
Inferring the ancestry of everyone

Jerome Kelleher*1, Yan Wong1, Patrick K. Albers1, Anthony W.
Wohns1, and Gil McVean1

1Big Data Institute, Li Ka Shing Centre for Health Information and Discovery,
University of Oxford, Oxford, United Kingdom

Abstract

A central problem in evolutionary biology is to infer the full genealogical history
of a set of DNA sequences. This history contains rich information about the
forces that have influenced a sexually reproducing species. However, existing
methods are limited: the most accurate is unable to cope with more than a few
dozen samples. With modern genetic data sets rapidly approaching millions of
genomes, there is an urgent need for efficient inference methods to exploit such
rich resources. We introduce an algorithm to infer whole-genome history which
has comparable accuracy to the state-of-the-art but can process around four
orders of magnitude more sequences. Additionally, our method results in an
“evolutionary encoding” of the original sequence data, enabling efficient access
to genealogies and calculation of genetic statistics over the data. We apply
this technique to human data from the 1000 Genomes Project, Simons Genome
Diversity Project and UK Biobank, showing that the genealogies we estimate
are both rich in biological signal and efficient to process.

Introduction

Using a tree to encode evolutionary relationships is a fundamental organising
principle in biology. From Darwin’s speculative sketches [Darwin, 1987] and
Haeckel’s phylogenetic imagery [Haeckel, 1866] to modern syntheses encompass-
ing all species of life [Hinchliff et al., 2015], trees elegantly encode and summarise
the outcomes of evolutionary processes. Many different methods now exist to
infer these evolutionary trees from real-world data [Felsenstein, 2004] and such
trees have many applications [Yang and Rannala, 2012]. However, a tree can
only be used to describe the ancestry of a set of DNA sequences if these se-
quences are transmitted as a single unit down the generations. Anything that
causes different parts of a sequence to come from different ancestors results in
a history that cannot be described by a single tree, but instead requires a net-
work [Morrison, 2016]. This presents difficulties when inferring ancestry within
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a sexually reproducing species, where DNA is inherited from both mother and
father through recombination.

The need for structures more general than trees to describe ancestry has
long been understood [Ragan, 2009]. Many different approaches to such “phy-
logenetic networks” exist, modelling the non-vertical transmission of genetic
information such as horizontal gene transfer and hybridisation [Morrison, 2016].
The Ancestral Recombination Graph, or ARG [Griffiths, 1991, Griffiths and
Marjoram, 1996], models the network arising from inheritance in sexually re-
producing species, encoding the recombination and common ancestor events
that occurred in the history of a sample. In principle, ARGs contain all the
information knowable about genetic history, and are widely acknowledged as
being centrally important to population genetics [Minichiello and Durbin, 2006,
Arenas, 2013, Gusfield, 2014, Rasmussen et al., 2014]. However, practical ap-
plications have been limited by the fact that inferring ARGs from real data is
a prohibitively expensive computational problem. Finding an ARG with the
minimum number of recombination events required to explain a set of input
sequences is NP hard [Bordewich and Semple, 2005, Wang et al., 2001], and the
scope of methods computing such ‘MinARGs’ is therefore severely limited [Hein,
1990, Song and Hein, 2005]. Without this minimality criterion, there exist both
polynomial time algorithms [Gusfield et al., 2004, 2007] and methods using vari-
ous techniques to reduce the state space [Griffiths and Marjoram, 1996, Kuhner
et al., 2000, Fearnhead and Donnelly, 2001], but in practice these are too slow
to apply to even moderately sized data sets. Several heuristic methods have
been explored [Song et al., 2005, Minichiello and Durbin, 2006, Parida et al.,
2008, O’Fallon, 2013, Mirzaei and Wu, 2016] but most are limited to tens of
samples and a few thousand variant sites. The ARGweaver program [Rasmussen
et al., 2014] is the current state-of-the-art and a substantial advance over ear-
lier methods, as it performs statistically rigorous inference of ARGs over tens
of thousands of variant sites. However, computational time grows very quickly
with the number of input samples, and anything more than a few tens of se-
quences is infeasible. The widespread use of ARGs is also hindered by the lack
of a standard means of interchange and toolkits to process such data. Despite
several efforts to standardise [Cardona et al., 2008, McGill et al., 2013], adop-
tion remains practically non-existent. Thus, the status of the ARG remains as
it has been for many years: a structure that is widely agreed to be fundamental
to our understanding of the ancestry of biological populations, but one which is
practically never used.

Here we introduce a method, tsinfer, that removes these barriers to the
adoption of ARGs in the analysis of genetic variation data. Crucially, tsinfer
vastly expands the scale over which ancestry can be inferred, simultaneously
increasing the number of variant sites and sample genomes that can be anal-
ysed by several orders of magnitude. In a simulation study, we show that this
enormous increase in computational efficiency is not at the cost of accuracy:
tsinfer infers ancestry with fidelity comparable to the state-of-the-art. More-
over, we show that the data structure produced by tsinfer, the succinct tree
sequence (or tree sequence, for brevity) [Kelleher et al., 2016, 2018] has the

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2018. ; https://doi.org/10.1101/458067doi: bioRxiv preprint 

https://doi.org/10.1101/458067
http://creativecommons.org/licenses/by/4.0/


potential to store genetic data for entire populations using a fraction of the
space that would be required by present-day methods. As an encoding of the
data directly based on the evolutionary history of the samples, many statistics
can be computed efficiently using this structure—indeed, this efficiency is key
to the scalability of tsinfer itself. The tree sequence toolkit (or tskit) is a
free and open source library providing convenient access to these efficient al-
gorithms. Thus, the two main practical obstacles to using ARGs (the lack of
efficient inference methods and software to process the output) have been re-
moved. We demonstrate this utility by applying tsinfer to three large-scale
human data sets (1000 Genomes [1000 Genomes Project Consortium, 2015], the
Simons Genomes Diversity Project [Mallick et al., 2016] and UK Biobank [By-
croft et al., 2018]) and show how biological signals can be easily inferred from
the resulting genealogical representation.

Results

Succinct tree sequences

The tangled web of ancestry describing the genetic history of recombining organ-
isms is conventionally encoded via common ancestor and recombination events
in an ARG. An equivalent (and arguably simpler) way of viewing this process
is to regard the ancestry of the sample as a sequence of marginal trees, each
encoding the genealogy for a particular segment of DNA [Hein, 1990]. As we
move along a chromosome, recombination events in the history of the sample
alter the trees in a well-defined way [Song and Hein, 2005], and adjacent trees
tend to be highly correlated. The succinct tree sequence is a recently introduced
encoding for recombinant ancestry that takes advantage of the correlations be-
tween adjacent trees [Kelleher et al., 2016, 2018]. This is done by recording
edges that are shared by multiple adjacent trees once, rather than storing each
tree independently. This simple device explicitly captures the shared structure
among trees and leads to very efficient algorithms for processing them [Kelleher
et al., 2016]. Although essentially equivalent, we avoid describing the succinct
tree sequence as an ARG because there is an important distinction between
the two structures: an ARG encodes the events that occurred in the history
of a sample, whereas a tree sequence encodes the outcome of those events. In
particular, recombination events are not explicitly recorded in a tree sequence.

One benefit of explicitly capturing the shared tree structure inherent in
recombinant ancestry is the potential for a dramatic reduction in the space re-
quired to store genetic variation data. Such information is usually encoded as
a matrix in which the columns correspond to samples (a human individual, for
example) and the rows correspond to sites along the genome at which variation
is observed (Fig 1A). If we have n samples and m sites we need O(nm) space to
store the entire matrix. Studies such as the UK Biobank [Bycroft et al., 2018]
already have data for hundreds of thousands of samples, and such large sample
sizes are expected to become increasingly common [Stephens et al., 2015]. As
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Figure 1: Comparison of tree sequences with standard methods for storing
genetic variation data. A). The variant matrix which underlies conventional
storage methods for genetic variation data. B). A genealogical encoding for
data; if we know the tree we can store each variant site in constant space.
C). Estimated sizes of files required to store the genetic variation data for a
simulated human-like chromosome (100 megabases) for up to 10 billion haploid
(5 billion diploid) samples. Simulations were run for 101 up to 107 haplotypes
using msprime [Kelleher et al., 2016], and the sizes of the resulting files plotted
(points). In each case we show the original tree sequence file uncompressed
and compressed. We also show the corresponding variation data encoded in the
standard VCF [Danecek et al., 2011] and compressed using gzip. The VCF files
for 107 samples were too large and time-consuming to process. The projected
file sizes for VCF/compressed VCF are based on fitting a simple exponential
model. Projected files sizes for tree sequences are based on fitting a model
based on the theoretical growth of tree sequences [Kelleher et al., 2016]. In all
cases, the largest data point was withheld from fitting.
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many species have millions of variant sites per chromosome, storing and process-
ing such huge matrices is a serious burden. Tree sequences provide an elegant
solution. The variation that we observe in present-day samples is the result of
mutations that occurred in the past, in the ancestors of our samples. If we know
the genealogy at a particular variant site we can fully describe the variation at
that site by recording the presence of these mutations in the ancestors in ques-
tion (Fig. 1B). Mutations at a given site are typically rare, so we can encode the
observed variation among millions of samples by storing the genealogy together
with a relatively small number of mutations. The resulting savings in storage
space are dramatic. Fig. 1C shows the space required to store variation data for
simulations of up to 10 million human-like chromosomes, extrapolated out to 10
billion. In this idealised case, storing the genotype data in the most widely used
format (VCF) would require 23PiB (i.e., approximately 23,000 1TiB hard disks)
whereas the tree sequence encoding would require only around 1TiB. Thus, if
we were able to store variation data using the tree sequence encoding we could
store and process any conceivable data set on a present-day laptop.

Converting data into a highly compressed form usually requires costly de-
compression before use. A great advantage of the tree sequence encoding is
that we can compute many statistics directly from the trees without decod-
ing the genotypes. For example, computing the frequency of specific variants
within subsets is a key building-block of many genetic statistics, and in par-
ticular is a fundamental operation when performing genome-wide association
studies [Manolio, 2013]. The algorithm for recovering trees from the encoded
tree sequence representation allows us to compute such allele frequencies far
more efficiently than is possible when working with a raw matrix representation
of the data [Kelleher et al., 2016]. Take, for example, the largest tree sequence
simulated in Figure 1, which represents a simulated history of 107 chromosomes
of 100Mb each. It takes about 2.2 seconds to load this 1.2GiB tree sequence;
about 7.5 seconds to iterate over all 650K trees; and about 17 seconds to com-
pute allele frequencies within an arbitrary subset of 106 samples at all 670K
sites. In contrast, just decompressing and decoding the corresponding 6.1 TiB
of genotype data from BCF (a more efficient binary compressed encoding of
VCF) would require an estimated 1.8 hours (based on extracting the first 10K
variants using cyvcf2 [Pedersen and Quinlan, 2017]). Moreover, BCF and other
existing formats for storing variant data do not consider ancestry in any way.
If we wished to store the actual trees from this simulation of 107 samples us-
ing the most efficient and popular interchange format (Newick), we would need
approximately 256 TiB of space and it would take an estimated 5.3 CPU years
to parse (based on BioPython’s [Cock et al., 2009] Newick parser—one of the
most efficient available—taking about 262 seconds per tree).

Inference algorithm

DNA sequences can be considered mosaics of sequence fragments that have been
inherited from recent ancestors via an error-prone copying process. Likewise,
these recent ancestors are themselves mosaics, copied imperfectly from yet older
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Figure 2: A schematic of the major steps of the inference algorithm. Starting
from a set of sample haplotypes extending over the genome (1), we use the
ancestral haplotype inference method (2) to reconstruct fragments of ancestral
sequence (3), then infer copying paths among these ancestors (4). The ancestral
copying process is shown on the right, using an arbitrary haplotype (p) for
illustration. As we move from left to right along p we infer that it has most
recently copied from j, e, c and then m. Incorporating the copying history of
all older haplotypes (for example, m copied partly from c and partly from h),
partial coalescent trees emerge in the bottom-right panel. Once copying paths
have been found for all ancestors and samples, we output a tskit tree sequence
(5).
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ancestors. As we go further back in time these ancestral sequence fragments (or
haplotypes) become shorter, as recombination randomly breaks up the contri-
butions of different ancestors over the generations. Our method is based on
the premise that if these ancestral haplotypes were known, it would be possible
to infer a plausible copying history for large numbers of input DNA sequences.
Critically, this approach means that we do not need to compare sample hap-
lotypes with each other, and we avoid the quadratic time complexity that this
implies (which for large data sets, is insurmountable).

We do not usually know these ancestral haplotypes, but we can attempt
to infer them. If we assume that the contemporary variation we observe at
each site on the genome is the result of a single mutation, then we know that
every sample haplotype that has the mutated (or derived) state at this site must
have inherited it from a single ancestor. Moreover, these samples will also have
inherited some fragment of the ancestral haplotype around the focal site. For
mutations that recently arose, this shared haplotype will tend to be long, as
recombination will not have had time to break it up. Conversely, for ancient
mutations the shared ancestral haplotype will tend to be rather short (Fig. 2).

The first step in our algorithm is to generate ancestral haplotypes based
on the variation present in the sample sequences. The approach that we use
to estimate ancestors is a simple heuristic, which we describe in detail in the
Methods. Briefly, we first use the frequency of the derived state at each site
as an approximation of the relative age of the corresponding ancestor (we as-
sume that the ancestral and derived states are known). Then, for each ancestor
we work outwards from the focal site taking a consensus value among samples
carrying the derived state at the focal site. Although heuristic, this method
is reasonably accurate and robust to errors (Fig. S3). Furthermore, the ap-
proach for generating ancestors is independent of later steps in the algorithm
and improved methods can be developed.

After we have estimated ancestral haplotypes, we must then infer how they
relate to each other. We do this using a variation of the Li and Stephens (LS)
model [Li and Stephens, 2003], one of the most important techniques in contem-
porary large-scale genomics [Lunter, 2018]. The LS model regards a haplotype
as an imperfect mosaic of the haplotypes in a reference panel, and is defined
using a Hidden Markov Model (HMM). The most likely path for a given hap-
lotype through the reference panel is found using standard HMM algorithms,
and the time required to find such paths scales linearly with the number of hap-
lotypes in the reference panel. For a given ancestral haplotype, our reference
panel consists of all older ancestral haplotypes. Because our reference haplo-
types are ancestral rather than contemporary, we make a slight modification to
the standard LS process: alongside the usual 0/1 states, a third haplotypic state
is used to represent non-ancestral material from which copying can never occur.
Computing the most likely path under the LS model allows us to estimate the
immediate ancestor for each segment of DNA in the focal haplotype. Figure 2B
shows an example of such a copying path for a focal haplotype and how it copies
from different ancestors along its length. Once we have found copying paths for
all of our ancestors and all of the input sample haplotypes, we are guaranteed to
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have complete genealogical trees for every position along the genome, albeit ones
that may contain nonbinary nodes (“polytomies”). Furthermore, these copying
paths map directly to ‘edges’ in the tree sequence formulation [Kelleher et al.,
2018], and so the copying process directly generates a succinct tree sequence.
The output tree sequence may optionally be “simplified” [Kelleher et al., 2018]
to remove any generated ancestral segments unreachable from the sample nodes.
Representing the ancestral haplotypes as a tree sequence lends significant flexi-
bility, as it allows us to combine information from diverse sources; for example,
we can use a tree sequence estimated from one data set as ancestors for another
(see Applications).

The correspondence between the output of the copying process and a tree
sequence is also critical to scalability. Because each non-singleton input site
usually corresponds to a single ancestor, the reference panel we match against
may contain millions of ancestral haplotypes. Furthermore, this reference panel
must be dynamically updated to include more and more ancestors, as our strict
time ordering requirements result in haplotypes being able to copy from all
older haplotypes. Such requirements are far beyond existing methods for finding
likely paths under the LS model, which either require time that is linear in the
reference panel size or a linear time preprocessing step [Lunter, 2018]. The key
technical advance that makes our method feasible for large samples is an exact
solution of the LS HMM that uses the partially built genealogies to greatly
speed up calculations (see the Methods for details).

Algorithm evaluation

We evaluate tsinfer for accuracy and scalability using simulated data. We per-
form population genetic simulations which output a tree sequence as a .trees

file. These encode both the simulated genealogies, which we use as a ground-
truth, and sample haplotypes, which we use for inference. We compare tsinfer
to three other tools for ancestral inference. ARGweaver [Rasmussen et al., 2014] is
the most statistically rigorous, and is considered state-of-the-art. Rent+ [Mirzaei
and Wu, 2016] is a heuristic method that is considerably faster than ARGweaver.
Finally, fastARG (https://github.com/lh3/fastARG) is an unpublished method
using an approach similar to Margarita [Minichiello and Durbin, 2006]; we in-
clude fastARG in this analysis because it is by far the most scalable method
currently available. A degree of error is inevitable in DNA sequence data and
methods must be reasonably robust to be relevant to empirical data. We there-
fore impose a genotyping error process derived from an empirical analysis [Albers
and McVean, 2018] on the simulated haplotypes (leading to an observed error
of around 0.35%), and assess the performance of tools with and without the
presence of these simulated errors.

We evaluate the accuracy of the different methods by comparing estimated
tree topologies with the original simulated trees. We use the Kendall-Colijn tree
distance metric [Kendall and Colijn, 2016], as it is more sensitive than alter-
native metrics (Fig. S5) and is robust to the presence of non-binary nodes in
trees (see Methods for details). As tsinfer does not currently try to estimate
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Figure 3: Accuracy of ancestry inference under different methods (lower values
indicate greater accuracy). Coalescent simulations for 16 sample haplotypes of
1Mb in length under human-like parameters (Ne = 5000, with recombination
rate ρ = 10−8 per base per generation) and an infinite sites model of mutation
were simulated using msprime [Kelleher et al., 2016]. The reported tree topology
distance is the Kendall-Colijn metric, weighted by the genomic distance spanned
by each tree. Each point is the average of 100 independent replicates at a
given mutation rate. The point where mutation rate equals recombination rate
(similar to humans) is marked with a vertical dotted line. Standard errors are
smaller than the plotted symbols in all cases.

node times, we only consider topological similarity and disregard branch lengths.
Fig. 3 compares the accuracy of tsinfer against other tools on simulated data,
with and without simulated genotyping error, for a variety of different mutation
to recombination rate ratios. As we increase the mutation rate the accuracy of
the inferred trees increases for all tools, because more mutations reveal more
information about the underlying tree topologies (we generate mutations under
the infinitely-many-sites model and so cannot have recurrent mutations). In this
evaluation tsinfer is substantially more accurate than Rent+ and fastARG,
both with and without error. We can also see that tsinfer produces more
accurate topologies than ARGweaver when the mutation rate is lower than the
recombination rate, and has comparable accuracy with higher mutation rates;
however, ARGweaver is somewhat more robust to the presence of errors than
tsinfer. Similar results are obtained when we simulate more complex demog-
raphy in Fig. S6. In contrast, Fig. S7 shows that tsinfer’s inference accuracy
is substantially higher than ARGweaver’s in the presence of a selective sweep,
suggesting that our nonparametric approach is more robust to such departures
from the assumptions of the coalescent model.

It is notable how small the data sets used to compare these tools are: we are
using 8 diploid samples, and, where the mutation equals the recombination rate,
an average of 662 variant sites. This is driven by necessity as ARGweaver is very
CPU intensive. Supplementary Fig. S9 shows how the CPU time scales for these
tools for up to 100 samples, and illustrates the vast differences in processing
time required: ARGweaver requires hours while fastARG and tsinfer require
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Input Output Resources

n sites size nodes edges trees size time RAM

SGDP 277 348K 15M 236K 1.7M 196K 83M 5m 3.6G

TGP 2504 860K 135M 735K 7.3M 550K 296M 2h 11G

UKB 487K 15.8K 1.6G 1.9M 484M 15.8K 14.5G 3h 160G

UKB+TGP 487K 15.6K 1.6G 5.5M 185M 15.6K 5.8G 15h 66G

UKB+UKB 487K 15.8K 1.6G 2.0M 62M 15.8K 2.1G 50h 40G

Table 1: Summary of input data, output tree sequences and computing re-
sources required for TGP, SGDP and UKB chromosome 20. Input sizes re-
ported are of tsinfer’s input .samples files, which uses the Zarr library
(https://zarr.readthedocs.io/) to achieve similar compression levels to
BCF. File sizes are reported using binary multipliers (i.e., 1M = 220 bytes);
all other values use decimal multipliers (i.e., 1M = 106). The times reported
are the total wall clock time required to produce the output tree sequence from
the .samples file on a server with two Xeon Gold 6148 CPUs (40 cores in total;
no hyperthreading) and 187GiB of RAM. For SGDP, TGP and UKB we used
the standard tsinfer inference pipeline. In UKB+TGP, we matched the UKB
samples to the inferred TGP tree sequence (time reported is just for sample
matching phase). In UKB+UKB we incrementally added samples from UKB
to the ancestors inferred from UKB (see text).

fractions of a second. Rent+ is substantially faster than ARGweaver, but is still
orders of magnitude slower than fastARG and tsinfer. Although fastARG is
slightly faster than tsinfer for tiny data sets, Fig. S10 shows that tsinfer is
far more efficient for inference involving tens of thousands of mammalian-scale
chromosomes.

Succinct tree sequences have great potential as a means of storing genetic
variation data, as simulated tree sequence files are many times smaller than the
corresponding compressed genotype matrices for large sample sizes (Fig. 1). To
evaluate tsinfer’s compression performance on large-scale data we inferred tree
sequences from simulated sequence data and compared the size of the inferred
.trees files to the equivalent compressed VCF (Fig. S11). While compression
performance varies with the ratio of mutation to recombination rate, in our
example of 100K samples, sequences greater then 50Mb in length have inferred
tree sequence files ranging from 10-20 times smaller than the corresponding
compressed VCF. Fig. S12 shows that in many cases tsinfer can estimate
large-scale tree sequences that are even smaller that the original simulated files.
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Applications

To evaluate tsinfer’s performance on empirical data we constructed tree se-
quences for three data sets on human chromosome 20: the 1000 Genomes
Project (TGP), consisting of low-coverage whole genome sequencing data from
2504 individuals across 26 worldwide populations [1000 Genomes Project Con-
sortium, 2015]; the Simons Genome Diversity Project (SGDP), consisting of
high coverage sequencing data from 278 individuals from 142 worldwide popu-
lations [Mallick et al., 2016]; and the UK Biobank (UKB), consisting of SNP
array data from 487,327 individuals within the UK [Bycroft et al., 2018]. Ta-
ble 1 summarises input data, inferred tree sequences and computing resources
required. For UKB, we considered multiple strategies, augmenting the data with
ancestors inferred from TGP and subsets of haplotypes from the UKB itself as
potential ancestors. For each data set we used statistically inferred haplotypes
as input.

Across chromosome 20, the TGP data consisted of 860K sites after filter-
ing (see Methods for details). After inferring ancestors and matching sample
haplotypes to these ancestors, we obtain a 297MiB tree sequence (109MiB com-
pressed, compared to the 141MiB BCF encoding of the same genotypes). Load-
ing the tree sequence required c. 3 seconds; iterating over all 550K trees c. 0.6
seconds; and decoding all genotypes c. 9 seconds. In comparison, decoding the
same genotypes from BCF required c. 15 seconds using cyvcf2. The SGDP
data consisted of 348K sites after filtering, and this resulted in an 83MiB tree
sequence (28MiB compressed, compared to 11MiB BCF encoding of the same
genotypes). Loading the tree sequence required c. 1.6 seconds; iterating over
all 196K trees c. 0.1 seconds; and decoding all genotypes c. 1.8 seconds. These
results demonstrate the feasibility of representing existing data sets through
tree sequences, with file sizes comparable to current standards and excellent
analytical accessibility.

To assess the validity of the inferred tree sequences we computed a series of
metrics summarising reconstructed ancestral relationships. We first calculated
the number of edges for each sample, which measures the extent to which an
individual’s genome can be compressed against the inferred ancestors. In TGP,
samples have an average of 648 edges (with a median length of 44kb and an
average N50 of 236kb), with those of African ancestry having a greater number
(750) than those of European (551) or Asian (665) ancestry (Fig. S13A and
Fig. S14). These findings are likely to primarily reflect known differences in
the long-term effective population size, though will also be affected by sampling
strategy and error modes. We find higher values in SGDP reflecting the lower
sample sizes (overall average: 1113 edges, African ancestry: 2178, European
ancestry: 803 and Asian ancestry: 879; Fig. S13B and Fig. S15). In both data
sets we identified a few outlier samples with very high edge counts, suggesting
error (see Methods).

We next considered whether the inferred tree sequences could be used to
characterise ancestral relationships in TGP and SGDP by computing, for each
individual, the population distribution of their genealogical nearest neighbours
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(GNN). Given K sets of reference nodes (e.g., the samples for each of the 26
TGP populations), the GNN statistic for a specific node is a K-vector describing
the proportion of its immediate neighbours within the tree from each of these
reference sets (see Methods). We find that, despite the noise generated by uncer-
tainty in tree reconstruction (manifest as polytomies), the chance nature of the
genealogical process and data error, the tree sequences can characterise global
population structure (Fig. 4A,B), within-population relatedness (Fig. 4C) and
identify regions of differential ancestry within an individual (Fig. 4D). These
analyses demonstrate the potential of interrogating the inferred genealogical
structure at different resolutions to describe both broad and fine-scale patterns
in contemporary human genomic diversity. The statistics involved can be cal-
culated very efficiently: using 8 threads, computing GNNs for every sample
required c. 16 and 30s, respectively, for the SGDP and TGP data sets (Xeon
Gold 6148 CPU).

Finally, to assess the performance of tsinfer on vast data sets we analysed
the ∼500K individuals within UK Biobank. The sparsity of variant sites and
inherent lack of rare variants in the UKB SNP array data is insufficient for
accurate ancestor inference directly. However, we considered two alternative
strategies: using ancestors estimated from other data and using subsets of the
sample to act as proxies for ancestors. In the first approach, we matched the
UKB haplotypes to the tree sequence inferred for the TGP, generating a 5.8GiB
tree sequence (2.1GiB compressed). Fig 5A shows the self-reported ancestry
in UKB tallies with TGP GNN values and adds granularity. Furthermore, by
analysing the copying patterns in this tree sequence, we found 9 individuals that
are likely to be in both the TGP and UKB data sets (see Methods).

Our second strategy for improving ancestor inference involves sequentially
adding subsets of the sample itself as potential ancestors, which we deployed
to investigate structure within the UKB. By iteratively adding more and more
samples, our method of generating putative ancestors from shared recombina-
tion breakpoints (“path compression”; see Methods) is able to construct many
more ancestors that would be possible if we added all of the extra samples at
once. Thus, we began by updating the ancestor’s tree sequence with the paths
for two arbitrarily chosen samples; then updating the resulting tree sequence
with the paths taken for four other samples; and then again for eight; and
so on up to 131,072. After matching all 1M sample haplotypes against these
augmented ancestors we obtained a 2.1GiB tree sequence (928MiB compressed,
compared to the equivalent 1.4GiB BCF file). Loading this tree sequence re-
quired c. 9 seconds and iterating over all 15.8K trees c. 11 seconds. Decoding
genotypes for the first 1000 sites required 9.5 seconds; in comparison, decoding
the genotypes for the first 1000 sites in the original BGEN file using the bgen

C library required 49 seconds. Analysis of the GNN structure of the tree se-
quence demonstrates strong geographical clustering of relatedness at this level
of resolution, with connections between enrolment centres reflecting geograph-
ical proximity (for example connections between centres within Scotland and
Wales; Fig. 5B). Although signals of population structure are evident here, fur-
ther work is required to understand the implications for statistical analysis of
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association.

Discussion

Inferring genealogical relationships among individuals from patterns of genomic
variation is a long-standing problem in evolutionary biology that connects to
many of the fundamental forces and events that shape a species, including mu-
tation, recombination, demographic processes and natural selection. However,
our ability to infer such histories has, to date, been limited by the computa-
tional complexity of the problem. The work presented here represents a major
advance by providing a principled, yet scalable approach that can be applied
to data sets of unprecedented size. While the algorithms presented are both
heuristic and deterministic, the approach of breaking down the problem into
inferring relative variant age, ancestral haplotypes and the genealogical rela-
tionships between these ancestors results in a modular framework that scales
to vast sample sizes (Fig. S10). Moreover, each component can be improved
independently, even potentially accommodating uncertainty through stochastic
approaches.

Nevertheless, the method does make a number of fundamental assumptions.
First, we assume that each variant in a population has a single mutational ori-
gin. While this is unlikely to be true in practice (particularly in large samples),
our ancestor estimation method is likely to find the dominant ancestral hap-
lotype. Recurrent and back mutations will therefore not be handled well by
the current algorithm, though in principle could be addressed by iterative ap-
proaches. Second, we assume that frequency is a proxy for relative variant age.
Importantly, our algorithms only require accuracy about relative age within ge-
nealogically connected parts of the tree sequence. Under simple demographic
models, we estimate that relative frequency indicates relative age for roughly
90% of closely located pairs of variants (Fig. S1). In theory, methods for dating
genomic variants could be used to improve ancestor estimation and also assign
dates to nodes within the tree sequence, though these remain open problems.
Third, we assume that the ratio of mutation to recombination is sufficiently
high to use mutations as the starting point for ancestor inference. However,
the path compression approach used here (see Methods) essentially identifies
additional ancestors through shared recombination events and, within the SNP
array analysis on UKB, has been shown to perform well, compensating for the
low variant density and lack of rare variants. Finally, the current methodology
works well for low error rates, but its performance is degraded by genotyping
and, in particular, haplotype phasing error. In the future, population-scale high
coverage and routine long-read genome sequencing will reduce the source of such
errors and it may be feasible to construct steps of the algorithm that are more
robust than those currently implemented.

Tree sequences have multiple potential applications. The most obvious is as
an efficient lossless storage format for population-scale data sets. While com-
pression performance on simulated data (Fig. S11) is close to the theoretical
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possibilities shown in Fig. 1, tsinfer’s compression of real data does not cur-
rently fulfil this great potential. More careful modelling of the complexities
of genetic data—in particular the various error modes—will likely be required
to effectively compress millions of whole genomes. Nonetheless, compression
performance is comparable to existing formats while providing exceptional ana-
lytical accessibility. The integration of genealogical relationships with genomic
variation data has value beyond population and personal genetics, for example
in potentially correcting for the differential geographical confounding of rare and
common variants in genetic association. However, the combined analysis of the
UKB and TGP data sets demonstrates the potential of also using tree sequences
to integrate data sources and, more generally, to build a reference tree sequence
structure for human genomic variation that can be updated as new variants
are discovered. Such a structure, coupled with efficient algorithms that make
use of the tree structure, such as the LS algorithm deployed here, could enable
(and make optimally powerful) diverse statistical genetic operations including
genotype refinement, genotype imputation and haplotype phasing. It could also
be used to share data effectively and in a manner that preserves privacy, by de-
scribing data sets in terms of representation of ancestors rather than individual
samples.

Methods

Age of alleles

The first step in our algorithm is to estimate the relative time at which the mu-
tation for each variant arose (we are assuming a single origin for each mutation).
Classical results in population genetics provide a theoretical expectation for the
age of an allele based on its frequency [Kimura and Ota, 1973, Griffiths and
Tavaré, 1998]. There are several existing methods for estimating allele age, but
are either computationally expensive or require detailed knowledge about his-
torical population processes [Ormond et al., 2015, Nakagome et al., 2016, Smith
et al., 2018], although a more efficient non-parametric method has recently been
introduced [Albers and McVean, 2018].

For our purposes, frequency provides a computationally inexpensive and sur-
prisingly accurate proxy for relative allele age (Fig. S1). This is because we only
need the age ordering of alleles to be locally accurate: if variants on opposite
ends of a chromosome are incorrectly ordered it makes little difference to the
outcome of our algorithms, since the ancestral haplotypes involved are unlikely
to overlap. Although these estimates could certainly be improved by using the
methods mentioned above, our current algorithms for inferring ancestral hap-
lotypes and computing copying paths require a single origin for each mutation.
The frequency estimate coupled with our algorithm for generating ancestral
haplotypes (see the next subsection) guarantees this property, simplifying the
overall process.
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Inferring ancestral haplotypes

Once we have assigned an age order to sites, the next step in our inference
process is to generate a set of putative ancestral haplotypes. We assume that
there are two alleles at every site: the ‘ancestral state’, which was inherited from
the ancestor of the entire population and the ‘derived state’ which is the result of
a mutation that occurred on the ancestor of the samples carrying this allele. We
assume that these ancestral and derived states have been identified via existing
methods (e.g., Keightley and Jackson [2018]). Each variant site is therefore the
result of a mutation that occurred on an ancestor: samples that inherit from
this ancestor have the derived state, and the rest carry the ancestral state. By
definition this ancestor carries the derived state at the site in question; our task
then is to reconstruct the state of the ancestor around this focal site.

For a given focal site ` let S be the set of samples that carry the derived
state. We are attempting to reconstruct the ancestral haplotype a on which
the mutation occurred, and so we begin by setting a` = 1, following the usual
convention of labelling the ancestral state for a site 0 and the derived state
1. For all other sites 1 ≤ k ≤ m, k 6= ` we set ak = −1, indicating non-
ancestral material that cannot be copied from; these non-ancestral values will
be overwritten for sites around ` where we can estimate the state of the ancestor.
We then work leftwards and rightwards from ` independently, computing the
state of the ancestor at each site. The set S initially contains the samples
that we believe descend from the current ancestor (assuming infinite sites and
no error), and we use this set to compute a plausible state at other sites. As
recombination modifies the tree topology, we update S to remove samples that
are no longer in the clade induced by the focal site. We stop moving left or right
from the focal site when we judge that we no longer have sufficient information
to construct the ancestral haplotype. We use heuristics to determine when to
remove a particular sample from S and when to end the ancestral haplotype.

Figure S2 illustrates a simplified example of this process, showing the ances-
tral haplotype estimated at the focal site 8. We begin by setting S = {e, f, g, h},
i.e. the set of samples that carry the derived allele at site 8. We then proceed
rightwards, considering each site in turn. For younger sites, the corresponding
mutation cannot have occurred yet by definition, and so we always set the an-
cestor to 0 at these sites (e.g. 9 and 10). When we reach a site that is older
than the focal one, we compute a plausible value for our ancestor by taking the
consensus among the samples in S. For example, at site 11 the estimated value
for the ancestor is 1 because all haplotypes in S carry 1; similarly, at site 13,
three of four samples in S carry 1, and so the consensus is 1 (the consensus can
also be 0, as in site 4). We interpret disagreement with the consensus value as
evidence that the samples in question have recombined away to another part of
the tree. Thus, after we have computed the ancestor’s state at a site remove any
samples from S (“evict”) that conflict with this consensus (but see below for a
slight modification used in practise). In the example, we therefore evict h at site
13 and g at site 17. We continue rightwards in this way until we determine that
we have insufficient information to accurately estimate ancestors. The heuristic
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we have chosen is to stop when the size of S is ≤ half of its original size. Af-
ter completing the rightwards scan, we then repeat the process independently
leftwards.

Variants with an age equal to the focal mutation are considered to be younger
than the focal site (and hence always assigned the ancestral state) except in one
special case. If several sites exist with precisely equal distribution of genotypes,
we assume that these all arose on a single branch of the tree and that no recom-
bination occurred between these sites. We therefore compute consensus values
for older sites between these identical focal sites in the usual way, but we do not
update S when conflicts occur (assuming these to be caused by error). Once
outside of the region enclosed by the identical sites, the process outlined above
resumes and we update S in the usual way.

Although this method is approximate and heuristic, it generates surprisingly
accurate ancestors. Fig. S3 shows a plot of the lengths of the estimated vs
true ancestors from simulations, colour-coded by the accuracy of the estimated
states. We see that there is a strong bias towards ancestral haplotypes being
longer than the truth; this is by design, as long haplotypes can be compensated
for by the copying process, but short haplotypes cannot. Inferred haplotypes are
also quite accurate, with many ancestors being inferred perfectly. The process is
reasonably robust to genotyping errors, but these can create one notable issue
for the algorithm illustrated in Figure S2: some generated ancestors are too
short, because errors can lead to samples being prematurely evicted from S.
To add some resilience to this, we include a slight “dampening” to our eviction
rule: we remove a sample from S only if it disagrees with the consensus at two
consecutive older sites.

Copying process

Given an input haplotype with m sites and a reference panel of n haplotypes,
the most likely path under the Li and Stephens (LS) model is found using the
Viterbi algorithm. In the first phase of this process we proceed site-by-site from
left to right. At each site, we compute the likelihood that the input haplotype
has copied from a particular reference haplotype given their states and the most
likely haplotype at the previous site. Once we have reached the last site and we
know the most likely reference haplotype at the end of the sequence, we then
trace back through the sites, switching to other haplotypes where required.
The overall time complexity is therefore O(nm) to find a copying path for an
input haplotype, since we must compare with all n reference haplotypes at each
of the m sites. In tsinfer the reference panel is the set of inferred ancestral
haplotypes. Because we may have a different ancestor for every site, n ≈ m, and
the time complexity of finding a copying path for an ancestor is therefore O(m2).
Modern sequencing data sets contain millions of variant sites and standard LS
methods are therefore not feasible.

In tsinfer we use the LS model to find a Viterbi path for an input haplotype
through the set of ancestors. Each copying path generated is equivalent to a
set of edges in a tree sequence [Kelleher et al., 2018] where the child is the focal
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haplotype and the parents are copied ancestors. Therefore, as we go forwards
in time finding copying paths for younger and younger ancestors, we are also
incrementally building a tree sequence encoding the state of these ancestors.
We use this partially built tree sequence representing a subset of the ancestors
as the substrate for computing LS copying paths for subsequent ancestors. The
powerful computational properties of the tree sequence data structure allow us
to find exact copying paths far more efficiently than is possible using standard
methods.

The algorithm for computing Viterbi paths using a tree sequence works
in the same way as the standard method. We first proceed from left-to-right,
computing a likelihood of copying from each ancestor at every site and recording
the locations of potential recombination events. Once we have reached the last
site, we trace back as before, resolving a full copying path from the stored
information. The difference in our method is that we avoid needing to compute
and store a likelihood for each reference haplotype by using the tree sequence to
compress the associated likelihoods. Each ancestor corresponds to a node in the
marginal tree at a given site, and we compress the likelihoods by marking any
node that has the same likelihood as its parent with a special value. The number
of distinct likelihoods on the tree is then small, and we can store a list of the
nodes that represent whole subtrees. Updating the likelihoods at a given site
is then straightforward. We compute the likelihood for each node by reasoning
about the state of the input haplotype and the location of the site’s mutation
in the tree. Having updated the likelihoods for the nodes corresponding to
the compressed subtrees, we can then recompress to take into account the new
likelihood values and proceed to the next site. In many cases, moving to the
next site will also involve a change in the tree topology and we redistribute the
compressed likelihoods accordingly using logic common to other tree sequence
algorithms [Kelleher et al., 2016, 2018]. In the interest of simplicity our current
implementation does not include a ‘mismatch’ term and only allows for exact
haplotype matching. Under these assumptions, we need only five discrete values
to encode the node likelihoods in our LS Viterbi algorithm, simplifying the logic
considerably. Adding the mismatch term is not difficult (it was present in earlier
versions of the algorithm) and we plan to include it in subsequent versions of
tsinfer. This overview of the LS model on tree sequences is necessarily brief
and imprecise, as a full treatment is beyond the scope of this paper. A detailed
description and analysis of the generalised model is planned for future work,
along with an efficient implementation in tskit.

To validate the correctness of our implementation of the copying process,
we devised a strong test which we call ‘perfect inference’. In this test we begin
with a simulated tree sequence with no mutations and derive the true ancestral
segments from it. We then add a specific pattern of mutations that are de-
signed to precisely identify the endpoints of each ancestor and use the resulting
ancestral haplotypes as input to tsinfer. We then find copying paths for these
ancestors and samples in the usual way. Remarkably, using this method we are
able to perfectly reproduce the input tree sequence topology, recovering every
marginal tree and recombination breakpoint exactly for arbitrarily large inputs.
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Indeed, the numerical tables [Kelleher et al., 2018] representing the input and
output tree sequences are byte-for-byte identical. This is both a strong test for
the correctness of our implementation and a reassuring validation of the overall
method: if we have accurate ancestors we converge on the true ancestry.

Path compression

The algorithm for inferring ancestors discussed above is mainly based on the
signal arising from mutations, and is only weakly informed by recombination.
However, we can also derive information about the ancestors of our sample
from recombination events. If we assume that each recombination event is
unique, i.e., that all samples that inherit the local haplotype resulting from a
breakpoint did so from a single ancestor, we can then estimate the state of this
ancestor. Note that this is equivalent to assuming an ‘infinite-sites’ like model
for recombinations, an idea with a long history [Fisher, 1954]. We use this signal
of shared recombination breakpoints in a specific way, which we refer to as ‘path
compression’.

When generating copying paths for successive ancestors, we will often find
that subsets of two or more paths are identical. Such identical path subsets
is strong evidence for the existence of a single ancestor that consisted of the
concatenation of the corresponding haplotype segments. We therefore add this
‘synthetic’ ancestor, and adjust the original identical path subsets to copy from
the newly inserted ancestor. Ancestors corresponding to a given allele age are
inserted at the same time, and path compression is run at the end of each of
these time slices.

Fig. S4 shows a simple example of this process where we compress the shared
path subset for the ancestors g, h, i, and j into single edges pointing to a new
synthetic ancestor. In the top panel we can see (e.g.) that g has the copying
path (5, 12, c), (12, 22, d), (22, 28, b) and h, i and j also contain this path. We
therefore create a new ancestor s which consists of this path and replace the
mappings for g, h, i, and j with the single edge (5, 28, s). In this way we reduce
the overall number of edges required to represent the history, and also provide
an extra ancestor for subsequent haplotypes to match against.

Inference accuracy

We compare the accuracy of tsinfer against other inference methods using
simulation. We begin by simulating a set of tree sequences which provide the
ground-truth topologies. We assess the effect of genotyping errors on inference
accuracy by simulating errors on the haplotypes using an empirically deter-
mined genotyping error profile [Albers and McVean, 2018]. We then input the
corresponding haplotypes (with and without simulated genotyping errors) to the
various tools, and measure the difference between the estimated and true tree
topologies using tree distance metrics. We repeat this process independently
for four tools: tsinfer, ARGweaver, Rent+ and fastARG. ARGweaver requires
several parameters to be specified: in all cases we use the known simulation
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values for the effective population size, mutation and recombination rates. We
use the default number of timesteps for time discretisation (20) and for each
simulation sample 10 ARGs (one every 20 MCMC cycles) after a burn-in period
of 1000 cycles.

Although the succinct tree sequence data structure can fully represent node
timing (and hence branch length) information, tsinfer does not currently at-
tempt to accurately infer the times of ancestors. Therefore, we limit our investi-
gation of the accuracy of inference to assessing the quality of the inferred topolo-
gies, and do not consider timing information in any way. Fig. S5 compares the
accuracy of the tools over a number of tree topology distance metrics. For each
replicate simulation we compute the average distance between pairs of true and
inferred trees along the sequence, weighted by the distance along the sequence
that these trees persist. We then report the average distance over the replicate
simulations. Metrics are calculated using the R packages treespace [Jombart
et al., 2017] and phangorn [Schliep, 2011]. Some metrics (such as Robinson-
Foulds) are undefined for trees that contain non-binary nodes (“polytomies”),
which indicate uncertainty in tsinfer and therefore occur frequently. To use
these metrics in a well-defined way, we also show results where tsinfer trees
have been randomly resolved into fully bifurcating trees (taking the mean dis-
tance over 10 replicates). The Kendall-Colijn (KC) metric provides the greatest
discrimination and is well defined for all tree topologies, and so we use this met-
ric exclusively in subsequent analyses. At low mutation rates, there is a notable
difference between the accuracy of tsinfer’s inferred trees when we use the
standard KC metric and when we randomly break polytomies before measuring
the distance between the trees. This is because there is little information avail-
able to resolve the nodes, and generating a random binary subtree on average
results in something that is further from the truth than the original polytomy.
Thus, tsinfer’s innate strategy of using polytomies to indicate uncertainty in
a principled and systematic way has a significant advantage over methods that
always fully resolve trees.

To evaluate the sensitivity of tsinfer to changes in the underlying simula-
tion model, we also tested accuracy on more complex simulations. In Fig. S6
we show results of simulations of the three population Out-of-Africa model of
human demography [Gutenkunst et al., 2009]. In this case, tsinfer does not
seem to be affected by the underlying population structure and is a little more
accurate than ARGweaver (although ARGweaver is less affected by error). In
Fig. S7 we show inference accuracy on a simulated selective sweep, where we
performed forward time simulations using simuPop [Peng and Kimmel, 2005]
and ftprime [Kelleher et al., 2018]. In this case, tsinfer is substantially more
accurate than the other tools after the advantageous mutation has swept to a
reasonable frequency and also for many generations after fixation. In Fig. S8
we show the effect of running inference on a subset of the available haplotypes
on tsinfer’s accuracy. We see that in the absence of error, having extra sam-
ples has little effect on the accuracy of inferences, but that larger samples can
potentially help to correct for the presence of genotyping errors. This provides
additional justification for using large sample sizes for ancestral inference.
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To evaluate the computational performance of the different inference meth-
ods we measured the total user time and maximum memory usage (taking the
mean over replicates). All experiments were run on a server with two Xeon
E5-2680 CPUs and 256GiB of RAM. Fig. S9 shows the CPU time required for
all four tools for varying sample sizes. The disparity in the running times is
too large to show on a single scale, and tsinfer and fastARG are many times
faster than ARGweaver and Rent+. Fig. S10 compares tsinfer and fastARG at
a much larger scale, where tsinfer shows far better scaling in terms of CPU
time and memory when increasing both sequence length and sample size. Em-
pirically, tsinfer’s running time grows approximately linearly with sample size
and super-linearly with sequence length on simulated data (Fig. S10).

All code for running the evaluations, including the precise version of each tool
used, is included in the accompanying GitHub repository (https://github.
com/mcveanlab/treeseq-inference/).

Genealogical nearest neighbours

In our analysis of human data sets we use the genealogical nearest neighbours
(GNN) statistic, which we define here. Let T be a tree sequence where each tree
t ∈ T covers a length Lt units of genetic sequence. Define L =

∑
t∈T L

t. Let R
be a list of K sets of “reference nodes”, and let Ct

u,k be the number of nodes

ancestral to (and including) u in tree t from the set Rk, with Ct
u =

∑K
k=1 C

t
u,k.

Then define

Ak(u) =
1

L

∑
t∈T

Lt
Ct

v,k − [u ∈ Rk]

Ct
v − [u ∈

⋃K
j=1Rj ]

where v is the first node in t on the path to root from u such that Ct
v > 1,

and [x] is an Iversonian condition such that [x] = 0 if x is false and [x] = 1
otherwise.

Empirical data preparation

All human data used is relative to the GRCh37 reference. We used ancestral
states from Ensembl release 75, as this is the most recent version available for
GRCh37. For each data set we processed the downloaded variation data to
produce a .samples file used as input to tsinfer. In this preprocessing step
we kept only biallelic SNPs with a high-confidence ancestral state and with
phased calls for all samples. Any singleton or invariant sites were discarded as
these provide no information about topology. Sites with frequency (n− 1) were
also discarded as these are likely to be highly enriched for miscalled ancestral
states. Details of the data sources used and a fully automated pipeline for
obtaining public data sets, preprocessing the variation data and constructing
the tree sequences are included in the accompanying GitHub repository (https:
//github.com/mcveanlab/treeseq-inference/).
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Outlier samples

We observed two particularly large outliers when considering the number of
sample edges per individual in the TGP data set: NA20289 from the ASW
population and HG02789 from PJL (see Figs. S13 and S14). Both parental
nodes for NA20289 have roughly double the number of sample edges as the
population mean. The physical position of the breakpoints of the parental
nodes of NA20289 seemingly reflects an abundance of phasing switch errors,
potentially explaining this finding. At the location of a phasing switch error,
the parental nodes of a sample would swap the ancestors they were copying
from, resulting in a far greater number of sample edges than if phasing error
had not occurred. When considering all TGP samples, the average paternal and
maternal node breakpoints were within 100 base pairs of each other only 32 times
in the unsimplified tree sequence, while in NA20289 this occurred approximately
551 times. HG02789 showed only 30 breakpoints within 100 base pairs of one
another, which is unsurprising since only one parental node exhibited a high
number of sample edges.

In the SGDP data set we observed the S Naxi-2 had a highly elevated sample
edge count. Since this sample also had no associated metadata, we removed it
from the analysis.

Duplicate UKB/TGP samples

We observed 9 individuals in the UKB data set that are likely to also be in TGP.
Using the (unsimplified) UKB+TGP tree sequence, we first found outliers with
low numbers of sample edges. Then, from the pool of samples with fewer than
50 edges where they are children, we extracted those for which both nodes in an
individual were present (i.e., both maternal and paternal nodes have unusually
low sample edge counts). This left a total of 9 candidate individuals; for 8 of
these, both nodes of the UKB individual copied from a single node of a TGP
individual over 97% of the sequence length (mostly > 99%). The nodes in the
UKB and TGP individuals paired up exactly, signifying that the phasing for
these individuals is in agreement in the two data sets. In the 9th individual we
observed very high copying (> 97%) from a single TGP individual, but with
switches between the two nodes. Let p1 and p2 are the parental nodes in the
TGP individual; we observed 61% copying from p1 and 37% from p2 in the first
node of the UKB individual, and 60% copying from p2 and 38% from p1 in the
second. This is likely to indicate phasing errors for this individual in one of the
data sets.

This analysis required 42 seconds of CPU time to run using simple Python
code.
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Figure S1: Accuracy of frequency as a proxy for relative age. 50 sam-
ple sequences of 100kb were simulated using msprime with Ne = 5000 and
µ = ρ = 10−8. For all pairs of variant sites, the difference in mutational age
was compared to the difference in frequency between the two derived alleles. If
T (a1) and T (a2) are the ages of the derived alleles at sites 1 and 2 respectively,
and f(a1) and f(a2) are their current frequencies in the population, frequency
is said to correctly predict age order if T (a1) < T (a2) == f(a1) < f(a2). We
show the proportion of pairs for which frequency provides the correct order of
mutation age. Results were binned into 5kb intervals and averaged over 250,000
replicates. Correlation of adjacent tree topologies results in frequency being a
better predictor of relative age when variants are physically close to one another.
Note that singletons have been included when calculating the statistics in this
figure; removing singletons (which are not used for tsinfer inference) results
in an average accuracy roughly 5% lower than shown here.

28

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2018. ; https://doi.org/10.1101/458067doi: bioRxiv preprint 

https://doi.org/10.1101/458067
http://creativecommons.org/licenses/by/4.0/


Figure S2: Schematic of ancestral haplotype reconstruction. We are construct-
ing an ancestral haplotype for the ancestor corresponding to site 8. The time
of each site is approximated by its corresponding frequency value (referred to
as allele count here). Note that this is a simplified schematic: the actual imple-
mentation includes a dampening effect such that haplotypes are evicted from S
if they disagree with the consensus call at two adjacent sites.

29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2018. ; https://doi.org/10.1101/458067doi: bioRxiv preprint 

https://doi.org/10.1101/458067
http://creativecommons.org/licenses/by/4.0/


100 101 102 103

True ancestral haplotype length (kb)

100

101

102

103

In
fe

rre
d 

an
ce

st
ra

l h
ap

lo
ty

pe
 le

ng
th

 (k
b)

38
84

 ha
plo

typ
es 

 tru
e l

en
gth

40
3 h

ap
lot

yp
es 

<  tru
e l

en
gth

No genotyping error

100 101 102 103

True ancestral haplotype length (kb)

100

101

102

103

38
22

 ha
plo

typ
es 

 tru
e l

en
gth

45
4 h

ap
lot

yp
es 

<  tru
e l

en
gth

With genotyping error

0.5

0.6

0.7

0.8

0.9

1.0

Accuracy

Accuracy distribution

Figure S3: Accuracy of inferred ancestral haplotypes. True ancestral haplotypes
were obtained from a single simulation of 100 sample sequences, each of 5Mb in
length, using msprime with Ne = 5000, and µ = ρ = 10−8. A typical result is
shown here, with all ∼ 4300 separate ancestral haplotypes plotted as individual
points. Accuracy measures the fraction of correctly reconstructed sites, the
calculation being restricted to the region in which the true and reconstructed
haplotypes overlap.
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Figure S4: Path compression schematic. In the top panel, the children g, h, i
and j copy from ancestors above them (a through f). Several sets of edges point
to the same parent in the same genomic location, but from different children
(e.g. the edges from g → c, h→ c, i→ c, and j → c). If there are multiple such
sets adjacent to each other, the number of edges can be reduced by inserting a
synthetic ancestor s, to which the children all point (bottom panel). This com-
pression of ancestral paths essentially treats shared recombination breakpoints
as evidence of shared ancestry.
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Figure S5: Accuracy of ancestral inference according to different tree distance
metrics. 16 sequences were simulated, each of 100kb in length, using msprime

with Ne = 5000 and ρ = 10−8. Simulations were replicated 100 times for
each of seven different mutation rates. The region corresponding to human-like
parameters, where µ ≈ ρ, is marked by a vertical dotted line.
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Figure S6: Accuracy of inference for different tools under a three-population
Out-of-Africa model, as implemented in msprime. 16 sample haplotypes (6
African, 6 European, and 4 Asian) were simulated, each of length 100kb, with
ρ = 10−8 under a variety of mutation rates. Each point represents an average
over 100 replicates.
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Figure S7: Accuracy of inference at different points during and after a selective
sweep. Forward-time simulations were performed for sequences of length 100kb,
in a Wright-Fisher panmictic population of size Ne = 5000, with a neutral muta-
tion rate of µ = ρ = 10−8. A single advantageous mutation in the middle of the
sequence was introduced and tracked until it went to fixation (or reintroduced
if it became extinct). This allele was associated with a selection coefficient of
s = 0.1 in homozygotes, with a dominance coefficient of h = 0.5. Inference
was performed for 16 sample sequences when this allele first hit a frequency of
20, 50, and 80%. The situation at fixation is highlighted in grey: lower rows
show inference accuracy 200 and 1000 generations post-fixation. Each point is
an average over 50 simulations.
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Figure S8: Effect of increased sample size on inference accuracy. Neutral
simulations were replicated 100 times for each of three different sequence lengths
using msprime with Ne = 5000 and µ = ρ = 10−8, and a large initial sample size
of 1000. To allow like-for-like comparison, the tree distance metric was restricted
to comparisons involving the simulated and inferred ancestral topologies of the
first 10 samples only. Tree sequence inference was based on the first 12, 50, 100,
500, or 1000 samples, out of the total simulated set of 1000 haplotypes.
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Figure S9: CPU time for ancestral inference as a function of sample size.
Sequences of 200kb in length were simulated using msprime setting Ne = 5000
and µ = ρ = 1× 10−8, then used for inference without imposing genotyping
error. Each point represents an average over 10 replicates. ARGweaver requires
over 3 orders of magnitude more CPU time than the other methods, hence a
discontinuous y-axis is used to fit all tools onto the plot.
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Figure S10: CPU time and memory requirements for tsinfer and fastARG, as
a function of sample size and sequence length. Sequences were simulated using
msprime, setting Ne = 5000 and µ = ρ = 1× 10−8, then used for inference
without imposing genotyping error. Each point represents an average over 50
replicates. The scaling properties of tsinfer are hard to examine using the
same y-axis scale as for fastARG, hence the inset plots show the tsinfer line
only, with a rescaled y-axis.
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Figure S11: Mean compression factor achieved by tsinfer compared to gzipped
VCF data for varying sequence lengths and sample sizes, under three different
recombination rates. Sequences were simulated using msprime, setting Ne =
5000 and µ = 10−8, then used for inference without imposing genotyping error.
Data are averages over 10 replicates for each combination of parameters.
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Figure S12: The relative filesize of tree sequences inferred by tsinfer relative
to the original tree simulated sequence, for varying sequence lengths and sam-
ple sizes, under three different recombination rates. Sequences were simulated
using msprime, setting Ne = 5000 and µ = 10−8, then used for inference with-
out imposing genotyping error. Data are averages over 10 replicates for each
combination of parameters.
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Figure S13: Summary of sample edges across all TGP and SGDP populations.
The number of edges per sample for all individuals in TGP and SGDP, organised
by population and continent.
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Figure S14: Sample edges for the TGP populations. The number of edges per
sample for all individuals in TGP organised by population, with each continent
plotted separately.
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Figure S15: Sample edges for the SGDP populations. The number of edges per
sample for all individuals in SGDP organised by population, with each continent
plotted separately.
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Figure S16: Z-score normalised GNN proportions for SGDP by population.
The GNN matrix was first z-score normalised by column and the rows then
hierarchically clustered.
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