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ABSTRACT 44 

There is a lack of biomarkers for pre-kidney transplant immune risk stratification to avoid over- 45 

or under-immunosuppression. Since the circulating lipidome is integrally involved in 46 

inflammation, we hypothesized that the lipidome may provide biomarkers that are helpful in the 47 

prediction of antibody-mediated rejection. We used mass spectrometry to detect the plasma 48 

lipidome in samples collected over 1 year post-kidney transplant from a prospective, 49 

observational cohort of adult kidney transplant recipients (KTR), classified in two groups, one 50 

with antibody mediated rejection (AMR) and the other with stable graft function (SC). We used 51 

linear discriminant analysis to generate predictive models of rejection. A ‘lipid-only’ model 52 

generated from samples taken on day of transplant (T1) revealed a seven lipid classifier 53 

(lysophosphatidylethanolamine and phosphatidylcholine species) with misclassification rate of 54 

8.9% [AUC = 0.95 (95% CI = 0.84-0.98), R2 = 0.63]. A clinical model [(using donor specific 55 

antibody (DSA) and panel reactive antibody (PRA)] was inferior with a misclassification rate of 56 

15.6% [AUC = 0.82 (95% CI = 0.69-0.93), R2 = 0.41]. A combined model using four lipid 57 

classifiers and DSA improved the AUC further to 0.98 (95% CI = 0.89-1.0, R2 = 0.83) with a 58 

misclassification of only 2.2%. The polyunsaturated phospholipid subspecies that discriminated 59 

the two groups were much lower in the AMR group when compared to the SC group. While the 60 

lipidomic profile changed significantly among SC patients on serial sampling post-transplant, 61 

such changes were not seen in AMR patients. After taking serial lipidomic changes overtime in 62 

SC patients in to account, the AMR group still showed sustained decreased levels of specific 63 

lipids at the time of AMR. These findings suggest that a lack of anti-inflammatory 64 

polyunsaturated phospholipids could identify patients at a higher risk of AMR at the time of 65 

transplant. 66 

67 
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INTRODUCTION 68 

The complex biochemistry of human biological systems has been operationally separated 69 

into a set of large molecular categories.  The metabolome, as it is termed, includes four classes of 70 

biologically active molecules that consist of proteins and amino acids, carbohydrates and sugars, 71 

nucleic acids (both DNA and RNA), and lipids.  The full lipid profile that encompasses the 72 

complete set of lipid molecules in a human is termed the lipidome.  The general term lipid 73 

describes a very large, ubiquitous and diverse class of molecules that have a structural and 74 

functional role in biological systems.  Lipids are an integral structural component of cell 75 

membranes, play a significant role in energy storage, are involved in a variety of signaling 76 

pathways and intersect in the complex biochemistry of the other classes of compounds in the 77 

metabolome(1). Furthermore, by altering the properties of cellular membranes, the lipidome also 78 

has the ability to influence membrane mediated events such as enzyme association with 79 

membranes required for some catalytic events. Since first characterized in 2002, alterations of 80 

the lipidome have been intensely studied in a variety of conditions(2). Distinct lipid profiles have 81 

been identified in the normal state and in a variety of pathologic conditions and in response to 82 

specific therapeutic interventions(3–7).   83 

Renal allograft transplantation is the treatment of choice for End Stage Renal Disease 84 

(ESRD).  In the United States, a shortage of suitable organ donors and resultant organs available 85 

for transplant, creates a marked supply and demand discrepancy leaving many patients on the 86 

waiting list for prolonged periods of time(8). If evidence based risk stratification could occur 87 

pre-transplant then more effective and tailored immunosuppressive strategies could be designed 88 

to minimize the risk of rejection and infection post-transplant. Current immunosuppression 89 

protocols have resulted in a marked decrease in T-cell mediated rejection, at the cost of long 90 

term immunosuppression with its resultant adverse effects including susceptibility to 91 
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opportunistic infections, graft damage, and metabolic complications such as hypertension, 92 

diabetes, and lipid abnormalities which predispose to cardiovascular disease(9,10).  However, 93 

current immunosuppression protocols are not as effective in suppressing antibody mediated 94 

rejection (AMR), which is a major cause of graft loss(10).  95 

At the present time standardized immunosuppression protocols rather than individualized 96 

immunosuppression is the routine practice for kidney transplantation, because suitable pre-97 

transplant risk stratification biomarkers that can predict future transplant rejection are not 98 

available for clinical practice. It was previously thought that donor specific antibodies and the 99 

degree of sensitization might serve as stratification tools, but they have been shown to be 100 

inadequate predictors of future rejection (11). Thus, there is an unmet need for biomarkers that 101 

could allow for better initial risk stratification while enhancing the benefits/risks of 102 

immunosuppression therapy for individual patients.   103 

 104 

MATERIALS AND METHODS: 105 

Patient Selection 106 

The Virginia Commonwealth University Institutional Review Board (IRB) approved this 107 

study. Patients were selected from a prospective observational cohort of a single-institution adult 108 

kidney transplant center in the United States. The study population consisted of 16 consecutive 109 

patients who developed antibody-mediated rejection within 2 years of kidney transplant and 29 110 

stable control (SC) patients who did not develop rejection at any point of post-transplant follow-111 

up.  Serial plasma samples were collected and stored at Time 1 (T1 - pre-transplant), Month 6 112 

(T2) and Month 12 (T3) and then yearly for all patient’s post-transplant as part of an IRB 113 

approved biobank protocol at our institution. For the AMR group, serum samples were drawn at 114 

the time of transplant (T1), at rejection (T2) and at the end of successful therapy (T3). 115 
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The SC patients were selected based on the retrospective observation during the period of 116 

the study for stable renal function, with no episodes of rejection, with known adherence to the 117 

immunosuppressive regimen, and with a sufficient volume of samples at the appropriate time 118 

points for lipid research assays. A minimum follow-up of 2 years was mandated to be a 119 

candidate for inclusion in the study. Pediatric kidney recipients and multi-organ transplant 120 

recipients were excluded.  121 

At our institution all patients received a standardized immunosuppression induction 122 

protocol using  anti-thymocyte globulin (Thymoglobulin, Genzyme, Cambridge, MA) with a 123 

total of 6 mg/kg over four consecutive days beginning in the operating room. Maintenance 124 

immunosuppression included a combination of tacrolimus, mycophenolate mofetil and 125 

prednisone tapered to 5 mg/day. Highly sensitized patients received 6 sessions of pre-emptive 126 

plasmapheresis with intravenous immunoglobulin (IVIG; 100mg/kg) based upon a pre-specified 127 

protocol as reported by us previously (12).  128 

Indication biopsies were performed for acute allograft dysfunction defined as a rise in 129 

creatinine >20% above baseline, serum creatinine nadir ≥2.0 mg/dL post-transplant; or delayed 130 

graft function >21 days post-transplant. Surveillance biopsies were performed in patients with a 131 

positive flow-cytometric crossmatch (T or B >100 mean channel shifts) and/or presence of pre-132 

formed donor-specific antibody [DSA; >5000 mean fluorescence intensity (MFI)] at 1 month and 133 

6-months post-transplant. Biopsies were graded based upon the Banff criteria (13). Patients with 134 

AMR were treated with 6-9 sessions of plasmapheresis with intravenous immunoglobulin (IVIG; 135 

100 mg/kg) in conjunction with intravenous methylprednisolone 500 mg administered once daily 136 

for 3 days. In selected cases, additional drug therapy with rituximab or bortezomib was instituted 137 

based upon clinical response. 138 
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The details of antibody testing performed at our center have been described previously 139 

(14). Briefly, pre-transplant complement-dependent cytotoxicity (CDC) assays and three-color 140 

flow-cytometric cross matching (FCXM) were performed for all patients at the time of 141 

transplant. Donor-specific antibodies (DSA) were analyzed using the Luminex platform 142 

(Immucor Platform, San Diego, CA) with the use of an HLA phenotype panel (Lifematch Class I 143 

and Class II ID, Gen-Probe) and a single-antigen panel (Single Antigen Beads, Immucor 144 

Platform). Results of bead assays were measured as MFI. For highly sensitized patients an MFI 145 

of >5,000 and for de-novo kidney transplant recipients an MFI >10,000 was considered 146 

unacceptable for routine transplantation. Calculated Panel Reactive Antibody (cPRA) was 147 

determined using the OPTN calculator from the following url: 148 

https://optn.transplant.hrsa.gov/resources/allocation-calculators/cpra-calculator/ 149 

 150 

Lipidomic Analysis 151 

Serial serum samples were stored at -80ºC prior to research use.  Upon initiation of experiments, 152 

samples were prepared for analysis using an HILIC-based UPLC ESI-MS/MS method. 50 µL of 153 

plasma was added to 750 µL of MTBE (methyl-tertiary butyl ether), containing 20 µL of 154 

SPLASH internal standards (SPLASH LIPIDOMIX Mass Spec Standard – Avanti 330707), and 155 

160 µL of water. After centrifugation for 2 minutes at 12,300 rpm, 350 µL of supernatant was 156 

transferred to auto sampler vials and dried under vacuum. Dried extracts were re-suspended 157 

using 110 µL of a methanol:toluene (10:1, v/v) mixture containing CUDA (12-158 

[[(cyclohexylamino) carbonyl] amino]-dodecanoic acid) at a final concentration of 50 ng/ml. 159 

Samples were analyzed on a QTRAP 6500+, with Shimadzu Nexera UPLC. Analytes 160 

were separated on a Waters BEH HILIC 1.7 μm 2.1x150 mm column (column temperature = 161 

30°C). Mobile phase A: 10 mM ammonium acetate (pH 8) in 95% ACN (acetonitrile). Mobile 162 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2018. ; https://doi.org/10.1101/460030doi: bioRxiv preprint 

https://doi.org/10.1101/460030
http://creativecommons.org/licenses/by-nd/4.0/


9 
 

phase B: 10 mM ammonium acetate (pH 8) in 50% ACN. Gradient (B%) ramps from 0.1 to 20 in 163 

10 mins; rises to 98 at 11 min, keeps for 2 mins, then drops back to 0.1 and maintains for 3 mins.  164 

 165 

Statistical Analysis 166 

A comparison t-test analysis (FDR=0.05) was used to select group differences on the day 167 

of transplant. Mean values for each lipids class were obtained by sum and average. Linear 168 

Discriminant Analysis with regularized correction (RLDA) models for lipids and clinical 169 

parameters were created with a stepwise forward method (Fig. 1). Regression performance was 170 

estimated with R2, misclassification error and area under the ROC Curve (AUC). Estimates were 171 

validated with bootstrap coefficient interval (Fig. 1). Predictors combined model was cross 172 

validated with Random Forest method, and the misclassification out-of-bag error (OOB error) 173 

was estimated and compared to the RLDA error for validation (Fig. 1). Changes over time were 174 

also estimated using the sparse partial least square method and separation of the groups was 175 

validated with a permutation test. A t-test was used to compare two time points within a group 176 

and for comparing different groups at matched time points. Data was analyzed with JMP Pro 13 177 

and MetaboAnalyst 3.0. The statistical workflow is depicted in Fig. 1. 178 

 179 

RESULTS: 180 

Demographic comparison of the two groups prior to transplantation is shown in Table 1. 181 

Patients in the AMR group were more likely to be female, re-transplants and had a higher degree 182 

of sensitization (higher cPRA) and presence of donor specific antibody (higher DSA) at the time 183 

of transplant. They were also more likely to have hyperlipidemia. There were no differences 184 

noted for age, race, weight, years on dialysis, type of dialysis, delayed graft function, or the 185 

presence or absence of diabetes mellitus. 186 
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A comparison of phospholipid (PL) classes at T1 revealed relative concentration 187 

differences between SC and AMR (Fig. 2). The concentration of phosphatidylcholine (PC) was 188 

significantly diminished in AMR, while there was a trend for an increased concentration of 189 

lysophosphatidylcholine (LPC). The AMR group also showed a significantly lower 190 

concentration of phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), 191 

plasmanylethanolamine (PE-O), and plasmenylethanolamine (PE-P). Although not statistically 192 

significant, there was also lower concentration of Phosphoglycerol (PG), 193 

lysophosphatidylglycerol (LPG), and sphingomyelin (SM). The activity of phospholipase A2 194 

(PLA2) as a signal of increased metabolism was assessed by the ratio of PL to lysophospholipids 195 

(LPL). The AMR group showed decreased ratios of PC/LPC and PE/LPE indicating higher 196 

activity of PLA2 at T1. PL degradation, evident for PE, was higher in the AMR group compared 197 

to the SC group. .  198 

 199 

Combined lipid and clinical parameters allow for the prediction of rejection on the day of 200 

transplant (T1). 201 

Preliminary data demonstrated that there are significant differences in the pre-transplant 202 

lipidome between SC and AMR. This led to the hypothesis that the T1 lipidome or some 203 

combination of the lipidome and clinical parameters could provide insight into the risk of future 204 

transplant rejection, enabling better risk stratification for kidney transplant recipients. To 205 

investigate this possibility, a stepwise regularized linear regression was deployed using models 206 

of lipids alone, clinical data alone, and a merged lipid and clinical data to test for prediction 207 

accuracy (Table 2). The analysis identified seven distinct lipids that discriminated between AMR 208 

and SC with 8.9% of the events misclassified [Area under receiver operating characteristic curve 209 

(AUC) =0.95 (95%CI=0.84-0.98), R2=0.63 (95%CI=0.4-0.8)]. A clinical model using cPRA and 210 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2018. ; https://doi.org/10.1101/460030doi: bioRxiv preprint 

https://doi.org/10.1101/460030
http://creativecommons.org/licenses/by-nd/4.0/


11 
 

DSA was inferior with 15.6% of the events misclassified, AUC=0.80 (95%CI=0.66-0.90), 211 

R2=0.36 (95%CI=0.16-0.57).  Still using a stepwise selection approach, a combined model 212 

determined with 4 lipids plus DSA further reduced the misclassification events to 2.2% (Fig. 3), 213 

and the AUC improved to 0.97 (95% CI=0.88-1.0), R2=0.81 (95%CI=0.49-0.96). 214 

Further comparison of the four lipids predictors of kidney rejection showed that these 215 

lipids are significantly decreased in AMR compared to the SC group. In the PC (18:0 /20:4) plot, 216 

it is possible to notice the presence of outliers in both groups (Fig. 4A). Random Forest method 217 

was used for statistical validation with 500 bootstrap samples, and the mean decrease accuracy 218 

test was used estimate the importance of each predictor to the validation model (Fig. 4B). The 219 

result revealed that DSA is the more important clinical biomarker of AMR at T1, and together 220 

with LPE (16:0) and PC (18:0/20:4) can discriminate AMR with a very low error (2.2%). The 221 

statistical validation also revealed that exclusion of LPE (22:6) and LPE (20:4) in the model 222 

would have a minimal effect on the misclassification error. Although in the RLDA modeling 223 

training, using the entire study population, the addition of these two lipids takes the model 224 

estimation from R2=0.75 to R2=0.81. 225 

 226 

Serial analyses of the lipidome over the course of one year identify time dependent lipid 227 

changes among patients with a favorable transplant outcome, but no differences among 228 

graft recipients with non-favorable outcomes. 229 

Following the identification of the lipid differences at T1 and their ability to predict graft 230 

rejection in association with measured clinical parameters, we wished to investigate how the 231 

lipidome changes over time in patients with a favorable transplant outcome (SC). To achieve this 232 

end, serial lipid profiles were analyzed from samples collected at Day 0, 6 months and 12 months 233 

post-transplant (Fig. 5). A sPLSDA analysis of the data revealed a statistically significant 234 
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alteration in the metabolic profile at 6 months post-transplant compared to the day of transplant 235 

(Fig. 5A).  However, for the subsequent times from 6 months to 12 months, there was no 236 

significant change in the lipidomic profile. This finding suggests that stabilization of the lipid 237 

changes after transplant is associated with the achievement of improved kidney function and 238 

possibly a reduced milieu of inflammation (Fig. 5B). The data was subjected to validation using 239 

the permutation test (Fig. 5C) and showed a statistically significant metabolic difference (p= 240 

0.034) from T1 to 6 months after transplantation. 241 

Further investigation of the lipid differences between T1 and T2 identified 19 lipids that 242 

represent the relevant time dependent alterations in the lipidome that had statistically significant 243 

elevations at T2 compared to T1 in the SC group.  (Fig. 6).  A majority of these lipids changes 244 

are LPC, with a few PC, one PE-O, two PE-P, and one PG.  245 

Following the identification of the longitudinal lipid trajectory among patients with 246 

favorable transplant outcomes, we investigated the trajectory of the lipidome pre-transplant to 247 

post transplant one year, among the patients with non-favorable outcomes (AMR) (Fig. 7). 248 

sPLSDA analysis of the data reveal that there was no significant alteration in the lipid profile at 249 

pre-rejection and post-rejection compared to T1 (Fig. 7a). While a slight change was observed 250 

from T1 to post-rejection (Fig. 7B), validation analysis using permutation testing demonstrated 251 

this difference to be non-significant (p=0.869) (Fig. 7C). These findings indicate that in contrast 252 

to patients with a favorable transplant outcome (SC), patients with non-favorable transplant 253 

outcomes (AMR) demonstrated no change in the lipid profile observed pre-transplant over time. 254 

 255 

Significant post-transplant lipid differences were observed between Stable Controls vs. 256 

those with Antibody-mediated Rejection 257 
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As our data revealed that there were significant T1 vs T2 lipid differences between SC, 258 

but not in AMR, we further investigated the data to identify the exact differences in the lipidome 259 

between SC and AMR at T2. Any differences identified would indicate an alteration in the lipid 260 

metabolic environment at the time of rejection that would distinguish AMR from SC. Since there 261 

were no significant differences between T2 and T3 for SC group we chose to use SC at T2 (6 262 

months post-transplant) to compare with AMT at T2 (time of AMR). The analysis revealed a 263 

panel of 13 lipids that were found to differentiate the two groups at T2 (Fig. 8). As noted 264 

previously, these 13 lipids were again comprised of LPE and PC species containing 265 

monounsaturated and polyunsaturated fatty acids, except for LPE (16:0). This data further 266 

confirms the presence of a sustained lipid metabolic difference between SC and AMR over time 267 

that distinguish these two groups of patients.  268 

 269 

  270 
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DISCUSSION:  271 

In this first study, we report novel data that the lipidome could be used to identify kidney 272 

transplant patients with a higher risk of antibody-mediated rejection at the time of transplant. In 273 

addition, for the first time we demonstrate that combining lipidomic and clinical data to create a 274 

model merging the presence of donor-specific antibody and lipids (a reduction of each of the 275 

four identified lipid biomarkers, one PC and three LPE species) can discriminate AMR with 276 

minimal error even at the time of transplant. Statistical validation suggests that DSA, LPE (16:0) 277 

and PC (18:0/20:4) are putative biomarkers that should be further tested in a prospective clinical 278 

study. These biomarkers could indicate a state of increased inflammation associated with chronic 279 

kidney disease and hemodialysis in selected groups of patients compared with others(15).  280 

Modulation of phospholipids (PL) in chronic kidney disease (CKD) is well described in 281 

the literature. In a study of CKD among rats, Zhao et al. identified that PC, PE, LPC, LPE and 282 

triacyclglycerides (TG) steadily decreased as the pathology progressed over time (16). Braun 283 

et al described that the aged kidney from adult wild-type mice expresses significant decreases 284 

of PC, PE, PG, SM, phosphatidylserine (PS), and Ceramides, suggesting that change in PL 285 

metabolism is associated with CKD (3). Kobayashi et al. reported an elevation of LPE 20:4 in 286 

the plasma of adenine-induced CKD rats when comparing with control animals(17). In a human 287 

study comparing healthy controls and CKD patients, Reis et al. found that the content of total 288 

PC and Ceramides were decreased along with the ratio of LPC/LPE(18). In a study comparing 289 

patients with CKD progression compared to control patients, Afshinnia et al. reported that 290 

CKD progression was associated with  lower Cholesteryl ester (CE), diacylglycerols (DG), 291 

PC, plasmenylcholine (PC-P), PE-P, and phosphatidic acid (PA), and elevated PE and 292 

monoacylglycerols (MAG)(19). This finding suggests that patients with CKD progression 293 

with a decrease of longer acyl chains and polyunsaturated lipids might benefit from the effects 294 
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of polyunsaturated fatty acid supplementation, as some previous studies have 295 

suggested(20,21). In our study, although both groups represent patients who had CKD 296 

progression, the SC group had higher PC and LPE than the AMR group and a trend for lower 297 

LPC suggesting that subpopulations with varying degrees of inflammatory milieu might exist 298 

with the CKD population. This would be consistent with the real-life observation of patients who 299 

have varying degrees of risk of rejection.  300 

LPC has being associated with pro-inflammatory effects(22), but there is not much 301 

information about  the effects of LPE. Some studies suggest that LPE could have a possible 302 

protective effect over inflammation. Schober et al. demonstrated that LPE generation from PE 303 

oxidation is primarily due to PLA2 activity rather than by hypochlorous acid generated by 304 

myeloperoxidase, while LPC can be generated from both processes(23). The dual effect of PLA2 305 

is well known by its  pro-inflammatory action in hydrolysis of PC to produce LPC promoting 306 

atherogenesis, as well as its anti-inflammatory action in hydrolysis of platelet-activating factor 307 

(PAF) and oxidized PLs(24). This suggest that processes that are not directly related to oxidative 308 

stress generate LPE in CKD patients. The activity of PLA2 in our study was assessed by the ratio 309 

of PL to LPL. The AMR group had a higher PLA2 activity, especially for degradation of PE to 310 

produce LPE. The  PC/LPC ratio, as an inflammatory marker is also indirectly represented by the 311 

increased activity of PLA2 in inflammatory diseases(25,26).  312 

It has been reported that in vitro LPE induces activation of the mitogen-activated protein 313 

kinase (MAPK) cascade, an intracellular signal transduction pathway that controls growth, 314 

proliferation, differentiation, motility, stress response, and has a survival along with ananti-315 

apoptotic effects(27). Also LPE increases intracellular Ca2+ through a Lysophosphatidic acid 316 

(LPA) G-protein-coupled receptor (GPCR)(28). Oral administration of LPE in rats with zymosan 317 

A-induced peritonitis  demonstrated a vast anti-inflammatory action. In that study LPE-318 
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containing polyunsaturated fatty acids administration inhibited plasma leakage by diminishing 319 

the formation of LTC4, inhibited the leukocyte extravasation into the peritoneum, decreased 320 

formation of potent chemotactic factors such as LTB4 and 12-HETE, lowered IL-1β, IL-6, TNF-321 

α, and augmented IL-10(29).  322 

Our results suggest that the lack of anti-inflammatory protection in patients on the day of 323 

transplant is a risk for future rejection. No relevant changes occurred for the AMR group until 324 

the onset of rejection, confirming that the metabolic profile at T1 predicting AMR persisted after 325 

transplantation. Accordingly, over time comparison of SC and AMR showed that the difference 326 

in LPE and PC levels were sustained after 6 months representing the metabolic difference 327 

between rejection and non-rejection. The presence of monounsaturated and polyunsaturated fatty 328 

acids in PL is also an indication that their low plasma content is a risk factor for kidney health 329 

(30). In contrast, the elevation of LPC, PC, PE-O, PE-P, and PG after 6 months in SC group 330 

imply that restauration of PL content is the result of successful transplantation. Indeed, some 331 

studies have shown that elevation of polyunsaturated fatty acids present a lower risk of 332 

developing end-stage renal disease (31), as well as higher survival rates after kidney 333 

transplantation(32).  334 

There are some limitations to our study. Demographic comparisons between the SC and 335 

AMR groups at T1 revealed that female gender, re-transplant, cPRA, DSA, and hyperlipidemia 336 

were statistically more likely to be present in the AMR group. Moreover, we found DSA as the 337 

strongest predictor of AMR. These findings are consistent with Dunn et al. who reported that 338 

DSA and female gender were risk factors for AMR (33). Thus, the two groups could have been 339 

inherently different biochemically. Future larger studies with an increased sample size would be 340 

need to confirm this preliminary study. Our finding of hyperlipidemia in AMR group could be 341 

linked to the fact that hyperlipidemia is the most common form of dyslipidemia, a common 342 
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complication in CKD patients, associated with the decline in kidney function, 343 

hypertriglyceridemia, low HDL, and low or normal LDL (34).  344 

  345 

CONCLUSION: 346 

Our study for the first time identifies the pre-transplant, post-transplant, and pre-rejection 347 

lipid differences that distinguish kidney transplant patients with favorable transplant outcomes 348 

(SC) and a major cause of non-favorable transplant outcomes (AMR). We further demonstrate 349 

that unlike SC patients that demonstrate a dynamic longitudinal lipid change, AMR patients 350 

maintain a relatively unchanging lipid profile over time with respect to the measured lipids. In 351 

addition, we demonstrate for the first time the feasibility  of risk stratification of kidney 352 

transplant patients on the day of transplant about the possibility of prediction for future AMR. 353 

Following prospective validation in a larger cohort, these findings have the potential to alter the 354 

current paradigm of pre- and post-transplant monitoring. Treatment of these patients with an 355 

evidenced based risk stratification strategy could vastly improve the success of kidney 356 

transplantation. 357 
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FIGURE LEGENDS, TABLES AND FIGURES 368 

 369 

Fig. 1: Statistical analysis workflow for the study. After data filtering and normalization, a 370 

statistical workflow based on Regularized Linear Discriminant Analysis (RLDA) and Sparse 371 

Partial Least Square Discriminant Analysis (sPLSDA) was applied. Candidate variables were 372 

selected by t-test with a False Discover Rate (FDR) =0.05. RLDA at T1 identified lipid 373 

biomarkers that predicted AMR. Predictive models using lipids, clinical parameters, and the 374 

combination of both markers were analyzed using a forward stepwise regression.  . Bootstrap and 375 

Random Forest were used as internal validation. sPLSDA at three different time points was used 376 

to identify and compare metabolic changes indicative of AMR. A permutation test was then used 377 

for validation. 378 

 379 

Fig. 2: Significant differences are observed among phospholipids at T1 between SC and 380 

AMR. A) The AMR group showed a significantly lower concentration of PC, PE, and LPE 381 

(phospholipids). There was a trend towards higher levels of LPC (lipophopholipids) in AMR. B) 382 

PLA2 activity, an indicator of phospholipid degradation to produce LPL was assessed by the 383 

ratio of PL to LPL. A lower value suggests higher activity as shown by PC/LPC and PE/LPE 384 

ratios in AMR. Suspected outliers are indicated by open circles in the box plots. Green rectangles 385 

represent AMR and the red rectangles represent SC. * indicates significant differences with 386 

p<0.05. 387 

 388 

Fig. 3:  The RLDA model generated using four lipids and DSA demonstrate good 389 

separation between AMR and SC groups. The RLDA plot shows the clear separation of the 390 

patients in the two groups based on the Mahalanobis distance. This method determines whether 391 
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the selected predictors can separate the distinct categories and reveals the presence of outliers in 392 

the AMR and SC groups.  Blue dots among the red dots indicates the one misclassified patient 393 

identified in the predictive model. Internal ellipse indicates the 95% confidence region 394 

containing the true mean of the group. External ellipse indicates the region estimated to contain 395 

50% of group’ population. 396 

 397 

Fig. 4:  Predictors of AMR on the day of transplant and Random Forest statistical 398 

validation. A) Box plot of normalized concentrations shows that the AMR group has lower 399 

concentrations of the lipids predictors. Suspected outliers are represented as open circles that 400 

appear outside the whiskers. The validation method showed that the prediction model could 401 

discriminate SC and AMR at T1 with 0.022 OOB error. The mean Decrease Accuracy method 402 

shows that DSA is the more important predictor, followed by LPE (16:0) and PC (18:0/20:4) and 403 

they independently could be used as biomarkers. The analysis also reveals that when considering 404 

these predictors as biomarkers, the inclusion of LPE (20:4) and LPE (22:6) does not add any 405 

predictive power, and rather must be used to compose the RLDA model. * indicates significant 406 

differences with p<0.01. 407 

 408 

Fig. 5: The lipidome of SC demonstrate clear differences between T1 and T2 but no 409 

differences between T2 and T3. A) The graphical distribution of T1 (shown in red), T2 (shown 410 

in green), and T3 (shown in blue) indicates that there is no difference between 6 months and 1-411 

year post-transplant, after a metabolic shift from T1 to T2. B) The lipid difference is highlighted 412 

by the change in the first 6 months. C) Permutation test was performed as a validation test to 413 

evaluate the statistical significance of the PLS-DA model separation from T1 to T2 (p=0.034). 414 

Ellipses represent the 95%CI for each time point. 415 
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 416 

Fig. 6: Specific lipids characterize the difference between T1 and T2 among SC patients. 417 

The levels of the 19 different lipids that are significantly elevated 6 months after transplantation 418 

are mostly comprised from the LPC class containing both unsaturated and saturated fatty acids. 419 

PCs, PE-O, PE-P and PG are also elevated after 6 months. * indicates significant differences 420 

with p<0.01. 421 

 422 

Fig. 7: Contrary to SC patients, no statistically significant difference was observed in the 423 

T1 and T2 lipidome of AMR patients. A) The graphical distribution of T1 (shown in red), T2 424 

(shown in green), and T3 (shown in blue) indicates that there is no difference over time, although 425 

a slight metabolic shift could be detected from T1 to post-rejection. B) The plot of the slight 426 

metabolic difference from T1 to T2 highlights the overlap of the 95% CI of the two time points. 427 

C) Permutation test was performed as a validation test and shows that this difference in the PLS-428 

DA model separation from T1 to T2 is not  statistically significant  (p=0.869). Ellipses represent 429 

the 95% CI of each time point. 430 

Fig. 8: Specific lipids demonstrate significant differences between SC and AMR at T2. The 431 

metabolic changes observed at T1 were sustained 6 months after transplant with lower LPE and 432 

PC species in AMR group. Except for LPE (16:0) all lipids contained monounsaturated and 433 

polyunsaturated fatty acids. SC group shown in red. AMR group shown in green. * indicates 434 

significant differences with p<0.01. 435 

 436 

 437 

 438 
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Table 1 – Demographic Characteristics of the Patient Cohort - Categorical variables were 441 

analyzed with the Fisher’s exact test; Continuous data is presented as a mean of the group ± 442 

standard deviation and is analyzed by t-test. SD: Standard deviation; cPRA: calculated panel 443 

reactive antibody; DSA: donor specific antibody; GRF: glomerular filtration rate. 444 

Characteristic SC AMR p-value 

N 29 (100%) 16 (100%)  

Female Gender 4 (14%) 11 (69%) 0.005* 

Age, years (Mean±SD) 47±11 50±9 0.45 

African-American Race 17 (59%) 13 (81%) 0.19 

Pre-transplant Diabetes 10 (34%) 8 (50%) 0.35 

Pre-transplant hyperlipidemia 7 (29%) 16 (100%) 0.04* 

Weight at Transplant, kg (Mean±SD) 85±21 82±14 0.6 

Years on dialysis (Mean±SD) 2.9±1.9 4.3±4.1 0.26 

Mode of dialysis    

Hemodialysis 19 (65%) 13 (81%) 
0.49 Peritoneal Dialysis 4 (14%) 2 (12%) 

Preemptive transplant 6 (21%) 1 (7%) 

Re-transplant 4 (14%) 9 (56%) 0.001* 

cPRA, % (Mean±SD) 9.8 (±29.4) 40.8(±45.8) 0.023* 

DSA 1 (3%) 8 (50%) <0.001* 

Kidney Donor Profile Index, % 52±27 54 ±32 0.89 

Delayed Graft Function 13 (45%) 7 (44%) 1.00 

GFR at 6 months post-transplant* 67±22 61±23 0.37 

GFR at 12 months post-transplant* 68±19 58±22 0.11 

 445 

 446 

  447 
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Table 2 – Predictors of Rejection at the Time of Transplant - Bootstrap validation with 95% 448 

Confidence intervals is included for RLDA estimates and area under the curve (AUC). cPRA: 449 

Calculated Panel Reactive Antibody; DSA: donor specific antibodies; GFR: Estimated 450 

glomerular filtration rate (mL/min/1.73m2); SC: Stable Controls; AMR: Antibody-mediated 451 

Rejection; *statistically significant. 452 

Model Predictors R2 Misclassification AUC 

Only lipids 

PC (16:0/22:6) 

PC (18:0/20:4) 

PC (18:1/20:4) 

LPE (16:0) 

LPE (16:1) 

LPE (20:4) 

LPE (22:6) 

0.63 

(0.40 – 0.80) 

8.9% 

(3.3 – 18.6) 

0.95 

(0.84 – 0.98) 

Only clinical 
cPRA 

DSA 

0.36 

(0.16 – 0.57) 

15.9% 

(7.4 – 29.2) 

0.80 

(0.66 -0.90) 

Merged models 

PC (18:0/20:4) 

LPE (16:0) 

LPE (20:4) 

LPE (22:6) 

DSA 

0.81 

(0.49 – 0.96) 

2.3% 

(0.1 – 12.1) 

0.97 

(0.88 – 1.00) 

 453 

  454 
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