovered pupil 401 

aberrations into 30 Zernike coefficients using the singular value decomposition function in 402 

MATLAB from which the chromatically-aberrated pupil functions were estimated. 403 

  404 
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Supplementary material 1: 405 

Instructions to build a Raspberry Pi 406 

Fourier ptychographic computational 407 

microscope 408 

This document provides instructions to build a low-cost computational microscope reported in 409 

the manuscript: “Low-cost, sub-micron resolution, wide-field computational microscopy with 410 

Raspberry Pi hardware”. The CAD files and data acquisition codes can be downloaded from 411 

http://dx.doi.org/10.5525/gla.researchdata.594. 412 

Introduction 413 

One of the aims when building this microscope was to use only off-the-shelf components that 414 

can be easily bought anywhere and to design the microscope in such a way that it could be 415 

assembled with minimal external components. Avoiding complexity allowed us to build a very 416 

low-cost and robust microscope, which can be assembled and used with opensource software. 417 

Designs for the parts were made using OpenSCAD open source CAD software and printed with 418 

Ultimaker 2+ 3D printer.  419 

The microscope was designed around the Raspberry Pi 3 computer board due to a wide 420 

opensource community and the support available. The computer itself has a CSI port to which 421 

a Raspberry Pi camera can be connected. For the illumination we used a Unicorn HAT HD 422 

16x16 LED array, which is an add-on designed for the Raspberry Pi boards. It mounts directly 423 

onto the GPIO pins on top of the board. Camera and the LED board can be connected and 424 

controlled easily via opensource libraries available for Python or C++ programming languages. 425 

Furthermore, Raspberry Pi camera comes mounted with a mobile-phone-camera type 426 

lens. It was unscrewed from the camera and used as our microscope objective. The component 427 

list required to build the setup is provided below, along with a step-by-step instruction set for 428 

assembly and operation of the microscope. 429 

  430 
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Component list 431 

Off-the-shelf components Quantity Purpose 

Raspberry Pi 3 computer board 1 
Controlling the camera and LED array; 

image capture and storage 

20mm long M3 screws 4 
Fix Raspberry Pi computer board to a 

stable base 

Unicorn HAT HD 16x16 LED array 1 Illumination source 

Raspberry Pi V2.1 NoIR camera 1 Image sensor 

Unscrewed lens from the Raspberry 

Pi camera (Part 4) 
1 Microscope objective 

3.5mm diameter, >10mm long, 

0.25mm pitch screw and bushing 

(Thorlabs  F3ES25, F3ESN1P) 

1 Used for high-accuracy focusing 

>40mm long M6 screws + nuts 2 
Attaching the focusing stage to the 

sample stage 

5.6mm diameter, ~10mm long springs 

(RS Stock No. 821-431) 
2 

Counter balance force for the focusing 

stage 

5mm long M1.5 screws 4 
Screwing Raspberry Pi (part 4) camera 

to the focusing stage 

Supplementary Table S1 1. List of the off-the-shelf components required to build the microscope.   432 

   433 

  434 
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Design 435 

   436 

Supplementary Figure S1 1. The experimental setup with all the necessary annotations for reference to 3D 437 
printed designs. 438 

Supplementary Figure S1 1 shows the assembled setup together with 3D printed parts required. 439 

It was built using components described in Supplementary Table S1 1. Once each component 440 

is 3D printed, the assembly is very simple and requires only a few screwdrivers. 441 

Base   442 

The plastic base shown in Supplementary Figure S1 1(c) was printed such that the Raspberry 443 

pi and the sample stage could be screwed onto it. The base itself has 4 holes which can be used 444 

for screwing the microscopes to the optical bench if needed. This was designed to provide 445 

higher stability when longitudinal imaging might be required. 446 

Sample stage   447 

The sample stage shown in Supplementary Figure S1 1(b) was designed to be mounted on the 448 

Raspberry Pi board with an LED array on top. The four screw holes on the 3D printed sample 449 

stage match those found on the Raspberry Pi and the plastic base. All components can be 450 

screwed tightly together to form a single microscope unit. 451 

There is another 3D printed part that goes on top of the sample stage legs. It has 3 holes 452 

on it where the central one acts as an aperture for the sample, reducing any stray light and 453 

reflections from the LED array. The other 2 holes were made for screws that attach the focusing 454 

stage to the sample stage.   455 

Camera holder and focusing stage   456 

The focusing stage shown in Supplementary Figure S1 1(a) is composed of four 3D printed 457 

elements.    458 

The camera holder module (the first 3D printed part seen in Supplementary Figure S1 1(a)) 459 

was designed to mount the microscope objective (the unscrewed camera lens) in place and 460 

screw the camera above it. This was designed for finite-conjugate microscope configuration to 461 
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be established. The unscrewed lens from the camera has a 1.5mm aperture only on one side; 462 

lens must be mounted such that the aperture is facing downwards (towards the sample). This 463 

compact design was set to achieve 1.5× magnification, but it can be easily modified by 464 

changing the distance between the lens and the detector. 465 

The camera holder mount, (the second 3D printed part seen in Supplementary Figure S1 466 

1(a)) serves several purposes including focusing the sample. Firstly, it has rails onto which 467 

camera holder module is mounted and can be moved up or down for focusing. The central hole 468 

in the camera holder mount is for the 0.25mm pitch screw. Springs are fed through the inner 469 

pair of holes in the camera holder mount and the corresponding holes in the camera holder 470 

module.  They are held in place by sliding the pins shown in Supplementary Figure S1 1(a) 471 

through each end of both springs. The screw is used to push down on the camera holder module 472 

while the springs and bottom pin provide a counter force to push it upwards. This way the 473 

module can slide along the rails with high-precision, by turning the screw. Springs provide 474 

stability and push the module upwards when the screw does not provide a downward force 475 

anymore, which should minimize the backslash error. 476 

Secondly, the outer holes in the camera holder mount enables addition of screws or bolts to 477 

attach the whole focusing module to the top of the sample stage. While the focusing is done 478 

via a translation stage, the sample must be translated by hand. In our setup, the FOV is large 479 

so precise translation is not required; hence, we chose to use this design. However, there are 480 

3D printed sample translation stages available in the opensource community that can be 481 

integrated into our design. 482 

Assembly instructions   483 

Access to a 3D printer is required to print several parts required for the assembly. We used 484 

Ultimaker 2+ with a nozzle size of 0.25mm for the camera holder module and 0.4mm for the 485 

other components. Also, the lens from the Raspberry Pi V2.0 camera must be unscrewed before 486 

the assembly. Step-by-step instructions to assemble the microscope: 487 

1. 3D print all the parts using a printer of your choice. We used openSCAD to design, render 488 

and save the designs in .STL format. CURA software was used to create the files that can 489 

be read by the Ultimaker 2+ 3D printer. Black PLA filament and a 0.4mm diameter nozzle 490 

was used for printing the sample stage parts, while a 0.25mm nozzle was used to print the 491 

focusing stage. Our files were designed to match the tolerance of the nozzles on our 492 

printer. The 3D models need to be tweaked when a different nozzle size or a different 3D 493 

printer is used due to change in the tolerances. 494 

2. Connect the Raspberry Pi camera to the Raspberry Pi board.   495 

 496 
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3. Mount the LED array on top of the Raspberry Pi board by plugging it into the GPIO pins 497 

on the board.  498 

 499 

4. Place the sample stage such that the screw holes match the base; making sure that the 500 

sample-stage feet are not on top of any of the LEDs. Then place a nut in each foot of the 501 

sample stage. 502 

5. Place the spacers in between the Raspberry Pi board UnicornhatHD board so that they are 503 

aligned with the screw holes and then screw the Raspberry Pi board and the sample stage 504 

to the base such that they form a single rigid module. 505 

 506 

6. Take the camera holder; place the lens in the circular slot with the aperture facing 507 

downwards, towards the sample stage. 508 

 509 

7. Mount the camera, align with the screw holes of the 3D printed camera holder; screw it in 510 

place tightly. 511 
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 512 

8. Slide the camera holder module onto the focusing stage rails.  Thread the springs through 513 

the holes on the focusing stage and the camera module as shown by a red arrow in the 514 

figure below. Use two 3D printed horizontal pins seen in Supplementary Figure S1 1(a)) to 515 

hold the ends of the springs at the top and bottom of the focusing stage; the spring should 516 

be long enough such that it is stretched out and apply a strong counter-balance force to the 517 

screw.  518 

 519 

 520 

9. Pull down the camera holder module and, from underneath, place the bushing up into the 521 

central hole of the focusing stage. Then, place the screw in the top of the camera holder 522 

mount. Screw it in such that the screw pushes onto the camera holder module. 523 

 524 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 2, 2018. ; https://doi.org/10.1101/460055doi: bioRxiv preprint 

https://doi.org/10.1101/460055
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

10. Use screws with nuts to fix the focusing stage tightly to the top plate of the sample stage 525 

from Supplementary Figure S1 1(b)). 526 

11. Place the focusing stage module onto the sample stage module with the Raspberry Pi 527 

computer. The part is designed to have a tight fit, if it is not tight, please adjust the 528 

tolerances. 529 

12. Optional: connect a screen using the HDMI port.   530 

13. Optional: connect a keyboard and a mouse. 531 

14. Optional: Place the Raspberry Pi board on top of the 3D printed base; align the base and 532 

the Raspberry Pi such that the screw holes are on top of each other. 533 

 534 

Operating the Microscope 535 

Installing Software on the Raspberry Pi   536 

Raspbian is a free Raspberry Pi operating system available for download from the 537 

manufacturer's website. It can be installed by following the guide listed in the Links section.  538 

The various interfaces of the Raspberry Pi can be enabled by going to Applications Menu -> 539 

Preferences -> Raspberry Pi Configuration -> Interfaces, and then enabling all options.  540 

Image acquisition codes can also be downloaded from the Links section. Various python 541 

packages will need to be installed before these can be used. The packages needed are: 542 

• -Unicornhathd   543 

• -Numpy   544 

• -Picamera   545 

• -Matplotlib   546 

• -Io    547 

• -Random   548 
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• -Fractions   549 

These can be installed using the pip package management system or by installing anaconda on 550 

the raspberry pi. However, the picamera and unicornhathd packages are not included in 551 

anaconda and will need to be installed separately. Links to the installation guides of these 552 

packages and a more general guide to installing python packages on the Raspberry Pi are 553 

provided in the Links section. Python2 is used for image acquisition so follow instructions for 554 

Python2.7 as opposed to Python3.  555 

Data Acquisition 556 

1. Connect the Raspberry Pi to a keyboard, mouse and monitor, and turn it on.   557 

2.  Place the sample on the top plate of the sample stage, underneath the camera 558 

mount.   559 

3. Use the "Focusing" script to make sure the sample is positioned correctly and in 560 

focus. This script has an option to zoom that can be used if needed. To focus the 561 

microscope, use an Allen key to turn the screw in the focusing stage.   562 

4. Close the preview and open the "main data acquisition" file.   563 

5. Adjust the necessary parameters in the data acquisition file and save the file.  564 

6. Place the microscope in a dark room or cover it, being careful to ensure the sample 565 

is not moved and the focus is not shifted.   566 

7. Run the data acquisition script   567 

8. The captured data can be copied by a USB drive or the SD card on the Pi can be 568 

inserted into a PC and disk internals Linux reader can be used to copy the data. 569 

9. Switch off the Raspberry Pi after data acquisition is complete.   570 

Links 571 

• Data acquisition codes and CAD files: http://dx.doi.org/10.5525/gla.researchdata.594 572 

• Raspbian installation guide: 573 

https://www.raspberrypi.org/documentation/installation/installing-574 

images/README.md   575 

o Needs Etcher software to install Raspbian on the SD Card 576 

o But first, download the Raspbian image from the above link. 577 

• Guide to Installing Python Packages on Raspberry Pi: 578 

https://www.raspberrypi.org/documentation/linux/software/python.md 579 

• Picamera installation guide: http://www.picamera.readthedocs.io/en/release-580 

1.0/install2.html  581 

• UnicornHatHD installation guide: https://www.github.com/pimoroni/unicorn-hat-hd  582 

• Pimoroni Unicorn HD LED array: https://shop.pimoroni.com/products/unicorn-hat-hd 583 

• Raspberry Pi V2.1 camera: https://www.raspberrypi.org/products/camera-module-v2/ 584 

• DiskInternals Linux Reader can be used to read the files on a Linux SD card from a 585 

computer: https://www.diskinternals.com/linux-reader/   586 

 587 
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Supplementary material 2: 589 

Reconstructions from the simulations 590 

Simulations were carried out to compare the reconstruction quality from the sparsely 591 

sampled Bayer filtered images using (1) standard FPM algorithms on demosaiced images and 592 

(2) sparsely sampled FPM reconstruction on raw Bayer data. These reconstruction methods 593 

were applied to investigate their performance for various sampling and frequency overlap 594 

criteria. Simulations for a non-Bayer image sensor (monochrome) are also presented to provide 595 

a reference for the results obtained from a Bayer filtered image sensor (colour). Results are 596 

shown in Supplementary Figure S2 1, Supplementary Figure S2 2, Supplementary Figure S2 597 

3. These are the reconstructed images for data points displayed in the graphs presented in Figure 598 

2 of the main manuscript. 599 

 600 
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Supplementary Figure S2 1 Reconstructions from images obtained with a monochrome sensor (no 

Bayer filter) using the standard FPM algorithm. First row shows the expected ideal reconstruction and 

the remaining rows shows the reconstructions from datasets captured with (1) various image sampling 

criteria and (2) overlap between the spatial frequencies captured by any two adjacent illumination 

angles. Noise and aberrations are added in the simulated images to mimic the experimental conditions. 
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Supplementary Figure S2 2 Reconstructions from images obtained with a color sensor (with Bayer 

filter array) using the sparsely-sampled FPM algorithm. These images are sparse due to the intermittent 

sampling from the Bayer filter array. First row shows the expected ideal reconstruction and the 

remaining rows shows the reconstructions from datasets captured with (1) various image sampling 

criteria and (2) overlap between the spatial frequencies captured by any two adjacent illumination 

angles. Noise and aberrations are added in the simulated images to mimic the experimental conditions.  
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Supplementary Figure S2 3 Reconstructions from images obtained with a color sensor (with Bayer 

filter array) using the standard FPM algorithm after demosaicing. The sparse images captured from the 

Bayer filter array are demosaiced (bilinear interpolation) such that the standard FPM algorithm can be 

implemented. First row shows the expected ideal reconstruction and the remaining rows shows the 

reconstructions from datasets captured with (1) various image sampling criteria and (2) overlap between 

the spatial frequencies captured by any two adjacent illumination angles. Noise and aberrations are 

added in the simulated images to mimic the experimental conditions. 
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