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Abstract	
Antigen-specific	T	cells	can	be	orchestrated	to	kill	cancer	cells	in	immunotherapies	but	the	utilities	
of	the	TCR	information	have	not	been	fully	explored.	Here,	we	leveraged	previous	efforts	on	tumor	
TCR	repertoire,	and	developed	a	novel	algorithm	to	characterize	antigen-specific	TCR	clusters.	
Joint	analysis	with	gene	expression	revealed	novel	regulators	for	T	cell	activation.	Investigation	of	
single-cell	sequencing	data	revealed	a	novel	subset	of	tissue-resident	memory	T	cell	population	
with	elevated	metabolic	status.	Integrative	analysis	of	TCR	clusters	with	HLA	alleles	and	cancer	
genomics	data	identified	candidate	antigens	derived	from	missense	mutations,	frameshift	indels,	
and	tumor-associated	gene	overexpression.	Predicted	antigen	HSFX1	was	further	validated	using	
vaccinated	humanized	HLA-A*02:01	mice.	Finally,	high	abundant	cancer-associated	TCRs	were	
observed	in	the	blood	repertoire	of	early	breast	cancer	patients,	suggesting	new	avenues	for	non-
invasive	early	detection.	Thus,	our	analysis	identified	cancer-associated	T	cells	with	broad	utilities	
in	immune	monitoring	and	cancer	immunotherapies.		
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Introduction	
Antigen-specific	tumor-infiltrating	T	lymphocytes	(TIL)	play	a	central	role	in	cancer	immunity1-3,	
with	demonstrated	applications	in	cancer	immunotherapies,	including	checkpoint	blockade4-6	and	
adoptive	cell	transfer	therapies7,8.	Therefore,	identification	of	antigen-specific	TIL	is	critical	to	
understanding	tumor-immune	interactions	and	designing	individualized	treatments.	However,	
this	task	remains	challenging	despite	extensive	clinical	efforts9,10.	First,	cancer	antigens	may	come	
from	diverse	sources,	including	missense	mutations11,12,	frameshift	insertions	or	deletions13,14,	
tissue	specific	gene	overexpression15,16,	and	other	antigenic	processes17-20,	making	it	difficult	to	
profile	all	the	possible	targets.	In	addition,	the	antigen-binding	CDR3	region	on	the	T	cell	receptor	
(TCR)	is	extremely	diverse21,	and	their	targets	are	usually	unknown.	Thus	limited	progress	has	
been	made	in	the	analysis	of	TIL	repertoire	despite	pressing	clinical	needs.	This	is	because	
statistical	significance	is	usually	difficult	to	reach	in	such	analysis	unless	using	a	large	cancer	
cohort	and	a	proper	computational	method,	neither	of	which	is	currently	available	to	study	the	
tumor	antigen-specific	T	cells.		
	
Efforts	have	recently	been	made	to	partition	the	immune	repertoire	into	groups	linking	to	antigen-
specificity	(GLIPH)22,	or	evaluate	the	similarity	of	CDR3s	with	known	specificity	for	functional	
predictions	(TCRdist)23.		However,	TCRdist	prediction	relies	on	established	antigen-binding	TCR	
repertoire,	which	is	usually	unavailable	for	cancer	studies,	while	GLIPH	is	benchmarked	for	
infectious	disease,	and	we	demonstrated	its	suboptimal	specificity	to	accommodate	the	extreme	
diversity	of	tumor	antigens.	Therefore,	due	to	the	complicated	interactions	between	cancer	and	
tumor-reactive	TILs,	more	specific	strategy	is	required	to	study	the	repertoire	of	cancer-
associated	TCRs	for	improved	immune	monitoring	and	immunotherapies.	
	
In	this	work,	we	systematically	identified	the	antigen-specific	T	cells	using	a	novel	CDR3	dataset	
profiled	from	over	9,700	tumor	RNA-seq	samples	from	the	Cancer	Genome	Atlas	(TCGA)	and	a	
new	computational	method	for	highly	specific	grouping	of	TCR	CDR3	sequences.	These	unique	
resources	allowed	us	to	integratively	analyze	the	antigen-specific	TILs	together	with	cancer	
genetic	alterations,	gene	expression	patterns,	patient	clinical	profiles,	single-cell	RNA-seq	data	and	
immune	repertoire	sequencing	data24,25	from	the	public	domain.	This	pan-cancer	analysis	led	to	
several	interesting	findings,	which	might	not	only	provide	novel	targets	for	late	stage	cancer	
treatment,	but	also	point	to	new	avenues	for	preventive	cancer	screens.	Specifically,	our	analysis	
identified	a	number	of	metabolic	enzymes	as	potential	negative	regulators	for	T	cell	activation	and	
revealed	a	novel	tissue-resident	memory	T	cell	subpopulation	for	a	subset	of	antigen-specific	TILs.	
We	also	predicted	candidate	cancer	antigens	derived	from	somatic	alterations	or	overexpressed	
cancer-associated	genes	with	in	vivo	validations,	which	may	expand	the	current	pool	of	cancer	
antigens	for	future	vaccination	development.	Finally,	we	developed	a	predictor	from	the	antigen-
specific	CDR3s	to	distinguish	cancer	patients	from	healthy	individuals,	and	demonstrated	its	
potential	application	to	non-invasive	early	cancer	detection	or	immune	monitoring.	
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Results	
Detection	of	antigen-specific	CDR3	clusters	with	iSMART	
We	have	previously	described	the	TRUST	algorithm26	for	sensitive	detection	of	T	cell	receptor	
hypervariable	CDR3	sequences	using	bulk	tissue	RNA-seq	data.	In	this	work,	we	applied	a	later	
version	of	TRUST27	with	improved	sensitivity	to	9,709	TCGA	tumor	RNA-seq	samples	and	
assembled	1.5	million	CDR3	sequences	(Figure	1a).	Of	these,	170,000	were	complete	productive	
CDR3s,	following	the	IMGT	nomenclature28.	A	sizeable	fraction	of	the	human	T	cell	repertoire	is	
public,	derived	from	biased	V(D)J	recombination29,	and	are	present	in	both	healthy	and	diseased	
individuals.	To	exclude	the	irrelevant	public	TCRs,	we	compared	the	TCGA	TIL	CDR3s	with	a	large	
cohort	of	TCR	repertoire	data	from	non-cancer	individuals30	(Methods).	CDR3s	observed	in	these	
samples	with	high	abundances	were	excluded,	leaving	82,000	non-public	sequences.		
	
Identification	of	antigen-specific	CDR3	groups	from	TCR	repertoire	data	is	highly	desirable,	yet	
challenging	due	to	the	high	diversity	of	CDR3	regions21	and	promiscuous	binding	between	T	cell	
receptors	and	antigenic	peptides31-33.	A	previous	work,	GLIPH22,	demonstrated	that	CDR3s	
grouped	into	motif-sharing	clusters	are	expected	to	recognize	the	same	antigens.	In	our	
benchmark	analysis	we	observed	GLIPH	groups	a	substantial	fraction	of	CDR3s	of	different	
antigens	(Supplementary	Figure	1),	thus	might	not	be	optimal	for	analyzing	TIL	TCR	data.	
Therefore,	we	developed	a	new	method,	immuno-Similarity	Measurement	by	Aligning	Receptors	
of	T	cells,	or	iSMART,	with	increased	clustering	specificity	(Methods).	In	brief,	iSMART	performs	a	
specially	parameterized	local	alignment	on	CDR3s,	builds	a	pairwise	comparison	matrix	and	
divides	it	into	clusters	with	highly	similar	sequences.	We	benchmarked	iSMART	without	variable	
(V)	gene	assignment,	because	1)	a	large	fraction	of	the	TRUST	assemblies	do	not	have	V	gene	
information	and	2)	GLIPH	does	not	rely	on	V	gene	assignment	for	clustering.	We	tested	both	
methods	using	a	curated	CDR3	database	containing	the	experimentally	validated,	antigen-specific	
TCR	sequences34	(Methods).		
	
We	first	applied	iSMART	to	the	2,347	curated	CDR3s	specific	to	15	selected	antigens	
(Supplementary	Table	1),	and	observed	more	specific	grouping	compared	to	GLIPH	measured	by	
cross-classification	errors	(Figure	1b).	Overall	GLIPH	clustered	a	higher	percentage	of	total	
CDR3s	(29%)	than	iSMART	(17%),	but	iSMART	achieved	significantly	higher	specificity		
(p=0.00078,	Wilcoxon	rank	sum	test)	measured	by	cluster	purity	(Figure	1c)	and	called	more	
clusters	with	unique	antigen	assignments	(Figure	1d).	As	our	goal	is	to	identify	tumor-specific	
CDR3s,	the	higher	specificity	of	iSMART	is	a	desirable	feature.	Therefore,	we	applied	it	to	the	
82,000	non-public	CDR3	sequences	and	detected	4,501	clusters	(Figure	1a).	As	most	clusters	
contain	more	than	one	individuals,	we	also	used	the	term	‘CDR3	cluster’	to	denote	the	subset	of	
patients	carrying	the	CDR3s	in	a	given	cluster.	A	total	of	15,254	CDR3	sequences	were	grouped	
into	these	clusters,	and	were	referred	as	cancer-associated	CDR3s.		
	
Features	of	CDR3	clusters	and	association	with	tumor	gene	expression	profiles	
The	number	of	sequences	in	the	clusters	spans	two	orders	of	magnitude	(Supplementary	Figure	
2a),	and	for	each	sample,	the	number	of	clustered	CDR3s	(K)	also	spans	two	orders	of	magnitude	
(Supplementary	Figure	2b).	For	each	gene,	we	calculated	the	partial	Spearman’s	correlation	
between	K	and	its	expression	levels	(Supplementary	Table	2),	controlled	for	tumor	purity,	which	
is	expected	to	influence	both	values35	(Methods).	Among	the	genes	with	top	positive	correlations	
are	putative	T	cell	activation	markers,	including	TBX21	(T-bet),	ICOS,	TIGIT	and	granzymes	
(Supplementary	Figure	3a).	Gene	ontology	enrichment36	analysis	suggested	that	the	top	500	
genes	are	strongly	enriched	for	immune	cell	activation	and	immune	responses	(Supplementary	
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Figure	3b).	Interestingly,	on	the	top	of	the	list	there	is	a	pair	of	lysophosphatidylserine	receptors,	
GPR174	and	P2RY10,	which	have	been	identified	as	suppressors	for	regulatory	T	cell	function37	
(Supplementary	Figure	3a).	These	results	strongly	suggest	that	CDR3s	clustered	by	iSMART	are	
enriched	for	activated	T	cells	in	the	tumor	microenvironment.	
	
We	next	investigated	genes	negatively	correlated	with	K	as	potential	regulators	for	T	cell	
inactivation	and	exclusion	(Supplementary	Figure	4).	Of	the	414	genes	with	correlation	<	-0.1	
and	FDR<0.05	in	at	least	3	cancer	types,	we	observed	4	interesting	clusters.	Cluster	i)	contains	a	
putative	oncogene	MAPK338,	inhibition	of	which	has	been	linked	to	enhanced	anti-tumor	immune	
response39.	This	cluster	also	harbors	a	key	glycolysis	enzyme,	ALDOA,	which	has	recently	been	
shown	to	impair	T	cell	infiltration	and	cytotoxicity40.	Cluster	ii)	contains	two	oncogenes,	RHOD	
and	PKP3,	the	former	recently	being	implicated	in	immune	suppression41.	We	also	identified	a	
number	of	other	metabolic	enzymes,	including	protein	metabolic	enzyme	POMGNT1,	cytochrome	c	
enzymes	COX6A1	and	UQCRQ,	lipid	metabolic	enzymes	DGAT1	and	FAAH,	etc,	supporting	the	
recently	elucidated	immunosuppressive	role	of	cancer	metabolism	pathways42.	
	
Identification	of	tissue-resident	memory	T	subpopulations	with	distinct	metabolic	status		
To	further	elucidate	the	phenotypes	of	the	T	cell	clonotypes	with	clustered	CDR3s,	we	analyzed	a	
recently	generated	single	cell	RNA-seq	(scRNA-seq)	data	with	matched	TCR	information43.	Using	
the	TCGA-derived	CDR3s	as	clonotype	markers,	we	identified	a	number	of	clustered	T	cell	clones	
in	the	3	breast	tumor	scRNA-seq	samples.	We	first	studied	sample	BC10,	which	has	the	largest	
amount	(n=55)	of	cells	carrying	clustered	CDR3s.	The	selected	55	cells	were	visualized	on	the	
background	of	all	4,926	cells	using	t-Distributed	Stochastic	Neighbor	Embedding	(tSNE)44	plots,	
and	observed	a	local	clustering	of	18	events	in	a	restricted	region	(Figure	2a).	All	18	events	share	
the	same	β	chain	CDR3	sequence,	and	we	delineated	the	region	containing	these	cells	as	a	separate	
CD8+	subgroup	(n=44).	Differential	gene	expression	analysis	on	the	cells	in	this	group	against	all	
the	others	(Supplementary	Table	3)	revealed	up-regulated	genes	both	involved	in	T	cell	
cytotoxicity	(GZMB,	PRF1,	IFNG)	and	exhaustion	(PDCD1,	LAG3)	(Supplementary	Figure	5).	
Interestingly,	the	top	targets	showed	high	consistency	with	a	recently	reported	tissue	resident	
memory	T	cells	(Trm)	signature45,	including	up-regulation	of	CD103	(ITGAE),	TIGIT,	GZMB,	and	
down-regulation	of	SELL	(CD62L),	KLF2	and	KLRG1.	This	group	also	expresses	a	number	of	other	
previously	reported	Trm	markers46	(Supplementary	Figure	6),	including	transcription	factor	
ZNF683,	or	HOBIT	(homolog	of	Blimp-1	in	T	cells),	a	key	regulator	for	Trm	differentiation47.	We	
observed	significant	association	of	ZNF683	expression	with	better	outcomes	in	multiple	cancer	
types	(Figure	2b),	supporting	the	anti-tumor	role	for	Trm	cells.		
	
T	cells	undergo	profound	differentiations	in	the	tumor	microenvironment,	and	it	is	unclear	which	
evolutionary	path	T	cells	have	taken	to	become	resident	memory	cells.	The	44	cells	in	the	
subgroup	come	from	20	productive	clonotypes,	which	in	total	contain	418	cells.	We	performed	
single	cell	trajectory	analysis48	to	infer	the	progression	of	these	TILs	(Figure	2c	and	Methods).	
The	pseudotime	trajectory	starts	from	a	group	of	precursor	cells	(Tpre)	expressing	high	levels	of	
IL7R,	SELL,	and	KLRG1,	with	low	expression	of	effector	molecules	(GZMB,	PRF1,	IFNG)	and	
exhaustion	markers	(PDCD1,	LAG3,	TIM-3).	These	markers	agree	with	the	signatures	of	T	cells	
newly	entering	the	tumor	microenvironment,	thus	confirming	the	pseudo	temporal	ordering.	Two	
clusters	were	observed	at	the	end	of	the	trajectory,	both	carrying	the	resident	memory	markers,	
and	we	named	them	Trm1	and	Trm2.	Notably,	the	Trm1	cluster	largely	overlaps	with	the	previously	
identified	CD8+	subgroup.	Differential	expression	analysis	revealed	that	comparing	to	Trm1,	the	
newly	identified	Trm2	population	upregulates	genes	significantly	enriched	in	the	oxidative	
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phosphorylation	(OXPHOS)	process	(FDR=6.77×10-33),	featured	by	GAPDH,	COX8A	and	MT-CO2	
(Figure	2d).	Pseudotime	trajectories	for	individual	clonotypes	revealed	that	the	differentiation	of	
T	cells	into	resident	memory	status	is	receptor	dependent	(Supplementary	Figure	7).	Specifically,	
we	observed	two	modes	of	evolution:	majority	of	clonotypes	evolve	from	Tpre	into	Trm1,	with	
others	from	Trm1	to	Trm2.	Direct	differentiation	of	Tpre	into	Trm2	was	not	observed.	
	
We	analyzed	other	scRNA-seq	samples	to	see	if	this	observation	is	reproducible,	and	indeed,	a	
strikingly	similar	pseudotime	trajectory	for	resident	memory	T	cells	was	observed	in	sample	BC11	
(Supplementary	Figure	8a).	Representative	markers	observed	in	sample	BC10	also	showed	
significant	differences	across	the	3	cell	groups	with	consistent	trends.	Higher	expression	of	
OXPHOS	genes	was	also	observed	in	Trm2	group	(Supplementary	Figure	8b).	In	addition,	the	
corresponding	clonotypes	also	displayed	two	evolutionary	patterns	(Supplementary	Figure	8c),	
consistent	with	our	findings	for	BC10.	These	results	indicate	that	the	Trm	cells	further	divide	into	
two	populations	distinguished	by	low	or	high	metabolic	status,	and	the	differentiation	from	their	
precursors	into	these	populations	is	dependent	on	the	T	cell	receptors.		
	
Identification	of	novel	cancer	neoantigen	candidates	
Computational	identification	of	cancer	neoantigens	relies	on	the	prediction	of	peptide	binding	to	
HLA	alleles49,50,	while	little	is	known	whether	the	predicted	binders	can	elicit	an	immune	response.	
Having	studied	the	phenotypes	of	the	clustered	T	cell	clonotypes	using	single-cell	sequencing	data,	
we	next	sought	to	approach	this	problem	from	the	T	cell	receptor	angle	using	the	iSMART-derived	
CDR3	clusters	and	TCGA	cancer	genomics	data.	We	have	previously	provided	a	proof-of-concept	
analysis	to	statistically	identify	novel	candidate	neoantigens26.	In	this	work,	we	extended	this	
effort	by	searching	for	co-occurrence	of	somatic	mutations	and	CDR3	clusters	(Methods).	First,	
each	of	the	6,136	recurrent	(n≥3)	missense	mutations	was	paired	with	each	of	the	CDR3	clusters,	
with	statistical	significance	evaluated	using	random	permutations.	At	FDR<0.05,	we	identified	6	
significant	pairs	with	at	least	2	individuals	carrying	both	the	mutation	and	the	CDR3	sequence	
(Figure	3a).	4	of	them	(excluding	the	two	CD163L	mutations)	are	predicted	to	generate	HLA	
binding	peptides.	Individuals	carrying	two	of	these	mutations,	GLIS3	S47L	and	SLITRK3	E968K,	
have	matched	HLA	genotypes	(Figure	3b	and	Supplementary	Table	4).		
	
It	has	been	implicated	that	tumor	frameshift	insertions	or	deletions	(indels)	may	generate	
neopeptides	to	trigger	immune	responses14.	We	applied	the	same	analysis	to	study	the	1,225	
recurrent	(n≥3)	frameshift	indels.	Compared	with	missense	mutations,	we	observed	more	
significant	pairs	(n=10)	with	fewer	indels,	indicating	that	frameshift	indels	might	be	another	
important	source	of	neoantigens.	As	aberrant	mRNA	products	are	subject	to	nonsense-mediated	
decay51,	we	only	focused	on	these	(n=4)	with	frameshift	alleles	confirmed	in	the	RNA-seq	data	
(Figure	3c).	The	top	target	is	a	one-base	deletion	in	gene	AXIN2,	generating	a	23	amino	acids	
neopeptide	(Figure	3d).	We	predicted	HLA	binding	for	the	neopeptide,	and	identified	two	closely	
related	9-mers	to	bind	to	the	HLA	alleles	of	the	mutation	carriers	(Figure	3e).	Besides	AXIN2,	two	
other	indels	on	DYRK4	and	RNF43	also	generate	neopeptides	predicted	to	bind	to	HLA	alleles	
matching	the	genotypes	of	the	carriers	(Supplementary	Figure	9).	We	observed	that	all	the	
related	individuals	were	stomach	cancer	patients	with	high	levels	of	microsatellite	instability	
(MSI)52,	and	the	indels	all	occurred	in	the	short	tandem	repeat	regions.	It	is	known	that	patients	
with	DNA	mismatch	repair	(MMR)	deficiency,	a	cause	for	MSI,	have	better	responses	to	checkpoint	
blockade	therapies53.	Our	results	corroborate	this	clinical	observation	by	identifying	a	number	of	
potentially	immunogenic	neoantigens	resulted	from	MMR	deficiency,	and	demonstrated	that	
iSMART	can	prioritize	TCRs	associated	with	neoantigens	derived	from	genetic	alterations.		
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Identification	of	novel	cancer	associated	antigen	candidates	
Most	current	studies	focus	on	searching	for	tumor	antigens	from	mutated	genes	with	matched	
HLA	alleleotypes	combining	the	elution	of	peptides	from	the	MHC	molecules54.	However,	
malignant	cells	may	overexpress	a	number	of	genes	that	are	usually	silenced	in	most	normal	
tissues,	resulting	in	novel	antigenic	targets	for	cancer	treatment.	This	is	exemplified	by	the	clinical	
use	of	cancer/testis	antigens,	which	have	restrictive	expression	in	the	male	germ	cells15,16.	We	
performed	a	genome-wide	differential	gene	expression	analysis	on	each	of	the	120	qualifying	
CDR3	clusters,	and	identified	a	total	of	1,409	significant	(FDR<0.05)	genes	from	115	clusters	
(Methods	and	Supplementary	Table	5).		Of	these,	two	clusters	(1724	and	1767)	showed	an	
interesting	enrichment	in	colon	and	endometrial	cancers,	with	distinct	CDR3	conservation	
patterns	(Figure	4a).	We	performed	differential	expression	analysis	on	the	combined	samples	
from	the	two	clusters,	and	identified	Heat	Shock	Transcription	Factor	X-linked	1	(HSFX1)	as	the	
top	hit	(Figure	4b).	This	gene	has	extremely	low	expression	(median	TPM≤0.02)	in	all	the	tissue	
types	covered	in	the	GTEx	data55,	while	expressed	(TPM≥1)	in	13%	colorectal	and	75%	
endometrial	cancers	(Supplementary	Figure	10a-b).	There	is	over	100-fold	change	in	the	
expression	levels	between	some	tumor	samples	and	the	normal	tissues.	It	is	also	a	favorable	
predictor	of	survival	for	endometrial	cancer	(Figure	4c).	Therefore,	we	hypothesized	that	the	
tissue-specific	overexpression	for	HSFX1	may	be	a	signature	for	cancer-associated	antigen	and	a	
trigger	for	anti-tumor	immune	response.		
	
Of	the	seventeen	colon	or	endometrial	cancer	samples	from	cluster	1724	and	1767,	nine	express	
HSFX1	and	have	solved	HLA	genotypes56	(Supplementary	Figure	11a).	Computational	prediction	
for	HLA	allele	binding	suggests	that	HSFX1	protein	generates	a	9-mer	peptide	VMFPHLPAL	as	a	
strong	binder	to	3	common	alleles,	including	HLA-A*02:01	(Supplementary	Figure	11b).	
Interestingly,	all	the	nine	individuals	carry	at	least	one	predicted	HLA	allele	(Supplementary	
Figure	11c),	and	the	probability	of	this	observation	is	estimated	≤0.00038	(Methods).	These	
results	strongly	suggested	that	HSFX1	might	be	an	immunogenic	cancer	antigen.	To	validate	this	
prediction,	we	synthesized	the	9-mer	antigen	peptide	(VMF)	and	injected	it	into	HLA-A*02:01	
humanized	transgenic	mice	(Methods).	We	used	peptide	VRFPHLPAL,	which	has	one	amino	acid	
difference,	as	control,	because	it	is	predicted	not	to	bind	HLA-A*02:01.	After	18	days,	splenocytes	
of	the	vaccinated	mice	were	collected	to	perform	an	IFNγ	ELISPOT	assay	for	antigen-specific	T	cell	
responses	(Figure	5a).	Compared	to	the	control	peptide	(VRF),	we	observed	significantly	higher	
IFNγ	response	in	the	transgenic	mice	but	not	in	identically	primed	immunocompetent	mice	with	
H-2Kb	genotype	(Figure	5b-c,	Supplementary	Figure	12).	Based	on	these	results,	we	concluded	
that	the	9-mer	peptide	VMF	derived	from	HSFX1	binds	to	human	HLA-A*02:01	allele	and	can	elicit	
a	T	cell	response	in	vivo.		
	
In	addition	to	HSFX1,	we	also	identified	a	putative	cancer/testis	antigen,	TSSK2,	with	expression	
restricted	to	esophageal	and	stomach	tissues	(Supplementary	Figure	13a).	TSSK2	also	generates	
a	peptide	binding	to	multiple	HLA	alleles	(Supplementary	Figure	13b),	matching	the	genotypes	
of	the	individuals	expressing	TSSK2	from	cluster	189	(Supplementary	Figure	13c),	with	
probability	<0.0010	(Methods).	These	results	suggest	that	genes	with	tumor-specific	
overexpression	might	produce	cancer-associated	antigens	and	elicit	T	cell	responses.	Our	analysis	
revealed	a	number	of	such	unmutated	genes	as	promising	targets	for	cancer	vaccine	development.	
	
Potential	non-invasive	cancer	diagnosis	using	cancer-associated	CDR3s	
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In	the	above	analysis,	we	observed	multiple	sources	of	potential	tumor	antigens	showing	
significant	associations	to	the	iSMART	identified	CDR3	clusters,	suggesting	that	the	clustered	
CDR3s	are	enriched	for	cancer-associated	T	cells.	We	therefore	investigated	whether	it	is	possible	
to	detect	these	CDR3s	in	the	TCR	repertoire	from	the	peripheral	blood	mononuclear	cell	(PBMC)	
of	the	cancer	patients.	We	studied	a	cohort	of	21	late-stage	melanoma	patients	before	and	after	
anti-CTLA4	treatment25.	When	compared	to	the	healthy	donors,	we	identified	significantly	higher	
abundance	of	cancer-associated	CDR3s	in	the	patients’	blood	samples	(Figure	6a)	(Methods).	
Using	cancer-associated	CDR3	counts	as	a	disease	predictor,	pre-	and	post-	PBMC	samples	reached	
similar	area	under	curve	(AUC)	of	0.80	and	0.82	respectively	(Figure	6b).		
	
We	next	evaluated	the	performance	of	the	above	approach	on	the	challenging	yet	more	useful	task	
of	predicting	early	cancer	status	via	PBMC	repertoire.	We	applied	the	same	method	to	study	a	
cohort	of	16	early-stage	breast	cancer	samples	with	both	PBMC	and	TIL	repertoires	sequenced24.	
Indeed,	both	repertoires	showed	significantly	higher	levels	of	cancer-associated	CDR3s	than	
healthy	donors	(Figure	6c-d),	indicating	that	the	abundance	of	cancer-associated	CDR3s	is	able	to	
distinguish	healthy	individuals	from	both	late	and	early	stage	cancer.	Using	iSMART-clustered	
CDR3	counts	as	a	predictor,	we	observed	an	AUC	of	0.73	for	PBMC	samples	(Figure	6e).	With	
more	future	studies	on	pre-cancer	TCR	repertoire	sequencing,	this	approach	holds	the	potential	to	
be	developed	into	a	non-invasive	cancer	diagnostic	criterion.	
	
The	distributions	of	the	clonal	frequencies	of	the	cancer-associated	CDR3s	in	the	PBMC	samples	
also	showed	interesting	differences	between	late	and	early	stage	tumors	(Supplementary	Figure	
14).	Specifically,	melanoma	PBMC	samples	have	more	cancer-associated	CDR3s	with	medium	high	
abundance,	where	early	breast	cancer	PBMC	samples	have	a	few	CDR3s	with	high	abundance.	This	
might	be	related	to	the	known	fact	that	in	an	adaptive	immune	response,	many	effector	T	cells	
differentiate	into	memory	cells	for	long-term	protection,	resulting	in	reduced	clonotype	
frequencies.	Based	on	a	previous	study	on	cancer	and	inflammation57,	we	speculated	that	during	
early	cancer	development,	the	immune	system	is	able	to	recognize	and	respond	to	a	few	shared	
antigens	(such	as	HSFX1),	and	produce	a	significant	amount	of	effector	T	cells	in	the	circulation.	
The	CDR3	sequences	of	these	T	cells	may	serve	as	diagnostic	markers	for	preventive	early	cancer	
detection	or	immune	monitoring.	
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Discussion	
Despite	extensive	efforts	and	critical	clinical	applications,	antigen-specific	TILs	remain	largely	
uncharacterized,	mainly	because	it	is	experimentally	challenging	to	identify	the	immunogenic	
cancer	antigens	and	to	profile	the	tumor-reactive	T	cells.	In	this	work,	we	extracted	CDR3s	from	
the	tumor	RNA-seq	data,	and	identified	a	large	number	of	CDR3	clusters	with	high	sequence	
similarity.	Due	to	the	excessive	diversity	of	the	TCR	repertoire,	the	probability	that	different	
individuals	independently	produce	near-identical	non-public	TCRs	is	extremely	low,	suggesting	
that	shared	antigen-specificity	is	the	main	cause	for	the	generation	of	these	CDR3	clusters.	
Previous	studies	have	also	shown	that	TCRs	sharing	motifs	on	the	CDR3	region	may	recognize	the	
same	antigen22,23.	Therefore,	we	used	iSMART	identified	CDR3	clusters	as	surrogates	for	TCR	
antigen-specificity,	and	comprehensively	analyzed	the	tumor-specific	TILs	using	a	large	human	
cancer	cohort.	
	
We	leveraged	the	iSMART-clustered	clonotypes	to	perform	an	in-depth	analysis	of	a	tumor	single	
cell	RNA-seq	dataset	with	solved	T	cell	receptor	sequences,	and	observed	an	interesting	group	of	
CD8+	T	cells.	The	marker	set	for	this	group	is	highly	consistent	with	a	recent	study	on	Trm45,	
suggesting	reproducible	identification	of	Trm	in	triple-negative	breast	tumor	microenvironment.	
Using	CDR3	as	clonotype	markers,	we	further	identified	two	subpopulations	of	Trm	with	distinct	
metabolic	states,	and	observed	divergent	evolutionary	paths	to	these	states	among	different	TIL	
clonotypes.	Our	results	suggest	that	after	initial	homing	to	the	target	tissue,	Trm	may	switch	to	a	
high	metabolic	status,	featured	by	elevated	expression	of	OXPHOS	genes.	This	result	is	potentially	
linked	to	the	immunosuppressive	roles	for	metabolic	enzymes	in	the	malignant	cells,	which	they	
use	to	compete	resources	for	T	cell	survival	and	cytotoxic	functions.		
	
It	has	been	shown	from	protein	structure	studies	that	one	antigenic	peptide	may	bind	to	dissimilar	
CDR3	sequences	with	different	docking	strategies58,59,	suggesting	that	individuals	responding	to	
the	same	antigen	may	carry	divergent	TCR	sequences.	Indeed,	we	observed	two	distinct	CDR3	
sequences	from	clusters	1724	and	1767,	which	were	both	predicted	to	recognize	the	same	antigen	
derived	from	cancer-associated	antigen	HSFX1.	We	performed	in	vivo	experiments	using	
transgenic	humanized	mice	to	show	that	a	9-mer	peptide	derived	from	a	predicted	antigen	HSFX1	
is	able	to	bind	HLA-A*02:01,	and	induce	reliable	T	cell	responses.	These	results,	combined	with	
the	observation	that	HSFX1	has	restricted	expression	in	selected	cancers,	and	its	positive	clinical	
relevance,	strongly	indicated	that	it	might	escape	central	tolerance	in	humans	and	become	an	
immunogenic	cancer-associated	antigen.	We	will	rely	on	future	clinical	studies	using	colorectal	or	
endometrial	cancer	patients	expressing	HSFX1	to	explore	its	potential	clinical	utilities.	
	
A	fraction	of	the	CDR3	clusters	remain	unassociated	with	any	potential	targets,	likely	due	to	the	
unexplored	categories	of	cancer-associated	antigens.	In	our	gene	expression	analysis,	we	observed	
significant	associations	of	some	clusters	with	non-coding	RNAs	(Supplementary	Table	5),	such	
as	lncRNA,	pseudogenes	and	small	nucleolar	RNAs	(snoRNA).	Ribosome	profiling	data	suggests	
that	many	non-coding	RNAs	are	actually	translated60,	which	may	serve	as	valid	cancer	antigens	
when	overexpressed	in	the	tumor	tissues.	snoRNAs	participate	in	many	biological	processes,	
including	RNA	splicing.	Thus,	their	abnormal	expression	in	selected	cancer	types	may	produce	
new	antigenic	targets	from	alternative	splicing.	Post-translational	modification	(PTM)	may	also	
generate	foreign	peptide	products	that	are	subject	to	immunosurveillance17.	However,	due	to	the	
insufficiency	of	related	data,	it	is	currently	challenging	to	study	the	antigenic	potentials	of	these	
mechanisms	in	cancer	immunity.		
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The	iSMART	identified	CDR3	clusters	might	have	promising	applications	in	cancer	diagnosis.	In	
our	proof-of-principle	analysis	on	a	small	patient	cohort,	we	observed	promising	predictive	power	
for	early-stage	breast	cancers	using	blood	TCR	repertoire	data.	This	result	is	reproducible	for	late	
stage	melanoma,	suggesting	that	the	clonal	expansion	of	cancer-associated	CDR3s	in	the	PBMCs	
might	be	universal	to	cancer	types	and	stages.	Therefore,	we	anticipate	more	clinical	efforts	to	
collect	PBMC	repertoires	profiled	from	early	stage	cancer	patients	to	elucidate	the	feasibility	of	
this	non-invasive	approach	for	cancer	detection,	or	immune	monitoring	during	cancer	therapies.		
	
In	summary,	we	provided	a	comprehensive	analysis	to	characterize	cancer	antigens	and	tumor-
reactive	T	cells.	The	tool	and	datasets	from	this	study	can	be	applied	to	the	rapidly	generated	
tumor	single-cell	sequencing	and	RNA-seq	data	to	expand	the	current	repertoire	of	cancer-
associated	TCRs.	Therefore,	we	anticipate	broad	utilities	of	our	work	for	future	studies	to	identify	
more	antigens	and	biomarkers	for	cancer	immunotherapies.
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Abbreviations	
TCGA:	The	Cancer	Genome	Atlas;	CDR3:	Complementarity	Determining	Region	3;	ACC:	
adenocortical	carcinoma;	BLCA:	bladder	carcinoma;	BRCA:	breast	carcinoma;	CHOL:	
cholangiocarcinoma;	CESC:	cervical	squamous	carcinoma;	COAD:	colon	adenocarcinoma;	DLBC:	
diffusive	large	B-cell	lymphoma;	ESCA:	esophageal	carcinoma;	GBM:	glioblastoma	multiforme;	
HNSC:	head	and	neck	carcinoma;	KICH:	kidney	chromophobe;	KIRC:	kidney	renal	clear	cell	
carcinoma;	KIRP:	kidney	renal	papillary	cell	carcinoma;	LAML:	acute	myeloid	leukemia;	LGG:	
lower	grade	glioma;	LIHC:	liver	hepatocellular	carcinoma;	LUAD:	lung	adenocarcinoma;	LUSC:	
lung	squamous	carcinoma;	MESO:	mesothelioma;	OV:	ovarian	serous	cystadenocarcinoma;	PCPG:	
pheochromocytoma	and	paraganglioma;	PAAD:	pancreatic	adenocarcinoma;	PRAD:	prostate	
adenocarcinoma;	READ:	rectum	adenocarcinoma;	SARC:	sarcoma;	SKCM:	skin	cutaneous	
melanoma;	STAD:	stomach	adenocarcinoma;	TGCT:	testicular	germ	cell	tumor;	THCA:	thyroid	
carcinoma;	THYM:	thymoma;	UCEC:	uterine	corpus	endometrial	carcinoma;	UCS:	uterine	
carsinosarcoma	
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Methods	
Data	resources	information	
TCGA	level-2	RNA-seq	data	aligned	to	hg19	human	reference	genome	by	MapSplice61	were	
downloaded	from	GDC	legacy	archive	(https://portal.gdc.cancer.gov/legacy-archive/).	Gene	
expression	data	(TPM),	mutation	annotation	files	and	patient	clinical	information	of	the	TCGA	
cohort	were	downloaded	from	GDAC	broad	firehose	(https://gdac.broadinstitute.org/).	Tumor	
purity	information	was	downloaded	from	the	Cistrome	TIMER	website	
(http://cistrome.org/TIMER/misc/AGPall.zip).	TCR	repertoire	data	and	patient	information	for	
the	HCMV	cohort,	late	stage	melanoma	and	early	breast	cancer	samples,	were	downloaded	from	
AdaptiveBiotechnology	immunoSeq	Analyzer	(https://www.adaptivebiotech.com/).	Antigen-
specific	CDR3	sequence	information	for	benchmarking	iSMART	were	downloaded	from	VDJdb	
(https://vdjdb.cdr3.net/).	GLIPH	software	package	was	accessed	from	GitHub	
(https://github.com/immunoengineer/gliph).	Single	cell	gene	expression	data	and	matched	TCR	
information	were	downloaded	from	GEO	database	(accession	number	GSE114724).	
	
Materials	and	animal	model:	
HSFX1	derived	9-mer	peptide	was	synthesized	by	GenScript;	CpG	oligonucleotide	ODN	1826	was	
purchased	from	InvivoGen	with	catalog	number	1826-1;	Polyinosinic-polycytidylic	acid	sodium	
salt,	or	Poly	(I:C),	was	ordered	from	MiliporeSigma	with	catalog	number	P1530-25MG.	
Immunocompetent	C57BL/6J	and	transgenic	C57BL/6-Mcph1Tg(HLA-A2.1)1Enge/J	mice	were	
obtained	from	Jackson	Laboratory	(JAX:000664	and	JAX:003475)	
	
iSMART	for	pairwise	CDR3	alignment	and	clustering	
iSMART	takes	M	complete	CDR3	sequences	as	input,	where	complete	CDR3	region	is	defined	as	
the	last	cysteine	in	the	variable	gene	to	the	first	amino	acid	in	the	FGXG	motif	in	the	joining	gene28.	
iSMART	first	orders	the	CDR3s	according	to	their	lengths,	and	then	performs	pairwise	
comparisons	for	every	sequence.	For	CDR3s	with	different	lengths,	iSMART	allows	at	most	one	
insertion	in	the	comparison,	and	imposes	a	gap	penalty	(default	6).	Alignment	scores	are	
calculated	based	on	BLOSUM62	matrix,	with	individual	matched	score	capped	at	4.	The	3rd	to	(n-
3)th	positions	of	the	CDR3s	are	used	for	scoring,	where	n	is	the	CDR3	amino	acid	sequence	length.	
Pairwise	alignment	score	is	normalized	by	the	length	of	the	longer	CDR3	sequence	(n-4,	excluding	
first	and	last	2	amino	acids).	After	calculation	of	the	M-by-M	pairwise	scoring	matrix,	a	predefined	
cutoff	value	(default	3.5)	is	applied	to	filter	out	all	the	low	scoring	comparisons.	iSMART	then	
performs	a	depth-first	search	on	the	matrix	to	identify	all	the	connected	CDR3	clusters,	and	output	
all	the	CDR3s	with	empirical	cluster	IDs.	iSMART	is	written	in	Python	and	the	source	code	is	
publicly	available.		
	
Although	iSMART	is	benchmarked	to	run	without	variable	gene	assignment	in	this	work,	it	
supports	the	input	with	variable	gene	information.	In	this	mode,	the	pairwise	alignment	on	the	
CDR3	regions	is	the	same	except	that	iSMART	uses	the	5th	to	(n-3)th	positions	of	the	sequence	for	
scoring.	As	the	first	4	amino	acids	of	the	CDR3s	are	mainly	determined	by	the	variable	gene,	we	
made	this	change	to	avoid	repeated	use	of	variable	gene	information.	In	the	pairwise	sequence	
comparison	step,	the	CDR1	and	CDR2	regions	of	two	TCRs	are	also	used	to	calculate	alignment	
scores	under	the	same	rules.	The	total	score	is	scaled	to	8,	where	CDR3	and	variable	gene	
contribute	equally,	and	a	cutoff	value	(default	7.5)	is	used	to	generate	the	CDR3	clusters.	iSMART	
in	variable	gene	mode	was	tested	using	the	15	antigen	benchmark	dataset,	which	is	described	in	
section	below,	and	reached	a	higher	specificity	of	94.3%	(100	out	of	106	clusters	have	unique	
antigen	assignment)	than	without	variable	gene	input.		
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iSMART	and	GLIPH	performance	evaluation	
Both	iSMART	and	GLIPH	can	predict	antigen-specific	CDR3	clusters	without	variable	gene	
information.	In	this	work,	we	evaluated	the	performances	of	both	methods	using	TCRs	of	known	
antigen-specificity	in	VDJdb34.	We	selected	15	9-mer	human	antigens	with	balanced	number	(K)	of	
associated	TCRβ	CDR3s	(100<K<1000)	(Supplementary	Table	1).	CDR3s	associated	with	more	
than	one	antigens	were	excluded,	resulting	in	a	total	of	2,347	unique	sequences.	Both	iSMART	and	
GLIPH	were	run	on	this	dataset	with	default	parameters.		
	
The	command	line	for	iSMART	is:	
python iSMARTv1.py –f human15aa.txt –v 
where	–v	option	is	applied	to	disable	the	use	of	variable	gene.	For	GLIPH	the	command	line	is:	
./gliph-group-discovery.pl --tcr human15aa.txt 
 
Interestingly,	although	iSMART	performs	time-consuming	pairwise	sequence	alignments,	its	
computational	time	(63s)	is	significantly	less	than	GLIPH	(approximately	1	hour)	on	MacBook	Pro	
with	3.1	GHz	Intel	core	i7	and	16	GB	DDR3	memory.	Therefore,	iSMART	has	the	computational	
efficiency	to	scale	up	for	larger	TCR	repertoire	datasets.	
	
As	each	CDR3	is	uniquely	linked	to	one	antigen	in	the	benchmark	dataset,	we	defined	cluster	
purity	(p)	as	the	number	of	the	most	abundant	antigen	divided	by	the	number	of	CDR3s	in	a	
cluster.	We	use	the	percent	of	completely	pure	(p=1)	clusters	as	a	measure	for	specificity.	To	make	
visualization	of	the	clustering	specificity,	we	computed	the	cross-antigen	classification	errors	as	
follows:	the	15-by-15	cross-antigen	matrix	(M)	is	initialized	by	0,	and	for	each	cluster,	let	A	denote	
the	set	of	antigens	associated	with	the	CDR3s	in	this	cluster,	we	add	1	to	all	the	entries	in	M[A,	A].	
Therefore,	if	A	contains	only	one	antigen,	the	diagonal	values	for	M	will	increase	by	1.	Otherwise	
the	off-diagonal	values	will	increase	by	1,	which	are	considered	as	classification	errors.	We	looped	
through	all	the	clusters	and	used	the	final	output	to	plot	the	heatmaps	in	Figure	1	(iSMART)	and	
Supplementary	Figure	1	(GLIPH).		
	
Non-cancerous	public	TCR	identification	
A	critical	pre-processing	procedure	in	our	analysis	is	to	exclude	non-cancerous	public	TCRs	to	
reduce	false	positives	in	our	downstream	analysis.	We	used	a	cohort	of	non-cancer	individuals	
with	TCR	repertoire	sequencing	data	available30.	There	are	two	batches	of	this	cohort,	with	the	
first	batch	containing	666	human	cytomegalovirus	(HCMV)	infected	(n=289)	or	normal	
individuals.	The	HCMV	infected	individuals	can	be	used	as	control	samples	for	our	purposes.	The	
second	batch	contains	120	individuals.	We	will	use	the	first	batch	to	remove	public	TCRs	and	the	
second	for	downstream	analysis,	to	avoid	systematic	bias.	Based	on	antigen-specificity,	we	
processed	two	classes	of	public	TCR	sequences:	
	
The	first	class	is	antigen-specific	non-cancerous	CDR3s.	In	our	downstream	analysis	of	detection	
cancer-associated	CDR3s	in	the	blood	TCR	repertoire,	we	also	rely	on	this	HCMV	cohort	as	normal	
control.	Therefore,	at	this	step,	to	prevent	any	potential	confounders,	we	used	the	first	batch		
(n=666)	to	remove	public	TCRs.	It	is	known	that	cancer-specific	T	cells	are	also	present	in	healthy	
individuals	in	the	form	of	low	abundant	naïve	T	cells62.	Therefore,	to	prevent	false	removal	of	bona	
fide	cancer-specific	CDR3s,	we	restricted	our	analysis	within	the	top	5,000	most	abundant	
sequences,	sufficient	to	cover	all	the	clones	with	≥5	copies	that	are	expected	to	be	effector	T	cells.	
We	combined	all	the	sequences	as	normal	CDR3s	to	be	removed	in	the	TCGA	data	before	iSMART	
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clustering.	The	resulting	dataset	as	well	as	samples	used	in	this	analysis	are	available	as	
Supplementary	Dataset	1.		
	
The	second	class	of	public	sequences	are	non-antigen	specific	CDR3s,	potentially	due	to	biased	
V(D)J	recombination.	We	anticipate	that	the	sharing	of	these	sequences	between	individuals	is	not	
affected	by	the	HLA	alleles	of	the	carriers.	Therefore,	we	performed	800,000	random	sampling	of	
triplets	from	the	pool	of	666	TCR	repertoire	samples	satisfying	the	following	criterion:	there	is	no	
overlap	in	the	HLA	alleles	in	any	two	individuals	in	the	triplet.	For	each	triplet,	we	compared	the	
top	5,000	most	abundant	sequences	in	each	sample	and	selected	those	appeared	in	all	three.	The	
resulting	3,470	CDR3	sequences	are	available	as	Supplementary	Dataset	2.		
	
We	removed	both	classes	of	public	sequences	from	the	170,516	complete	CDR3s	and	obtained	
82,427	non-public	sequences	for	downstream	analysis.	As	the	TCR	repertoire	data	in	the	public	
domain	are	mainly	β	chain	sequences,	currently	we	do	not	have	enough	data	to	eliminate	public	α	
chain	CDR3s	from	the	analysis.	We	will	rely	on	future	efforts	to	sequence	more	TCR	α	chain	
repertoire	samples	to	define	public	α	chain	CDR3	sequences.	
	
Analysis	of	single	cell	sequencing	data	
Post-processed	gene	expression	data	in	sparse	matrix	format	(mtx)	and	TCR	hypervariable	CDR3	
sequences	with	matched	cell	barcodes	were	downloaded	directly	from	the	GEO	database.	In	total,	
there	are	5	samples	from	3	patients,	BC09,	BC10	and	BC11.	BC10	has	the	largest	overlap	with	
TCGA-derived	CDR3	clusters.	For	BC10,	we	selected	1,103	genes	with	standard	deviation	≥1	and	
performed	tSNE	analysis	on	the	4,926	cells	using	these	genes	for	dimension	reduction.	This	filter	
is	purely	for	visualization	purposes.	2-dimensional	scatter	plot	using	tSNE	values	were	generated	
to	visualize	the	distributions	of	genes	of	interest.	Based	on	the	locally	enriched	pattern	of	18	
clustered	cells,	we	defined	a	subgroup	of	44	cells.	For	each	of	the	1,103	genes,	we	performed	
Wilcoxon	rank	sum	test	between	this	group	and	other	cells	and	used	Benjamini-Hochberg	method	
to	evaluate	FDR.	These	results,	including	the	cell	barcodes	for	the	selected	group,	are	available	in	
Supplementary	Table	3.	ZNF683	expression	levels	in	the	TCGA	samples	were	split	into	two	
groups	by	the	median	level.	Survival	analysis	for	ZNF683	was	performed	using	Cox	proportional	
hazard	model	on	the	binary	variable	corrected	for	patient	age.	
	
We	performed	cell	trajectory	analysis	for	selected	clonotypes	in	the	breast	cancer	samples.	For	
sample	BC10,	we	selected	418	cells	with	CDR3	sequences	found	in	the	CD8+	subgroup	identified	
in	the	tSNE	plot,	and	used	R	package	monocle48	to	perform	cell	ordering	by	pseudotime.	As	the	
direction	of	pseudotime	is	arbitrary,	we	used	representative	biomarkers	for	T	cell	activation	to	
determine	the	beginning	of	the	trajectory,	and	identified	the	Tpre	population.	The	Trm	clusters	were	
then	selected	at	the	end	of	the	trajectory.	Spearman’s	correlation	between	each	gene	expression	
level	and	pseudotime	was	calculated,	and	we	selected	important	biomarkers	for	cell	identity	(IL7R,	
TCF7,	CCR7),	cytotoxicity	(GZMB,	PRF1,	IFNG),	exhaustion	(PD-1,	LAG3,	TIM-3),	resident	memory	
signature	(SELL,	KLRG1,	CD103)	and	metabolic	status	(OXPHOS	genes).	For	BC11,	we	first	merged	
the	two	biological	replicates	into	one	dataset	and	selected	31	cells	with	IL7R≤1,	TCF7≤1,	GZMB≥5,	
ZNF683≥5	and	CD103≥10	as	tissue	resident	T	cells,	and	used	all	the	728	cells	sharing	the	same	
CDR3s	with	these	31	cells	to	perform	the	pseudotime	trajectory	analysis.	These	cells	in	total	come	
from	11	clonotypes,	but	for	the	individual	clonotype	evolution	analysis,	we	removed	two	
clonotypes	with	n=1	and	showed	the	remaining	9	in	Supplementary	Figure	8c.	We	did	not	
identify	any	cell	using	the	same	selection	criteria	for	tissue	resident	memory	cells	for	sample	BC09.	
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Gene	expression	analysis	
We	performed	a	genome-wide	correlative	analysis	to	identify	genes	associated	with	counts	(K)	of	
clustered	CDR3s	in	each	individual	(Supplementary	Figure	4).	We	first	selected	15	cancer	types	
with	sufficient	sample	size	(≥100).	For	each	cancer,	we	calculated	partial	Spearman’s	correlation	
between	K	and	the	expression	level	for	each	gene.	Tumor	purity	is	corrected	in	this	analysis	as	it	is	
expected	to	impact	gene	expression	profiles63	and	is	correlated	to	T	cell	infiltration.	False	
discovery	rate	is	estimated	using	Benjamini-Hochberg	procedure	for	all	the	p	values	pooled.		
	
We	also	performed	differential	gene	expression	analysis	to	identify	novel	cancer	associated	
antigens	(Figure	4).	First,	we	selected	120	clusters	with	CDR3	length	20≥L≥13	and	with	≥10	
sequences.	For	each	cluster,	we	performed	one-tailed	Wilcoxon	rank	sum	test	for	each	gene	
between	clustered	and	non-clustered	individuals	from	all	cancers,	pooled	all	the	p	values	and	
estimated	FDR	using	Benjamini-Hochberg	correction.	This	step	selected	3,524	significant	results	
(FDR<0.05	and	fold	change	≥10),	including	1,409	unique	genes	spanning	115	clusters.	Fold	change	
was	calculated	for	each	cluster,	as	the	median	expression	value	of	the	samples	in	the	CDR3	cluster	
divided	by	that	of	those	not	in	the	cluster.	If	the	denominator	is	zero,	we	used	an	arbitrarily	small	
number	10-13.	Of	all	the	protein	coding	genes,	HSFX1	has	the	top	significant	value,	and	is	
associated	with	clusters	1724	and	1767.	We	performed	a	second	differential	gene	expression	
analysis	to	visualize	the	top	highly	expressed	genes,	by	combining	samples	in	the	two	clusters.		
	
Vaccination	of	naïve	and	transgenic	mice	and	ELISPOT	assay	
C57BL/6J	and	C57BL/6J-HLA-A2.1Tg	mice	were	purchased	from	the	Jackson	Laboratory.	All	mice	
were	maintained	under	specific	pathogen–free	conditions	at	UT	Southwestern	Medical	Center.	10	
μg	of	VMF	or	VRF	peptide	was	mixed	with	50	μg	ODN1826	and	100	μg	poly	(I:C)	in	100	μl	PBS	and	
then	subcutaneously	injected	to	the	mouse	on	day	0	and	day	14.	Single	cell	suspensions	were	
prepared	on	day	18	post	first	vaccination.	Splenocytes	were	seeded	at	4*105	per	well	and	
stimulated	with	either	10	μg	peptide	or	PMA	+	Ionomycin	for	36	hours.	ELISPOT	assay	was	
performed	using	an	IFN-γ	ELISPOT	assay	kit	(BD	Biosciences)	according	to	the	manufacturer’s	
instruction.	Spots	were	enumerated	by	ImmunoSpot	Analyzer	(CTL).		
	
Analysis	of	missense	and	frameshift	mutations	
In	total	we	analyzed	920,483	somatic	missense	mutations	from	7,046	TCGA	samples	with	whole	
exome	sequencing	data.	Mutations	occurred	in	fewer	than	3	individuals	were	excluded,	resulting	
in	6,136	mutations	across	5,774	individuals.	For	each	mutation,	we	estimated	its	co-occurrence	
with	each	of	the	671	clusters	with	CDR3	length	20≥L≥14	and	with	≥3	sequences.	The	length	cut-
offs	were	applied	to	minimize	the	inclusion	of	public	TCRs,	or	potentially	incorrect	CDR3	
assemblies.	The	cluster	size	cut-off	was	applied	to	select	those	with	potentially	sufficient	statistical	
power.	For	each	comparison,	Fisher’s	exact	test	was	performed	to	estimate	a	p	value	(p),	only	
when	there	is	an	overlap	between	the	mutation	carriers,	and	those	in	the	CDR3	cluster.	It	is	clear	
that	the	p	values	generated	in	this	approach	were	inflated	due	to	the	selection	criterion.	Therefore,	
we	conducted	a	permutation	analysis	to	evaluate	the	real	significance	levels	and	correct	for	
multiple	hypothesis	testing.	
	
We	initialized	loop	counter	n=0	and	started	iterations.	Each	time,	we	randomly	sampled	one	CDR3	
cluster	(denoted	as	C).	Let	nc	denote	the	number	of	individuals	in	C,	we	randomly	sampled	nc	
unique	IDs	from	the	pool	of	5,774	individuals	to	replace	C.	We	then	randomly	sampled	one	
mutation,	and	estimated	the	co-occurrence	between	C	and	the	mutation	carriers.	If	there	was	no	
overlap,	the	loop	started	over	again	without	changing	n.	If	an	overlap	existed,	we	estimated	the	p	
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value	using	Fisher’s	exact	test,	and	n	became	n+1.	The	loop	stopped	at	n=50,000.	P	values	(P0)	
produced	from	this	analysis	were	used	as	null	distribution	to	evaluate	the	corrected	significance	
levels	and	FDR.	Specifically,	for	each	p,	we	calculated	the	significance	level	p’=(number	of	P0	
smaller	than	p)/50,000.	FDR	was	then	estimated	using	Benjamini-Hochberg	procedure	on	p’.		
	
Similarly,	we	analyzed	53,491	frameshift	indels	and	kept	1,225	ones	occurring	for	≥3	times.	These	
mutations	distributed	across	2,810	individuals.	We	used	the	same	set	of	CDR3	clusters	to	study	
the	co-occurrence	patterns	between	mutation	and	CDR3s,	and	used	the	same	permutation	
strategy	to	evaluate	statistical	significance	and	FDR.	If	one	CDR3	cluster	was	associated	with	more	
than	one	passed-FDR	mutations	(including	indels),	we	used	the	most	significant	one	in	our	
downstream	analysis.	For	both	types	of	variants,	we	selected	mutations	with	FDR≤0.05	and	odds	
ratio	from	the	Fisher’s	exact	test	≥1000.	The	cut-off	in	the	odds	ratio	was	applied	to	select	highly	
specific	enrichment	of	mutations	in	the	CDR3	clustered	individuals.		
	
HLA	allele	binding	prediction	
All	the	HLA	allele	binding	predictions	in	this	work	were	performed	using	either	NetMHC	or	
NetMHCpan	online	server.	We	implemented	NetMHCpan	for	less	common	HLA	alleles	not	covered	
in	NetMHC.	For	missense	mutations,	the	input	peptide	is	a	17-mer	with	mutated	amino	acid	in	the	
middle.	For	frameshift	mutations,	we	included	8-mer	before	and	all	the	amino	acid	sequence	after	
the	mutation	locus.	For	cancer-associated	antigens,	we	downloaded	the	complete	protein	
sequence	from	Uniprot	(www.uniprot.org),	and	input	the	fasta	file	to	NetMHC/NetMHCpan	server.	
Biding	of	the	control	peptide	VRF	for	in	vivo	validation	to	HLA-A*02:01	was	predicted	using	
NetMHC	server.	Default	rank	cut-offs	were	applied	to	define	weak	(≤2)	or	strong	binders	(≤0.5).		
	
Prediction	of	cancer	disease	status	
In	this	analysis,	we	compared	3	TCR	repertoire	datasets	from	different	studies,	including	pre/post	
anti-CTLA4	treatment	late	stage	melanoma	(melanoma),	early	breast	cancer	(breast	cancer),	and	
HCMV	cohort	(HCMV)	as	normal	control.	To	avoid	systematic	bias	after	public	TCR	removal,	we	
used	second	batch	(n=120)	of	the	HCMV	cohort	in	this	analysis.	Direct	comparison	between	
different	study	cohorts	will	be	biased	towards	sequencing	depth	and	the	amount	of	lymphocytes	
captured	for	sequencing.	Therefore,	we	conducted	a	downsampling	procedure	to	ensure	the	
comparability	across	cohorts.	The	targeted	capture	protocol	applied	for	TCR	repertoire	
sequencing	allowed	one	read	to	completely	cover	the	whole	CDR3	region.	Therefore,	read	count	is	
used	to	estimate	clonal	abundance	from	the	Adaptive	Biotechnology	immunoSEQ	Analyzer.	We	
first	calculate	the	size	for	each	TCR-seq	library	(N),	which	is	the	summation	of	the	read	counts	(m)	
for	all	the	CDR3	calls.	A	combined	vector	of	CDR3s	with	length	N	was	made,	with	each	CDR3	
sequence	i	repeated	by	mi	times,	where	mi	is	the	read	count	for	CDR3	sequence	i.	For	the	
melanoma	cohort,	we	used	all	the	cancer	samples	(n=21	for	either	pre-	or	post-	treatment),	and	
randomly	sampled	100	individuals	with	replacement	as	normal	control.	For	each	of	the	121	
samples,	we	downsampled	the	library	to	K=100,000	reads,	each	read	being	a	CDR3	amino	acid	
sequence.	The	read	count	(m’)	for	each	unique	CDR3	was	then	calculated.	For	each	sample,	CDR3s	
with	identical	sequence	to	one	of	the	cancer-associated	CDR3s	were	selected,	and	the	summation	
of	m’	for	all	the	selected	CDR3s	was	used	as	predictor	for	cancer	status.	For	breast	cancer	cohort,	
same	downsampling	strategy	was	applied,	except	that	we	used	K=30,000	for	PBMC	and	10,000	for	
TIL	samples.		
	
Statistical	Analysis	
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Statistical	analyses	were	performed	using	R	statistical	programming	language64.	Survival	analysis	
was	implemented	using	Cox	proportional	hazard	model	in	R	package	survival.	Receiver	operator	
curves	and	area	under	curve	calculations	were	performed	with	R	package	AUC.	tSNE	plots	for	
single	cell	analysis	were	generated	using	Rtsne65.	Single	cell	pseudotime	trajectory	analysis	was	
performed	using	cellrangerRkit	and	monocle48.	The	statistical	significance	for	Figure	5c	was	
estimated	separately.	The	genotype	frequency	for	A*02:01	in	the	TCGA	cohort	is	0.417,	and	the	
frequencies	for	C*07:01	and	C*07:02	are	smaller.	We	used	A*02:01	frequency	to	estimate	a	
conservative	p	value:	the	probability	of	observing	9	individuals	carrying	A*02:01	is	
0.4179=0.00038.	Therefore,	the	p	value	for	observing	the	configuration	in	Figure	5c	is	significant.	
Similarly,	the	most	abundant	allele	type	in	Supplementary	Figure	13c	is	C*07:01,	with	genotype	
frequency	0.253,	and	the	p	value	for	this	configuration	is	≤	0.2535=0.0010.	Two-way	ANOVA	test	
for	comparing	different	treatment	groups	of	vaccinated	mice	was	performed	using	commercial	
software	GraphPad	Prism.		
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Figure	1.	Methodology	summary	and	performance	evaluation	for	iSMART.	a)	Flowchart	
illustrating	the	analytical	procedures	carried	out	in	this	work	to	generate	CDR3	clusters	using	TCR	
receptor	sequences	extracted	from	the	tumor	RNA-seq	data.	b)	Heatmap	representation	for	cross-
antigen	classification	errors	for	iSMART.	Each	entry	in	the	off-diagonal	matrix	is	an	integer	
representing	the	number	of	CDR3	groups	showing	co-clustering	of	the	two	antigens.	Diagonal	
entries	recorded	the	number	of	clusters	with	at	least	2	CDR3s	assigned	to	the	corresponding	
antigen.	c)	Specificity	comparison	between	iSMART	and	GLIPH.	Cluster	purities	were	displayed	
with	boxplots,	where	84.3%	and	67.3%	clusters	have	purity	equal	to	1	for	iSMART	and	GLIPH	
respectively.	d)	Barplots	showing	the	number	of	pure	clusters	for	the	two	methods	as	a	sensitivity	
measure	to	detect	antigen-specific	clusters.		
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Figure	2.	iSMART-clustered	clonotypes	showing	tissue-resident	memory	phenotype.	a)	tSNE	
plots	showing	the	distributions	for	clustered	clonotypes	in	the	TIL	population	(left),	and	the	
expression	levels	of	selected	putative	markers	for	cell	identity	(CD8A/FOXP3/ZNF683)	or	function	
(GZMB)	(right	four	panels).	All	selected	markers	passed	FDR=0.05.	Color	legends	for	gene	
expression	were	in	log	scale.	b)	Kaplan-Meier	curves	for	four	TCGA	cancers	showing	the	survival	
benefit	for	ZNF683	high	expression.	For	each	cancer,	median	value	was	applied	to	define	high	or	
low	groups.	Statistical	significance	and	hazard	ratio	were	evaluated	using	Cox	proportional	hazard	
model.	c)	Pseudotime	trajectory	plot	illustrating	the	inferred	evolutionary	path.	Cell	clusters	
located	on	the	beginning	or	end	of	the	trajectory	were	manually	selected.	Representative	markers	
significantly	correlated	(Spearman’s	correlation	test,	FDR<0.05)	with	pseudotime	inference	were	
labeled	for	each	cluster,	with	red	for	negative	(high	in	Tpre)	and	green	for	positive	(high	in	Trm)	
correlations.	d)	Boxplots	showing	the	distributions	for	selective	OXPHOS	genes	in	the	three	cell	
clusters	shown	in	c).	Statistical	significance	for	differential	gene	expression	between	Trm1	and	Trm2	
was	evaluated	using	Wilcoxon	rank	sum	test,	with	FDR	corrected	by	Benjamini-Hochberg	method.	
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Figure	3.	Prediction	of	neoantigens	derived	from	missense	somatic	mutations	and	
frameshift	indels.	a)	Probability	density	plot	for	the	null	distribution	of	p	values	testing	the	
significance	of	co-occurrence	between	CDR3	clusters	and	recurrent	missense	mutations.	
Significant	mutations	were	marked	in	the	plot	with	vertical	lines	and	text	labels.	The	numbers	
after	each	gene	symbol	are	CDR3	cluster	IDs.	b)	Table	showing	the	NetMHC	predicted	binder	
peptide	sequences,	related	HLA	alleles	and	binding	strength	classification.	c)	Density	plot	for	the	p	
values	from	the	analysis	for	frameshift	indels.	d)	Reads	pileup	plot	for	reference	and	mutated	
alleles	in	the	site	with	frameshift	deletion	in	gene	AXIN2.	Numbers	of	total	reads	for	either	
reference	or	mutated	alleles	were	presented	in	the	text	box	on	the	left.	The	gene	is	reversely	
translated	and	a	stop	codon	(*)	is	generated	23	amino	acids	downstream	of	the	site	of	deletion	
(red	arrow).	Mismatches	were	labeled	with	red	color.	e)	NetMHC	predictions	for	peptide	binders	
generated	from	the	frameshift	deletion	of	AXIN2.		
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Figure	4.	Identification	of	HSFX1	as	a	candidate	cancer-associated	antigen.	a)	Selective	
enrichments	in	colon	and	endometrial	cancers	of	samples	in	CDR3	clusters	1724	and	1767.	CDR3	
amino	acid	conservation	patterns	were	displayed	in	the	upper	panel	for	each	barplot.	b)	Genes	
ranked	by	p	values	from	differential	gene	expression	analysis,	with	top	hits	labeled	in	colored	
texts.	HSFX1	has	the	most	significant	p	value	among	all	the	genes.	Statistical	significance	was	
evaluated	using	Wilcoxon	rank	sum	test	with	FDR	correction.	c)	Kaplan-Meier	survival	curves	for	
endometrial	cancer	patients	with	or	without	HSFX1	expression,	separated	by	median	expression	
value.	Statistical	significance	and	hazard	ratios	for	HSFX1	levels	were	estimated	using	Cox	
proportional	hazard	model	on	binary	input	of	HSFX1	groups,	corrected	for	patient	age.		
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Figure	5.	Immunogenicity	of	the	9-mer	peptide	derived	from	HSFX1	protein	in	HLA-A*02:01	
transgenic	mice.	a)	HLA-A*02:01	transgenic	mice	(female,	n=4)	were	subcutaneously	immunized	
with	10μg	peptide	mixed	with	100μg	poly(I:C)	and	50μg	CpG1826.	14	days	post	vaccination,	mice	
were	boosted	with	the	same	vaccine.	4	days	later,	splenocytes	were	isolated	for	IFNγ	ELISPOT	
assay.	Representative	results	showed	IFNγ	secreting	cells	from	indicated	groups	(b).	Column	texts	
labeled	the	3	treatment	groups,	where	the	T	cells	were	collected.	Row	texts	labeled	simulants	used	
in	the	ELISPOT	assay.	Significant	difference	of	antigen-specific	T	cell	response	from	the	control	
peptide	was	observed	(c).	Data	are	expressed	as	the	means	±	SD,	representative	results	from	two	
independent	experiments	are	shown.	Statistics	analysis	was	performed	by	Two-way	ANOVA.	***,	P	
<	0.001	;	****,	P	<	0.0001.	Adj	is	short	for	adjuvant	injected	during	vaccination.	VMF:	antigen	
peptide	VMFPHLPAL;	VRF:	control	peptide	VRFPHLPAL;	PMA+ionomycin:	standard	positive	
control.		
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Figure	6.	Prediction	of	late	and	early	stage	cancers	using	cancer-associated	CDR3s.	a)	
Boxplot	showing	the	distributions	of	the	read	counts	for	cancer-associated	CDR3s	for	pre-	or	post-	
anti-CTLA4	treatment	late-stage	melanoma	and	normal	control	samples.	TCR	repertoire	data	from	
all	the	samples	were	derived	from	PBMCs.	b)	ROC	curves	for	using	CDR3	read	count	as	a	predictor	
for	late	stage	melanoma.	Numbers	in	the	figure	legend	are	area	under	curve	(AUC)	values.	c-d)	
Cancer-associated	CDR3	read	count	distributions	for	early	stage	breast	cancers	comparing	to	
normal	samples,	with	cancer	samples	being	PBMC	(c)	or	TIL	(d).	e)	ROC	curves	for	using	the	
abundance	of	cancer-associated	CDR3s	PBMC	or	TIL	samples	as	predictors	for	early	breast	cancer	
onset.	AUC	values	were	shown	in	the	legend.	Statistical	significance	was	evaluated	using	Wilcoxon	
rank	sum	test	between	labeled	groups.	
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Supplementary	Figure	1.	Cluster	antigen-specificity	analysis	for	GLIPH.	Heatmap	showing	the	
cross-antigen	classification	errors	from	GLIPH	predicted	CDR3	clusters	using	the	same	benchmark	
dataset	of	15	antigens.	Same	analysis	was	performed	as	described	in	Figure	1b.		
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Supplementary	Figure	2.	Summary	of	iSMART	identified	CDR3	clusters.	a)	Histogram	of	CDR3	
cluster	size	distribution.	b)	Lengths	distributions	for	clustered	and	non-clustered	CDR3	amino	
acid	sequences.	c)	Distribution	of	the	counts	for	clustered	CDR3s	carried	by	each	individual	in	the	
analysis.	
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Supplementary	Figure	3.	Clustered	CDR3s	as	an	indicator	for	activated	T	cells.	a)	Volcano	
plot	for	genes	positively	correlated	with	number	of	clustered	CDR3s.	Median	values	across	
different	cancer	types	for	each	gene	were	calculated	for	both	p	value	and	partial	Spearman’s	
correlation	with	tumor	purity	correction.	Top	genes	(p≤10-15)	were	zoomed	in	for	visualization.	
Genes	related	to	negative	regulation	for	Treg	cells	were	highlighted	with	dark	red	color.	b)	Gene-
Ontology	enrichment	analysis	was	performed	for	the	top	500	genes	and	the	top	10	pathways	were	
displayed.	Highlighted	pathways	were	related	to	immune	cell	activation.		
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Supplementary	Figure	4.	Potential	negative	regulators	for	T	cell	activation	in	the	tumor	
microenvironment.	Genes	with	Spearman’s	correlation	ρ≤	-0.1	and	FDR≤0.05	in	at	least	3	cancer	
types	were	selected	for	visualization	in	the	heatmap.	Hierarchical	clustering	on	ρ	was	performed	
to	order	the	genes	into	similar	groups	across	different	cancer	types.	Four	representative	clusters	
with	putative	oncogenes	(labeled	by	black	arrows)	or	recently	identified	metabolic	enzymes	(red	
arrows)	were	displayed	as	smaller	heatmaps	in	the	lower	panels.	Statistical	significance	was	
evaluated	using	partial	Speaman’s	correlation	test	correcting	for	tumor	purity,	and	FDR	was	
performed	using	Benjamini-Hochberg	procedure.	
	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2018. ; https://doi.org/10.1101/459842doi: bioRxiv preprint 

https://doi.org/10.1101/459842
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 28	

	
Supplementary	Figure	5.	Differentially	expressed	genes	between	our	defined	new	group	
and	other	T	cells.	Wilcoxon	rank	sum	test	was	applied	to	evaluate	the	statistical	significance,	and	
p	values	were	corrected	by	Bejamini-Hochberg	method.	We	labeled	the	genes	with	mean	fold	
change	greater	than	3	or	smaller	than	-3,	and	FDR<=0.01.	Established	markers	for	tissue-resident	
memory	T	cells	were	highlighted	with	colors:	red	for	up-regulation	and	green	for	down-regulation.	
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Supplementary	Figure	6.	Additional	tSNE	plot	visualization	for	selected	markers.	Previously	
reported	Trm	markers	including	CD69	(general	T	cell	activation	and	memory	differentiation),	
CXCR6,	Blimp-1	and	CD103	(ITGAE)	were	visualized	by	tSNE	plots.	Expression	patterns	for	two	
putative	T	cell	exhaustion	markers,	PD-1	and	TIM3	were	also	presented.	Figure	legend	was	in	log	
scale.	
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Supplementary	Figure	7.	Pseudotime	trajectory	plots	for	individual	clonotypes	in	sample	
BC10.	βCDR3	sequences	were	displayed	as	figure	titles	and	each	point	on	the	plot	represent	a	cell.	
Red	circles	label	cells	with	the	corresponding	CDR3	sequence.	The	numbers	in	the	figure	titles	are	
the	number	of	cells	in	the	corresponding	clonotype.	Two	evolutionary	patterns	were	observed.	
Pattern	1	is	from	Tpre	to	Trm1,	including	clonotypes	CASRPPAGELAFF,	CASSLWGDTQYF,	
CASSLSGSPKGEQYF,	CASRTSGASTDTQYF	and	CASRTSGDFSYEQYF.	Pattern	2	is	from	Trm1	to	Trm2,	
including	clonotype	CSARDGNTEAFF.		
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Supplementary	Figure	8.	Single	cell	trajectory	analysis	for	breast	cancer	sample	BC11.	a)	
Same	trajectory	analysis	in	BC11,	with	exception	that	for	the	selected	markers	of	the	cell	clusters,	
bold	characters	indicate	FDR<0.05,	where	normal	font	otherwise.	b)	Boxplot	for	representative	
OXPHOS	genes,	with	statistical	significance	evaluated	by	Wilcoxon	rank	sum	test.	c)	Trajectory	
plots	with	individual	clonotype	overlaid	by	red	circles.	The	number	after	each	CDR3	sequence	is	
the	number	of	cells	in	the	corresponding	clonotype.	Two	evolutionary	patterns	were	observed.	
Pattern	1	is	from	Tpre	to	Trm1,	including	clonotypes	CASTDREGRYEQYF,	CASSPDGKETQYF,	
CASSRDGQGNTIYF,	CASSYSKVVLYGYTF	and	CASSPPSGSLGETQYF.	Pattern	2	is	from	Trm1	to	Trm2,	
including	clonotypes	CASSGTSGSYNEQFF,	CASSLAPVSNYGYTF,	CACSSGRYTGELFF	and	
CQPVRDRGIYNEQFF.	
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Supplementary	Figure	9.	Potential	neoantigens	generated	from	other	top	frameshift	indels.	
a)	Read	pileup	plot	for	gene	DYRK4	frameshift	deletion.	The	gene	is	forward	translated.	Site	of	
deletion	was	labeled	with	red	arrow.	b-c)	NetMHC	predictions	for	binding	peptides	and	TCGA	
sample	HLA	genotypes:	left	table	in	b	and	upper	table	in	c	for	gene	DYRK4;	right	table	in	b	and	
lower	table	in	c	for	gene	RNF43	in	Figure	3c.	
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Supplementary	Figure	10.	HSFX1	expression	across	cancer	types	and	normal	tissues.	a)	TPM	
values	for	HSFX1	expression	were	displayed	in	boxplots	across	32	cancer	types.	Adjacent	normal	
samples	with	sufficient	sample	size	(n≥20)	were	also	included	in	the	plot.	b)	TPM	values	for	
HSFX1	expression	displayed	in	boxplot	across	53	normal	tissue	types	as	reported	by	the	GTEx	
data	portal.	Box	colors	distinguish	major	tissue	types:	yellow	for	brain,	pink	for	ovary,	light	gray	
for	prostate,	dark	gray	for	testis	and	olive	green	for	spleen.	
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Supplementary	Figure	11.	Generation	of	a	potentially	immunogenic	peptide	by	HSFX1	
expression.	a)	Violin	plot	showing	significant	difference	in	HSFX1	expression	between	clustered	
and	non-clustered	individuals	from	all	TCGA	cancers.	9	individuals	with	solved	HLA	genotypes	
have	positive	HSFX1	expression.	b)	NetMHC	prediction	for	a	HSFX1	derived	9-mer	peptide,	with	
strong	binding	affinities	to	3	common	HLA	alleles.	c)	HLA	genotype	information	table	for	the	9	
individuals	with	HSFX1	expression	shown	in	a).	All	9	samples	were	colon	or	endometrial	cancers,	
bearing	at	least	one	matched	HLA	binder(s)	as	shown	in	b)	(highlighted	in	yellow).	Expression	
levels	in	transcript	per	million	(TPM)	were	also	displayed	in	the	table.	
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Supplementary	Figure	12.	Control	experiment	for	HSFX1-derived	peptide	using	naïve	
C57BL/6J	mice.	Same	experiment	as	described	in	Figure	6a	was	performed	using	naïve	
immunocompetent	C57BL/6J	mice	(n=4,	all	female),	and	representative	ELISPOT	results	were	
displayed.			
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Supplementary	Figure	13.	Identification	of	TSSK2	as	a	potential	cancer-associated	antigen.	
a)	Boxplot	for	TSSK2	expression	across	different	tumor	and	normal	tissues.	b-c)	NetMHC	
predicted	binding	peptide	information	and	HLA	genotypes	for	samples	with	TSSK2	expression.		
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Supplementary	Figure	14.	Cancer-associated	T	cell	clonal	frequencies	in	early	and	late	
stage	tumors.	a-b)	Barplots	showing	the	read	counts	for	top	10	cancer-associated	CDR3s	in	
samples	of	the	melanoma	(a)	or	early	breast	cancer	(b)	cohorts.	Since	the	library	sizes	for	TCR-seq	
data	in	the	melanoma	cohort	were	bigger	than	those	for	the	early	breast	cancer	cohort,	to	ensure	
fair	comparison,	we	downsampled	the	libraries	of	the	melanoma	samples	to	N,	which	randomly	
sampled	from	Uniform	distribution	(34383,156524).	The	upper	and	lower	limits	mark	the	range	
of	library	sizes	for	early	breast	cancer	samples.	Specifically,	for	each	library,	we	randomly	sampled	
an	integer	(N)	from	that	range,	and	downsampled	the	initial	library	to	N	reads,	and	estimated	
CDR3	frequencies	(Methods).	The	above	range	matches	the	library	sizes	for	the	early	breast	
cancer	cohort.		
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Supplementary	Table	1.	Information	for	the	15	selected	antigens	for	methodology	performance	
evaluation.	
	
Supplementary	Table	2.	Summary	of	association	analysis	between	gene	expression	levels	and	
clustered	CDR3	count	in	each	individual.	
	
Supplementary	Table	3.	Summary	of	differential	gene	expression	analysis	between	the	single	
cells	from	new	defined	group	and	others,	with	fold	change	and	FDR	estimations.	
	
Supplementary	Table	4.	HLA	genotype	information	for	patients	carrying	correlated	pairs	of	
predicted	neoantigens	and	clustered	CDR3s.		
	
Supplementary	Table	5.	Summary	of	differential	gene	expression	analysis	between	each	CDR3	
cluster	and	other	TCGA	tumors,	with	fold	change	and	FDR	estimations.		
	
Supplementary	Dataset	1.	TCR	clusters	obtained	from	the	top	5000	most	abundant	clonotypes	of	
666	HCMV	cohort.	(Due	to	file	size	limit,	in	this	submission	we	only	included	3	files	for	review.		
Format	of	the	remaining	files	is	the	same.)	
	
Supplementary	Dataset	2.	Public	non-specific	TCRs	profiled	using	random	triplets	with	
unmatched	HLA	alleles	from	the	HCMV	cohort.	
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