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ABSTRACT  

Human DNA varies across geographic regions, with most variation observed so far reflecting distant 

ancestry differences. Here, we investigate the geographic clustering of genetic variants that influence 

complex traits and disease risk in a sample of ~450,000 individuals from Great Britain. Out of 30 traits 

analyzed, 16 show significant geographic clustering at the genetic level after controlling for ancestry, likely 

reflecting recent migration driven by socio-economic status (SES). Alleles associated with educational 

attainment (EA) show most clustering, with EA-decreasing alleles clustering in lower SES areas such as 

coal mining areas. Individuals that leave coal mining areas carry more EA-increasing alleles on average 

than the rest of Great Britain. In addition, we leveraged the geographic clustering of complex trait 

variation to further disentangle regional differences in socio-economic and cultural outcomes through 

genome-wide association studies on publicly available regional measures, namely coal mining, 

religiousness, 1970/2015 general election outcomes, and Brexit referendum results.  

 

INTRODUCTION  

The first law of geography states that “everything is related to everything else, but near things are more 

related than distant things”.1 Humans living near each other tend to share more ancestry with each other 

than with humans that live further away, which is reflected in genome-wide patterns of genetic variation 

on a global scale2 and on finer scales.3-5 Regional differences in allele frequencies are driven by genetic 

drift (i.e., the random fluctuations of allele frequency each generation), natural selection pressures, 

migrations, or admixture (i.e., two previously isolated populations interbreeding). Out of these four 

mechanisms, genetic drift is the only mechanism not expected to disproportionately affect genetic 

variants that are associated with heritable human traits. Natural selection targets heritable traits over 

extended periods of time, thereby affecting allele frequencies of the genetic variants that are associated 

with the traits under selection. Earlier studies have identified natural selection pressures on many trait-

associated variants by looking for extreme allele frequency differences between different ancestries.3,6,7 

Migration is behavior, and since most behavioral traits have heritable components,8 migration is likely to 

be associated with genetic variants that influence behavior. Long-distance migratory events may in turn 

result in admixture. Internal migrations (i.e., migrations within countries) may lead to geographic 

clustering of trait-associated genetic variants beyond the clustering of ancestry and may occur for a variety 
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of reasons. They may be driven by the search for specific neighborhood, housing, and inhabitant 

characteristics, and/or socio-economic factors (e.g., education or job-related considerations),9 such as the 

mass migrations from rural to industrial areas during the industrialization.10 These geographic movements 

may coincide with regional clustering of heritable social outcomes such as socio-economic status and 

major group ideologies (e.g., religion11 and political preference12).   

Understanding what drives the geographic distribution of genome-wide complex trait variation is 

important for a variety of reasons. Studying regional differences of genetic variants associated with 

complex traits that reflect education, wealth, growth, health, and disease, may help understand why those 

traits are unevenly distributed across Great Britain. Besides the known regional differences in income and 

SES, significant regional differences have been reported for mental13 and physical14 health problems. 

Regional differences in wealth and health are likely linked to each other,15-17 and have been shown to be 

partly driven by migration.14,18 If genome-wide complex trait variation is geographically clustered, this 

should also be taken into account in certain genetically-informative study designs. Mendelian 

randomization for example uses genetic variants as instrumental variables to identify causality, under the 

assumption that the genetic instrument is not associated with confounders that influence the two traits 

under investigation.19 Geographic clustering of genetic complex trait variation could introduce gene-

environment correlations that violate this assumption.20 Such gene-environment correlations could also 

introduce bias in heritability estimates in twin and family studies,21 and could affect signals from genome-

wide association studies (GWASs). Furthermore, studying the genetics of migration and geographically 

clustered cultural phenomena that are related to how society is organized, such as SES, political 

preference, and religiosity, may help us to further understand regional differences beyond what can be 

learned from standard observational data. For example, as we will show in this study using a novel regional 

GWAS approach, we can compute genetic correlations between these clustered social phenomena and a 

wide range of other traits for which GWASs have been conducted through their GWAS summary 

statistics.22 This can teach us about how these regional differences are related to traits that have not been 

measured in the same dataset.   

In this study, we first investigate whether genome-wide complex trait variation is geographically 

clustered after accounting for ancestry differences; if so, this may reflect the genetic consequences of 

more recent (internal) migration events. In addition, we investigate whether genome-wide complex trait 

variation is sufficiently clustered to capture the heritability of regional cultural outcomes such as coal 

mining, religiousness, and political preference by conducting GWASs on publicly available regional 

measures. We will then utilize the genetic signals from these GWASs to estimate genetic correlations 

between the regional measures and a wide range of complex traits. 

 

DATA AND ANALYSIS  

We investigated the geographic clustering of ancestry and complex trait variation using genome-wide 

single-nucleotide polymorphism (SNP) data from ~450,000 British individuals of European ancestry from 

the UK Biobank project.23 Ancestry within Great Britain was captured by conducting a principal component 

analysis (PCA)24 on genome-wide SNPs, a method that has been shown to successfully capture ancestry 

differences within relatively homogeneous populations.3 Genome-wide complex trait variation was 

captured by polygenic scores, which are created by weighting an individual’s alleles by the estimated 

allelic effects on the trait of interest and then summing the weights, resulting in predictive scores for each 
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individual. We built polygenic scores for 456,426 individuals from 1,312,100 autosomal SNPs using effect 

estimates from 30 published GWASs on traits related to psychiatric disease, substance use, personality, 

body composition, cardiovascular disease, diabetes, reproduction, and educational attainment (see 

Supplementary Table 1). Importantly, the 30 GWASs that produced the effect estimates did not include 

UK Biobank participants.25 Geographic clustering of genetic variation was then investigated using 320,940 

unrelated individuals and their birthplace by testing whether the spatial autocorrelation (Moran’s I) is 

significantly greater than zero for ancestry-informative principal components (PCs), polygenic scores, and 

the residuals of polygenic scores after regressing out the first 100 PCs. The spatial autocorrelation 

(Moran’s I) is the correlation in a measure among nearby locations in space, and its values range between 

-1 (dispersed) to 0 (spatially random) to 1 (spatially clustered).26 Supplementary Figure 1 shows geographic 

locations of UK Biobank participants. Furthermore, we test whether polygenic scores that showed 

significant geographic clustering were associated with an index of economic deprivation of the 

neighborhood (the Townsend index) and migration into or out of the most economically deprived regions 

(coal mining areas), while accounting for ancestry differences (100 PCs).  

 We subsequently investigate whether geographic clustering of genome-wide complex trait 

variation is associated with regional cultural outcomes by running genome-wide association analyses on 

coal mining, regional estimates of the proportion of religious vs non-religious inhabitants, election 

outcomes of the Brexit referendum and of the 1970 & 2015 general elections. We estimate the degree to 

which these regional differences share genetic influences with a range of traits related to cognitive ability, 

socio-economic status (SES), personality, behavior, substance use, mental and physical health, well-being, 

reproduction, and body composition.  

 For more detailed descriptions of the data and analyses, see Online Methods. 

 

 

Figure 1: The geographic distributions (birthplace) of the first five PCs, Moran’s I and empirical p-values for Moran’s I. P-values 
denoted in green are significant after Bonferroni correction. 

 

GEOGRAPHIC CLUSTERING OF GENOME-WIDE ANCESTRY AND COMPLEX TRAIT VARIATION  

In line with earlier studies,5 British ancestry showed significant geographic clustering: the first 100 genetic 

PCs all show Moran’s I statistics that are greater than 0, with 72 PCs showing an empirical p-value < .0005, 

the Bonferroni corrected threshold, and 95 PCs showing an empirical p-value < .05. Many PCs roughly 

capture the differentiation between Scotland, England, and Wales (see Figure 1 for the first 5 PCs; see 
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https://holtzyan.shinyapps.io/UKB_geo/ for maps of all 100 PCs). The geographic distributions of the 

ancestry differences captured by the PCs are likely to reflect consequences of historical demographic 

events.5 These include old population movements and settlements, followed by generations of relatively 

isolated (sub)populations that went through genome-wide allele frequency differentiation through 

genetic drift and, perhaps, differential natural selection pressures.   

Without controlling for ancestry, 27 out of the 30 polygenic scores tested showed a Moran’s I 

significantly greater than 0, indicating significant geographic clustering (Figures 2 & 3, see 

https://holtzyan.shinyapps.io/UKB_geo/ for maps of all polygenic scores). Only age at menarche, 

agreeableness, and caffeine consumption were not significantly geographically clustered. Many clustered 

polygenic scores showed geographic distributions that were similar to the ancestry differences captured 

by the PCs. After regressing out the 100 ancestry-informative PCs, 16 polygenic scores remained 

significantly geographically clustered with FDR correction, with educational attainment (EA) showing the 

highest Moran’s I (before PC correction: Moran’s I = .57, empirical p < 10-4; after PC correction: Moran’s I 

= .51, empirical p < 10-4; see Figures 3 & 4).  

It has been argued that geographic clustering of complex trait genetic variation in UK Biobank is 

due to (subtle) ancestry differences or ascertainment bias.27 We discuss in more detail in the 

Supplementary Material why these are unlikely to be the sole explanations of our observations 

(paragraph: Population Stratification and Ascertainment Bias). In the next paragraph, we explore the more 

likely explanation, namely recent internal SES-related migrations.  

 

 

Figure 2: Geographic distribution (birthplace) and Moran’s I values for polygenic scores of four major psychiatric disorders (based 
on GWASs from the Psychiatric Genomics Consortium (PGC): schizophrenia28, bipolar29, MDD30, and ADHD31) and alcohol use32 
before (top row) and after (bottom row) regressing out 100 ancestry-informative PCs. Green p-values are significant after FDR 
correction.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/457515doi: bioRxiv preprint 

https://holtzyan.shinyapps.io/UKB_geo/
https://holtzyan.shinyapps.io/UKB_geo/
https://doi.org/10.1101/457515
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

A       B  
Figure 3: Moran’s I of 30 SBLUP polygenic scores computed using the average polygenic score per region in 378 local authority 
regions. A shows the Moran’s I of the polygenic scores unadjusted for PCs (red) and adjusted for 100 PCs (green), where orange 
means a significant FDR corrected p-value < .05 (corrected for 30 tests). B shows the distribution of significant Moran’s I statistics 
from 10,000 permutations that were conducted to obtain an empirical p-value for Moran’s I. The vertical line to the right of the 
permutation distribution shows the observed Moran’s I of the actual data.  

 

 
Figure 4: Geographic distribution (birthplace) of the educational attainment (EA) polygenic scores before and after regressing out 
100 PCs, and the geographic distribution of Townsend indices from 1971 and 2011. The black lines indicate coal mining areas. 

 

CONSEQUENCES OF SES-RELATED MIGRATION  

The geographic clustering of genome-wide trait-associated alleles after correcting for 100 PCs possibly 

reflects migration events that occurred more recently than the pre-modern demographic events that 

drove the regional ancestry differences captured by the PCs. Given the exceptionally strong geographic 

clustering of the EA score, we investigate here whether it reflects relatively recent internal migrations due 

to SES-related factors, which are known to especially motivate longer distance moves.33 Two types of 

migration flows may have affected the geographic clustering of SES-related alleles: 1) laborers and farmers 

leaving the country-side during the Industrial Revolution to work in the geographically clustered industrial 

jobs,10 and 2) more recent migration of higher-educated people, or people seeking a higher education, 

out of the more economically deprived industrial regions.  
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Much of the energy necessary for the mass-production that characterized the birth of the 

Industrial Revolution came from coal mines. The presence of coal and iron ore attracted large numbers of 

manual laborers. The Industrial Revolution and the later deindustrialization had a great impact on the 

economy of the coal mining areas.34 The decline of the British coal industry began in the 1920s, and nearly 

the whole industry has closed since the early 1980s, resulting in major job losses that still remain visible 

in unemployment rates decades later.35 Economic deprivation is widespread in coal mining areas: 43% of 

neighborhoods from coal mining areas fall into the 30% most economically deprived.34 In our analysis, 

coal mining areas show more economic deprivation than the rest of Great Britain from 1971 to 2011 as 

measured with the Townsend index36 (higher Townsend = more economic deprivation; all FDR corrected 

p-values < 10-32; see Figure 4 & Supplementary Figure 6). All regions have become less economically 

deprived over time, but the difference between coal mining areas and the rest remains highly significant.  

After correcting for ancestry differences (100 PCs), the Townsend index is significantly associated 

with the 16 geographically clustered polygenic scores, with the strongest associations for EA (higher EA 

polygenic score = lower Townsend index; see Supplementary Figures 7 & 8). These 16 polygenic scores 

also all show significant differences between coal mining areas and the rest of the regions, both based on 

birth place and current address (Supplementary Figure 9), with EA showing the strongest differences (FDR 

corrected p-value < 10-200). We further compared ancestry-corrected polygenic scores between four 

groups of unrelated individuals: 1) people born in coal mining areas who moved out of coal mining areas 

(N=35,024), 2) people born outside of coal mining areas and still live outside of coal mining areas 

(N=129,298), 3) people born outside of coal mining areas who moved into coal mining areas (N=47,505), 

and 4) people born in coal mining areas who still live in coal mining areas (N=111,838). ANOVAs for all 16 

geographically clustered polygenic scores show significant differences between the four groups (Figure 

5), with EA showing the largest and most significant differences (F3,323661 = 687.3, FDR corrected p-value < 

10-200). The largest differences were between people born in coal mining areas who moved away versus 

those who remained in the coal mining areas. The people that moved away have significantly higher EA 

polygenic scores than all other groups combined (t43923 = 19.8, p = 9 × 10-87), while those that remained 

have significantly lower EA polygenic scores than all other groups combined (t230220 = 44.6, p < 10-200). The 

degree of geographic clustering of polygenic scores, as measured by Moran’s I, is significantly correlated 

with the strength of their associations with Townsend, coal mining areas, and migration groups; the 

strongest correlations were between Moran’s I and the F statistic of the migration group differences: r = 

.95, p = 2 × 10-8 including EA and r = .73, p = .002 excluding EA (Supplementary Figure 10).  

To get a better sense of the scale of regional differences in polygenic scores, and of how these 

change due to migration, we computed how much of the individual differences are explained by regional 

differences for both birthplace and current address (Supplementary Figure 15). The regional differences 

are greatest for the EA polygenic score, with about ~0.6-2.6% of individual differences being explained by 

regional differences, depending on how fine the regional scale is (the finer the scale, the more individual 

differences explained) and by whether the calculations are based on the birthplace or the current address. 

Regional differences are ~38-54% greater for the current address than for birthplace. The increase in 

variation explained by regional differences for the EA score (i.e., difference between birthplace and 

current address in % variance explained by region) is greater than the total variance explained by region 

for any other polygenic score. As would be expected from recent migration events, ancestry shows the 

opposite effect: comparing birthplace to current address, the variance explained by region has on average 

decreased by 37-73% for the first 30 PCs (Supplementary Figure 16). 
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Figure 5: The average and standard errors of the 16 geographically clustered polygenic scores (ordered by Moran’s I) for four 
migration groups: born in coal field area and moved out, born in coal mining area and stayed, born outside of coal mining area 
and moved to coal mining area, born outside of coal mining area and stayed out. All polygenic scores shown are standardized 
residuals after regressing out 100 ancestry-informative PCs. ANOVAs were conducted for every polygenic score to test the presence 
of group differences, which were all significant with the least significant FDR corrected p-value of 1 × 10-4 for conscientiousness. 

 

GENOME-WIDE ASSOCIATION STUDIES ON REGIONAL OUTCOMES 

The geographic clustering of socio-economic resources and associated genetic variants may 

coincide with a range of regional collective views and attitudes. We examined this by leveraging the 

geographic clustering of genome-wide complex trait variation with GWASs on regional socio-economic 

and cultural outcomes, whereby all participants from the same region were assigned the same regional 

value as a phenotype (from here-on referred to as regional GWASs). The regional GWASs were run on the 

>400,000 UK Biobank participants, corrected for relatedness, age, sex, and ancestry (100 PCs). We first 

verified whether the approach works by running a regional GWAS on a regional measure of educational 

attainment (EA), obtained from census data, which showed genetic signals almost identical to an 

individual-level EA GWAS that excluded UK Biobank37 (see Supplementary Materials). We then ran 

regional GWASs on the presence of coal in an area and regional measures of major ideological factors 

known to cluster geographically, namely religiousness11 and political preference12. The regional socio-

economic and cultural outcomes were defined as follows: whether the individual was born/lives in a coal 

mining area, the proportion of religious vs non-religious inhabitants in their region (based on current 

address), the proportion of “Leave” votes and non-voters  in the 2016 Brexit referendum (current 

address), the proportion of non-voters and votes in the individuals’ constituency for three major UK 

parties in the UK 1970 general elections (based on birthplace) and the five major UK parties in the UK 

2015 general elections (current address). We used the genome-wide summary statistics of the regional 

GWASs to estimate genetic correlations with a wide range of complex traits using LD score regression, a 
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method that computes genetic correlations based on GWAS summary statistics without bias from sample 

overlap or ancestry differences.22 We summarize the main results on their (genetic) relationship with 

other complex traits below, and additional results in the Supplementary Materials. 

The regional outcomes showed striking and often highly significant genetic correlations with a 

wide range of other traits (Figure 6). EA, IQ, and age at first birth showed significant genetic correlations 

with every regional outcome. Overall, the strongest genetic correlations were observed for cognition & 

SES-related traits (IQ, EA, income, and Townsend). These suggest that the election outcomes can be 

divided roughly into higher SES and lower SES regions, with Green Party, Liberal Democrats, and 

Conservative regions containing more alleles associated with higher SES trait values, and the Labour Party, 

UKIP, “Leave” votes for Brexit, and non-voters reflecting regions with more alleles associated with lower 

SES trait values. The election outcomes that are genetically associated with higher cognition and SES 

outcomes generally also show negative genetic correlations with disease risk outcomes (ADHD, MDD, 

smoking, alcohol dependence, heart disease, type-2 diabetes, BMI, longevity, and self-rated health), 

except for alcohol consumption, cannabis use, autism, and psychiatric disorders that are characterized by 

delusions (schizophrenia, bipolar, anorexia), for which the genetic association is the other way around 

(higher SES = higher risk). The genetic correlations were largely similar between election outcomes and 

the coal mining regions, likely due to the same systematic regional SES differences. A different pattern 

was observed for the proportion of religious inhabitants, which showed weaker genetic correlations with 

the SES related traits (cognition and health) and stronger associations with the two personality dimensions 

that showed significant geographic clustering in our previous analyses, openness and conscientiousness 

(more religious people = lower openness and higher conscientiousness). Risk taking, schizophrenia, and 

autism also show the highest genetic correlations with being religious (more religious people = lower 

genetic risk).   

The signals were largely consistent within parties over time (1970 & 2015) with respect to SES, 

but UKIP and Green Party did not yet exist in 1970. The genetic correlations between regional 

religiousness and the 1970 & 2015 election outcomes suggest that UKIP regions include former Labour 

Party regions with a more religious genetic profile (lower openness, higher conscientiousness), while the 

Green Party regions include former Conservative regions with a more non-religious genetic profile (higher 

openness, lower conscientiousness).  

The genetic correlations between the regional outcomes were much stronger than the phenotypic 

correlations, and in some instances in opposite directions: Labour Party 2015 & Green Party (negative 

genetic, positive phenotypic correlation), Conservative Party 2015 & Green Party (positive genetic, 

negative phenotypic correlation), Conservative Party 2015 & Brexit (negative genetic, positive phenotypic 

correlation). A possible explanation is that the part of the regional variation that is explained by genetic 

differences is mostly related to regional socio-economic status (lower SES associated alleles in Labour and 

Brexit areas, higher SES in Conservative and Green areas), while environmental factors, which are 

responsible for most of the regional variation, are more characterized by ideology (Labour and Green 

areas being more left-wing, Conservative and Brexit more right-wing). 
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Figure 6: Genetic correlations based on LD score regression. Colored is significant after FDR correction. The green numbers in the left part of the Figure below the diagonal of 1’s 
are the phenotypic correlations between the regional outcomes of coal mining, religiousness, and regional political preference. The blue stars next to the trait names indicate that 
UK Biobank was part of the GWAS of the trait. See Supplementary Figure 23 for the standard errors and Supplementary Table 4 for the list of GWASs that the summary statistics of 
the complex traits were derived from. 
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DISCUSSION 

Understanding the consequences of DNA variation in human populations is of major importance for 

medical, biological, forensic, behavioral, and anthropological research. Since we have been able to 

measure DNA at a sequence level, studies have shown that the geographic distributions of alleles are not 

random and have mapped striking geographic patterns of ancestry.2,3,5,38 Here, we investigated geographic 

patterns of genome-wide complex trait variation and show that there are additional levels of genetic 

geographic clustering beyond the geographic patterns that reflect older ancestry differences. We show 

that the geographic clustering of genome-wide trait-associated alleles is related to recent geographic 

movement of people and that the resulting regional genetic patterns are associated with regional socio-

economic and cultural outcomes.   

Without controlling for ancestry, almost all traits we examined showed significant geographic 

clustering, often resembling the geographic patterns of ancestry differences within Great Britain. This 

indicates that either 1) the allele frequencies were differentiated between the different ancestries due to 

genetic drift or natural selection, and/or 2) the GWASs that produced the SNP effect estimates did not 

sufficiently control for ancestry differences, resulting in SNP effect estimates that are biased towards 

certain ancestral backgrounds. When we control for ancestry, 16 polygenic scores remain significantly 

clustered by geography. The strongest clustering was observed for EA. Among the rest of the 

geographically clustered traits are body dimensions, personality dimensions, and physical and mental 

health traits, which may reflect independent influences of them on non-random migration, and/or 

clustering that is (partly) driven by a genetic overlap with EA. The geographic clustering of complex trait 

variation seems to have increased due to relatively recent migration which is disrupting the older 

geographic patterns of ancestry (Supplementary Figures 15 & 16).  

The degree of geographic clustering of the polygenic scores is largely in line with the strength of 

their relationship with regional economic deprivation and migration out of economically deprived regions 

(Supplementary Figure 10). People are more likely to migrate to improve their skills or employment 

prospects than for other area characteristics.9 Many industrialized countries showed these types of 

migration flows during the late 19th and early 20th century, where poorer laborers and small farmers left 

the country-side to work in industrial jobs that were often highly clustered in geographic space (e.g., coal 

mining areas).12 After the deindustrialization, the dense, durable, and affordable working-class houses 

and the public transportation networks from the industrial revolution remained in these neighborhoods 

and continued to attract poorer immigrants.12 Our results show that people with a genetic predisposition 

for higher cognitive abilities are leaving these regions, likely attracted by better educational or 

occupational opportunities in other regions. In fact, the people who were born in coal mining areas and 

migrated to better neighborhoods have higher average EA polygenic scores than people born outside of 

these regions. The regional clustering of cognitive abilities that follows may further affect the economic 

development of neighborhoods. These demographic processes may influence GWAS signals as well, 

where alleles that increase the chances of living in the unhealthy circumstances of lower SES 

neighborhoods may become part of the signal of a GWAS for a trait like BMI or body fat. There are for 

example significantly more McDonald’s restaurants in lower SES neighborhoods in Great Britain.39 This 

may be part of the explanation for why four out of the top five geographically clustered polygenic scores 

are related to body weight. 
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 Selective migration has led to geographic clustering of social and economic needs, which can 

coincide with collective attitudes towards how communities should be organized and governed. We 

successfully captured heritability signals for regional religiousness and regional political attitudes, both of 

which have been shown to be partly heritable on an individual level40-45 and to cluster geographically11,12. 

From a regional genetic perspective, the election outcomes can be roughly divided into lower SES and 

higher SES electorates. Our findings suggest that the previously reported heritability estimates of these 

traits on an individual level may contain genetic effects on traits, such as EA, that influence which socio-

economic strata and geographic regions people end up living in. Regional religiousness shows higher 

genetic correlations with personality (openness and conscientiousness) and less with the SES and health 

traits than the political parties do, which implies additional dimensions of geographic clustering beyond 

high versus low SES.  

Our findings may largely reflect genetic consequences of social stratification, a key characteristic 

of human civilizations whereby society groups their people into strata based on SES. SES is generally based 

on occupation, income, and educational attainment, which are influenced by many environmental and 

genetic factors, and are associated with a wide range of physical and mental health outcomes. 

Socioeconomic status is not distributed randomly across geographic space, which leads to geographic 

clustering of alleles that are associated with SES-related traits such as educational attainment. Educational 

attainment is known for its high levels of assortative mating,46,47 which may be further induced by 

geographic clustering. This may affect social inequalities across generations through expanding biological 

inequalities in cognitive abilities and susceptibility to disease. It is possible that the combination of recent 

increases in social mobility and an improved educational system accelerates this separation of higher and 

lower genetic predisposition for traits related to cognition, SES, and health. Even though the genetic 

effects we find explain only part of the observed regional differences, researchers and social policy makers 

should keep these effects in mind, as they seem to be growing due to migration and can lead to detectable 

regional differences in health and social and economic success. For example, the significant genetic 

correlations between educational attainment and traits related to disease risk or body composition may 

decrease in the presence of stronger social safety nets that are geared towards making inhabitants of 

lower SES regions live more economically prosperous and healthier lives. Social policies that increase the 

quality of life in lower SES regions may also help to decrease migration out of the currently more 

economically deprived regions by people with genetic predispositions for higher SES outcomes, and 

thereby possibly result in a less geographically stratified society.  
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ONLINE METHODS 

 

Participants 

The participants of this study come from UK Biobank (UKB),23 which has received ethical approval from 

the National Health Service North West Centre for Research Ethics Committee (reference: 11/NW/0382). 

A total of 502,655 participants aged between 37 and 73 years old were recruited in the UK between 2006 

and 2010. They underwent a wide range of cognitive, health, and lifestyle assessments, provided blood, 

urine, and saliva samples, and will have their health followed longitudinally.  

 

Genotypes and QC 

A total of 488,377 UKB participants had their genome-wide single nucleotide polymorphisms (SNPs) 

genotyped on either the UK BiLEVE array (N = 49,950) or the UK Biobank Axiom Array (N = 438,423). The 

genotypes were imputed using the Haplotype Reference Consortium (HRC) panel as a reference set (pre-

imputation QC and imputation are described in more detail in Bycroft et al, 2018).48 To create polygenic 

scores, we extracted a set of 1,312,100 autosomal HapMap 3 (HM3) SNPs with minor allele count (MAC) 

> 5, info score > 0.3, pHWE < 10-6, and missingness < .05. For the genome-wide association study, we used 

5.8 million SNPs that survived QC and have a MAF > .01. 

 

Ancestry & Principal Component Analysis 

To capture British ancestry, we first excluded individuals with non-European ancestry. Ancestry was 

determined using Principal Component Analysis (PCA) in GCTA49. The UKB dataset was projected onto the 

first two principal components (PCs) from the 2,504 participants of the 1000 Genomes Project,50 using 

HM3 SNP with minor allele frequency (MAF) > 0.01 in both datasets. Next, participants from UKB were 

assigned to one of five super-populations from the 1000 Genomes project: European, African, East-Asian, 

South-Asian, or Admixed. Assignments for European, African, East-Asian, and South-Asian ancestries were 

based on > 0.9 posterior-probability of belonging to the 1000 Genomes reference cluster, with the 

remaining participants classified as Admixed. Posterior-probabilities were calculated under a bivariate 

Gaussian distribution where this approach generalizes the k-means method to take account of the shape 

of the reference cluster. We used a uniform prior and calculated the vectors of means and 2x2 variance-

covariance matrices for each super-population. A total of 456,426 subjects were identified to have a 

European ancestry.  

A PCA was then conducted on individuals of European ancestry in order to capture ancestry 

differences within the British population. In order to capture ancestry differences in homogenous 

populations, genotypes should be pruned for LD and long-range LD regions removed.3 The LD pruned (r2 

< .1) UKB dataset without long-range LD regions consisted of 137,102 genotyped SNPs. The PCA to 

construct British ancestry-informative PCs was conducted on this SNP set for unrelated individuals using 

flashPCA v2.51 PC SNP loadings were used to project the complete set of European individuals onto the 

PCs. 
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Polygenic Scores 

Polygenic scores, the genome-wide sum of alleles weighted by their estimated effect sizes, were 

computed for 30 traits. The effect size estimates were obtained from genome-wide association studies 

(GWASs) that were chosen to not have included the UKB dataset to avoid over-estimation of the genetic 

predisposition of a trait.25 The polygenic scores were computed using the SBLUP approach,46 which 

maximizes the predictive power by creating scores with best linear unbiased predictor (BLUP) properties  

that account for linkage disequilibrium (LD) between SNPs. As a reference sample for the LD, we used the 

a random sample of 10,000 unrelated individuals from UK Biobank that were imputed using the Haplotype 

Reference Consortium (HRC) reference panel.52 The traits included psychiatric disorders, substance use, 

anthropomorphic traits, personality dimensions, educational attainment, reproduction, cardiovascular 

disease, and type-2 diabetes. Supplementary Table 1 lists the 30 traits and the GWASs from which we 

obtained the genome-wide effect sizes. 

To further investigate the robustness of our results, we also created polygenic scores using only 

independent SNPs that were associated with the trait with a p-value < .05. The SNPs were clumped using 

PLINK53, using an r2 threshold of 0.1 and a window of 1 Mb as the physical distance threshold for clumping.  

In order to examine the geographic clustering of polygenic scores beyond the clustering of 

ancestry, we created additional sets of polygenic scores that had the first 100 British ancestry-informative 

PCs regressed out.  

 

Spatial autocorrelations (Moran’s I) 

The geographic clustering of ancestry and of genome-wide complex trait variation was investigated by 

testing whether the spatial autocorrelation (Moran’s I) is significantly greater than zero for ancestry-

informative principal components (PCs), polygenic scores, and the residuals of polygenic scores after 

regressing out 100 ancestry-informative PCs. The spatial autocorrelation (Moran’s I) is the correlation in 

a measure among nearby locations in space, and its values range between -1 (dispersed) to 0 (spatially 

random) to 1 (spatially clustered).26 Moran’s I’s were computed using the average PCs or polygenic scores 

per region based on the birthplace of the subjects (378 regions, see Figure 1), whereby the regions were 

defined according to the local authorities division as provided by the UK Data Service InFuse database.54 

The empirical p-values of Moran’s I statistics were derived with 10,000 permutations in which the average 

PCs or polygenic scores were permuted across regions (Figure 3B). 

 

Regional genome-wide association studies (GWASs) 

Genome-wide association studies (GWASs) were run on publicly available regional outcomes, whereby all 

subjects from the same regions had the same regional phenotypic value assigned. Supplementary Figure 

16 & 21 show the distributions of all phenotypes analyzed, except for the coal mining phenotypes, which 

were binary traits (47% of the participants were born in a coal mining area, and 50% of the participants 

currently live in a coal mining area). The regional phenotypes were obtained from the following public 

resources: 
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- The borders of a total of 208 coal mining regions were obtained from the Coal Authority: 

https://data.gov.uk/dataset/coal-mining-reporting-area  

- The regional educational attainment for 342 local districts and for 7,195 Middle Super Output 

Areas (MSOA) was measured as the 2011 estimates of the highest qualification of residents of 

England >16 years old (5 levels: level 1 qualifications, level 2 qualifications, apprenticeship, level 

3 qualifications, level 4 qualifications) was obtained from the Nomis database of the Office of 

National Statistics: https://www.nomisweb.co.uk/   

- The proportion of religious vs non-religious inhabitants were obtained for 7,195 Middle Super 

Output Areas (MSOA) regions from the Nomis database of the Office of National Statistics: 

https://www.nomisweb.co.uk/   

- The 2016 Brexit referendum results were obtained for 405 Local Authority Districts from The 

Electoral Commision: https://www.electoralcommission.org.uk/find-information-by-

subject/elections-and-referendums/past-elections-and-referendums/eu-

referendum/electorate-and-count-information  

- The 1970 general election outcomes were obtained for 630 constituencies from Political Science 

Resources: http://www.politicsresources.net/area/uk/ge70/ge70index.htm  

- The 2015 general election outcomes were obtained for 633 constituencies from 

data.parliament.uk: http://www.data.parliament.uk/dataset/general-election-2015 

All political parties were included that had a median proportion of votes > 0. 

We ran linear mixed model (LMM) GWASs with BOLT-LMM55 on participants with European 

ancestry, which controls for cryptic relatedness and population stratification by including a genetic 

relatedness matrix (GRM) in the model.56 Sex and age were included as covariates, as were the first 100 

PCs as an additional control for population stratification. The results revealed a considerable inflation of 

test statistics that was not due to polygenic effects (this was captured by the LD score intercepts57 shown 

in Supplementary Table 2). This is likely due to the fact that participants that share regional environmental 

influences, because they come from the same region, are all assigned the same phenotypic value. We 

controlled for this inflation with an LD score intercept-based genomic control,57 i.e., we adjusted the 

standard errors (SE) of the estimated effect sizes as follows: 𝑆𝐸𝐺𝐶 =  √𝐿𝐷𝑆𝐶 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ∗  𝑆𝐸2  (see 

Supplementary Table 2).   

 

LD Score Regression  

We partitioned the polygenic contributions to the heritability across genomic regions associated with 

histone modifications specific to ten cell-type/tissue groups using stratified LD score regression58  

(Supplementary Figure 23). Genetic correlations were also computed using LD-score regression (Figure 

6).58 The genetic correlation between traits is based on the estimated slope from the regression of the 

product of z-scores from two GWASs on the LD score and represents the genetic covariation between two 

traits based on all polygenic effects captured by the included SNPs. The genome-wide LD information used 

by these methods were based on European populations from the HapMap 3 reference panel.57,58 All LD 

score regression analyses included the 1,290,028 million genome-wide HapMap SNPs used in the original 

LD score regression studies.57,58  
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Computing genetic correlations with LD score regression is robust to sample overlap, so we 

included summary statistics from GWAS studies that also included UK Biobank (denoted with a blue star 

in Figure 6). Where possible however, we decided to display results obtained from summary statistics 

without UK Biobank, even if the GWASs from the original studies included UK Biobank participants. This 

was the case for MDD30 and educational attainment37, for which we used the same summary statistics 

that we used for the polygenic scores, namely from the GWASs that were re-run excluding UK Biobank. 

The genetic correlations for MDD and educational attainment obtained with the summary statistics that 

did include UK Biobank however were almost identical.  
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GENOME-WIDE ASSOCIATION STUDIES ON REGIONAL OUTCOMES (ADDITIONAL RESULTS) 

In order to empirically validate the approach, we first ran regional GWASs on regional measures of average 

EA outcomes as obtained from census data, namely the weighted average of 2011 estimates of the highest 

qualification of residents >16 years old, obtained from the Office for National Statistics (Supplementary 

Figure 16). This resulted in genetic signals that were very close to those of an individual-level EA GWAS 

that excluded UK Biobank.37 Most significant SNPs in the regional GWAS were at least nominally significant 

in the individual level GWAS and their effect sizes correlate .93 (Supplementary Figure 18). The genetic 

correlation between the regional EA GWAS and the individual level EA GWAS was .90, and the genetic 

correlations with 64 other complex traits were almost identical between the regional and individual level 

EA GWASs (r = .99, Supplementary Figures 19 & 20). 

For the regional GWASs conducted on the presence of coal in the area, religiousness, and political 

preference, there were a total of 12 independent SNPs with p < 5 × 10-8 and 5 independent SNPs with p < 

1 × 10-8 (Supplementary Figure 22 & Supplementary Table 3). The variance that could be accounted for by 

all SNPs (i.e., SNP heritability) ranged from 0.3% to 2.4% (see Supplementary Table 2), with the highest 

(≥2%) observed for Brexit, Green Party, UKIP, and non-voters in 2015. The heritability signals were 

significantly enriched for genetic variants that are active in hormonal pathways for the Green Party, and 

in the central nervous system for the Green Party, UKIP, 2015 non-voters, and Brexit (Supplementary 

Figure 23). 

Regions with more non-voters genetically show a lower SES profile (i.e., strong negative genetic 

correlations with cognition and SES-related traits) and the largest positive genetic correlations with 

regions with more Labour party votes, up to .96 between the 2015 non-voters and the 2015 Labour voters. 

The 2015 non-voters regional GWAS shows the highest SNP heritability of the non-voters GWASs (2.2%). 

The genetic correlations also imply that regions with more non-voters and Labour voters show more risk-

increasing alleles for mood-related traits (i.e., more MDD, higher neuroticism, more loneliness, and lower 

wellbeing), and no significant genetic correlation with conscientiousness, as opposed the other lower SES 

regions with more votes for UKIP and “Leave” votes for Brexit, which show a significant positive genetic 

correlation with conscientiousness.  

In order to further examine what differentiates the parties within the higher SES and lower SES 

clusters from each other, we repeated the regional GWASs for the proportion of votes among only the 

Green Party, Liberal Democrats, and Conservatives votes, and the proportion of votes among only Labour 

Party and UKIP votes. The correlations with religiousness were consistently higher and more often 

significant for the differences within the higher and lower SES voters than the differences between them 

(Supplementary Figure 24). The genetic signals that differentiate Green Party regions from the other 

higher SES votes show the highest genetic correlation with regional religiousness (more Green Party votes 

= less religious: rg = -.82, SE = .06). What differentiates Liberal Democrats from the other higher SES parties 

still seems to be largely SES-related, given the high positive genetic correlation with EA and income (both 

.77). The lower SNP heritability estimates of the within SES differences (0.3% - 1.2%, compared to 1.1% - 

2.4%, see Supplementary Table 2) suggest that the differences within the higher and lower SES voters are 

less influenced by regional genetics than the differences between them.  
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POPULATION STRATIFICATION AND ASCERTAINMENT BIAS 

 

Population Stratification 

The largest patterns of genome-wide variation between and within human populations are due to 

differences in ancestry rather than trait variation. In genetic association studies, false positives due to 

population stratification occur when these systematic ancestry differences get mistaken for associations 

due to genetic variants that influence the trait that is being studied.59 False positives due to population 

stratification can occur when trait differences are in line with ancestry differences, which could also occur 

due to non-genetic factors, such as regional differences in environmental exposures. Geographic location 

is known to strongly correlate with ancestry differences: the closer people live to each other, the more 

likely it is that they share more ancestors. The main focus of this study is the relationship between 

geographic location and genome-wide complex trait variation, which is why we had to be particularly 

rigorous in accounting for population stratification. We summarize below why it is unlikely that our 

observations are merely a result of ancestry differences or biased polygenic scores.  

- The most widely used approach to account for ancestry differences is to quantify ancestry differences 

with a principal component analysis (PCA) on genome-wide SNP data and then account for the resulting 

principal components (PCs).24,59 Instead of using the standard 40 PCs provided by UK Biobank, which 

capture both non-European and European ancestry differences,48 we re-computed PCs to more 

effectively capture population stratification within the more homogeneous group of British participants 

with European ancestry (see Online Methods). While genome-wide association studies (GWASs) usually 

control for 10 to 40 PCs, we controlled for the first 100 PCs in all our analyses.  

- We validated the effectiveness of the 100 PCs in accounting for geographic clustering due to population 

stratification using polygenic scores that reflect European ancestry differences as captured in an 

independent European-American dataset: the GERA cohort.60 First, we conducted GWASs in GERA (N = 

51,258) on the first 20 GERA PCs in order to get SNP effects that reflect genome-wide patterns of their 

European-American ancestry differences. We then used these SNP effects to build polygenic scores in 

UK Biobank. These all show significant geographic clustering as quantified with Moran’s I. After 

controlling for 100 PCs from UKB all Moran’s I’s dropped to being not significantly greater than 0 (see 

Online Methods and Supplementary Figures 3 and 4). 

- The polygenic scores we analyzed were constructed from 1,312,100 autosomal SNPs, regardless of how 

significantly associated they are with the trait. The ensemble of non-significant SNPs contain a 

substantial amount of signals due to true causal relationships, and thus meaningful effect sizes, which 

increase the predictive power of polygenic scores.61 Increasing the number of non-associated SNPs 

however may also increase the chances of including more stratified SNPs in the polygenic score. We 

therefore created a set of additional polygenic scores using only independent SNPs (i.e., clumped) that 

were at least nominally significantly associated with the trait at p < .05. This results in scores that are 

based on fewer SNPs that are more reliably associated with the trait, but also results in less predictive 

scores. With this approach, 8 out of 16 previously significant traits are significantly geographically 

clustered after FDR correction (see Supplementary Figure 2). These geographically clustered clumped 

scores also showed similar and significant associations with Townsend (Supplementary Figures 11 & 

12), coal mining regions (Supplementary Figure 13) and migration out of coal fields (Supplementary 

Figures 14), with educational attainment showing the strongest effects. 
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- We show that the geographically clustered polygenic scores are significantly associated with regional 

outcomes of economic deprivation and with migration out of the more economically deprived regions 

in the UK (coal mining regions). The strength of the geographic clustering is in line with the strength of 

the association with regional outcomes and, more importantly, migration (Supplementary Figure 10). 

In other words, 1) the traits that show significant geographic clustering are the traits that cluster in 

specific regions that are characterized by lower SES measures, and 2) we show that the processes that 

would result in these regional differences are measurable in the current dataset, namely migration out 

of the lower SES regions by individuals with a higher predisposition for SES-related traits such as higher 

educational attainment and lower body weight. Although these observations do not directly prove that 

ancestry differences cannot account for this geographic clustering, it does show that if subtle 

population stratification would be the cause of these regional differences (which is unlikely given our 

stringent control for ancestry differences), it would have to involve ancestry differences that are in line 

with genome-wide complex trait variation.  

- SNPs that are in LD with many SNPs are more likely to tag a causal SNP (i.e., be correlated with a causal 

SNP), and are thus more likely to have a higher test-statistic in a GWAS. The amount of SNPs that is 

tagged by a SNP is quantified by its LD Score. LD Score regression is an approach that leverages the 

relationship between the LD score of a SNP and the GWAS test statistic to distinguish inflation of 

genome-wide test statistics due to variants that influence the complex trait under study from inflation 

due to confounding bias such as population stratification.57 LD Score regression analyses show that the 

results from our regional GWASs all show an inflation of test statistics that is partly due to confounding 

(likely shared environmental influences) but also contains a considerable inflation due to variants that 

are associated with complex trait variation that is being captured with the regional measures. LD Score 

regression was then used to compare the parts of the genetic signals that were due to causal variants 

between our regional GWASs and GWASs from a wide range of other complex traits. Importantly, LD 

Score regression showed that the signals from our regional GWAS on EA contained almost the same 

signals as an individual level GWAS on EA that was conducted on non-UK Biobank datasets, which is in 

line with the geographic clustering of genome-wide alleles that have a causal influence on EA. 

 

Ascertainment Bias 

The UK Biobank ascertainment strategy was designed to capture sufficient variation in socioeconomic, 

urban–rural, and ethnic background.23 The participation rate however was 5.45% and was biased towards 

older, more healthy, and female residents.62 The UK Biobank sample does reflect nationally representative 

data sources to a significant degree, making it likely that our observations would generalize to the 

population at large. We tested at the MSOA level how EA measurements in UK Biobank compare to 

nationally representative census data (the same EA census measurements that we used for the regional 

EA GWAS). The average EA per MSOA region as measured in UK Biobank is strongly predictive of MSOA-

EA as measured from the nationally representative census data (p < 10-16, R2 = 40%; Supplementary Figure 

5). The average polygenic scores per MSOA region, with 100 PCs regressed out, are also highly predictive 

of MSOA-EA according to nationally representative census data (p < 10-16, R2 = 19%; Supplementary Figure 

5). Since UK Biobank has sampled healthier individuals as well as fewer individuals from more 

economically deprived areas as compared to the British population as a whole,62 the regional differences 

that we report may turn out to be stronger in the real population than in the UK Biobank sample.  
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Supplementary Table 1: Overview of GWASs that provided the effect size estimates that were used to compute polygenic scores 

Trait Name NGWAS Ncases Ncontrols Neffective h2
SNP LDSC Intercept 

Educational Attainment37 217,569 - - 217,569 .10 1.02 
Personality:       
Openness63,64 76,551 - - 76,551 .10 .95 
Conscientiousness63,64 76,551 - - 76,551 .08 .96 
Extraversion63,64 76,600 - - 76,600 .14 .92 
Agreeableness63,64 76,548 - - 76,548 .07 .96 
Neuroticism63,64 76,581 - - 76,581 .09 .94 
Psychiatric Traits:       
Schizophrenia28 150,064 36,989 113,075 111,486.6 .18 1.05 
Bipolar29 63,766 11,974 51,792 38,902.1 .14 1.02 
Anorexia65 14,477 3,495 10,982 10,605 .22 1.01 
Autism66 46,350 18,381 27,969 44,366.62 .11 1.01 
Alzheimer67 54,162 17,008 37,154 46,668.5 .08 1.04 
ADHD31 55,374 20,183 35,191 51,306.4 .21 1.03 
MDD30 431,394 116,404 314,990 161,089.68 .08 1.01 
Substance Use:       
Alcohol Use32 70,493 - - 70,493 .05 1.02 
Smoking (ever vs never)68 74,035 41,969 32,066 72,710.4 .12 1.00 
Smoking (cigs per day)68 38,181 - - 38,181 .06 1.01 
Smoking (current/former)68 41,278 23,969 17,309 40,203.4 .09 1.01 
Smoking (age at onset)68 24,114 - - 24,114 .06 1.00 
Cannabis (ever vs never)69  32,330 14,387 17,943 31,938.9 .13 1.00 
Caffeine70 91,462 - - 91,462 .04 1.01 
CAD & Diabetes:       
Coronary Artery Disease71 86,995 22,233 64,762 66,204 .28 .87 
Type-2 Diabetes72 69,033 12,171 56,862 40,100.7 .18 1.01 
Reproduction:       
Age at Menarche73 87,802 - - 87,802 .24 .98 
Age at Menopauze74 69,360 - - 69,360 .13 .99 
Antropomorphic traits:       
Height75 253,280 - - 253,280 .31 1.33 
BMI76 322,154 - - 322,154 .13 .67 
Body Fat77 100,716 - - 100,716 .10 .91 
Waist Circumference78 232,101 - - 232,101 .13 .76 
Hip Circumference78 213,038 - - 213,038 .14 .78 
Waist-to-hip-ratio78 212,248 - - 212,248 .10 .84 
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Supplementary Table 2: Sample sizes and LD score regression results for the regional GWASs before and after LDSC-intercept based genomic control. 

  Before Genomic Control After Genomic Control (LDSC 
intercept=1; ratio=0) 

Regional Phenotype N SNP-h2 (SE) % lambda LDSC intercept (SE) ratio SNP-h2 (SE) % lambda 

2011 - Educational attainment (local authorities) 402,552 4.1 (.25) 1.49 1.22 (.01) .39 (.02) 3.3 (.20) 1.23 
2011 - Educational attainment (MSOA) 416,061 7.5 (.29) 1.63 1.14 (.01) .18 (.01) 6.6 (.25) 1.44 

Coal Fields (Birth Place) 422,757 1.5 (.20) 1.56 1.43 (.01) .77 (.02) 1.0 (.12) 1.07 
Coal Fields (Current Address) 449,972 2.1 (.18) 1.43 1.25 (.01) .55 (.02) 1.7 (.13) 1.14 

2011 - Proportion of non-religious individuals 416,061 1.2 (.17) 1.31 1.19 (.01) .67 (.03) 1.0 (.13) 1.08 

2016 - Brexit  446,910 3.0 (.22) 1.56 1.31 (.01) .52 (.02) 2.3 (.16) 1.19 
2016 - Non-voters 446,910 1.3 (.17) 1.20 1.12 (.01) .50 (.04) 1.2 (.14) 1.09 

1970 - Labour Party (centre-left) 422,189 2.3 (.22) 1.49 1.30 (.01) .60 (.02) 1.8 (.15) 1.14 
1970 - Liberal Democrats (centre) 207,045 0.9 (.30) 1.15 1.12 (.01) .75 (.05) 0.8 (.25) 1.04 
1970 - Conservative and Unionist Party (centre-right) 421,940 1.6 (.18) 1.37 1.27 (.01) .66 (.02) 1.3 (.13) 1.10 
1970 - Non-voters 422,415 0.6 (.17) 1.31 1.28 (.01) .83 (.02) 0.5 (.12) 1.04 

2015 - Green Party of England and Wales (left-wing) 449,553 2.2 (.16) 1.25 1.08 (.01) .27 (.03) 2.0 (.14) 1.18 
2015 - Labour Party (centre-left) 449,553 1.8 (.19) 1.37 1.22 (.01) .57 (.02) 1.4 (.14) 1.13 
2015 - Liberal Democrats (centre) 449,553 1.2 (.15) 1.20 1.08 (.01) .42 (.05) 1.1 (.14) 1.09 
2015 - Conservative and Unionist Party (centre-right) 449,553 1.5 (.17) 1.31 1.17 (.01) .56 (.03) 1.2 (.14) 1.11 
2015 - UKIP (right-wing) 449,553 3.1 (.21) 1.56 1.29 (.01) .50 (.02) 2.4 (.15) 1.20 
2015 - Non-voters 449,553 2.6 (.19) 1.43 1.19 (.01) .43 (.02) 2.2 (.15) 1.19 

2015 - Green/(Green+Liberals+Conservative) 449,553 1.2 (.14) 1.15 1.06 (.01) .31 (.04) 1.2 (.13) 1.11 
2015 - Liberals/(Green+Liberals+Conservative) 449,553 0.3 (.12) 1.10 1.08 (.01) .72 (.07) 0.3 (.11) 1.03 
2015 - Conservative /(Green+Liberals+Conservative) 449,553 0.9 (.13) 1.15 1.08 (.01) .51 (.05) 0.8 (.11) 1.07 

2015 - Labour/(UKIP+Labour) 449,553 0.7 (.14) 1.20 1.15 (.01) .70 (.04) 0.6 (.11) 1.05 
2015 - UKIP/(UKIP+Labour) 449,553 0.7 (.14) 1.20 1.15 (.01) .70 (.04) 0.6 (.11) 1.05 
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Supplementary Table 3: Independent SNPs with p < 5 × 10-8, with independence based on an r2 threshold of 0.1. 

Election Phenotype SNP Chr BP (hg19) p-value MAF Gene 

Coal Mining (Birth Place) rs143252507 17 19970702 2.5 × 10-8 .01 SPECC1 

2016 - Brexit  rs7613360 3 49916710 9.3 × 10-10 .40 ACTBP13 
 rs1050450 3 49394834 2.5 × 10-8 .31 GPX1 
 rs6130360 20 42010996 3.1 × 10-8 .15  

1970 - Labour Party (centre-left) rs7159181 14 39229004 1.4 × 10-8 .44 LINC00639 

2015 - Green Party of England and Wales (left-wing) rs2624838 3 50205642 8.3 × 10-10 .34 SEMA3F 
 rs13135092 4 103198082 1.1 × 10-9 .08 SLC39A8 

2015 - Conservative and Unionist Party (centre-right) rs61278749 10 106577845 3.0 × 10-8 .13 SORCS3 

2015 - UKIP (right-wing) rs9827708 3 49649989 2.4 × 10-11 .30 BSN 
 rs2624848 3 50165101 2.0 × 10-8 .44  

2015 – Non-voters rs7548936 1 91207757 8.4 × 10-11 .37  
 rs79003713 5 138135234 3.6 × 10-8 .06 CAP102 
Bold: p < 1 × 10-8 
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Supplementary Table 4: Overview of GWASs that provided the effect size estimates that were used to compute genetic 

correlations with regional GWASs using LD score regression.  

Trait Name NGWAS Ncases Ncontrols Neffective h2
SNP LDSC Intercept 

Cognition and SES:       
Childhood IQ79  12,441 - - 12,441 .28 1.00 
Adult IQ80  78,308 - - 78,308 .19 1.02 
Educational Attainment37 217,569 - - 217,569 .10 1.02 
Income81  112,151 - - 112,151 .06 1.03 
Townsend81  112,151 - - 112,151 .04 1.01 
Personality:       
Openness63,64 76,551 - - 76,551 .10 .95 
Conscientiousness63,64 76,551 - - 76,551 .08 .96 
Extraversion63,64 76,600 - - 76,600 .14 .92 
Agreeableness63,64 76,548 - - 76,548 .07 .96 
Neuroticism63,64 76,581 - - 76,581 .09 .94 
Other Psychology:       
Subjective Well-being82  298,420 - - 298,420 .03 1.00 
Tiredness83  108,976 - - 108,976 .07 .99 
Loneliness84  332,991 - - 332,991 .08 1.01 
Risk Taking84  332,991 - - 332,991   
Psychiatric Traits:       
Schizophrenia28 150,064 36,989 113,075 111,486.6 .18 1.05 
Bipolar29 63,766 11,974 51,792 38,902.1 .14 1.02 
Anorexia65 14,477 3,495 10,982 10,605 .22 1.01 
Autism66 46,350 18,381 27,969 44,366.62 .11 1.01 
Alzheimer67 54,162 17,008 37,154 46,668.5 .08 1.04 
ADHD31 55,374 20,183 35,191 51,306.4 .21 1.03 
MDD30 431,394 116,404 314,990 161,089.68 .08 1.01 
Substance Use:       
Alcohol Consumption85  112,117 - - 112,117 .08 1.01 
Alcohol Dependence86 46,568 11,569 34,999 34,779.54 .18 1.02 
Smoking (ever vs never)68 74,035 41,969 32,066 72,710.4 .12 1.00 
Smoking (cigs per day)68 38,181 - - 38,181 .06 1.01 
Smoking (current/former)68 41,278 23,969 17,309 40,203.4 .09 1.01 
Smoking (age at onset)68 24,114 - - 24,114 .06 1.00 
Cannabis (ever vs never)69  32,330 14,387 17,943 31,938.9 .13 1.00 
Caffeine70 91,462 - - 91,462 .04 1.01 
Health & Longevity:       
Self-rated health87  111,749 - - 111,749   
Coronary Artery Disease71 86,995 22,233 64,762 66,204 .28 .87 
Type-2 Diabetes72 69,033 12,171 56,862 40,100.7 .18 1.01 
Age of Parents Death88  45,627 - - 45,627 .05 1.02 
Age of Fathers Death88  63,775 - - 63,775 .05 1.02 
Age of Mothers Death88  52,776 - - 52,776 .05 1.01 
Reproduction:       
Age at First Birth89  251,151 - - 251,151 .05 .96 
Nr of Children Ever Born89  343,072 - - 343,072 .02 .97 
Age at Menarche73 87,802 - - 87,802 .24 .98 
Age at Menopauze74 69,360 - - 69,360 .13 .99 
Antropomorphic:       
BMI76 322,154 - - 322,154 .13 .67 
Height75 253,280 - - 253,280 .31 1.33 
Body Fat77 100,716 - - 100,716 .10 .91 
Waist Circumference78 232,101 - - 232,101 .13 .76 
Hip Circumference78 213,038 - - 213,038 .14 .78 
Waist-to-hip-ratio78 212,248 - - 212,248 .10 .84 
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Supplementary Figure 1: The geographic locations of the UK Biobank participants (each dot represents a participant). The left map 
shows the current living address (N=497,673). The right plot shows the birth places (N=444,992). 
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A                   B   

Supplementary Figure 2: Moran’s I of 30 polygenic scores based on independent SNPs with p < .05. Moran’s I were computed using 
the average polygenic score per region in 378 local authority regions. A shows the Moran’s I of the polygenic scores uncorrected 
for PCs (red) and corrected for 100 PCs (green), where orange means a significant FDR corrected p-value < .05 (corrected for 30 
tests). B shows the permutation distributions for the SBLUP polygenic scores that have an FDR corrected p-value < .05 compared 
to the observed Moran´s I (vertical line to the right of the permutation distribution). 

 

 

Supplementary Figure 3: Geographic distribution and Moran’s I values for polygenic scores (PS) based on GWASs on the first 5 
ancestry-informative PCs from the GERA dataset. The upper five maps display uncorrected polygenic score, while the five maps 
below display the residuals of the polygenic scores after regressing out 100 PCs. Green p-values are significant after FDR correction.  
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Supplementary Figure 4: Moran’s I of polygenic scores based on GWASs on the first 5 ancestry-informative PCs from the GERA 
dataset computed using the average polygenic score per region in 378 local authority regions. The Figure shows the Moran’s I of 
the polygenic scores uncorrected for PCs (red) and corrected for 100 PCs (green), where orange means a significant FDR corrected 
p-value < .05 (corrected for 20 tests).  

 

 

Supplementary Figure 5: Regional educational attainment (EA) on MSOA level obtained from census data (Office of National 
Statistics) plotted against the average EA in UK Biobank corrected for age, year of birth, and sex (left plot; R2 = 40%) and EA 
polygenic scores corrected for 100 PCs (right plot; R2 = 20%). All measures have been standardized to have mean 0 and SD 1.  
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Supplementary Figure 6: The average Townsend indices from 1971 to 2011 for coal fields and regions without coal. 
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Supplementary Figure 7: The standardized regression coefficients and standard errors for the 16 geographically clustered 
polygenic scores (ordered by Moran’s I) of the associations with the Townsend indices of 1971 to 2011 of the birth places of the 
subjects (N = 349,982 unrelated subjects). All polygenic scores shown are standardized residuals after regressing out 100 PCs. * = 
p < .05, ** = p < .01, *** = p < .001. 
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Supplementary Figure 8: The standardized regression coefficients and standard errors for the 16 geographically clustered 
polygenic scores (ordered by Moran’s I) of the associations with the Townsend indices of 1971 to 2011 of the current address of 
the subjects (N = 349,982 unrelated subjects). All polygenic scores shown are standardized residuals after regressing out 100 PCs. 
* = p < .05, ** = p < .01, *** = p < .001.  
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Supplementary Figure 9: The average and standard errors for the 16 geographically clustered polygenic scores (ordered by 
Moran’s I) within coal mining regions vs the rest of Great Britain based on the birth place of the participants and on the current 
addresses separately. All polygenic scores shown are standardized residuals after regressing out 100 ancestry-informative PCs. 
The differences between Coal Fields and No Coal are all significant with an FDR corrected p-value < .05. 
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Supplementary Figure 10: Scatterplots showing the relationships between Moran’s I of the significantly clustering polygenic scores 
and their association with indicators of economic deprivation (Townsend and the presence of coal fields) and migration. A shows 
on the y-axis the absolute regression coefficients of the regressions with birthplace Townsend shown in Supplementary Figure 3. 
The correlations between the absolute regression coefficients and Moran’s I are .82 for 1971 (p = 9 × 10-5), .82 for 1981 (p = 9 × 
10-5), .78 for 1991 (p = 4 × 10-4), .75 for 2001 (p = 7 × 10-4), .77 for 2011 (p = 5 × 10-4). Excluding the outlier educational attainment, 
the correlations between the absolute regression coefficients and Moran’s I are .57 for 1971 (p = .03), .52 for 1981 (p = .04), .47 
for 1991 (p = .08), .42 for 2001 (p = .12), .46 for 2011 (p = .08). B shows on the y-axis the absolute test statistic of the t-test for 
group differences between coal fields and the rest of Great Britain (based on birth place) from Supplementary Figure 5. The 
correlation between the absolute test statistic and Moran’s I is 89(p = 9 × 10-12). Excluding the outlier educational attainment, the 
correlations between the absolute test statistic and Moran’s I is .65 (p = 1 × 10-4). C shows on the y-axis the absolute test statistic 
of the ANOVA for group differences between the four migration groups from Figure 5. The correlation between the absolute test 
statistic and Moran’s I is .95 (p = 2 × 10-8). Excluding the outlier educational attainment, the correlations between the absolute 
test statistic and Moran’s I is .73 (p = .002). 
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Supplementary Figure 11: The standardized regression coefficients and standard errors for the 8 significantly clustering polygenic 
scores (clumped, i.e., based on independent SNPs with p-values <.05; ordered by Moran’s I) of the associations with the Townsend 
indices of 1971 to 2011 of the birth places of the subjects (N = 349,982 unrelated subjects). All polygenic scores shown are 
standardized residuals after regressing out 100 PCs.  
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Supplementary Figure 12: The standardized regression coefficients and standard errors for the 8 significantly clustering polygenic 
scores (clumped, i.e., based on independent SNPs with p-values <.05; ordered by Moran’s I) of the associations with the Townsend 
indices of 1971 to 2011 of the current address of the subjects (N = 349,982 unrelated subjects). All polygenic scores shown are 
standardized residuals after regressing out 100 PCs.  
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Supplementary Figure 13: The average and standard errors for 8 significantly clustering polygenic scores (clumped, i.e., based on 
independent SNPs with p-values <.05; ordered by Moran’s I) within coal mining regions vs the rest of Great Britain for the birth 
place and the current address. All polygenic scores shown are standardized residuals after regressing out 100 ancestry-informative 
PCs.  The differences between Coal Fields and No Coal are significant for all scores except conscientiousness for both current 
address and birth place with an FDR corrected p-value < .05. 
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Supplementary Figure 14: The average and standard errors for 8 significantly clustering polygenic scores (clumped, i.e., based on 
independent SNPs with p-values <.05; ordered by Moran’s I) for four migration groups: born in coal field area and moved out, born 
in coal field area and stayed, born outside of coal field area and moved to coal field area, born outside of coal field area and stayed 
out. All polygenic scores shown are standardized residuals after regressing out 100 ancestry-informative PCs. All polygenic scores 
show significant group differences after (FDR corrected p < .05), except conscientiousness.   
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Supplementary Figure 15: Linear Mixed Model results, with polygenic score (after regressing out 100 PCs) as a dependent variable and region as random effect (N = 320,940 
unrelated individuals). Left: Local Authorities (~380 regions); Middle: MSOA (~5,300 regions), Right: Coal mining Regions (fitted as a binary variable). Red: Birth Place; Green: 
Current Address; Yellow = significant after FDR correction. 
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Supplementary Figure 16: Linear Mixed Model results, with PCs as a dependent variable and region as random effect (N = 320,940 unrelated individuals). Left: Local Authorities 
(~380 regions); Middle: MSOA (~5,300 regions), Right: Coal mining Regions (fitted as a binary variable). Red: Birth Place; Green: Current Address; Yellow = significant after FDR 
correction. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/457515doi: bioRxiv preprint 

https://doi.org/10.1101/457515
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 
 

 

 

Supplementary Figure 17: Distributions of the regional-level educational attainment (EA) phenotypes. The distributions show all 
subjects included in the GWASs, where all subjects from the same region were assigned the same phenotypic value.  

 

 

 

 

Supplementary Figure 18: Manhattan plots of the two GC-corrected GWASs on regional educational attainment (EA). The 
suggestive significance threshold (blue line) is set at 5 × 10-8, and the genome-wide significance threshold (red line) is set at 1 × 
10-8.  
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Supplementary Figure 19: Effect sizes of 33 independent SNPs (r2 < .1 and at least 1MB apart) that reached p < 5 × 10-8 in the 
regional EA GWAS (MSOA) plotted against their effect sizes from the GWAS on individual EA that excluded UK Biobank 
participants. The correlation between the beta’s is .93.  

 

 

Supplementary Figure 20: Scatterplots of the genetic correlations with 64 complex traits from Supplementary Figure 16. Each dot 
represents a complex trait. The correlations between the rg’s from the regional EA GWAS at local authority level and the individual 
EA GWAS (plot to the left) is .99. The correlations between the rg’s from the regional EA GWAS at MSOA level and the individual 
EA GWAS (plot to the right) is also .99. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/457515doi: bioRxiv preprint 

https://doi.org/10.1101/457515
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 
 

 

 

 

 

Supplementary Figure 21: Genetic correlations (rg) and their standard errors (SE) based on LD score regression, for regional EA outcomes based on census data and the individual-
level EA GWAS excluding UK Biobank. Colored is significant after FDR correction. The blue stars next to the trait names indicate that UK Biobank was part of the GWAS of the trait.  
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Supplementary Figure 22: Distributions of regional-level phenotypes. The distributions show all subjects included in the GWASs, 
where all subjects from the same region were assigned the same phenotypic value.  
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Supplementary Figure 23: Manhattan plots of the GC-corrected GWAS on the presence of coal fields in the birthplace and the current address, the proportion of religious vs non-

religious inhabitants, the Brexit referendum of 2016, and the regional outcomes on general election results of 1970 and 2015. The suggestive significance threshold (blue line) is set 

at 5 × 10-8, and the genome-wide significance threshold (red line) is set at 1 × 10-8. 
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Supplementary Figure 24: The significance of enrichment for ten cell type groups based on heritability partitioning with LD score 
regression. The dashed line at –log10(P) = 3.53 is the Bonferroni adjusted significance threshold (adjusted for 170 tests). 
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Supplementary Figure 25: Standard errors of the genetic correlations based on LD score regression from Figure 6. Colored is significant after FDR correction. The green numbers in 
the left part of the Figure below the diagonal of 1’s are the standard errors of the phenotypic correlations between the regional outcomes of coal mining, religiousness, and regional 
political preference. The blue stars next to the trait names indicate that UK Biobank was part of the GWAS of the trait.  
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Supplementary Figure 26: Genetic correlations (rg) and their standard errors (SE) based on LD score regression between regional political outcomes, within higher and lower SES 
groups. Colored is significant after FDR correction. The blue stars next to the trait names indicate that UK Biobank was part of the GWAS of the trait.  
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