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Abstract

Support Vector Machines with gapped k-mer kernels (gkm-SVMs) have been used to learn
predictive models of regulatory DNA sequence. However, interpreting predictive sequence
patterns learned by gkm-SVMs can be challenging. Existing interpretation methods such as
deltaSVM, in-silico mutagenesis (ISM), or SHAP either do not scale well or make limiting
assumptions about the model that can produce misleading results when the gkm kernel is
combined with nonlinear kernels. Here, we propose gkmexplain: a novel approach inspired
by the method of Integrated Gradients for interpreting gkm-SVM models. Using simulated
regulatory DNA sequences, we show that gkmexplain identifies predictive patterns with
high accuracy while avoiding pitfalls of deltaSVM and ISM and being orders of magnitude
more computationally efficient than SHAP. We use a novel motif discovery method called
TF-MoDISco to recover consolidated TF motifs from gkm-SVM models of in vivo TF
binding by aggregating predictive patterns identified by gkmexplain. Finally, we find that
mutation impact scores derived through gkmexplain using gkm-SVM models of chromatin
accessibility in lymphoblastoid cell-lines consistently outperform deltaSVM and ISM at iden-
tifying regulatory genetic variants (dsQTLs). Code and example notebooks replicating the
workflow are available at https://github.com/kundajelab/gkmexplain. Explanatory
videos available at http://bit.ly/gkmexplainvids.

1 Introduction

Deciphering the combinatorial regulatory DNA sequence patterns that determine transcription factor (TF)
binding and chromatin state is critical to understand gene regulation and interpret the molecular impact of
regulatory genetic variation. High-throughput in vivo and in vitro functional genomics experiments provide
large datasets to train predictive models using machine learning approaches that can learn the relationship
between regulatory DNA sequences and their associated molecular phenotypes. Support Vector Machines
(SVMs) are a popular choice in machine learning prediction tasks because they are stable to train and, when
used with an appropriate kernel, can model complex input-output relationships. For classification tasks,
SVMs learn an optimal linear separating hyperplane in a high-dimensional space determined by a kernel
that measures the similarity between all pairs of examples. The gapped k-mer (gkm) string kernel [11, 6]
was developed to enable training SVMs on string inputs such as DNA or protein sequences. The gkm
kernel computes a similarity between pairs of sequences based on biologically motivation notion of shared
approximate occurrences of short subsequences allowing for gaps and mismatches. The gkm kernel can be
further combined with other nonlinear kernels such as radial basis function (RBF) kernel to capture complex
nonlinear relationships between the input string features. Gapped k-mer SVMs and their extensions have been
successfully applied to several prediction tasks in regulatory genomics such as TF binding and chromatin
accessibility prediction. Interpretation of these trained SVMs is important to decipher the patterns such as
TF binding motifs present in the any DNA sequences that are predictive of its associated molecular label.
Moreover, these models can be used to predict the impacts of genetic variants in regulatory DNA sequences.
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Unfortunately, interpretation of gkm-SVMs can be challenging. DeltaSVM [9], a popular tool developed by
the authors of gkm-SVM to estimate the effects of variants, can produce unsatisfactory results when used
with nonlinear versions of the gkm kernel such as the gkmrbf kernel [8]. In-silico mutagenesis (ISM) [4],
an interpretation approach that consists of performing individual perturbations and observing the impact on
the output, can be computationally inefficient and can fail to reveal the presence of motifs when nonlinear
saturation effects are present [13]. SHAP [12], a method based on estimating Shapely values, can address the
nonlinearity issues faced by deltaSVM and ISM but is even less computationally efficient than ISM. As such,
there is a need for fast interpretation of gapped k-mer Support Vector Machines that works reliably in the
presence of nonlinear effects.
Here we present gkmexplain, a computationally efficient method for explaining the predictions of both
linear and nonlinear variants of gapped k-mer SVMs. Specifically, gkmexplain is a feature attribution
method that efficiently computes the predictive contribution or importance of every nucleotide in an input
DNA sequence to its associated output label through the lens of a gkmSVM model. gkmexplaim works by
decomposing the output of the gapped k-mer string kernel into the contributions of matching positions within
the k-mers, and can be interpreted as a variation of the Integrated Gradients, a feature attribution method
developed to interpret deep learning models [15]. On simulated regulatory DNA sequences, where the ground
truth predictive motifs are known, we show that gkmexplain outperforms deltaSVM and ISM while being
multiple orders of magnitude more computationally efficient than SHAP. We use a novel motif discovery
method called TF-MoDISco [14] to recover consolidated TF motifs from gkm-SVM models of in vivo TF
binding by aggregating predictive patterns identified by gkmexplain. Finally, using non-linear gkmSVM
models of chromatin accessible regulatory DNA sequences, we show that mutation impact scores derived
through gkmexplain outperform deltaSVM and ISM at identifying DNAse-I hypersensitive QTLs (dsQTLs)
in lymphoblastoid cell-lines.

2 Background

2.1 Gapped k-mers

A full k-mer refers to a letter subsequence of length k - for example, AAGT is a full 4-mer. By contrast, a
gapped k-mer refers to a subsequence containing k letters and some number of gaps - for example, A*AG*T is
a gapped 4-mer containing 2 gaps (* is used to denote a gap). In the gkm-SVM implementation, l denotes the
full length of the subsequences considered (including gaps), and k denotes the number of non-gap positions -
for example, the l-mer ACG (where l = 3) contains the gapped k-mers AC*, A*G and *CG (where k = 2).

2.2 Support Vector Machines and Gapped k-mer Kernels

Let x be an input to a Support Vector Machine (SVM), m be the total number of support vectors, Zi be the ith
support vector, yi be the label (+1 or -1) associated with the ith support vector, αi be the weight associated
with the ith support vector, b be a constant bias term, and K be a kernel function that is used to compute a
similarity score between Zi and x. The SVM produces an output of the form:

F (X) = b+

m∑
i=1

αiy
iK(Zi, x) (1)

Kernel functions can be thought of as implicitly computing dot products between their inputs mapped to
vectors in some feature space. For example, the gapped k-mer kernel implicitly maps its inputs to feature
vectors representing the normalized counts of gapped k-mers. Thus, it has the form:

Kgkm(S1, S2) =

〈
fS1

gkm∥∥∥fS1
gkm

∥∥∥ ,
fS2

gkm∥∥∥fS2
gkm

∥∥∥
〉

=
〈fS1

gkm, f
S2
gkm〉√

〈fS1
gkm, f

S1
gkm〉

√
〈fS2

gkm, f
S2
gkm〉

(2)

Where fS1
gkm and fS2

gkm are feature vectors consisting of the counts of gapped k-mers in sequences S1 and S2
respectively. Because the feature space corresponding to gapped k-mer counts can be quite large, a more
computationally efficient formulation [11, 6] of the gapped k-mer kernel performs a sum only over the full
l-mers that are actually present in the sequences. Let uSx

i represent the identity of the l-mer at position i in
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sequence Sx, and let fm(uS1
i , u

S2
j ) be a function that returns the number of mismatches between the l-mers

uS1
i and uS2

j . We can write 〈fS1 , fS2〉 as:〈
fS1

gkm, f
S2
gkm

〉
=
∑
i

∑
j

h
(
fm(uS1

i , u
S2
j )
)

(3)

Where the indexes i and j sum over all l-mers in S1 and S2 respectively, and h(m) is a function that returns
the contribution of an l-mer pair with m mismatches to the dot product 〈fS1 , fS2〉. For example, if uS1

i and
uS2
j are a pair of l-mers with m mismatches between them, then the number of gapped k-mers they share is(
l−m
k

)
. Thus, in the case of the traditional gapped k-mer kernel, h(m) =

(
l−m
k

)
. Note that Gandhi et al. [6]

proposed variants of the gapped k-mer kernel such as the truncated gkm-filter. These variants differ in the
function h(m), but otherwise have an identical formulation.

2.3 Extensions of the gkm kernel

We described the extensions to the gkm kernel proposed by Lee in [8].

2.3.1 The wgkm kernel

In the weighted gkm (wgkm) kernel, l-mers are given a weight according to the position at which they occur.
A dot product in the feature space of weighted gapped k-mers can thus be expressed as:〈

fS1
wgkm, f

S2
wgkm

〉
=
∑
i

∑
j

h
(
fm(uS1

i , u
S2
j )
)
wiwj (4)

Where wi and wj are the weights associated with l-mers at position i and j respectively. The weighted gkm
kernel then becomes:

Kwgkm(S1, S2) =

〈
fS1

wgkm∥∥∥fS1
wgkm

∥∥∥ ,
fS2

wgkm∥∥∥fS2
wgkm

∥∥∥
〉

=
〈fS1

wgkm, f
S2
wgkm〉√

〈fS1
wgkm, f

S1
wgkm〉

√
〈fS2

wgkm, f
S2
wgkm〉

(5)

Note that the gkm kernel is a special case of the wgkm kernel with wi = 1 for all i.

2.3.2 The gkmrbf kernel

The RBF kernel is useful for modeling complex nonlinear interactions between input features, and is defined
as KRBF(x, y) = exp

(
−‖x−y‖2

2σ2

)
(where x and y are vectors). Recall that the gkm kernel can be thought of

as mapping the input sequences to a feature space of normalized gapped k-mer counts. The gkmrbf kernel
maps sequences to the same feature space as the gkm kernel, but then applies the RBF kernel rather than the
dot product. For efficient computation, we leverage the following equality:

‖x− y‖2 = 〈x− y, x− y〉 = 〈x, x〉+ 〈y, y〉 − 2〈x, y〉

As gkm feature vectors are always unit normalized, 〈x, x〉 = 〈y, y〉 = 1. If we let γ = 1
σ2 , we get:

Kgkmrbf(Sx, Sy) = exp
(
γ(Kgkm(Sx, Sy)− 1)

)
(6)

2.3.3 The wgkmrbf kernel

Analogous to Eqn. 6, the wgkmrbf kernel is a combination of the wgkm kernel and the RBF kernel:

Kwgkmrbf(Sx, Sy) = exp
(
γ(Kwgkm(Sx, Sy)− 1)

)
(7)
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3 Previous Work

DeltaSVM [9] is a popular tool developed by the authors of gkm-SVM to estimate the in-silico effects of
genetic variants. DeltaSVM defines a score for each l-mer as the output of the gkm-SVM when the gkm-SVM
is supplied only that l-mer as input. It then estimates the impact of a mutation as the total change in the scores
of all l-mers overlapping the mutation. Although computationally efficient, this formulation does not consider
interactions between l-mers that can be learned by the gkmrbf or wgkmrbf kernels (Sec. 2.3). It also does
not consider the influence of positional weights that are present in the wgkm or wgkmrbf kernels. Consistent
with this, Lee [8] observed that deltaSVM used in conjunction with the gkmrbf, wgkm or wgkmrbf kernels
did not produce improvements in variant scoring relative to the gkm kernel, even though predictive models
trained with the former kernels performed better.
An alternative to deltaSVM for estimating the impact of individual mutations is to directly compute the
change in the output of the SVM when the mutation is introduced into the input sequence. This approach is
called in-silico mutagenesis (ISM) [4], and it has been successfully applied to interpret complex machine
learning models [17]. However, individually computing the impact of all possible mutations in an input
sequence can become computationally inefficient. Further, ISM can fail to reveal the presence of motifs
in a sequence when nonlinear saturating effects are present [13] - for example, if multiple GATA1 motifs
exist in an input sequence, but only one GATA1 motif is needed for the output to be positive, perturbing any
single GATA1 motif may not cause a substantial change in the output. Such nonlinear relationships can be
learned by the gkmrbf or wgkmrbf kernels (Sec. 2.3), both of which frequently produced improvements in
performance relative to the gkm kernel [8].
SHAP [12] is a general-purpose interpretation method that addresses the saturation issue of ISM by sampling
several combinations of input perturbations and looking at the change in the output in each case. Although
SHAP has good theoretical guarantees, it is far less computationally efficient than ISM as the number of
sampled perturbations needed to get accurate importance estimates can be quite large. For example, the
authors of SHAP used 50, 000 sampled perturbations to obtain stable estimates of feature importance on a
single example from the MNIST digit recognition dataset (each example is a 28× 28 image).

4 Methods

4.1 Integrated gradients for gapped k-mer SVMs

In this section, we describe the gkmexplain method. Gkmexplain can be motivated in terms of the Integrated
Gradients attribution method [15]. For any output function F (X), where X is a vector in Rn, and a path
function π : [0, 1]→ Rn, the Path Integrated Gradients [15] importance on the ith feature Xi is defined as:

PathIntegratedGradientsπi ::=

∫ β=1

β=0

∂F (π(β))

∂πi(β)

dπi(β)

dβ
dβ (8)

Equation 8 requires the output function F to be differentiable. Unfortunately, this is not the case for SVMs
that use string kernels because DNA sequence is discrete. We solve this issue by introducing a collection of
continuous variables ηSx

i that can be interpreted as representing the “intensity” of the base at position i of
sequence Sx. Reformulating the SVM objective to contain these artificial intensity variables, we can apply
the method of Integrated Gradients. A derivation is provided in Appendix A.1. The resulting formula for
the importance of base i in sequence Sx in a wgkm-SVM is:

wgkm_SVM_IGSx
i =

m∑
j=1

αjy
jcwgkm

Sx,Szj

i (9)

Where Szj , αj and yj are, respectively, the sequence, weight and label of support vector j, and:

cwgkmSx,Sz

i ::=

min(i,len(Sx)−(l−1))∑
j=max(i−(l−1),0)

∑
k

 wjwk∥∥∥fSx
wgkm

∥∥∥∥∥∥fSz
wgkm

∥∥∥eff(fm(uSx
j , uSz

k ), Six, S
k+(i−j)
z )

 (10)
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Where Six is the identity of the base at position i in sequence Sx and

eff(m,Bx, Bz) ::=

{
h(m)
l−m if Bx = Bz
0 otherwise

(11)

The formula for the importance of base i in position Sx for the wkgmrbf kernel is:

wgkmrbf_SVM_IGSx
i =

m∑
j=1

αjy
jcwgkmrbf

Sx,Szj

i (12)

Where

cwgkmrbfSx,Sz

i =
cwgkmSx,Sz

i

Kwgkm(Sx, Sz)
(exp

(
γ(Kwgkm(Sx, Sz)− 1)

)
− exp(−γ)) (13)

In terms of implementation, the gkmexplain importance scores can be computed efficiently by modifying
the k-mer tree depth-first search that was originally used to compute the output of the gkm-SVM (see our
implementation at https://github.com/kundajelab/lsgkm).

4.1.1 Intuitive motivation

Although Eqns. 9 & 12 can be justified using the method of Integrated Gradients, it can be helpful to
have an intuitive understanding of the formulas. Recall from Eqn. 3 that wjwkh(fm(µSx

j , µSz
k )) is the

contribution of the l-mer pair (µSx
j , µSz

k ) to the dot product 〈fSx
wgkm, f

Sz
wgkm〉. Let us denote fm(µSx

j , µSz
k ) as

m, and let us consider a position i in sequence Sx that overlaps µSx
j . Let us denote the base at position

i as Bx = Six, and the corresponding base within l-mer µSz
k as Bz = S

k+(i−j)
z (“corresponding” means

that the offset of Bx relative to the start of µSx
j is the same as the offset of Bz relative to the start of

µSz
k ). If we evenly distribute wiwjh(m) among the (l − m) matching positions between µSx

i and µSz
j ,

then position i would inherit an importance of wiwjh(m)
l−m if Bx = Bz , and would inherit an importance

of 0 if Bx 6= Bz . In other words, using the definition of eff(m,Bx, Bz) in Eqn. 11, we can write the
importance inherited by position i from the l-mer pair (µSx

j , µSz
k ) as wjwkeff(fm(µSx

j , µSz
k ), Six, S

k+(i−j)
z ).

If we sum this quantity over all possible l-mer pairs where µSx
j overlaps position i, and normalize by the

total wgkm feature vector lengths (as is done in the wgkm kernel), we arrive at the quantity cwgkmSx,Sz

i
in Eqn. 10, which we can view as the contribution of base i in sequence Sx to the kernel output
Kwgkm(Sx, Sz). The final importance of base i in Eqn. 9 can then be seen as a weighted sum of the con-
tributions of i to the kernel outputsKwgkm(Sx, S

j
z), where the weights αjyj are the same as the SVM weights.

As intuition for Eqn. 12 (pertaining to the wgkmrbf kernel), note that exp(−γ) is the output of the
Kwgkmrbf(Sx, Sz) kernel when 〈fSx

wgkm, f
Sz
wgkm〉 is 0. If we consider the “baseline” input Sx to be one that has

a wgkm dot product of 0 with all the support vectors, then exp
(
γ(Kwgkm(Szj , Sx)− 1)

)
− exp(−γ) is the

“difference from baseline” of Kwgkmrbf(Sx, Sz). Earlier, we said that cwgkmSx,Sz

i can be thought of as the
contribution of base i in sequence Sx to the kernel output Kwgkm(Sx, Sz). The quantity cwgkmrbfSx,Sz

i
(Eqn. 13) can thus be viewed as attributing the “difference from baseline” of Kwgkmrbf(Sx, Sz) to the
positions i in proportion to the contribution of base i to Kwgkm(Sx, Sz). The final importance of base i in
Eqn. 12 can then be seen as a weighted sum of the contributions of i to the “difference from baseline" of the
kernel outputs Kwgkmrbf(Sx, S

j
z), where the weights are αjyj .
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4.2 Mutation Impact Scores

The typical approach to estimating the impact of individual mutations is in-silico mutagenesis (ISM). In ISM,
a mutation is introduced in the sequence and the change in the predicted output is computed. However, as
illustrated in Fig. 1, ISM can overlook motifs if the response of the model has saturated in the presence of the
motif (as can happen when the gkmrbf kernel is used). For these reasons, it can be beneficial to estimate the
effects of mutations using a different approach. Building on Sec. 4.1, we introduce the term mcwgkmSx,Sz

i,B∗

to represent the estimated impact on the kernel output Kwgkm(Sx, Sz) of changing position i in sequence Sx
to base B∗. We have:

mcwgkmSx,Sz

i,B∗ ::=

min(i,len(Sx)−(l−1))∑
j=max(i−(l−1),0)

∑
k

 wjwk∥∥∥fSx
wgkm

∥∥∥∥∥∥fSz
wgkm

∥∥∥meff(fm(uSx
j , uSz

k ), Six, S
k+(i−j)
z , B∗)


(14)

where

meff(m,Bx, Bz, B∗) ::=

h(m− 1)− h(m) if Bx 6= Bz and Bz = B∗

h(m+ 1)− h(m) if Bx = Bz and Bz 6= B∗

0 otherwise
(15)

By analogy to Eqns. 9 & 12, we then define the mutation impact scores for baseB∗ at position i in sequence
Sx as follows:

MIS_wgkm_SVM_IGSx
i,B∗ =

m∑
j=1

αjy
jmcwgkm

Sx,Szj

i,B∗ (16)

and

MIS_wgkmrbf_SVM_IGSx
i,B∗ =

m∑
j=1

αjy
jmcwgkmrbf

Sx,Szj

i,B∗ (17)

where

mcwgkmrbfSx,Sz

i,B∗ =
mcwgkmSx,Sz

i,B∗

Kwgkm(Sx, Sz)
(exp

(
γ(Kwgkm(Sx, Sz)− 1)

)
− exp(−γ)) (18)

Once again, these quantities can be efficiently computed by modifying the k-mer tree depth-first search
originally used to compute the output of the gkm-SVM (see our implementation at https://github.com/
kundajelab/lsgkm). While the original implementation only performs recursion on l-mer pairs for which
no more than d mismatches have been encountered so far, we perform recursion on l-mer pairs for which we
may have encountered d+ 1 mismatches (because a mutation can flip a mismatching position to a match).

5 Results

5.1 Simulated regulatory DNA sequences

To evaluate the performance of different explanation methods, we used the simulated genomics dataset
from [13]. Briefly, 8000 200bp-long sequences were generated by randomly sampling the letters ACGT
with background probabilities of 0.3, 0.2, 0.2 and 0.3 respectively. 0-3 instances of the TAL1_known1
and GATA1_disc1 motifs [7] were then embedded into non-overlapping positions in each sequence. 25%
of sequences contained both embedded TAL1 motifs and embedded GATA1 motifs and were labeled +1.
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Figure 1: Comparison of gkmexplain, ISM, deltaSVM and SHAP on an individual sequence. An SVM
with a gkmrbf kernel with l = 6, k = 5 and d = 1 was used to distinguish sequences containing both TAL1
and GATA1 motifs from sequences containing only one kind of motif or neither kind of motif. The locations
of embedded GATA1 motifs are indicated by blue stars, and the location of the embedded TAL1 motif is
indicated by a red star. For SHAP, a background of 20 shuffled versions of the original sequence was used.
The relatively poor performance of ISM and deltaSVM is due to the nonlinear nature of the RBF kernel.

The remaining sequences contained either just embedded GATA1 motifs, just embedded TAL1 motifs,
or neither embedded TAL1 nor embedded GATA1 motif, and were labeled -1. 10% of sequences were
reserved for a testing set, while the remaining were used for training. A Support Vector Machine with a
gkmrbf kernel and parameters l = 6, k = 5 and d = 1 was trained to distinguish the positive set from the
negative set. It attained 90% auROC. A notebook demonstrating model training and interpretation is at
https://github.com/kundajelab/gkmexplain/blob/master/lsgkmexplain_TALGATA.ipynb.

Figure 2: Time taken to compute importance on a single sequence for various algorithms (log scale).
Evaluation was done on the model and data described in 5.1. For SHAP, a background of 20 shuffled versions
of the original sequence was used (the runtime of SHAP scales linearly in the product of the size of the
background and the number of samples).

Fig. 1 illustrates the behavior of different algorithms on a sequence containing 3 GATA1 motifs and 1 TAL1
motif. For deltaSVM and ISM, the importance of a position was computed as the negative of the mean impact
of all 3 possible mutations at that position (positions that produce negative scores when mutated will therefore
receive positive importance). The gkmexplain method successfully highlights all GATA1 and TAL1 motifs
present in the sequence. DeltaSVM performs very poorly, likely due to the nonlinear nature of the gkmrbf
decision function (the nonlinearity is needed to learn the logic that both GATA1 and TAL1 must be present in
the sequence for the output to be positive). ISM fails to clearly highlight some individual GATA1 motifs in
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this sequence, likely because the presence of multiple GATA1 motifs has a saturating effect on the nonlinear
decision function. To confirm this was not an isolated example of the failure of ISM, we compared the ability
of gkmexplain and ISM to identify the embedded motifs across 2000 examples, and found that gkmexplain
does indeed perform better (Fig. 3 & 4). SHAP shows promise at highlighting the relevant motifs, but only
when many perturbation samples are used. Unfortunately, when a large number of perturbation samples are
needed, SHAP has a very slow runtime compared to the other methods (Fig. 2).

Figure 3: gkmexplain outperforms ISM at identifying TAL1 motifs. A gkmrbf SVM was trained as
described in Sec. 5.1, but with a random heldout set of size 2000 rather than 800. The 2000 heldout
examples were scanned using 16bp windows (the length of the TAL1_known1 motif). Windows containing
a complete embedded TAL1_known1 motif were labeled positive. Windows containing no portion of any
embedded motif were labeled negative. All other windows were excluded from analysis. Windows were
ranked according to the total importance score produced by the importance scoring method in question, and
AuROC and AuPRC were computed. The gkmexplain method outperforms ISM on both metrics. The dashed
red line shows the performance of a random classifier.

Figure 4: gkmexplain outperforms ISM at identifying GATA1 motifs. Analogous to Fig. 3, but using
10bp windows (the length of the GATA1 motif) rather than 16bp windows.

As further confirmation that gkmexplain was able to detect the embedded TAL1 and GATA1 motifs, we
supplied gkmexplain-derived importance score profiles across all sequences in the positive set a new motif
discovery method called TF-MoDISco [14]. Briefly, TF-MoDISco identifies subsequences (termed “seqlets”)
of high importance in all the input sequences, builds an affinity matrix between seqlets using a cross-
correlation-like metric, clusters the affinity matrix, and then aggregates aligned seqlets in each cluster to
form consolidated motifs. TF-MoDISco accepts both importance score profiles as well as “hypothetical”
importance score profiles of multiple sequences. Hypothetical importance scores can be intuitively thought of
as revealing how the classifier might respond to seeing alternative bases at any given position in a sequence.
For gkmexplain, we derived these hypothetical scores using the method described in Appendix A.2. We
also normalized the scores as described in Appendix A.2.1. The resulting motifs are shown in Fig. 5. We
find that TF-MoDISco is able to learn motifs that closely match the true embedded motifs.

5.2 NFE2 in vivo Transcription Factor binding models

We also studied the performance of gkmexplain on a gkmSVM model trained on ChIP-seq data for the
NFE2 transcription factor in Gm12878. The model and example sequences were directly obtained from the
published lsgkm repository [10]. The model was trained using a wgkm kernel with l = 10, k = 6 and d = 3
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Figure 5: Motifs extracted by running TF-MoDISco on gkmexplain importance scores successfully
recovers ground-truth simulated motifs. Letter heights are proportional to the information content of the
probabilities across the different bases at that position.

to discriminate 644 variable-length DNA sequences that overlap NFE2 ChIP-seq peaks in GM12878 from an
equal number of genomic background sequences matched for GC-content and repeat-fraction. Gkmexplain
importance scores were then computed on the 644 positively-labeled training sequences and 69 positively-
labeled test sequences that shipped with the repository. Scores on a few example sequences are shown in
Fig. 6. The results of TF-MoDISco are in Fig. 7. TF-MoDISco successfully recovers the top two motifs
for NFE2 identified using traditional motif discovery methods [1, 16], as well as some evidence of a motif
dimer. A notebook reproducing the results is at https://github.com/kundajelab/gkmexplain/blob/
master/lsgkmexplain_NFE2.ipynb.

Figure 6: Gkmexplain importance scores on example NFE2-bound sequences.

Figure 7: NFE2 motifs derived using TF-MoDISco. Letter heights are proportional to the information
content of the probabilities across the different bases at that position.“Seqlets” are subsequences of high
importance that are used by TF-MoDISco to create motifs [14]. The number of seqlets contained within each
TF-MoDISco motif is indicated; motifs with a larger number of seqlets are more reliable.

5.3 Predicting regulatory genetic variants affecting DNase hypersensitivity

We trained models using the lsgkm package [8] on a DNase-seq dataset in the GM12878 lymphoblastoid
cell-line. The training dataset is publicly downloadable from the deltaSVM website [3]. It consists of a
single positive set containing 22,384 300bp sequences that overlapped DNase hypersensitive peaks, and
five independently-generated negative sets that each matched the size, length distribution, GC-content and
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repeat-fraction of the positive set. One gkm-SVM and one gkmrbf-SVM were trained for each choice of
negative set. For the gkm-SVM and gkmrbf-SVM, we used the parameter settings l = 10, k = 6 and d = 3,
consistent with the deltaSVM paper. For gkmrbf-SVM, we further set the regularization parameter c to 10
and the gamma value g to 2, as suggested by the lsgkm documentation [10]. Remaining values were left to
the lsgkm defaults.
To assess whether gkmexplain could be used to quantify the functional impact of regulatory genetic vari-
ants, we used the same benchmarking dataset of DNase I–sensitivity quantitative trait loci (dsQTLs) in
lymphomablastoid cell lines (LCLs) that was used in the deltaSVM paper [9, 5], consisting of 579 dsQTL
SNPs and 28,950 control SNPs. The dsQTL SNPs were each located within their associated 100bp DNase
hypersensitive peak and had an association p-value below 10−5, while the control SNPs each had minor allele
frequency above 5% and were randomly sampled from the top 5% of DNase hypersensitive sites.
We used 4 methods to score dsQTLs and control SNPs: deltaSVM applied to the gkm-SVM, deltaSVM
applied to the gkmrbf-SVM, in-silico mutagenesis (ISM) applied to the gkmrbf-SVM, and gkmexplain
mutation impact scores (Sec. 4.2) applied to the gkmrbf-SVM. For ISM and gkmexplain, a window of
51bp centered on the SNP was used as context. Results are shown in Fig. 8. Across the models trained
on the 5 independent negative sequence sets, gkmexplain consistently produces the best auPRC (binomial
p-value = 0.55 = 0.03125). Interestingly, we found that deltaSVM applied to the gkmrbf-SVM consistently
produced better auRPC than deltaSVM applied to the gkm-SVM, even though Lee found that deltaSVM did
not produce improvements when used with the gkmrbf kernel [8], possibly due to differences in the dataset
and parameter settings. Results for auROC are in Appendix A.3.

Figure 8: Gkmexplain Mutation Impact Scores Outperform deltaSVM and ISM at identifying dsQTLs.
For each choice of negative set provided in the deltaSVM paper, we trained a gkm-SVM and gkmrbf-SVM.
LCL dsQTLs and control SNPs were then scores using four methods: deltaSVM on the gkm-SVM, deltaSVM
on the gkmrbf-SVM, ISM on the gkmrbf-SVM and gkmexplain Mutation Impact Scores (Sec. 4.2) on the
gkmrbf-SVM. For ISM and gkmexplain, a 51bp window centered around the SNP was used as context. The
gkmexplain mutation impact scores consistently produce the best auPRC across all 5 choices of the negative
set (binomial p-value = 0.55 = 0.03125).

6 Conclusion

We have presented gkmexplain, an algorithm based on Integrated Gradients that can be used to efficiently
explain the predictions of a Support Vector Machine trained with various gapped k-mer string kernels. On
simulated data, we showed that our method outperforms ISM and deltaSVM when used with a nonlinear
gapper k-mer kernel such as the gkmrbf kernel (Fig. 1, 3 & 4), while being far more computationally
efficient than ISM or SHAP (Fig. 2). We further demonstrated that importance scores derived through
gkmexplain can be supplied to TF-MoDISco [14] to perform motif discovery (Fig. 5 & 7). On a DNAse-I
hypersensitivity QTL dataset derived from lymphomablastoid cell lines, we found that gkmexplain Mutation
Impact Scores consistently produced better auPRC than ISM or deltaSVM (Fig. 8). Finally, we note that the
idea of using Integrated Gradients to interpret SVMs is not limited to genomics; it can be applied to other
kinds of data, as illustrated in Appendix A.4.
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A Appendices

A.1 Derivation of Equations 9 and 12

This section derives the formulas present in Sec. 4.1 using the method of Integrated Gradients.
Applying the definition of Path Integrated Gradients from Eqn. 8 to the objective function for SVMs in Eqn.
1 we get:

SVM_PIGπ
i ::=

∫ β=1

β=0

m∑
j=1

αjy
j ∂K(Zj , π(β))

∂πi(β)

dπi(β)

dβ
dβ (19)

As mentioned earlier, the primary hurdle when applying Integrated Gradients to support vector machine
string kernels is that the formula for Integrated Gradients requires the kernel function K to be differentiable.
Because DNA sequence is discrete, most string kernels are not differnentiable. To circumvent this issue, we
introduce vector of variables ηSx where each element ηSx

i can be interpreted as the “intensity” of the base
at position i of sequence Sx. Let Six denote the identity of base i in sequence Sx, let l be the length of the
l-mers, and let 1{Six = Sjx} be an indicator function that takes the value of 1 if Six = Sjx and 0 otherwise.
We rewrite the wgkm kernel between an input sequence Sx and a support vector sequence Sz as a function of
ηSx as follows:

K
(Sx,Sz)
wgkm (ηSx) =

∑
i

∑
j

wiwjh(fm(uSx
i , uSz

j ))∥∥∥fSx
wgkm

∥∥∥∥∥∥fSz
wgkm

∥∥∥
l−1∑
k=0

ηSx
i+k1{S

i+k
x = Sj+kz }

l − fm(uSx
i , uSz

j )

 (20)

When ηSx
i = 1 for all i, K(Sx,Sz)

wgkm (ηSx) is equal to Kwgkm(Sx, Sz).

Recall that wiwjh(fm(uSx
i , uSz

j )) is the contribution of the l-mer pair (uSx
i , uSz

j ) to 〈fSx
wgkm, f

Sz
wgkm〉. In the

expression above, wiwjh(fm(uSx
i , uSz

j )) is scaled according to the total intensity of all the l − fm(uSx
i , uSz

j )

matching bases between uSx
i and uSz

j .

Let len(Sx) be a function that returns the length of the sequence Sx. Because Eqn. 20 is differentiable, we

can compute the partial derivative
∂K

(Sx,Sz)
wgkm (ηSx )

∂ηSx
i

as:

∂K
(Sx,Sz)
wgkm (ηSx)

∂ηSx
i

=

min(i,len(Sx)−(l−1))∑
j=max(i−(l−1),0)

∑
k

(
wkwjh(fm(uSx

j , uSz
k ))

‖fSx‖‖fSz‖
1{Six = S

k+(i−j)
z }

l − fm(uSx
j , uSz

k )

)
(21)

Intuitively, the expression looks at each l-mer uSx
j in Sx that overlaps position i, compares it to every l-mer

uSz
k in Sz , and increments the gradient proportionally to wiwjh(fm(uSx

j , uSz
k )) only if the base at position

(i− j) in uSx
j is a match to the corresponding base in uSz

k . Note that the number of l-mers in sequence Sx is
(len(Sx)− (l − 1))

Rewriting the formula for Path Integrated Gradients in Eqn. 19 using the differentiable reparameterization
in Eqn. 20, we get:

wgkm_SVM_PIG(π,Sx)
i ::=

∫ β=1

β=0

m∑
j=1

αjy
j
∂K

(S
zj
,Sx)

wgkm (π(β))

∂πi(β)

dπi(β)

dβ
dβ (22)

If we now consider the path πi(β) = β (i.e. if we linearly scale the intensities ηSx
i uniformly between 0 and

1), we would have dπi(β)
dβ = 1. This choice of path is the standard “Integrated Gradients” path. Because the
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partial derivative in Eqn. 21 is constant with respect to ηSx
i , simplifying the expression above results in

the formula for the importance of individual bases in a wkgm SVM that was presented earlier in Eqn. 9,
reproduced below for convenience:

wgkm_SVM_IGSx
i =

m∑
j=1

αjy
jcwgkm

Sx,Szj

i (23)

Where Szj , αj and yj are, respectively, the sequence, weight and label of support vector j, and:

cwgkmSx,Sz

i ::=

min(i,len(Sx)−(l−1))∑
j=max(i−(l−1),0)

∑
k

 wjwk∥∥∥fSx
wgkm

∥∥∥∥∥∥fSz
wgkm

∥∥∥eff(fm(uSx
j , uSz

k ), Six, S
k+(i−j)
z )

 (24)

Where Six is the identity of the base at position i in sequence Sx and

eff(m,Bx, Bz) ::=

{
h(m)
l−m if Bx = Bz
0 otherwise

(25)

For the case of the wgkmrbf kernel (Eqn. 7), we once again reparameterize the kernel in terms of ηSx
i as

follows:

K
(Sx,Sz)
wgkmrbf(η

Sx) = exp
(
γ(K

(Sx,Sz)
wgkm (ηSx)− 1)

)
(26)

By the chain rule, we get:

∂K
(Sx,Sz)
wgkmrbf(η

Sx)

∂ηSx
i

= γ
∂K

(Sx,Sz)
wgkm (ηSx)

∂ηSx
i

exp
(
γ(K

(Sx,Sz)
wgkm (ηSx)− 1)

)
(27)

As before, we consider the path πi(β) = β (i.e. we linearly scale the intensities ηSx
i uniformly between 0 and

1). From Eqn. 20, we note that K(Sx,Sz)
wgkm (ηSx) is linear in the values of ηSx

i . Thus, we can write:

wgkmrbf_SVM_IGSx
i =

∫ β=1

β=0

m∑
j=1

αjy
jγ
∂K

(Sx,Sz)
wgkm (ηSx)

∂πi(β)
exp
(
γβKwgkm(Sx, Sz)− γ

)
dβ

Recall that
∂K

(Sx,Sz)
wgkm (ηSx )

∂πi(β)
is constant with respect to πi(β). After performing the integral with respect to β,

we obtain Eqn. 12, reproduced below for convenience:

wgkmrbf_SVM_IGSx
i =

m∑
j=1

αjy
jcwgkmrbf

Sx,Szj

i (28)

Where

cwgkmrbfSx,Sz

i =
cwgkmSx,Sz

i

Kwgkm(Sx, Sz)
(exp

(
γ(Kwgkm(Sx, Sz)− 1)

)
− exp(−γ)) (29)
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A.2 Hypothetical importance scores

For motif discovery with TF-MoDISCo [14], it is useful to have hypothetical importance scores in addition to
the true importance scores. The hypothetical importance score of base B at position i estimates the preference
of the classifier for seeing base B at position i instead of the base that is actually present at position i. If base
B is the same as the base that is actually present in the sequence at position i, the hypothetical importance
score is defined to be the same as the actual importance score. As an example, suppose a particular TF
has high affinity to the sequences GATAAT and GATTAT and low affinity to the sequences GATCAT and
GATGAT. If the sequence GATAAT is presented to a classifier trained to predict binding sites of the TF, the
hypothetical importance assigned to base T in the 4th position would be positive, as would be the (actual)
importance assigned to base A in the 4th position. By contrast, the hypothetical importance scores assigned
to C and G in the 4th position would be negative. To compute hypothetical importance scores, we first define
the quantity hcwgkmSx,Sz

i,B∗ (analogous to cwgkmSx,Sz

i in Eqn. 10) as follows:

hcwgkmSx,Sz

i,B∗ ::=

min(i,len(Sx)−(l−1))∑
j=max(i−(l−1),0)

∑
k

 wjwk∥∥∥fSx
wgkm

∥∥∥∥∥∥fSz
wgkm

∥∥∥heff(fm(uSx
j , uSz

k ), Six, S
k+(i−j)
z , B∗)

 (30)

where

heff(m,Bx, Bz, B∗) ::=


h(m)
l−m if Bx = Bz and Bz = B∗

h(m−1)
l−(m−1) if Bx 6= Bz and Bz = B∗

0 otherwise

(31)

By analogy to equations 9 and 12, we then define the hypothetical contribution scores for base B∗ at position
i in sequence Sx as follows:

wgkm_SVM_hIGSx
i,B∗ =

m∑
j=1

αjy
jhcwgkm

Sx,Szj

i,B∗ (32)

and

wgkmrbf_SVM_hIGSx
i,B∗ =

m∑
j=1

αjy
jhcwgkmrbf

Sx,Szj

i,B∗ (33)

where

hcwgkmrbfSx,Sz

i =
hcwgkmSx,Sz

i

Kwgkm(Sx, Sz)
(exp

(
γ(Kwgkm(Sx, Sz)− 1)

)
− exp(−γ)) (34)

The hypothetical importance scores are useful for motif discovery with TF-MoDISco because different in-
stances of a motif that have variations in their underlying sequence may nonetheless have similar hypothetical
importance scores because the hypothetical importance scores impute the importance on all possible bases
that could be present (and not just the bases that happen to be present in the specific instance of the motif). If
the goal is to infer the impact of individual mutations rather than to perform motif discovery, the Mutation
Impact Scores (described in Sec 4.2) would be more appropriate.
Hypothetical importance scores can be efficiently computed by modifying the k-mer tree depth-first search
originally used to compute the output of the gkm-SVM (see our implementation at https://github.com/
kundajelab/lsgkm). While the original implementation only performs recursion on l-mer pairs for which
no more than d mismatches have been encountered so far, in order to get the most accurate hypothetical
importance scores we should perform recursion on l-mer pairs for which we may have encountered d+ 1
mismatches because a mutation can flip a mismatching position to a match. However, the additional layer
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of recursion can increase runtime substantially. In practice, we found that hypothetical importance scores
derived by only considering recursions on l-mer pairs with up to d mismatches work well, and that is what
we used in this paper.

A.2.1 Normalization of scores for TF-MoDISco

Empirically, we found that the following normalization of the importance scores produces improved results
with TF-MoDISco. Let fh(Sx, i, B

∗) be a function that returns the hypothetical importance of base B∗ at
position i in sequence Sx, and let Six be the base at position i in sequence Sx. To normalize the hypothetical
importance scores at position i, we divide by the sum of all hypothetical scores at position i with the same
sign as fh(Sx, i, S

i
x). The rationale is that if a different base at position i could produce a score of higher

magnitude than Six, then Six is relatively less important. Let 1{x > 0} be an indicator function that returns 1
if x is positive and 0 otherwise. Formally, the normalized hypothetical importance for base B∗ at position i is
defined as:

f̄h(Sx, i, B
∗) ::=

fh(Sx, i, B
∗)fh(Sx, i, S

i
x)∑

B′ fh(Sx, i, B′)1{(fh(Sx, i, B′)fh(Sx, i, Six)) > 0}
(35)

Similarly, we define the normalized importance score as:

f̄i(Sx, i) ::= f̄h(Sx, i, S
i
x) (36)

We find that the normalized importance scores appear to be less noisy relative to the unnormalized importance
scores, as illustrated in Fig. A1.

Figure A1: Normalization of gkmexplain importance scores for TF-MoDISco. A gkmrbf SVM was
trained as described in Sec. 5.1. Shown are unnormalized gkmexplain importance scores (top row),
normalized hypothetical importance scores (Eqn. 35), and normalized importance scores (Eqn. 36) on a
single sequence. The blue star indicates the location of an embedded GATA1 motif (GATAAG), and the
red star indicates the location of an embedded TAL1 motif (CAGATG). The normalized importance scores
appear less noisy than the unnormalized importance scores.
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A.3 AuROC on dsQTL data

Performance in terms of auROC on the dsQTL dataset is shown in Fig. A2. Although gkmexplain gives a
weaker auROC than ISM in 4 out of 5 cases, the difference is not statistically significant (possibly owing to
the small number of samples; binomial p-value = 0.1875). We note that when negatives greatly outnumber
positives, auPRC is generally considered a more useful performance metric than auROC. We also note that
gkmexplain consistently outperforms deltaSVM.

Figure A2: AuROC for dsQTL identification. Analogous to Fig. 8, but showing auROC instead of auPRC.
The gkmexplain and ISM methods consistently outperform deltaSVM.
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A.4 Integrated Gradients for interpreting other non-linear SVM models

To explore the general applicability of Integrated Gradients to SVM interpretation beyond genomics, we
used the MADELON dataset [2]. This dataset has a training set of 2000 examples and a validation set of
600 examples, all with 500 features, of which 20 features are informative and the remaining are “distractor"
features with no predictive power. Because the Gaussian SVM had a strong tendency to overfit to the full
dataset, we created 10 reduced feature sets, each with the same set of examples in the training and validation
sets, but with 20 likely informative features (identified based on the challenge submission results) and a
different set of 20 distractor features in each set. Each of these 10 sets served as a distinct data point on which
to evaluate the accuracy of the importance scoring algorithm in question (Integrated Gradients or SHAP).
Each feature in each set was normalized by subtracting the average feature value and dividing by the standard
deviation. We trained Gaussian kernel SVM on each of the datasets and achieved approximately 0.8 accuracy
on the validation set. These classifiers were then provided to the importance scoring algorithms.
When applying Integrated Gradients, we used a reference that was the average feature value of the negative
labeled training points and approximated the integration of the partial derivatives using 10 linearly-spaced
intermediate points between each test point and the reference. With SHAP, we experimented with 10 and 50
samples around the test points using the same reference as was used for IG. We judged the quality of each im-
portance scoring algorithm by feeding the top 10 most important features reported by the algorithm to a Gaus-
sian kernel SVM and measuring the SVM’s accuracy on the validation set. The results are shown in Figure A3.
Integrated Gradients is significantly faster than SHAP and tends to be more accurate than when SHAP is used
with a small number of perturbation samples. With a larger number of perturbation samples, SHAP is more ac-
curate, though it is still slower. A notebook demonstrating how to use Integrated Gradients on a non-genomic
dataset is at https://colab.research.google.com/drive/1LUGMIwOHLKDdK3deg7IIZ71kb2Nu1qv2.

Figure A3: Comparison of Integrated Gradients with SHAP for Gaussian kernel SVM interpretation
on the Madelon dataset. Dashed lines indicate means. IG appears to be pareto optimal in the sense that it
can provide more accurate results faster than compared to SHAP used with a small number of perturbation
samples.

17

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/457606doi: bioRxiv preprint 

https://colab.research.google.com/drive/1LUGMIwOHLKDdK3deg7IIZ71kb2Nu1qv2
https://doi.org/10.1101/457606
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Background
	Gapped k-mers
	Support Vector Machines and Gapped k-mer Kernels
	Extensions of the gkm kernel
	The wgkm kernel
	The gkmrbf kernel
	The wgkmrbf kernel


	Previous Work
	Methods
	Integrated gradients for gapped k-mer SVMs
	Intuitive motivation

	Mutation Impact Scores

	Results
	Simulated regulatory DNA sequences
	NFE2 in vivo Transcription Factor binding models
	Predicting regulatory genetic variants affecting DNase hypersensitivity

	Conclusion
	Appendices
	Derivation of Equations  9 and  12
	Hypothetical importance scores
	Normalization of scores for TF-MoDISco

	AuROC on dsQTL data
	Integrated Gradients for interpreting other non-linear SVM models


