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Abstract  13 

Bet-hedging—an evolutionary strategy that reduces fitness variance at the expense of 14 

lower mean fitness—is the primary explanation for most forms of biological adaptation 15 

to environmental unpredictability. However, most applications of bet-hedging theory to 16 

biological problems have largely made unrealistic demographic assumptions, such as 17 

non-overlapping generations and fixed population sizes. Consequently, the generality 18 

and applicability of bet-hedging theory to real world phenomena remains unclear. Here 19 

we use continuous-time, stochastic Lotka-Volterra models to relax overly restrictive 20 

demographic assumptions and explore a suite of biological adaptations to fluctuating 21 

environments. We discover a novel “rising-tide strategy” that—unlike the bet-hedging 22 

strategy—generates both a higher mean and variance in fitness. The positive fitness 23 

effects of the rising-tide strategy’s specialization to good years can overcome any 24 

negative effects of higher fitness variance in unpredictable environments. Moreover, we 25 

show not only that the rising-tide strategy will be selected for over a much broader 26 

range of environmental conditions than the bet-hedging strategy, but also under more 27 

realistic demographic circumstances. Ultimately, our model demonstrates that there are 28 

likely to be a wide range of ways that organisms respond to environmental 29 

unpredictability. 30 

 31 
Temporal fluctuation of environmental conditions is a universal feature in nearly every 32 

ecosystem on earth 1,2. In fluctuating environments, the intensity and direction of natural 33 

selection is likely to vary unpredictably over time 3-5. Almost all known biological 34 

adaptations to environmental fluctuation—as diverse as seed production in annual plants 6, 35 

phenotypic polymorphisms in bacteria 7-9, and altruistic behavior in social animals 10—are 36 

typically summarized by a single, simple mechanism: the evolutionary bet-hedging strategy 37 
1,11,12. There are two general types of bet-hedging: conservative bet-hedging describes a 38 

consistent but low risk strategy or phenotypic investment, whereas diversified bet-hedging 39 

depicts the case when organisms spread risk by investing in different strategies or phenotypes 40 
11,13. Both forms of bet-hedging result in the same fitness consequence: reduced variance in 41 

fitness at the expense of a lower mean fitness. In other words, under either bet-hedging 42 

scenario, natural selection can act optimally by minimizing fitness variance rather than by 43 

maximizing mean fitness.  44 

 45 

Although the bet-hedging principle describes many forms of behavioral adaptation under 46 
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fluctuating selection, it cannot explain all of the ways in which animals cope with 47 

environmental uncertainty. For example, studies exploring thermal niche evolution at 48 

different temporal scales of environmental fluctuation have demonstrated that although 49 

greater long-term environmental variation (e.g. seasonal variation in temperature) favors the 50 

evolution of thermal generalists, short-term variation (e.g. daily temperature variation) has an 51 

opposite effect by selecting for thermal specialists 14,15. Essentially, these models hint at the 52 

theoretical possibility of a specialist strategy in which individuals have a higher mean fitness 53 

while also having higher variance in fitness. Such an adaptive strategy to environmental 54 

fluctuation—which differs fundamentally from a bet-hedging strategy—can also be derived 55 

using the approximation for geometric mean fitness, which increases with higher arithmetic 56 

mean fitness and lower fitness variance 16-18. However, optimality models based on geometric 57 

mean fitness rely on the restrictive assumptions of non-overlapping generations and infinite 58 

population sizes, both of which do not apply to most eukaryotic species. Indeed, fluctuation 59 

in population size—which when environmentally-driven is analogous to a population going 60 

through a bottleneck in bad years and an expansion in good years 19—can have substantial 61 

effects on the strength and direction of selection in populations of finite size 20. The strength 62 

of natural selection, which can be represented by the opportunity for selection (defined as the 63 

variation of relative fitness 21,22), is greater when populations decrease in size but lower when 64 

populations expand. However, the assumption of non-overlapping generations—which is 65 

typically used in most models of this sort (e.g. the grain-size model 23)—creates a distinction 66 

between within- and among-generation selection, and only applies to a very limited number 67 

of real world organisms such as some microbes 10,24. As a consequence, identifying general 68 

rules of biological adaptation to environmental fluctuation—particularly for species with 69 

overlapping generations and finite population sizes—remain elusive.    70 

 71 

To achieve a more comprehensive understanding of biological adaptation to environmental 72 

fluctuation that applies to organisms without having to evoke restrictive demographic 73 

assumptions that are biologically unrealistic for most animal species, we use continuous-time, 74 

stochastic Lotka-Volterra models to examine the impact of differential selective forces with 75 

varying population sizes, different temporal scales of environmental fluctuation, and 76 

distinctive patterns of generational overlap. We use a competitive Lotka-Volterra model as 77 

our basic framework because this approach restricts population size through competition, 78 

rather than externally setting an absolute boundary on population size. In other words, 79 

population size is dynamically regulated by the fitness of each strategy, which is in turn 80 
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affected by environmental conditions and population size itself. Moreover, Lotka-Volterra 81 

models can be used to explore the process of natural selection, as in Moran models that 82 

incorporate birth and death processes 25, without the unrealistic assumption of a fixed 83 

population size 26. Fundamentally, our model always allows for competition to reduce the 84 

number of surviving strategies, yet the direction of selection may not be the same at each 85 

moment because environmental conditions fluctuate (i.e. fluctuating selection). 86 

 87 

We begin by employing the generalist-specialist trade-off concept 15,27 to explore the 88 

selection dynamics of a generalist bet-hedging strategy that persists in both good and bad 89 

years and a specialist strategy that instead favors good years (hereafter referred to as the 90 

“rising-tide strategy”). Specifically, the specialist rising-tide strategy is defined as an 91 

evolutionary strategy that has relatively high fitness in good years so that its population size 92 

and relative frequency in the population increase, but relatively low fitness in bad years such 93 

that its population size and relative frequency decrease (Fig. 1). Thus, unlike the bet-hedging 94 

strategy, which can have higher mean fitness but lower variance in fitness, the rising-tide 95 

strategy can have both a higher mean fitness and a higher variance in fitness (Fig.1b). 96 

Importantly, just as the generalist and specialist strategies represent two ends of a continuum, 97 

the bet-hedging and rising-tide strategies should also be viewed as two ends of an adaptive 98 

continuum to fluctuating environments. In other words, the bet-hedging and rising-tide 99 

strategies are endpoints along a continuum of potential adaptations to environmental 100 

fluctuation that differ only in their relationships between fitness mean and variance.  101 

 102 

For simplicity, we begin by presenting the discrete version of the bet-hedging and rising-tide 103 

strategies under two types of environmental conditions: good and bad years (in a later 104 

section, we present the continuous versions of the generalist bet-hedging and specialist rising-105 

tide strategies, as well as how they both respond to different temporal scales of environmental 106 

fluctuation). The selection dynamics of the rising-tide, 𝑑𝑁$ 𝑑𝑡⁄ , and bet-hedging, 𝑑𝑁' 𝑑𝑡⁄ , 107 

strategies in good years are: 108 
()*
(+

= 𝑟$,/𝑁$(1 −
)*
3*,4

− 56*,4)6
3*,4

)                      (1a) and 109 

()6
(+

= 𝑟',/𝑁'(1 −
5*6,4)*
36,4

− )6
36,4

)                      (1b), 110 

where 𝑟 stands for the intrinsic growth rate (i.e. birth minus death rate), 𝑁 represents the 111 

population size of each strategy, 𝛼 describes the intensity of competition between two 112 
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strategies, and	𝐾denotes the carrying capacity. The capital subscripts R and B represent the 113 

parameters for the rising-tide strategy and the bet-hedging strategy, respectively. Similarly, 114 

the lower-case subscripts g and b represent good and bad years, respectively. For example, 115 

𝛼'$,/ indicates the intensity of competition between the bet-hedging and rising-tide 116 

strategies in good years. Similarly, the selection dynamics of each strategy in a bad year are: 117 

 118 
()*
(+

= 𝑟$,;𝑁$(1 −
)*
3*,<

− 56*,<)6
3*,<

)                      (2a) and 119 

()6
(+

= 𝑟',;𝑁'(1 −
5*6,<)*
36,<

− )6
36,<

)                      (2b). 120 

 121 

We begin by investigating the selection dynamics of the bet-hedging and rising-tide strategies 122 

using individual-based simulations, i.e. a stochastic continuous time model with random 123 

environmental settings, because this approach allows us to manipulate environmental 124 

stochasticity and track reproductive success at the individual level in order to calculate each 125 

strategy’s fixation probability and opportunity for selection (i.e. variance of relative fitness). 126 

We find that greater environmental variation can generate either the bet-hedging or the rising-127 

tide strategy, but which end of the adaptive continuum is favored depends upon the frequency 128 

of good versus bad years (Fig. 1, see Supplementary Table 1 for parameter values). That is, 129 

the bet-hedging strategy has a higher fixation probability when bad years are more frequent 130 

than good years, whereas the rising-tide strategy is favored by selection when good years are 131 

more likely to occur than bad ones. When bad years are frequent, the risk aversion strategy of 132 

bet-hedging maximizes fitness by reducing variance rather than optimizing the mean, as has 133 

been shown previously 1,11-13. However, when good years are more frequent than bad years, 134 

the positive impacts of a rising-tide strategy in the good years are able to sustain those 135 

individuals during the bad years (Fig. 1a-c). Importantly—and also consistent with previous 136 

theories—we find that the opportunity for selection rises when total population size declines 137 

(Fig. 1f-h) (results from the deterministic continuous time model with periodical environment 138 

setting are qualitatively similar; Supplementary Fig. 1). Therefore, the same magnitude of 139 

absolute fitness increase has a greater impact on the frequency of each phenotype in bad 140 

years than in good years. Thus, adaptation to bad years takes on a greater importance when 141 

bad years occur more frequently (and vice versa). 142 

 143 

To further investigate how different temporal scales of environmental fluctuation—often 144 

referred to as the grain of the environmental variation; sensu 12—influence the evolution of 145 
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the bet-hedging and rising-tide strategies, we employ continuous versions of the generalist 146 

bet-hedging and specialist rising-tide strategies (Fig. 1a). Instead of assuming discrete 147 

environmental conditions (i.e. good versus bad years) as we did above, we now allow the 148 

environmental conditions E to vary continuously—just as temperature and rainfall do in 149 

nature—and influence the birth rate b(E), death rate d(E), and carrying capacity K(E) of each 150 

strategy (see Methods, eqns. 5 and 6). Thus, this is a stochastic continuous time model with 151 

random continuous environmental settings. The dynamics of the specialist rising-tide, dNR 152 

/dt, and generalist bet-hedging strategies, dNB/dt, in the stochastic Lotka-Volterra competitive 153 

model are: 154 
()*
(+

= 𝑏$(𝐸)𝑁$ ?1 −
)*

3*(@)
− 56*)6

3*(@)
A − 𝑑$(𝐸)𝑁$           (3a) and 155 

()6
(+

= 𝑏'(𝐸)𝑁' ?1 −
5*6)*
36(@)

− )6
36(@)

A − 𝑑'(𝐸)𝑁'          (3b) 156 

 157 

The capital subscripts R and B represent the parameters for rising-tide and bet-hedging 158 

strategy, respectively.  159 

 160 

We find that long-term (e.g. annual) and short-term (e.g. daily) environmental fluctuations 161 

can have complex, but often counterintuitive, effects on adaptive evolutionary responses (Fig. 162 

2, see Supplementary Table 2 for parameter values). When short-term environmental 163 

variation is relatively low, higher long-term variation selects for the bet-hedging strategy 164 

(Fig. 2c). However, the rising-tide strategy out-competes the bet-hedging strategy as short-165 

term variation increases (Fig. 2d). When both short- and long-term environmental variation 166 

are relatively high, the bet-hedging strategy again becomes more dominant (Fig. 2e). 167 

Furthermore, when long-term environmental variation is relatively low, the rising-tide 168 

strategy is favored by selection under both low or high short-term environmental variation 169 

(Fig. 2i-k) because if long-term variation is relatively low, a rising-tide strategy, by definition, 170 

is more likely to specialize in a given mean environment (Fig. 2i). However, if long-term 171 

environmental variation is relatively high and if there is no, or only a small degree of, short-172 

term environmental variation, by definition, a rising-tide specialist will not experience its 173 

optimal environmental conditions frequently (Fig. 2a and 2b). In other words, higher short-174 

term variation can favor the evolution of specialization because a rising-tide specialist is 175 

likely to experience its optimal environmental conditions more frequently. This mechanism is 176 

similar to the one we described previously, namely that the specialist rising-tide strategy 177 

experiences more good than bad years and can therefore outcompete the generalist bet-178 
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hedging strategy, even when the variance in absolute fitness of the rising-tide strategy is 179 

higher than that of the bet-hedging strategy.  180 

 181 

To more directly determine how our framework performs relative to more traditional 182 

approaches, we compare our continuous time, overlapping generations model with one that 183 

utilizes discrete population dynamics to approximate the commonly used but less realistic 184 

non-overlapping generations models (e.g. 1,11,13,23) (Fig. 3, see eqns. 7 and 8 in Methods for 185 

more details). In most of these models, the temporal scale of environmental fluctuation is 186 

often classified as either (i) coarse grain, which describes among-generation variation in 187 

environmental conditions, or (ii) fine grain, which describes within-generation variation in 188 

environmental conditions 12,23. In our comparison, we find that patterns of generation overlap 189 

are crucial for the evolution of the generalist-specialist continuum and the adoption of a bet-190 

hedging versus a rising-tide strategy (Fig. 4, see Supplementary Table 2 for parameter 191 

values). In this stochastic discrete time model with a random continuous environmental 192 

setting, when long-term variation is high—which is similar to coarse grain variation in 193 

discrete-population dynamics models—the bet-hedging strategy dominates the rising-tide 194 

strategy in most of the parameter space (Fig. 4a-h). Nevertheless, higher short-term 195 

variation—which is equivalent to fine grain variation in our model—still favors the rising-196 

tide strategy when long-term variation is relatively low (Fig. 4i).  197 

 198 

The key features of nearly all previously-published non-overlapping generations models (e.g. 199 
1,11,13,23) are that the fitness consequences of environmental variation within a generation are 200 

additive within an organism’s lifetime, but multiplicative among generations. Thus, 201 

mathematically, the long-term growth rate of each strategy is determined by its geometric 202 

mean of fitness 28-31. As a result, bet-hedging generalists occur more commonly under a non-203 

overlapping generations scenario because a small absolute fitness in any generation will have 204 

a detrimental effect on the long-term growth rate of a strategy. Since our model allows for 205 

overlapping generations, birth and death events, and continuous changes in the strength of 206 

selection, the rising-tide strategy will be favored by natural selection under a wide range of 207 

environmental conditions as long as these specialists are able to encounter their optimal 208 

environment (i.e. good years) frequently enough so that they can sustain through adverse 209 

environmental conditions (i.e. bad years), even when they achieve lower fitness than under 210 

optimal conditions.  211 

 212 
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In summary, we have identified a novel form of behavioral adaptation to fluctuating 213 

environments: the rising-tide strategy. Although both the rising-tide and the bet-hedging 214 

strategies are possible when environmentally-driven fitness variation is high, the rising-tide 215 

strategy will be favored when mean fitness is higher and the bet-hedging strategy when mean 216 

fitness is lower. This difference in which strategy will be favored is determined by the grain 217 

of environmental variation, or the frequency of good and bad years within unpredictable 218 

environments. Previous theories have provided a heuristic understanding of adaptation to 219 

fluctuation environments by considering the mean and variance of fitness associated with the 220 

change of environmental conditions in species with non-overlapping generations and 221 

populations of fixed size. Our model further shows that under more biologically realistic 222 

scenarios involving species with overlapping generations and populations that fluctuate in 223 

size as environmental conditions change, even with the same mean and variance in 224 

environmental fluctuation, different temporal distributions of environmental conditions can 225 

lead to distinct biological adaptations associated with behavioral specialization or 226 

generalization. Thus, we provide a general framework for understanding the impacts of 227 

different temporal scales of environmental fluctuation on organisms with either overlapping 228 

or non-overlapping generational life histories. Future studies must move beyond viewing 229 

environmental variation as discrete classes of coarse- (among-generation) versus fine-grain 230 

(within-generation) and begin to investigate the existence of a potentially rich suite of 231 

adaptations to diverse environmental scenarios—those that vary in intensity, frequency, and 232 

duration—in an ever-changing world. Ultimately, our study not only helps bridge the 233 

apparent gap between theoretical and empirical studies of biological adaptation in a volatile 234 

world, but it also links under a synthesized theoretical framework seemingly distinct fields, 235 

such as macrophysiology 32, species distribution modeling 14,33, and social evolution 10,18,34.  236 

 237 
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Figures 335 

 336 
Fig. 1 | A comparison of the bet-hedging and rising-tide strategies under random 337 

environmental conditions and continuous population dynamics. a, Performance curves of 338 

the bet-hedging (blue line) and rising-tide strategies (orange line) under hypothetical 339 

environmental conditions, which can be thought to represent conditions like temperature or 340 

precipitation and is standardized from 0 to 100. These performances are modeled under 341 

discrete environmental conditions: (i) good years, where the environmental conditions are 342 

optimal for both strategies (i.e. environmental conditions = 50); and (ii) bad years, where the 343 

environmental conditions are non-optimal (i.e. environmental conditions = 75). b, These 344 

performances are expressed as the carrying capacities of a stochastic Lotka-Volterra model 345 

such that the rising-tide strategy has larger a carrying capacity in good years, and the bet-346 

hedging strategy has a larger carrying capacity in bad years. Using these mean carrying 347 
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capacities, we calculate the arithmetic (AM) and geometric means (GM) of fitness of a given 348 

probability of good years (i.e. environmental conditions = 50). c-e, We then explore the 349 

selection dynamics of the bet-hedging and rising-tide strategies (see Supplementary Table 1 350 

for parameter values). The probability of fixation of the rising-tide strategy, as well as the 351 

fitness variations (s) of the two strategies are shown in each panel. f-h, In the same time 352 

series as panel c-e, the intensity of selection in fluctuating environments can be described by 353 

the opportunity for selection (i.e. the variation of relative fitness, red lines), which is related 354 

to total population size (i.e. sum of the bet-hedging and rising-tide strategies; black lines). 355 

The value of opportunity for selection is updated once per year before the relative fitness of 356 

each individual is reset. Note that this model is a stochastic individual-based model and that a 357 

simplified deterministic model is presented in the supplementary information and 358 

Supplementary Fig. 1.  359 
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 360 
Fig. 2 | The selection dynamics of the bet-hedging and rising-tide strategies under 361 

random continuous environmental conditions with continuous population dynamics. a, 362 

Performance curves of bet-hedging (blue line) and rising-tide strategies (orange line) in 363 

hypothetical environmental conditions. Population dynamics parameters are functions of the 364 

environment, meaning average fitness (per capita growth rate) varies with changes in 365 

environmental conditions (see model description for more details). b, Potential effect of long-366 
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term environmental variation on fitness. Since long-term environmental variation may alter 367 

the mean of short-term environmental variation (thick dashed lines), low (green area) and 368 

high (yellow area) short-term variation can differentially alter the direction of selection. c-e, 369 

Population dynamics of the bet-hedging and rising-tide strategies under low, medium, and 370 

high short-term environmental variation, respectively, and under high levels of long-term 371 

environmental variation. f-h, Representations of the environmental conditions (i.e. time 372 

series) corresponding to panels c-e. i-k, Population dynamics of the bet-hedging and rising-373 

tide strategies under low, medium, and high short-term environmental variation, respectively, 374 

and under low level of long-term variation. l-n, Representations of the environmental 375 

conditions (i.e. time series) corresponding to panels i-k. The parameter values for simulations 376 

are summarized in Supplementary Table 2, whereas the two environmental variables in this 377 

figure are 𝑠CDEFG(C	(17 and 100) and 𝑠DHIFC (10, 100 and 1000).  378 
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 379 
Fig. 3 | A schematic comparison of demographic growth settings. a, Although the 380 

overlapping and non-overlapping generation models may have similar population dynamics, 381 

the events within these dynamics are different. The main difference between the two models 382 

is that the overlapping generations model allows for lifespan (i.e. the numbers and brackets 383 

below population dynamics) changes with changing environmental conditions, whereas the 384 

non-overlapping generations model assumes fixed generation times. Moreover, the non-385 

overlapping generations model assumes simultaneous death and birth events, which is hardly 386 

applicable to most, if not all, real organisms. b, Similar to the non-overlapping generations 387 

model, the discrete growth model takes the average (i.e. �̅�) over many growth parameters 388 

(i.e. 𝑝) whenever a fixed time span has passed, whereas the continuous growth model applies 389 

each growth parameter instantaneously to the population dynamics.  390 
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 391 

Fig. 4 | The selection dynamics of the bet-hedging and rising-tide strategies in random 392 

continuous environmental conditions with discrete population dynamics. a-c, Population 393 

dynamics of the bet-hedging and rising-tide strategies with the same parameter spaces 394 

described in Fig. 2c-e. d-f, Representations of the environmental conditions (i.e. time series) 395 

corresponding to panels a-c. g-i, Population dynamics of the bet-hedging and rising-tide 396 

strategies with the same parameter spaces described in Fig. 2i-k. j-l, Representations of the 397 

environmental conditions (i.e. time series) corresponding to panels g-i. The parameter values 398 

of each panel are identical to those in Fig. 2.  399 
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Methods 400 

Discrete environment model (good and bad years, rising-tide and bet-hedging 401 

strategies). The simplest way to capture this concept is to use two sets of competitive Lotka-402 

Volterra equations (eqns. 1 and 2) with different equilibrium points. We constructed (i) an 403 

individual-based model with probabilistic algorithms to determine the upcoming environment 404 

and the birth and death events (i.e. a stochastic continuous time model with random 405 

environment setting, Fig. 1), and (ii) a deterministic model with traceable environmental 406 

change (i.e. deterministic continuous time model with periodical environment setting, 407 

Supplementary Fig. 1).  408 

 409 

We use a dynamic time step (similar to Gillespie’s algorithm, see Supplementary Fig. 2) in 410 

the individual-based model, 411 

𝑆 = 	−ln	(𝑌)/𝑐𝜆,                         (4), 412 

where 𝑆 is the waiting time till next event, 𝜆 is the sum of all event rates of the differential 413 

equations (i.e. birth and death events, Supplementary Fig. 2), 𝑌 is a random number 414 

providing stochasticity to the waiting time, and c is a coefficient for adjusting the timescale. 415 

Whenever 𝑆 is determined, a random event occurs according the rate of each events such 416 

that a new individual is born, or a living individual dies. As 𝑆 deceases with increasing 𝜆, 417 

this design flexibly changes the frequency of events based on the current population size.  418 

 419 

How the environmental conditions are chosen is another crucial feature of these models. In 420 

the individual-based model, after one year has passed, the type of the next year is determined 421 

by the probability of good year through a random number draw. On the other hand, we 422 

assume good and bad years alternate in the deterministic model but the duration of each 423 

changes proportionally to the probability of good year (see supplementary information for 424 

more details of the deterministic model). 425 

 426 

Continuous environment model (performance curve, bet-hedging generalist and rising-427 

tide specialist). To generalize our results and compare them to previous model 15, we derived 428 

the continuous environment model (eqn. 3). Specifically, the carrying capacity of a strategy 429 

(i) follows a Beta function,  430 

𝐾E(𝐸) = 𝑐3𝐵𝑒𝑡𝑎V𝑠3,E , 𝑠3,E𝑐FWX = 𝑐3
(@ YZ[\⁄ )]^,_`a(bc	@ YZ[\⁄ )]^,_d]e`a

f(]^,_)f(]^,_d]e)
f(]^,_g]^,_d]e)

    (5a), 431 

where the shape parameters (s) determine the width and height of the performance curve, and 432 

the coefficients control the scale (𝑐Chi, 𝑐3) or skewness (𝑐FW) of the curve. Further, Γ 433 
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represents the gamma function, where 𝛤(𝑛) = (𝑛 − 1)!. Similarly, birth and death rate 434 

follow Beta functions with the same skewness (𝑐FW) and the same range of environmental 435 

conditions (𝑐Chi), 436 

𝑏E(𝐸) = 𝑐;𝐵𝑒𝑡𝑎V𝑠;,E , 𝑠;,E𝑐FWX                              (5b), 437 

𝑑E(𝐸) = 𝑐( ?𝑑nIo − 𝐵𝑒𝑡𝑎V𝑠(,E , 𝑠(,E𝑐FWXA + 𝑑FHEq+               (5c), 438 

Because the skewness of the three parameters are equal, the mean of each beta function is the 439 

same (i.e. 𝑐ChiV1 1 + 𝑐FW,E⁄ X). In other words, the only difference in the performance curves 440 

among all competitors is the shape parameter, making one strategy more like a bet-hedging 441 

generalist or a rising-tide specialist (Fig. 1a). Through this design, the competition in 442 

dynamics can respond to the various amounts of change in environmental conditions (e.g. 443 

changes in temperature or precipitation).  444 

 445 

We have described how parameter values and the population dynamics of each strategy 446 

respond to various forms of environmental conditions. Next we determine how 447 

environmental conditions fluctuate through time. Since variation may occur in either the 448 

long- or short-term, we divide time into phases and episodes, where one phase consists of 449 

several episodes. In each time unit, the environmental conditions follow a symmetric Beta 450 

distribution, 451 

𝐸DHIFC 𝑐Chi⁄ ~𝐵𝑒𝑡𝑎V𝑠DHIFC, 𝑠DHIFCX                           (6a), 452 

𝐸CDEFG(C 𝑐CDEFG(C⁄ ~𝐵𝑒𝑡𝑎(𝑠CDEFG(C , 𝑠CDEFG(C)                   (6b), 453 

where the scaling coefficients define the range of environmental conditions, and the shape 454 

coefficients define the distributions and variation in environmental conditions. Hence, the 455 

current environmental conditions are the sum of two sampled values: one from the 456 
distribution of long-term variation (controlled by 𝑠DHIFC), and another from the distribution 457 

of short-term variation (controlled by 𝑠CDEFG(C ),  458 

𝐸 = 𝐸nCIh + 𝐸DHIFC − 𝑐Chi 2⁄ + 𝐸CDEFG(C − 𝑐CDEFG(C 2⁄           (6c). 459 

We validate the temporal scale of environmental fluctuations by the fast Fourier 460 

transformation (FFT), showing increasing long-term variation enhances the amplitude of low 461 

frequency components and increasing short-term variation enhances the amplitude of high 462 

frequency components (Supplementary Fig. 3). 463 

 464 

Based on the continuous environmental settings, we derive two models using this framework: 465 

(i) a continuous; and (ii) a discrete population dynamics model. The continuous population 466 

dynamics model (i.e. a stochastic continuous time model with random continuous 467 
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environmental settings) has the same demographic property as the deterministic environment 468 

models, where growth parameters (e.g. 𝑏t and 𝑑F) change instantly with the change of 469 

environmental conditions and the population dynamics follows eqns. 3a and 3b. On the other 470 

hand, suppose there are 𝑛 episodes in one phase, the discrete population dynamics model 471 

(i.e. a stochastic discrete time model with random continuous environment setting) takes 472 

arithmetic mean from several parameters by the end of each phase,  473 
𝐾uv = ∑ 𝐾E,x(𝐸)h

xyb 𝑛⁄                               (7a), 474 

𝑏uv = ∑ 𝑏E,x(𝐸)h
xyb 𝑛⁄                               (7a), 475 

𝑑uv = ∑ 𝑑E,x(𝐸)h
xyb 𝑛⁄                               (7a), 476 

where 𝑖 specifies the strategy and 𝑗 denotes the index of episodes. Hence, the growth 477 

parameters are updated once per phase, and the population dynamic follows 478 

𝑁$,+|b = 𝑁$,+ + 𝑏$}}}𝑁$,+ ?1 −
)*,~
3*}}}}

− 56*)6,~
3*}}}}

A − 𝑑$}}}}𝑁$,+                 479 

(8a), 480 

𝑁',+|b = 𝑁',+ + 𝑏'}}}𝑁',+ ?1 −
5*6)6,~
36}}}}

− )6,~
36}}}}
A − 𝑑'}}}}𝑁',+               (8b), 481 

where 𝑡 stands for the index of phases. Because of the process of taking averages, the 482 

meaning of short-term variation is no longer the smaller temporal scale of environmental 483 

changes. Instead, it expresses a finer type of variation (i.e. finer grain) that potentially 484 

deviates from the environment of each episode (Fig. 3).   485 
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Supplementary information 486 

The deterministic continuous time model with periodical environment setting 487 

Here we reduce the stochasticity of the stochastic Lotka-Volterra model in two ways to make 488 

it deterministic and more predictable. First, we calculate the population size from differential 489 

equations without using the individual-based model, and then we let good and bad years 490 

alternate one after another without randomly picking the type of subsequent year, as in the 491 

case in the stochastic continuous time model with random environment setting (i.e. Fig. 1). 492 

Hence, a good year (eqns. 1a and 1b) starts after a bad year ends (eqns. 2a and 2b). In 493 

addition, we assume that the duration of good and bad years changes proportionally to the 494 

probability of a good year occurring, while the sum of one good year and one bad year 495 

remains the same.  496 

 497 

The simulations of the deterministic model (Supplementary Fig. 1a-c) show qualitatively 498 

similar results to the individual-based model (Fig. 1c-e). That is, the rising-tide strategy is 499 

more adaptive when good years are more frequent, whereas the bet-hedging strategy is more 500 

adaptive when bad years are more frequent. Additionally, phase-plane analysis validates our 501 

finding that fitness variation is greater in the rising-tide strategy (Supplementary Fig. 1d-f, 502 

amplitude of oscillation on x-axis) relative to the bet-hedging strategy (Supplementary Fig. 503 

1d-f, amplitude of oscillation on y-axis). Thus, these results of the deterministic model are 504 

consistent with those of our stochastic model.   505 
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 506 
Supplementary Figure 1 | The deterministic continuous time model with periodical 507 

environment setting shows qualitatively similar results as the discrete-strategy model 508 

(corresponding to Fig. 1). a-c, Population dynamics of the bet-hedging (blue lines) and 509 

rising-tide strategies (orange lines) in the deterministic model. d-f, Phase-plane analysis (i.e. 510 

the time series of per capita growth rates) shows the fitness interactions of the bet-hedging 511 

and rising-tide strategies.  512 
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 513 

Supplementary Figure 2 | Schematic view of the events in good years for the individual-514 

based model under discrete environmental conditions (corresponding to Fig. 1). Each 515 

circle indicates an individual of the rising-tide (orange) or the bet-hedging strategy (blue). 516 

Arrows describe the occurrence of birth or death events. The polynomials above the arrows 517 

are the probability of each event occurring in the model.  518 
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 519 

Supplementary Figure 3 | Frequency analysis of environmental conditions in a 520 

stochastic continuous time model with continuous environmental settings 521 

(corresponding to Fig. 2). a-f, We use the fast Fourier transform to understand frequency 522 

components in the time series of environmental conditions. In other words, the environmental 523 

fluctuations are described by the contributions of each frequency of oscillation (black lines). 524 

For comparison, we use the most stable environment (panel d) as a reference (gray lines) in 525 

all panels. The increasing short-term variation enhances the contribution of high-frequency 526 

regions, whereas increasing long-term variation enhances the contribution of low-frequency 527 

regions.  528 
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Supplementary Table 1| List of parameters in discrete environment model. These values 529 

are used in the simulations of the individual-based model (Fig. 1) and the deterministic model 530 

(Supplementary Fig. 1). 531 

Name Values Description 

𝑟$,/, 𝑟',/, 𝑟$,;, 𝑟',; 0.1, 0.1, 0.05, 0.05 Intrinsic growth rate. 

𝛼'$,/, 𝛼$',/, 𝛼'$,;, 𝛼$',; 1 
Level of inter-strategic 

competition. 

𝐾$,/,𝐾',/, 𝐾$,;, 𝐾',; 850, 590, 125, 150 Carrying capacity of each 

strategy under good or bad 

environmental conditions. 

  532 
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Supplementary Table 2| List of parameters in continuous environment model. These 533 
values are used in the simulations of the continuous (Fig. 2) and the discrete population 534 
dynamics model (Fig. 4). 535 
 536 

Name Values Description 
𝑐3, 𝑐;, 𝑐( 250, 0.5, 10-6 Scaling coefficients of population 

dynamics parameters  
(carrying capacity, birth rate, and 

death rate, respectively). 
𝑠3,E , 𝑠;,E , 𝑠(,E 30 (specialist rising-tide), 

4.5 (generalist bet-
hedging) 

Shape coefficient of population 
dynamics parameters (which 

determine the widths of performance 
curves) where larger values indicate 

narrower distributions. 
𝑐FW 1/3 Skewness of Beta functions, where 

performance curves follow Beta (α =
	𝑠x,E , β = 	 𝑐FW𝑠x,E) and j and i stand for 
parameters (K, b, d) and strategies (G, 

S). 
𝛼�t, 𝛼t� 0.4 Inter-specific competition 

coefficient. 
𝑐CDEFG(C, 𝑐DHIFC 60, 100 Scaling coefficients of short- and long-

term variation in environmental 
conditions. 

𝑑FHEq+ 0.0 Mortality adjustment for specialist 
strategy. 

𝑠CDEFG(C, 𝑠DHIFC 17*, 10* Shape coefficient of environmental 
variation. Episode stands for long-term 

variation and phase stands for short-
term variation. 

𝑚DHIFC,𝑚/ChC�I+EGh  20, 500 Number of episodes in a phase, and 
number of events in single generation. 

𝑑nIo max	[𝐵𝑒𝑡𝑎V𝑠(,E, 𝑠(,E𝑐FWX] Maximum value of death Beta 
functions among all environmental 

conditions. 
*These values are variables. 537 
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