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Abstract: Hyperspectral imaging is a powerful technique to simultaneously study 

multiple fluorophore labels with overlapping emissions. Here we present a 

computational hyperspectral imaging method, which uses the sample spatial 

fluorescence information as a reconstruction constraint. Our method addresses both 

the under-sampling issue of compressive hyperspectral imaging and the low 

throughput issue of scanning hyperspectral imaging. With simulated and experimental 

data, we have demonstrated the superior reconstruction precision of our method in two 

and three-color imaging. We have experimentally validated this method in 

differentiating cellular structures labeled with two red-colored fluorescent proteins, 

tdTomato and mCherry, which have highly overlapping emission spectra. Our method 

has the advantage of totally free wavelength choice and can also be combined with 

conventional filter-based sequential multi-color imaging to further expand the choices 

of probes. 

 

1. Introduction 

In fluorescence microscopy, it is desirable to selectively label sample structures with 

differently colored fluorophores to study interactions [1]. Commonly, multiple colors 

(namely channels) are either imaged sequentially by using different filter sets or 

simultaneously by splitting signals onto different regions of the camera or onto several 

cameras. Both approaches rely on filters and are therefore ultimately limited by the 

spectral overlap of fluorophores, which makes it difficult in practice to distinguish 

more than four colors within the visible spectrum without having substantial crosstalk 

among channels. Sequential imaging of more than four targets is particularly 

challenging for live samples.    

As an alternative, hyperspectral imaging is a powerful tool to simultaneously study 

multiple labels in biological samples at the subcellular, cellular and tissue level [1-3]. 

Traditionally, in hyperspectral imaging, a three-dimensional (3D) data cube (2D 

spatial, 1D spectral) is generated via spatial or wavelength scanning (hereafter called 
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scanning hyperspectral imaging), where a diffraction grating or prism is used to 

acquire the full spectrum at each spatial point of the image [4]. With the spectral 

information, hyperspectral imaging approaches are capable of unambiguously 

identifying fluorophores with overlapping spectra and permitting high levels of signal 

multiplexing [5]. However, a major drawback of scanning hyperspectral imaging is the 

relatively long acquisition time. To solve this problem, snapshot hyperspectral imaging 

methods that based on tomographic multiplexing [6, 7] or compressive hyperspectral 

imaging [8-10] were developed. In the later, the entire data cube was either coded and 

captured in a single 2D camera integration with different wavelength signal dispersed 

to different spatial locations [8, 9] or coded by a series of Hadamard patterns to 

generate single pixel signals[10], and then the whole data cube was reconstructed using 

compressed sensing theory. Unfortunately, these methods reportedly are difficult to be 

applied to high resolution imaging [4] and only multicolor fluorescent beads images 

have been demonstrated [9, 10]. 

In this paper, we demonstrate a computational hyperspectral imaging method, 

which aims to address both the under-sampling issue of compressive hyperspectral 

imaging and the low throughput issue of scanning hyperspectral imaging. To do so, 

we employed two strategies: (1) using a dual-view imaging system to generate both an 

undispersed spatial image capturing the superposition of multiple labels and a spectral 

image where signals were dispersed by a wedge prism to different spatial locations 

according to wavelength (Figs. 1a and b); (2) using Digital Micromirror Device 

(DMD) [8, 9] to generate multiple randomly coded illumination pattern on the sample. 

In our approach, the undispersed spatial image acted as a spatial constraint in data 

reconstruction to guarantee correct reconstruction and enhance accuracy. This strategy 

is similar to what was used in compressed ultrafast photography [11, 12]. With both 

simulation and experimental data, we demonstrated that for two-color imaging, 

strategy (1) alone ensures a high reconstruction accuracy in resolving labels with 

emission peaks separated by ~20 nm. Using simulation, we also show that for three-

color imaging, the use of five randomly coded illumination patterns is sufficient for an 

accurate reconstruction, which is still much faster than scanning hyperspectral 

imaging. 

 

2. Methods 

2.1 Space-constrained computational hyperspectral imaging 

We aim to image a three-dimensional sample, 𝒙 = {𝑥(𝑖, 𝑗, 𝑘);  𝑖, 𝑗 = 1 … 𝑁, 𝑘 =
1 … 𝑀}, a distribution of fluorescent probes with 𝑥(𝑖, 𝑗, 𝑘) represents the intensity of 

the 𝑘𝑡ℎ  kind of probes at spatial pixel localization (𝑖, 𝑗), 𝑁  is the number of pixels 

along one spatial dimension (for simplicity, we assumed the imaged filed-of-view to 

be square) and 𝑀 is the number of probes used to label the sample.  

To achieve high imaging quality of the sample, we simultaneously measure its 

spatial and spectral information. Here, we employed a dual-view detection scheme 

(Fig. 1a), which is similar to what used in spectral-resolved super-resolution 

localization microscopy and spectral single molecule tracking [13-16]. In the detection 

path, the emitted fluorescence was split by a 50:50 beam splitter cube (BS013, 

Thorlabs). The reflected fluorescence was directed to the camera by a mirror (Path 1, 

referred to as the spatial path) to generate a spatial image 𝒚1 . The transmitted 
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fluorescence passed through a dispersive wedge prism (SM1W189, Thorlabs), which 

shifts blue to red emission from left to right along lateral direction, and two pairs of 

mirrors (Path 2, referred to as spectral path) to produce a spectral image 𝒚2. With 

spectral calibration results (Section 2.2), 𝒙 can be reconstructed through solving an 

optimization problem in which 𝒚1 acts as a spatial constraint in restoring the spectral 

information contained in  𝒚2 (Fig. 1b).  

Here, we first describe the forward imaging formation model of our system. In the 

spatial path, 𝒚1 is the superposition integral of all probe signals at each spatial location, 

which is expressed as  𝒚1 =  ∑ 𝑥(𝑖, 𝑗, 𝑘)𝑀
𝑘=1  .  𝒚1 can be described in matrix form: 

   𝒚1 =  𝐴1𝑥 = [𝐼1, 𝐼2, … , 𝐼𝑀] 𝒙, (1) 

in which 𝒚1 and 𝒙 are the vectorized form, 𝐼 is 𝑁 ×  𝑁 identical matrix. On the other 

hand, in the spectral path, because we model the third dimension of 𝒙 as the choice of 

probes instead of wavelength, the formation of 𝒚2 can be described as a convolution 

problem, in which the emission spectrum of each probe and the dispersion by the prism 

determine the corresponding convolution kernel function. Assuming ℎ(𝑘)  is the 

dispersed convolution kernel function for the 𝑘𝑡ℎ channel (obtained through spectral 

calibration), then 𝒚2 is the summation of convolved signals: 𝒚2 =  ∑ ℎ(𝑘) ∗ 𝑥(𝑘)𝑀
𝑘=1 . 

This convolution can also be expressed in matrix format with each column of the 

measurement matrix, coli𝐴2 (𝑖 = 1 … 𝑁 × 𝑁 × 𝑀), corresponding to the convolved 

image assuming a single probe is placed at 𝑖 position of vectorized 𝒙: 

  𝒚2 =  𝐴2𝒙.  (2) 

Combining Eq. (1) and (2), we have: 

  𝒚 =  𝐴 𝒙,  (3) 

with 𝒚 = [𝒚1; 𝒚2 ] and 𝑨 = [𝑨1; 𝑨2 ].  

To reconstruct 𝒙 under the forward imaging model (Fig. 1b), two scenarios need 

to be considered. First, when the sample contains only two colors, Eq. (3) is a 

determined equation. Estimating 𝒙 is a deconvolution problem. However, because of 

the ill-conditioned nature of deconvolution problem, general inverse matrix method 

cannot be used. Therefore, we need to solve the inversion problem with regularization 

terms to stabilize the solution: 

   arg min{
1

2
‖𝒚 − 𝐴𝒙‖2 + 𝛽∅(𝒙)}. (4) 

In our implementation, we adopted the two-step iterative shrinkage/thresholding 

(TwIST) [17] algorithm, and chose ∅(𝑥)  in the form of summation of 2D total 

variation (TV) of each channel: 

 ∅(𝒙) =  ∑ ‖∆𝒉(𝒙(𝑘)) +  ∆𝒗(𝒙(𝑘))‖
𝟐

𝑴
𝒌=𝟏 , (5) 

∆𝒉 and ∆𝒗 are the horizontal and vertical first-order local difference operators. In Eq. 

(4), the first term, ‖𝒚 − 𝐴𝒙‖2 , is the fidelity term which encourages the actual 

measurement 𝒚  to closely match the estimated measurement 𝐴𝒙 . The second 

term, 𝛽∅(𝒙), is the regularization term, which encourages 𝒙 to be piecewise constant 

(that is, sparse in the gradient domain). The weighting of these two terms is empirically 

adjusted by the regularization parameter, 𝛽, to lead to results that are consistent with 

the physical reality. In both our simulation and experiments, we found a 𝛽  value 

between 1 to 5 gave good reconstruction results. In practice, the problem is also 

subjective to non-negative constraint to meet physical reality requirement.  

In a second scenario, when the sample is multi-color labeled (𝑀 > 2) and only one 

snapshot is taken, the number of variables in 𝑥 becomes larger than the number of 
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measurements. In this case, solving Eq. (3) becomes a compressive sensing problem 

[18]. Due to the overall similarity of emission spectrum of fluorescence proteins, the 

measurement matrix 𝐴 would generally lack the incoherence required for successful 

compressive sensing reconstruction.  This problem can be solved by acquiring multiple 

measurements of the sample using random illumination patterns generated by DMD. 

Under this strategy, the forward imaging model becomes: 

  𝒚 =  𝐴 𝑫𝒙,  (6) 

in which D is a binary matrix describing the random illumination pattern. y becomes 

the cascade of the multiple measurements, A is also a cascade of the original 

measurement matrix with certain columns setting to zero according the corresponding 

illumination pattern. This strategy guarantees a successful reconstruction in two ways: 

(1) the incoherence of the measurement matrix 𝐴 increases because of the randomized 

illumination; (2) with more measurements, Eq. (3) could become an over-determined 

problem. Thus, x can be obtained by solving the same problem of Eq. (4) with AD 

being the new measurement matrix. We will illustrate the setup in Section 3.3. 

 

 

Fig. 1. Space-constrained computational hyperspectral imaging 

detection system. (a) Schematic of the setup. The emitting light from 

the sample is split evenly by a beam splitter to generate an undispersed 

spatial image (Path 1) and a dispersed spectral image (Path 2) 

respectively on the left and right parts of the same camera. L, lens. (b) 

Illustration of overall space-constrained computational hyperspectral 

imaging approach using green and red fluorescent beads. (c) 

Registered spatial (blue) and spectral (red) images of fluorescent 

beads at different wavelength. Scale bar: 1 µm. (d) Measured lateral 

spatial shift and its corresponding polynomial fitting. The 

measurement is averaged from 5 independent experiments, with a 

negligible standard deviation. 
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2.2 Spectral calibration  

Calibration between the spectral and spatial paths was performed using fluorescent 

beads in different colors (Yellow-green, orange, red, and dark red, F10720, Life 

Technologies). Each kind of beads was deposited to the coverslip at low density. Upon 

imaging, individual beads appeared as well-resolved diffraction-limited spots (Fig. 

1b). Narrow bandpass filters (FB500-10, FB550-10, FB600-10, FB700-10, Thorlabs) 

were placed between beam splitter and the wedge prism to determine the spectral 

positions of the corresponding wavelength in the spectral image relative to the image 

position in the spatial image. Then the paired images were registered (described in 2.3 

below, Fig. 1b) to estimate the lateral spatial shift of different wavelength using cross-

correlation. The measured lateral shift curve can further be fitted with a two-order 

polynomial function to generation the prism dispersion function (Fig. 1c). This 

calibration only needs to be performed once for all experiments performed on the 

setup. 

In order to generate the measurement matrix A, we need the prior knowledge of 

the emission spectra of probes to firstly generate the convolution kernel functions in 

A. For this purpose, there are usually two methods. One method is using the probe 

emission spectrum from literatures and calculate its corresponding dispersed 

convolution kernel function using the calibrated prism dispersion function. The second 

approach is to calibrate convolution kernel functions directly using single color 

images. In this paper, we used the second method because it results in higher 

reconstruction accuracy with systematic error included. In the single-color imaging 

scenario, we can also use forward imaging model to obtain the convolution kernel 

function. In this case, 𝒚 is the spectral measurement from single-color labeled sample, 

𝒙 is the one-dimensional convolution kernel function, 𝐴 is a matrix with each of its 

column representing the corresponding lateral shifted spatial measurement. Because 

the size of 𝒙 is much smaller than 𝒚, the overdetermined problem 𝒚 = 𝑨𝒙 can be 

solved by the generalized inverse matrix method 𝒙 = (𝑨𝑇𝑨)−1𝑨𝐓𝒚. 

2.3 Dual-view image registration  

Image registration was performed before calibration and reconstruction to avoid dual-

view mismatch and the effect of potential optical aberrations. We used control point-

based image registration method. First, yellow-green fluorescent beads were imaged 

at 500 nm. Well-separated spots, which acted as control-points, were localized using 

home-built C++ software [19]. Then the localized beads positions were manually 

checked to identify four pairs of matched spots from the four corners of the spatial and 

spectral images. The positions of the four pairs of spots were used to calculate the 

initial registration parameters from the spectral channel to the spatial channel.  After 

applying the initial transformation, the program automatically identified all matched 

spots and determined a three-order polynomial coordinate transform function between 

the two images with a least-square fitting to the coordinates of these matched spots. 

The polynomial function is: xc = A0 + A1x + A2y + A3x
2 + A4xy + A5y

2 + A6x
3 + A7xy2 + 

A8x
2y + A9y

3; yc = B0 + B1y + B2x + B3y
2 + B4xy + B5x

2 + B6y
3 + B7x

2y + B8xy2 + B9x
3, 

where xc and yc are the transformed spectral coordinates, x and y are the initial spectral 

coordinates, and An and Bn are coefficients obtained by least-square fitting. The 

described procedure was repeated on five independently measured datasets to generate 
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an averaged registration function. Finally, backward registration [20] from spatial 

channel to spectral channel was performed to eliminate registration artifact. 

2.4 Simulation 

Simulated datasets were used to quantitatively evaluate the performance of the image 

reconstruction method. The data sets were based on experimental images of various 

organelles acquired previously (ground truth images) and generated by the following 

steps: (1) for each image, we assume it was generated by a fluorophore with known 

emission spectrum (downloaded from Fluorescence SpectraViewer (ThermoFisher)); 

(2) These emission spectra and prism dispersion function were used firstly to generate 

convolution kernel functions for each choosen probe, and then to build the 

measurement matrix 𝑨; (3) The spatial and spectral images were generated by using 

Eq. (1) and (2); (4) Poisson noise was added to both images to generate the synthesized 

image data sets. To generate datasets with various signal-to-noise ratio (SNR) and 

signal-to-background ratio (SBR), ground truth images were normalized to its 

corresponding mean intensity value and then multiplied with desired intensity level. 

Background was homogeneously added to the images according to desired SBR. 

2.5 Sample preparation and imaging 

BSC-1 cells (African green monkey kidney cells, from UCSF Cell Culture Facility) 

were maintained in Dulbecco’s modified Eagle medium (DMEM) with high glucose 

(UCSF Cell Culture Facility), supplemented with 10% (vol/vol) FBS and 100 µg/ml 

penicillin/streptomycin (UCSF Cell Culture Facility). All cells were grown at 37°C 

and 5% CO2 in a humidified incubator. The plasmids encoding “mCherry-Vimentin-

C-18” and “tdTomato-Clathrin-15” (the last number indicating the linker length 

between the fluorescent protein and the target protein) were purchased from the 

Michael Davidson Fluorescent Protein Collection at the UCSF Nikon Imaging Center. 

We transfected BSC-1 cells grown on an 8-well glass bottom chamber (Thermo Fisher 

Scientific) using FuGene HD (Promega). For better cell attachment, 8-well chamber 

was coated with fibronectin solution (Sigma-Aldrich, F0895-1MG) for 45 min before 

seeding cells. Cells were seeded at the density of 2000~4000 per well one day before 

transfection. Total plasmid amount of 200 ng per well with the clathrin to vimentin 

ratio in 1:4 was used to achieve optimal two-color labeling. Forty-eight hours after 

transfection, cells were fixed with 4% paraformaldehyde for 15 mins, followed by 

three times of PBS washes.  

In order to minimize the background fluorescence, our hyperspectral detection 

setup was built around a wide-field inverted fluorescence microscope (Nikon Ti-U) 

with an oil immersion objectives (Olympus 100x 1.4 Plan Apo). Excitation light beans 

(488 nm and 561 nm, Coherent OBIS) were firstly combined and expanded, then pass 

through a home-built total internal reflection fluorescence (TIRF) illuminator before 

entering the microscope. The incident angle of the excitation light can be adjusted to 

be just smaller than the critical angle. Fluorescence was filtered using a quad-band 

dichroic mirror (z405/488/561/640rpc, Chroma) before exiting the microscope body. 

A pair of lenses (Fig. 1a, L1: f = 150 mm, L2: f = 100 mm) relayed the intermediate 

image plane to the camera, with the optical elements for spatial-spectral dual view 

imaging placed in between. Images were recorded by a sCMOS camera (ORCA Flash 
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4.0 sCMOS, Hamamatsu). The final pixel size at the image plane is 85 nm. During 

imaging, camera frame rate was set to be 5 Hz. 

 

3. Results  

4.1 Evaluation using simulated two-color data  

We first quantified the performance of the reconstruction algorithm by analyzing a 

simulated data set (see Section 2.4) (Fig. 2). Experimentally acquired images of 

microtubule (Fig. 2a) and mitochondria outer membrane protein Tom20 (Fig. 2b) were 

assumed to be labeled by EGFP and EYFP. Conventionally, EGFP and EYFP are 

imaged in the same green channel, because their emission peaks are separated by only 

20 nm (Fig. 2c). Here we used this probe pair to demonstrate the reconstruction 

accuracy and spectral resolution of our computational method. For this purpose, 

simulated images (Figs. 2d, e) with various SNR and SBR were generated. We set the 

average signal level to be between 100 and 1500 photons and SBR to be between 0.1 

and 1. We note that in wide field imaging, the only significant noise source is Poisson 

noise. Other noises such as camera readout noise are negligible at realistic levels of 

signal. As the result, the average SNR of the simulated dataset is the square root of 

average signal level.  We purposely chose relatively low signal levels to examine the 

effect of noise on the reconstruction algorithm.  

       We compared the reconstructed results (Figs. 2f, g) with the ground truth images 

(Figs. 2a, b)  and quantified the accuracy by the root mean squared error (RMSE) 

between them. In order to measure RMSE independent of the absolute signal level, we 

used the relative RMSE, which was calculated after the ground truth and reconstructed 

images are normalized to its maxima. Fig. 2h shows that our method had a relative 

RMSE smaller than 0.1 even when signal level in extremely low . For signal level 

higher than 500, our method steadily presented a RMSE of ~0.04. Besides, our method 

had robust performance (0.03 ~ 0.05 relative RMSE) under a wide range of 

background signal level. With this performance, our method was able to accurately 

separate EGFP and EYFP with emission peaks separated by ~20 nm. We noted that 

the main contributor to this performance is the space-constraint from the spatial image. 

Without space-constraint, the algorithm failed to correctly assign signals between 

channels. 
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Fig. 2. Simulated results of two-color imaging using space-

constrained computational hyperspectral imaging . (a, b) “Ground 

truth” microtubule and mitochondria images. Image size: 128 x 128 

pixels. (c) The normalized emission spectrum of EGFP and EYFP, 

showing the emission peak separation is about 20 nm. (d, e) Simulated 

spatial (d) and spectral (e) images by assuming that microtubule and 

mitochondria are label by EGFP and EYFP respectively. (f,g) 

Representative reconstructed images of the two color channels 

showing clean signal separation. Average signal level and background 

were set to 1000 and 300 respectively. (h) The dependence of 

reconstruction root mean square error (RMSE) of our method on 

average signal level when there is no background. (i) The dependence 

of reconstruction RMSE on different amount of homogeneous 

background. The average signal was 1000.  

 

4.2 Analysis of two-color experimental data 

We then validated our method in analyzing real experimental images. Here we 

demonstrated two-color imaging by tdTomato-clathrin and mCherry-vimentin. This 

sample was chose for two reasons. First, because the true underlying two channels 

were unknown, two distinct structures were chosen to facilitate visual evaluation of 

reconstruction performance. As shown in Fig. 3a and 3b, which are the acquired spatial 

and spectral images of the sample, the bright dots corresponds to clathrin and the 

filament structure is vimentin. By comparing the reconstruct results with the structural 
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prior knowledge, we could better estimate the performance of our method in analyzing 

real experimental data. Second, tdTomato and mCherry were used because their 

emission peaks are separated by 19 nm (Fig. 3c). We note that even though the 

emission peak separation is comparable to that between EGFP and EYFP (Fig. 2c), it 

is more challenging to separate tdTomato and mCherry because their emission 

spectrum is much wider than EGFP and EYFP. 

Using dual-view registration function (obtained as described in section 2.4) and 

dispersed convolution kernel functions (Fig. 3d) calibrated from single-color labeled 

sample, we successfully reconstructed clathrin (Fig. 3e) and vimentin structure (Fig. 

3f) with low cross talk. Vimentin filaments were well resolved despite that their 

intensity varied a lot in the field-of-view (FOV). Most of the clathrin dots were also 

well resolved except the cross-talk at upper left corner and center of FOV where 

vimentin signal was strong. The intensity profile plotted in Fig. 3g quantitatively 

shows that the resolution was not sacrificed during reconstruction, evidenced by the 

peak width is very similar between two reconstructed clathrin and vimentin channels 

and the spatial image. We noted that even though the emission of tdTomato and 

mCherry can potentially be separated by dichroic mirror-based ratio-metric imaging, 

it usually requires change or optimization of dichroic mirror according to different 

probes. Our method, on the other hand, has the advantage of totally free wavelength 

choice. 

 

 

Fig. 3: Experimental results of two-color imaging using space-

constrained computational hyperspectral imaging. Images shown here 

are BSC-1 cells having clathrin and vimentin labeled with tdTomato 

and mCherry respectively. (a, b) Experimental images from spatial 

and spectral image paths. Scale bar: 1 µm. (c) Emission spectrum of 

mCherry and tdTomato, the orange shaded area shows the region of 

detection filter used in our system. (d) Calibrated emission from 

single-color imaging experiments. (e, f) Reconstructed images for 

tdTomato-clathrin (e) and mCherry-vimentin (f) respectively. (g) The 

intensity profile along the yellow line in (a,d,e), showing the algorithm 

successfully separates clathrin and vimentin structures.  
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4.3 Evaluation using simulated three-color data  

As mentioned in section 2.1, when the sample is multi-color labeled, multiple 

measurements of the sample using random illumination patterns generated by DMD 

can be used to avoid under-sampling of the 3D data. We illustrated the proposed setup 

diagram (Fig. 4a), in which DMD was placed in the excitation path, at the conjugate 

plane of the sample plane. Placing DMD in the detection path would result in 

significant loss of emitted photons. As a proof-of-principle, we used simulation to 

demonstrate the effectiveness of our computational hyperspectral imaging method in 

three-color imaging. Based on the simulation of Section 3.1, we added another 

clathrin-RFP channel. Random illumination patterns were simulated by generating 

random binary patterns of the same size with the “ground truth” images (Fig. 4b), and 

then these patterns were multiplied to ground truth and measurement matrix before 

generating simulated spatial and spectral images (Fig. 4a). Fig. 4c displays the clean 

separation of all the three channels, with the cross-talk slightly higher than two-color 

imaging. The reconstruction performance depends on the number of illumination 

patters.  We found that for three-color imaging, relative RMSE decreased from ~0.1 to 

~0.04 with the increasing of the number of illumination patterns from 1 to 10 (Fig. 4d). 

This result means that more measurements ensures a higher reconstruction accuracy. 

However, more measurements also lowers the temporal resolution of computational 

hyperspectral imaging and makes this method less advantageous compared to scanning 

hyperspectral imaging.  This tradeoff indicates we need to choose a relative optimal 

number of illumination patterns. For three-color imaging, a pattern number of five is a 

good tradeoff between reconstruction accuracy and imaging speed (Fig. 4d).   

 

 
 

Fig. 4: Multi-color computational hyperspectral imaging scheme. (a) 

Illustration of excitation scheme, in which DMD is placed at the 

conjugate plane of the sample to generate random illumination. 
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Representative simulated spatial (left) and spectral (right) images after 

adding a random illumination pattern to the ground truth were shown.  

(b) “Ground truth” microtubule, mitochondria and clathrin images. 

Image size: 64 x 64 pixels. (c) Representative reconstructed images of 

the three color channels. Average signal level and background was set 

to 1000 and 300 respectively. The number of illumination patterns is 

5. (d) Dependence of reconstruction RMSE on the number of 

illumination patterns.  

 

4. Conclusion 

We presented a computational hyperspectral imaging method for wide-field multi-

color fluorescence imaging. The method is based on simultaneous spatial and spectral 

data acquisition, in which the spatial information acted as a constraint in the image 

reconstruction to achieve superior accuracy. With both simulation and experimental 

data, we have shown that our method has a high reconstruction accuracy in separating 

probes with emission peak separation of 20 nm for two-color imaging. As a proof-of-

principle, we have also shown with simulation that our method has the multi-color 

imaging capability given multiple measurements from patterned illuminations. Our 

method provides completely free wavelength choice for multi-color imaging. It is 

particularly advantageous when combined with conventional filter-based sequential 

multi-color imaging to further expand the probe choices of fluorescent imaging. 

       The same method can also be combined with other microscope beside TIRF, for 

example spinning disk confocal and light sheet microscopy. We note that the main 

limitation of our method is that the application is confined to imaging distinct 

structures. Relatively homogeneous distributed protein over the FOV, for example 

diffuse membrane protein, would result in homogeneous spectral image, and the 

algorithm would fail to extract information from it. 
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