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Abstract: 

Objective: Patients with drug-resistant focal epilepsy are often candidates for invasive surgical 
therapies. In these patients, it is necessary to accurately localize seizure-generators to ensure 
seizure freedom following intervention. While intracranial electroencephalography (iEEG) is the 
gold standard for mapping networks for surgery, this approach requires inducing and recording 
seizures, which may cause patient morbidity. The goal of this study is to evaluate the utility of 
mapping interictal (non-seizure) iEEG networks to identify targets for surgical treatment.   
 
Methods: We analyze interictal iEEG recordings and neuroimaging from 27 focal epilepsy 
patients treated via surgical resection. We generate interictal functional networks by calculating 
pairwise correlation of iEEG signals across different frequency bands. We identify electrodes 
falling within surgically resected tissue (i.e. the resection zone), and compute node-level and 
edge-level synchrony in relation to the resection zone. We associate these metrics with post-
surgical outcomes. 
 
Results: Greater overlap between resected electrodes and highly synchronous electrodes is 
associated with favorable post-surgical outcomes. Additionally, good outcome patients have 
significantly higher connectivity localized within the resection zone compared to those with 
poorer postoperative seizure control. This finding persists following normalization by a spatially-
constrained null model. 
 
Conclusions: This study suggests that spatially-informed interictal network synchrony measures 
can distinguish between good and poor post-surgical outcomes. By capturing clinically relevant 
information during interictal periods, our method may ultimately reduce the need for prolonged 
invasive implants and provide insights into the pathophysiology of an epileptic brain. We discuss 
next steps for translating these findings into a prospectively useful clinical tool.  
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1. Introduction 

 Epilepsy is a common neurological disorder that affects over 50 million people 

worldwide, 1 one-third of whom experience uncontrolled seizures despite medication.2 Within 

this group, approximately 80% have localization-related seizures and are candidates for surgical 

removal of the seizure-generating region in the brain.3 Accurate seizure localization is needed in 

these patients to maximize chances of seizure freedom and minimize deficits following surgery. 

With the recent development of more targeted alternatives to surgery, such as laser ablation4 and 

neurostimulation through implantable devices5, precise localization is becoming increasingly 

necessary to guide therapy.  

 Intracranial EEG (iEEG) is currently the gold standard for localizing seizures, 

particularly in patients without clear lesions on clinical imaging.6 In this approach, implanted 

subdural and depth electrodes record brain signals for up to several weeks, with the intent of 

capturing ictal events and identifying seizure onset regions. While iEEG can record seizures at 

high spatial and temporal resolution, it has important limitations. For example, seizures are often 

provoked during the recording period via medication withdrawal and sleep deprivation; in some 

patients, these provoked seizures may be fundamentally different from stereotypical spontaneous 

seizures, with the potential to misinform localization attempts.7 Additionally, seizure provocation 

and prolonged implantation while waiting to record seizures increases the risk of complications 

such as infection, deep vein thrombosis, musculoskeletal injury, and postictal psychosis.8,9 In 

some cases, seizures may not occur during the implant period, rendering the study inconclusive. 

Prolonged hospitalizations with multiple surgeries – usually at least one for electrode 

implantation and one for removal – add greatly to patient inconvenience and consumption of 

limited resources. Eliminating the need to record seizures would be a marked advance in 
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improving presurgical evaluation for epilepsy.10,11 In the long term, a procedure in which 

interictal recording, stimulation mapping, and subsequent intervention could take place in a 

single session, comparable to cardiac electrophysiology, would have notable benefits compared 

to current procedures.  

 Recent evidence indicates that seizures most commonly arise from abnormal brain 

networks rather than isolated focal lesions.12,13 Therefore, in order to accurately map seizure 

generation, it is important to identify brain network abnormalities in epilepsy. Functional 

networks derived from correlations between iEEG signals show promise in highlighting seizure 

onset networks, distinguishing between focal and generalized seizures, and predicting 

outcomes.14–16 While most previous iEEG network studies analyze ictal and preictal data, recent 

evidence suggests that interictal recordings are also informative for localizing epileptic 

networks.17 This notion is further supported by recent studies demonstrating that ictal and 

interictal iEEG network subgraphs are topologically similar, and that patterns of high frequency 

activity propagation during seizures are recapitulated interictally.18,19 Moreover, epileptic brain 

networks are fundamentally altered, as reflected by cognitive deficits and imaging abnormalities, 

in many patients in regions associated with seizures.20–23 These findings suggest that iEEG can 

provide valuable information without the need to capture seizure events.  

In this study, we evaluate the utility of interictal network analysis in mapping seizure 

networks. While the ground-truth identity of seizure-generating networks is inherently unknown, 

rigorously quantified information about the surgical resection zone combined with outcome data 

can serve as a valuable proxy. Namely, if a patient has a good post-surgical outcome, a reasonable 

assumption is that vital parts of the seizure network are contained in the resection zone. In contrast, 

in poor outcome patients, the resection zone likely did not include critical regions of the seizure-
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generating network. Therefore, we characterize network connectivity inside and outside of the 

resection zone in good and poor outcome patients. We hypothesize that patients with highly 

synchronous nodes removed are more likely to have good outcomes. We also propose that this 

work can further our understanding of functional network topology in the epileptic human brain, 

and ultimately reduce the need for prolonged implant times and resulting patient morbidity. 

 

2. Methods 

2.1 Subjects 

 We retrospectively studied 27 adult patients undergoing pre-surgical evaluation for drug-

resistant epilepsy at the Hospital of the University of Pennsylvania and at the Mayo Clinic. All 

patients presented with focal onset seizures and were subsequently treated by surgical resection, 

with at least 1-year post-surgical outcomes as measured by Engel classification score and/or 

ILAE criteria. Patients were divided into two groups: good outcome (Engel I or ILAE 1-2) and 

poor outcome (Engel II-IV or ILAE 3-6). All patients gave consent to have their anonymized 

iEEG data publicly available on the International Epilepsy Electrophysiology Portal 

(www.ieeg.org).24,25 Clinical and demographic information is available in Table 1. 
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Patient # Age Sex Resected Region Outcome 
1 21 M LFL Engel 1D 
2 37 M RTL Engel 1B 
3 28 F RTL Engel 1A 
4 33 M LFPL Engel 1B 
5 40 M RFL Engel 1C 
6 25 F LTL Engel 1A 
7 57 F LTL Engel 2D 
8 54 M LTL Engel 2A 
9 41 F LTL Engel 2B 

10 56 F RTL Engel 1A 
11 29 M LPL Engel 2A 
12 25 F LTL Engel 1C 
13 24 M LFL Engel 1D 
14 35 F LTL Engel 1D 
15 48 F RTL Engel 1B 
16 39 M RTL Engel 1A 
17 45 F LTL Engel 1B 
18 36 M RTL Engel 1A 
19 40 F RTL Engel 1B 
20 N/A M RFL ILAE1 
21 N/A F RFTL ILAE4 
22 N/A M RTL ILAE4 
23 N/A M LTL ILAE5 
24 N/A M RFL ILAE5 
25 N/A F LTL ILAE5 
26 N/A M LFPL ILAE4 
27 N/A F RTL ILAE5 

Table 1: Clinical and demographic patient information. Legend - L: Left; R: Right; TL: 
Temporal Lobe; FL: frontal lobe, FPL: fronto-parietal lobe, FTL: fronto-temporal lobe, MTS: 
mesial temporal sclerosis; MCD: malformation of cortical development; N/A: not available. 
 

2.2 Intracranial EEG acquisition 

 Cortical surface and depth electrodes were implanted in patients based on clinical 

necessity. Electrode configurations (Ad Tech Medical Instruments, Racine, WI) consisted of 

linear cortical strips and two-dimensional cortical grid arrays (2.3 mm diameter with 10 mm 

inter-contact spacing), and linear depths (1.1 mm diameter with 10 mm inter-contact spacing). 
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Continuous iEEG signals were obtained for the duration of each patient’s stay in the epilepsy 

monitoring unit. For each subject, we obtained one clip of interictal data consisting of the first 6 

hours of artifact-free recording at least 4 hours removed from any seizure event. Seizure events 

were labeled by a board-certified epileptologist and were checked for consistency with clinical 

documentation. 

 

2.3 Electrode and resection zone localization 

 All patients underwent a clinical epilepsy neuroimaging protocol. Pre-implant T1-

weighted MPRAGE MRI and post-implant CT images were acquired in order to localize 

electrodes within or on the surface of each patient’s brain. Furthermore, patients underwent a 

post-resection imaging protocol acquired between 6-8 months after resection, which consisted of 

T1-weighted MPRAGE MRI and axial FLAIR MRI sequences. Images were anonymized and 

coregistered to each patient’s pre-implant T1 MRI space for localization and segmentation. 

 Electrodes were identified via thresholding of the CT image and labeled using a semi-

automated process. For all subjects, all images were registered to the pre-implant MRI space 

using 3D rigid affine registration, with mutual information as the similarity metric. Pre-implant 

MR images were diffeomorphically coregistered to post-resection MR images to quantitatively 

identify the resection zone. Resection zones were segmented semi-automatically via the ITK-

SNAP random forest classifier feature using coregistered MPRAGE and FLAIR imaging. The 

resection zone was dilated by 5% of the iEEG network in order to mimic effects of gliosis and 

scarring adjacent to surgically removed tissue.26 Using these resected regions along with the 

electrode localizations, we determined the identities of the electrodes present in the resection 

zone. Coregistration steps utilized Advanced Normalization Tools (ANTs) software.27,28  
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2.4 Functional network analysis 

 Following removal of electrode channels obscured by artifact (marked by a board-

certified epileptologist), interictal iEEG clips were common-average referenced to reduce 

potential sources of correlated noise.29 Each clip was then divided into 1 s non-overlapping time 

windows in accordance with previous studies.14,19,30,31 To generate a network representing 

broadband functional interactions between iEEG signals for each 1 s time window, we employed 

a method described in detail previously.19 Signals were notch-filtered at 60 Hz to remove power 

line noise, low-pass and high-pass filtered at 115 Hz and 5 Hz to account for noise and drift, and 

pre-whitened using a first-order autoregressive model to account for slow dynamics. Functional 

networks were then generated by applying a normalized cross-correlation function between the 

signals of each pair of electrodes within each time window. Next, to gain an understanding of 

iEEG networks across different frequencies, we generated functional networks across 

physiologically relevant frequency bands as described in detail in a previous study.14 

Specifically, multitaper coherence estimation was used to compute functional coherence 

networks for each 1 s window across four frequency bands: alpha/theta (5-15 Hz), beta (15-25 

Hz), low-gamma (30-40 Hz), and high-gamma (95-105 Hz). Both broadband and frequency-

specific networks were represented as full-weighted adjacency matrices. In this model, each 

electrode serves as a node of the network, and measurements of connectivity between pairs of 

electrodes serve as edges. The networks were averaged across the full 6 hours to obtain one 

functional network for each patient for each frequency band. A schematic of this pipeline is 

provided in Figure 1. 
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Figure 1: Schematic of subject-level iEEG network analysis pipeline. (a) Using structural 
imaging, the location of each electrode is identified on the brain surface and within the 
parenchyma. (b) Interictal iEEG signals are processed and divided into 1 s windows. (c) For each 
1 s window, a broadband functional connectivity network is generated by calculating the 
correlation between iEEG signals across electrode pairs. Frequency-specific networks are 
similarly constructed by calculating coherence between iEEG signals measured by electrode 
pairs. (d) Node-level and edge-level network analyses are computed on these resulting networks, 
in relation to the resection zone. 
 

 To quantify the degree of synchrony of each node in the network, we computed the nodal 

strength, defined for each node as the sum of the weights of all edges connected to that node.32,33 

We defined “highly synchronous nodes” to be nodes with a value of strength that is at least 1 z-

score above the mean. Next, we defined the strength selectivity of the resection zone as the 

spatial overlap between the nodes within the resection zone and the highly synchronous nodes. 

Overlap was computed using the Dice Similarity Coefficient (DSC), which ranges from 0 to 1 

and is defined as 𝐷𝑆𝐶(𝐴, 𝐵) = *	|-∩/|
|-|0|/|

, where A and B are two binary sets. We compared the 

strength selectivity for good and poor outcome patients across all frequency bands, and we 

repeated the analysis for z thresholds ranging from 0 to 2. Furthermore, to assess what types of 

connections were contributing to the observed differences in strength selectivity in good vs. poor 

outcome patients, we delineated the following three edge types: (i) connections between nodes 

within the resection zone (RZ-RZ), (ii) connections between one node within the resection zone 

and one node outside the resection zone (RZ-OUT), and (iii) connections between nodes outside 
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the resection zone (OUT-OUT). For each subject, we computed the mean edge weights within 

each of these categories. We compared the mean edge weights among these three categories 

within both good and poor outcome patients. Furthermore, we computed differences in these 

categories between the two patient groups.  

 Given that neighboring electrodes are more likely to be highly correlated due to spatial 

proximity or due to common source measurements, we generated a spatially-constrained null 

model. For each patient with N resected electrodes, we sampled clusters of N spatially 

contiguous electrodes, using Euclidean distance to determine the closest electrodes. We repeated 

the edge-weight analysis after normalizing the RZ-RZ, RZ-OUT, and OUT-OUT edge weights 

by the null distribution of edge weights for each category. Normalization was carried out by 

subtracting the mean and dividing by the standard deviation of the null values. Non-parametric 

Mann-Whitney U tests were used for all pairwise comparisons. 

 Our code is available at https://github.com/shahpreya/Epimapper. 

 

3. Results   

 We constructed spatial maps of nodal strength, along with the overlaid resection zone, for 

each individual patient (Figure 2). At the group level, we observed significantly higher 

broadband and beta strength selectivity in good outcome patients vs. poor outcome patients, 

using a z threshold of 1 (p < 0.05, Mann-Whitney U test) (Figure 3A). Sweeping across a range 

of z thresholds from 0 to 2 revealed a trend of higher strength selectivity in good vs. poor 

outcome patients in all frequency bands, with significant differences for broadband (z = 1), beta 

band (z = 0.5 to z = 1.25) and low-gamma band (z = 1.75 to z = 2) (Figure 3B).   
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Figure 2: Patient-level strength selectivity analysis. For an example good outcome patient (a) 
and poor outcome patient (b), we provide spatial maps of nodal strength in the beta band only, 
along with corresponding 2D heat maps of nodal strength in all frequency bands. Resection 
zones are highlighted in green.   
 

 
Figure 3: Group-level strength selectivity analysis. (a) Strength selectivity in all tested frequency 
bands with a z threshold of 1 reveals significantly higher broadband and beta strength selectivity 
in good outcome patients vs. poor outcome patients. (b) A sweep across multiple z thresholds 
from 0 to 2 reveals significant outcome-dependent differences in strength selectivity for 
broadband (z = 1), beta band (z = 0.5 to z = 1.25) and low-gamma band (z = 1.75 to z = 2) 
networks (mean +/- standard error). Beta band strength selectivity distinguishes between good 
and poor outcome patients across the widest range of z thresholds (red box). *p < 0.05, Mann-
Whitney U test. 
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 Next, we sought to understand whether observed strength selectivity findings were due to 

connectivity within the resection zone, or connectivity between the resection zone and extra-

resection regions. Since strength-selectivity findings were most prominent in the beta band, we 

focused our edge-level analysis on the beta band networks; to assess sensitivity and specificity, 

we also repeated the analysis across all frequency bands. We found that connections within the 

resection zone (RZ-RZ) were significantly stronger than RZ-OUT and OUT-OUT connections. 

We also observed that RZ-RZ connections were stronger in good outcome patients than in poor 

outcome patients (p < 0.05) (Figure 4). Notably, these findings persisted across all frequency 

bands (p < 0.05). After normalization by a spatially constrained null model, RZ-RZ connections 

were still significantly stronger in good outcome patients than in poor outcome patients (p < 

0.05). While this trend was present in all frequency bands, it was statistically significant for beta, 

low-gamma, and high-gamma bands. Additionally, in both good and poor outcome patients, 

normalized RZ-RZ connections were stronger than RZ-OUT connections, and RZ-OUT 

connections were stronger than OUT-OUT connections, with the additional finding of RZ-RZ > 

RZ-OUT in good outcome patients (p < 0.05). Notably, these findings also persisted across all 

frequency bands. 
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Figure 4: Edge-level analysis in relation to resection zone, shown for the beta frequency band. 
(A) Connections within the resection zone (RZ-RZ) are significantly stronger than RZ-OUT and 
OUT-OUT connections, and RZ-RZ connections are stronger in good outcome patients than in 
poor outcome patients. (B) After normalization by a spatially-constrained null model, RZ-RZ 
connections remain significantly stronger in good outcome patients than poor outcome patients. 
Additionally, in both good and poor outcome patients, normalized RZ-RZ connections are 
stronger than RZ-OUT connections and RZ-OUT connections are stronger than OUT-OUT 
connections. Finally, we also observe that RZ-RZ connections are stronger than RZ-OUT 
connections in good outcome patients in comparison to poor outcome patients. *p < 0.05, Mann-
Whitney U test. 
 

 Given similar findings across different frequency bands, we sought to directly probe the 

similarity of the frequency-specific function networks. Therefore, we calculated the correlation 

coefficient between the edges of the mean functional networks for each pair of frequency bands, 

across all subjects. We found a high degree of correlation across these networks (r = 0.95-0.91), 

with the highest correlations between neighboring frequency bands (e.g., alpha-theta vs. beta: r = 

0.91), and the lowest correlations being observed between bands with larger frequency 

separation (e.g., alpha-theta vs. beta: r = 0.75) (Figure 5).  
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Figure 5: Matrix of similarity values between functional networks generated using different 
frequency bands. Similarity values were obtained by measuring the Pearson correlation 
coefficient between edges in each pair of networks for each subject, and then by averaging these 
correlation coefficients across subjects. We observe strong correlations across all pairs of 
networks (r = 0.75-0.91), with the highest correlation coefficients being observed between 
neighboring frequency bands and the lowest correlation coefficients being observed between 
bands with larger frequency separation. 
 

4. Discussion: 

 In this study, we evaluate the association of interictal network synchrony within the 

resection zone with post-surgical outcomes in drug-resistant focal epilepsy patients. We 

determine that high interictal strength selectivity is associated with better outcomes. This effect 

appears to be driven largely by connectivity within the resection zone. Our findings suggest that 

interictal recordings can provide valuable information to identify putative seizure-generating 

networks. Employing quantitative tools on early interictal recordings can maximize information 

gained from iEEG recordings while significantly reducing recording times.  

 

4.1 High interictal connectivity within the resection zone is associated with good outcomes  

 We define the strength selectivity of the resection zone as a simple measure of overlap 

between electrodes within the resected region and highly synchronous electrodes. We find that 

strength selectivity is higher in good outcome patients compared to poor outcome patients. The 

notion that removing highly synchronous nodes would lead to favorable outcomes is consistent 
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with our understanding that epilepsy is characterized by abnormal hypersynchronous neuronal 

firing.34 We demonstrate the utility of our method using the simple, non-parametric measure of 

node strength, and we explore our findings across a range of physiologically relevant frequency 

bands. 

 Although we observe a trend of increased strength selectivity in good outcome patients 

across a range of z thresholds using both broadband and frequency-specific networks, the finding 

is most significant in functional networks constructed in the beta frequency band. While beta 

frequency oscillations are thought to be associated with long-range communication between 

regions,35 the role of oscillatory activity across different frequency bands is still complex, with 

known interactions between different frequencies.36–38 Moreover, our direct analysis of network 

similarity across frequency bands indicates that the frequency-specific networks are highly 

correlated with each other. This high similarity may be due to our data processing pipeline, as we 

compute average networks across six-hour periods, a choice which was motivated by our interest 

in extracting information from stable functional networks. Kramer et al. have shown that while 

functional iEEG networks are highly variable when estimated from time windows spanning a 

few seconds, stable network topology emerges when using time windows of 100 seconds or 

more and persists across frequency bands.39 Our group has previously shown that long-term 

interictal functional network connectivity across all frequency bands can accurately predict 

structural connectivity derived from white-matter tractography. Therefore, it is possible that 

long-term interictal functional networks are highly similar across different frequency bands 

because these functional networks echo the underlying structural connectome that gives rise to 

wideband functional dynamics.40 
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 Our findings contribute to a growing body of recent work aiming to identify 

epileptogenic networks and predict outcomes based on node-level measures.15,17,41–45 While most 

of this prior work uses ictal or preictal recordings, we focus on deriving information from the 

earliest available interictal data. Moreover, unlike the majority of previous studies, we apply 

quantitative imaging methods and semi-automated segmentation techniques to delineate the 

resection cavity, rather than utilizing subjective clinical identification of electrodes that are 

resected or part of the seizure onset zone. Marking the seizure onset zone is an inexact process; 

moreover, seizure onset zone areas may be omitted from the resection zone due to practical 

concerns (e.g. proximity to blood vessels or eloquent cortex). Therefore, it may be advantageous, 

and more direct, to determine outcomes based on what was actually removed rather than what 

was identified to be part of the seizure onset zone. 

 Our edge-level analysis reveals that the majority of network synchrony is attributable to 

intra-resection connections. This finding is similar to previous analyses illustrating that 

connectivity within the seizure onset zone is higher than both connectivity outside of the seizure 

onset zone and connectivity bridging seizure onset and non-seizure onset regions.31,46,47 We find 

higher intra-resection zone connectivity in good vs. poor outcome patients. These analyses 

suggest that seizure-generating regions are functionally distinct or isolated in some way from 

surrounding brain regions in focal epilepsy patients, and that removal of these functionally 

isolated regions improves the likelihood of a successful outcomes. 

 Our finding that good-outcome patients had higher intra-resection zone connectivity than 

poor-outcome patients persists following normalization by a spatially-constrained null model. 

Previous similar studies have generated null distributions by sampling N random electrodes from 

the network, where N is the number of electrodes in the region of interest (e.g. the resection 
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zone).17,41 However, these models do not consider two key facts: (1) that neighboring electrodes 

are more likely to have higher functional connectivity due to structural connections or common 

source signals, and (2) that surgical practice necessitates removal of spatially contiguous brain 

regions rather than distant, randomly distributed electrodes. Our spatially constrained null model 

therefore provides a more realistic set of random resections with which to normalize our 

connectivity findings. Since this spatially constrained null is more stringent than a random 

resection-based null, it is likely that our intra-resection connectivity findings are biologically 

significant and not simply due to spatial proximity. 

 

4.2 Methodological Considerations and Limitations  

 One concern inherent to all iEEG data analysis is that the entire brain is not sampled, as 

electrode locations are based on clinical necessity. While spatial coverage is sparse to minimize 

patient morbidity, electrodes are placed with the intent of capturing regions hypothesized to be 

part of the seizure network. Therefore, the seizure network should still be captured, particularly 

in patients with good outcomes. However, it is possible that the seizure network is not 

adequately covered, particularly in poor-outcome patients. Moreover, the spatial distribution and 

number of nodes in the network may impact the topological properties derived from the network. 

Recent efforts to map whole-brain iEEG may help circumvent this issue.40,48,49 Furthermore, 

source modeling from high-density scalp EEG or MEG recordings, as well as data from 

functional and structural neuroimaging such as MRI and PET, could complement our intracranial 

analysis and allow spatial sampling of the whole brain. This work remains in progress and will 

require rigorous quantitative validation. 
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 Another limitation of this study is that the resection cavity may include more tissue than 

was necessary to resect. For example, patients with temporal lobe epilepsy often have a standard 

anterior temporal lobectomy that removes both temporal neocortex and mesial temporal 

structures, even if only one of those areas is involved in the epileptic network.50 This fact does 

not invalidate our results; rather it provides an opportunity to refine them. Recent increases in 

focal laser ablation and neurostimulation approaches in the United States will allow us to test the 

method on these more targeted interventions and compare to prior standard approaches involving 

larger volume tissue resections. These studies are currently underway.  

 We demonstrate a framework for mapping interictal functional networks using simple 

measures of network synchrony on a moderately sized dataset. In order to bring this framework 

to clinical practice, the next step is to generate a suite of multimodal network-based features and 

assess the capacity of these features to predict candidate targets for surgical removal, using large 

multi-institutional datasets. By sharing our data, code, and analysis approach, we hope to 

facilitate translation of quantitative seizure-mapping tools to clinical practice.   

 

4.3 Future Directions 

 It is important to consider what will be required to translate studies such as ours from 

retrospective computational experiments to clinical utility. As noted above, the first step is 

validation on a much larger group of patients, ideally representative of the cross-section of 

patients who undergo epilepsy surgery and including those treated more focally and those with 

larger resections. The recent significant advances in our understanding of both ictal and interictal 

network dynamics and their relationship to epilepsy surgical clinical outcomes at a group level 

suggests that these investigations will lead to patient specific outcome prediction. Machine 
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learning approaches carried out on a large, multimodal dataset, including structural and 

functional neuroimaging and iEEG recordings, holds promise for identifying the features 

predictive of individual patient outcomes and for translating our work to be tested in a 

prospective clinical trial. The ultimate goal, of course, is that this body of work results in either: 

(1) network-assisted procedures, in which standard procedures might be augmented with ablation 

or resection of additional electrodes not originally intended to be removed in more standard 

procedures, or (2) complete guidance of resection or ablation by network models. If effective, the 

hope is that epilepsy surgical interventions might eventually be done, based upon successful 

trials of interictal network modeling guidance for surgery, in a single session, both recording and 

ablation or resection, rather than requiring two weeks of hospitalization and multiple surgical 

procedures. 

 

4.4 Conclusion 

 We demonstrate that high interictal connectivity within the resection zone is associated 

with favorable post-surgical outcomes in drug-resistant focal epilepsy patients. This study is one 

of a series of investigations that we hope will lead to translation of our methods into clinical 

practice, ultimately allowing for automated and optimized seizure localization and treatment with 

reduced need for prolonged invasive implants.  
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