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Abstract

We provide a novel computational framework on how biological and artificial agents can learn to 

flexibly couple and decouple neural task modules for cognitive processing. In this way, they can 

address the stability-plasticity dilemma. For this purpose, we combine two prominent 

computational neuroscience principles, namely Binding by Synchrony and Reinforcement 

Learning. The model learns to synchronize task-relevant modules, while also learning to 

desynchronize currently task-irrelevant modules. As a result, old (but currently task-irrelevant) 

information is protected from overwriting (stability) while new information can be learned 

quickly in currently task-relevant modules (plasticity). We combine learning to synchronize with 

several classical learning algorithms (backpropagation, Boltzmann machines, Rescorla-Wagner). 

For each case, we demonstrate that our combined model has significant computational advantages 

over the original network in both stability and plasticity. Importantly, the resulting models’ 

processing dynamics are also consistent with empirical data and provide empirically testable 

hypotheses for future MEG/EEG studies.

Author summary

Artificial and biological agents alike face a critical trade-off between being sufficiently adaptive 

to acquiring novel information (plasticity) and retaining older information (stability); this is 

known as the stability-plasticity dilemma. Previous work on this dilemma has focused either on 

computationally efficient solutions for artificial agents or on biologically plausible frameworks 

for biological agents. What is lacking is a solution that combines computational efficiency with 

biological plausibility. Therefore, the current work proposes a computational framework on the 

stability-plasticity dilemma that provides empirically testable hypotheses on both neural and 

behavioral levels. In this framework, neural task modules can be flexibly coupled and decoupled 

depending on the task at hand. Testing this framework will allow us to gain more insight in how 

biological agents deal with the stability-plasticity dilemma. 
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1 Introduction

2 Humans and other primates are remarkably flexible in adapting to constantly changing 

3 environments. Additionally, they excel at integrating information in the long run to detect 

4 regularities in the environment and generalize across contexts. In contrast, artificial neural 

5 networks (ANN), despite being used as models of the primate brain, experience significant 

6 problems in these respects. In ANNs, extracting regularities requires slow, distributed learning, 

7 which does not allow strong flexibility. Moreover, fast sequential learning of different tasks 

8 typically leads to (catastrophic) forgetting of previous information (for an overview see (1)). 

9 Thus, ANNs are typically unable to find a trade-off between being sufficiently adaptive to novel 

10 information (plasticity) and retaining older information (stability), a problem known as the 

11 stability-plasticity dilemma. Additionally, it remains unknown how biological agents deal with 

12 this dilemma.

13 We provide a novel framework on how biological and artificial agents may address this 

14 dilemma. We combine two prominent principles of computational neuroscience, namely Binding 

15 by Synchrony (2–5) and Reinforcement Learning (RL; 6,7). In BBS, neurons are flexibly bound 

16 together by synchronizing them via oscillations. This implements selective gating (e.g., 8) in 

17 which synchronized neurons communicate efficiently, while desynchronized neurons do not. 

18 Thus, BBS allows to flexibly alter communication efficiency on a fast time scale. By using RL 

19 principles, the model can learn autonomously which neurons need to be (de)synchronized.

20 In the modeling framework, BBS binds relevant neural groups, called (neural task) 

21 modules, and unbinds irrelevant modules. This causes both efficient processing and learning in 

22 synchronized modules; and inefficient processing and learning in desynchronized modules. The 

23 resulting model deals with the stability-plasticity dilemma by flexibly switching between task-

24 relevant modules and by retaining information in task-irrelevant modules. An RL unit (9) uses 

25 reward prediction errors to evaluate whether the model is synchronizing the correct task modules. 

26 We apply our framework to networks that themselves learn via three classic synaptic learning 
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27 algorithms, namely backpropagation (10), Restricted Boltzmann machines (RBM; 11) and 

28 Rescorla-Wagner (RW; 12,13).

29 The model consists of three units (Figure 1A). The Processing unit contains a network 

30 consisting of a number of task-specific modules. In addition, RL and Control units together form 

31 an hierarchically higher Actor-Critic structure, modeled after basal ganglia/primate prefrontal 

32 cortex (14). The RL unit (modeling ventral striatum/ anterior medial frontal cortex) evaluates 

33 behavior. More specifically, it learns to assign a value to a specific task module (how much reward 

34 it receives by using this module) and compares this value with the externally received reward to 

35 compute prediction errors. Additionally, the RL unit has a Switch neuron (see Figure 1C and D). 

36 This Switch neuron computes a weighted sum of negative prediction errors over trials. When this 

37 sum reaches a threshold of .5, it signals the need for a strategy switch to the Control unit (see 

38 Methods for details). This Control unit functions as an Actor in order to drive neural 

39 synchronization in the Processing unit. One part of the Control unit (modeling lateral frontal 

40 cortex (LFC)) contains task units that point to task modules in the Processing unit (15); another 

41 part (modeling posterior medial frontal cortex (pMFC)) synchronizes task modules based on those 

42 task units (16). Crucially, LFC and pMFC both use prediction error information, but on different 

43 time scales. While the LFC uses prediction errors on a slow time scale to know when the task rule 

44 has changed and a switch of modules is needed, the pMFC uses prediction errors on a fast time 

45 scale to enhance control over the synchronization process as soon as a negative prediction error 

46 occurs.
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47

48 Figure 1.  Model and task overview. A: General model overview. B: Reversal learning task. Trial bin size = 40 trials 

49 for multi-layer models and trial bin size = 4 trials for models with RW networks (see Methods for details). Red dotted 

50 vertical lines indicate task switches. C: More detailed overview of the multi-layer model in the context of a Stroop 

51 task. D: More detailed overview of the RW model in the context of an S-R associative learning task.

52 In order to drive neural synchronization we rely on the idea of binding by random bursts 

53 (16–18). Here, applying positively correlated noise to two oscillating signals reduces their phase 

54 difference. In addition to implementing binding by random bursts, the current work also 

55 implements unbinding by random bursts. In particular, applying negatively correlated bursts 

56 increases the phase difference between oscillating signals and thus unbinds (i.e., dephases) the 

57 two signals.

58 We test our model on a (cognitive control) reversal learning task. Here, each 

59 hierarchically lower algorithm (e.g., Boltzmann) sequentially learns different task rules. The 

60 relevant task rule changes during the task (Figure 1B). The model must detect when task rules 

61 have changed, and flexibly switch between different rules without forgetting what has been 

62 learned before. Our task is divided in three equally long blocks that alternate between two task 

63 rules (rule 1-rule 2-rule 1). For the backpropagation and RBM networks (because of their hidden 

64 layer further called multi-layer networks), a multiple-feature Stroop-like task is used. Here, 
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65 stimuli are presented that contain three crucial features. They are words (“red” or “blue”) printed 

66 in a certain color (red or blue) and style (bold or italic). There are two response options. The task 

67 is to respond to the word when it is printed in bold and to the color when it is printed in italic. 

68 During rule 1 they should respond with Response 1 (R1) for red and Response 2 (R2) for blue. 

69 This is reversed for rule 2. For the RW network, which cannot handle such complex task rules, 

70 we use simple Stimulus-Response (S-R, linearly separable) associations. According to rule 1, R1 

71 leads to reward after presentation of Stimulus 1 (S1) and R2 leads to reward after presentation of 

72 Stimulus 2 (S2). For rule 2 these associations are reversed, linking R1 with S2 and R2 with S1. 

73 The Stroop-like task consisted of 2400 trials and the S-R associative learning task of 240 trials. 

74 For comparison, we divided them in 60 trial bins for some analyses and plots. Figure 1C and D 

75 illustrate the detailed model build-up in respectively the Stroop-like task and the S-R associative 

76 learning task. We compare our combined (henceforth, full) models with models that only use 

77 synaptic learning (i.e., only contain the Processing unit; called synaptic models). We evaluate 

78 plasticity as the ability to learn a new task after learning a different task; and stability as the 

79 interference of learning a new task on performance on the old task (see Figure 1B and Methods).

80 Results

81 The stability-plasticity dilemma

82 Backpropagation. Figure 2A-C show a clear advantage for the full relative to the synaptic 

83 backpropagation model in overall accuracy as well as plasticity and stability. This advantage was 

84 present across all learning rates. This advantage appears because the synchronization supports 

85 modularity, thus protecting information from being overwritten.

86 RBM. Also panels D-F of Figure 2 show an advantage for the full model relative to the 

87 synaptic RBM model. This advantage is less strong than for the backpropagation model because 

88 the synaptic RBM model shows a stronger plasticity than the synaptic backpropagation model.

89 RW. Figure 2G-I shows similar overall accuracy for the full and synaptic RW models. 

90 When synaptic learning rates are slow ( = .1-.4), the full model has a better stability than the 
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91 synaptic model. However, this advantage disappears for higher learning rates and the synaptic 

92 model shows a higher plasticity than the full RW model. There is also a dip in performance for 

93 higher learning rates in the full RW based model. Reasons for this dip are explained in the 

94 Methods section. 

95

96 Figure 2. Performance of models on reversal learning task. Blue lines show means for the full model and orange lines 

97 represent the mean values for the synaptic models. The shades indicate the corresponding 95% confidence intervals.

98 Model dynamics

99 More insight into the dynamics of the model is given in Figure 3. We show data for 

100 simulations with a learning rate of .3. 

101 A closer look at accuracy. Figure 3A illustrates the accuracy evolution over the whole 

102 task for both the full and synaptic backpropagation model. During the first part of the task, the 

103 synaptic and full model show a similar performance. When there is a first switch in task rule, the 

104 drop in accuracy is slightly larger for the synaptic model than for the full model. This is caused 

105 by the fact that the synaptic model has to learn task rule 2 with weights that were pushed in the 

106 opposite direction during learning of task rule 1. Instead, the full model switches to another task 

107 module and starts learning from a random weight space. After the second rule switch, there is 

108 again a strong decrease of accuracy in the classic model but not in the full model. Here, the classic 

109 model had to relearn the first task rule (catastrophic forgetting) while the full model switched to 

110 the first module where all old information was retained. As illustrated in Figure 3D, these findings 
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111 are replicated by the RBM model. In Figure 3G, the accuracy is plotted for the RW model. As 

112 suggested by Figure 2G-I, the full model shows a similar performance during the first part of the 

113 task, a lower plasticity after the first task switch but a higher stability after the second task switch 

114 compared to the synaptic model.

115 Synchronization of modules. Figure 3B represents the synchronization between the 

116 input layer and different task modules for the backpropagation model. Here, we see that the model 

117 performs quite well in synchronizing task-relevant and desynchronizing task-irrelevant modules. 

118 Additionally, the model is able to flexibly switch between modules. A similar pattern is observed 

119 in Figure 3E and Figure 3H where the data for respectively the RBM and RW models are shown. 

120 In these plots, we observe wider confidence intervals in some trial bins. This reflects the fact that 

121 the model sometimes also erroneously switches. However, if such an incorrect switch occurs, the 

122 model will also switch back to the correct module. 

123 The Switch neuron. Figure 3C show activation in the Switch neuron for the 

124 backpropagation model. Crucially, we observe in this plot only two points above the threshold of 

125 .5. These two points are right after the first task rule switch and right after the second task rule 

126 switch. Thus, the model correctly decides when a switch is necessary. A similar phenomenon 

127 occurs in the RBM model (Figure 3F) and the RW model (Figure 3I). The exact dynamics of the 

128 Switch neuron are most clearly observed for the backpropagation model (Figure 3C). During the 

129 first trials of learning a new task rule (approximately trials 1-200 and 800-1000) a new task 

130 module is used. Typically, a new module has not learned anything and makes a lot of errors. Here, 

131 the high number of (prediction) errors during learning is reflected in a constant high activation of 

132 the Switch neuron during these trials. However, a newly used task module also starts with a low 

133 predicted value (variable V, see equation (7) in Methods) and hence every error only elicits a 

134 small negative prediction error which is not enough for the Switch neuron to reach the threshold. 

135 When the task module learns the task, it produces less errors but it also learns to assign a high 

136 value to that module, resulting in stronger prediction errors when an error occurs. Hence, in later 

137 trials there is a weaker mean activation in the Switch neuron of almost zero, with occasional 
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138 strong bursts of activity when a rare prediction error does occur. However, also this is typically 

139 not enough to reach the Switch threshold. The Switch threshold is only reached when a module 

140 that has a high value assigned to it, makes several consecutive errors. This typically means that 

141 the module is used in the wrong context and hence a switch is needed. After the second task 

142 switch, activation in the Switch neuron of the backpropagation model (Figure 3C) remains at zero. 

143 This is because the model reached full convergence and makes no errors anymore. This is not 

144 observed in the RBM model (Figure 3F) because it uses a probabilistic response threshold, 

145 making the model always susceptible to a small number of errors. Finally, activation of the Switch 

146 neuron for the RW model (Figure 3I) after every switch almost immediate converges towards 

147 zero, indicating that the RW learning algorithm is very fast and efficient. 

148

149 Figure 3. Model data. Model dynamics are shown for simulations with a learning rate of .3. In column 1 (panels A, D 

150 and G), the blue lines represent data of the full model and the orange lines represent data for the synaptic model. In 

151 column 2 (panels B, E and H), blue lines represent values for the initially (randomly) chosen module and black lines 

152 for the other module. In column 3 (panels C, F and I), activity of the Switch neuron (see Figure 1C and D) is shown for 

153 one selected simulation of the model (in black). Blue horizontal dashed lines indicate the threshold of the Switch neuron 

154 and the orange dots indicate data points above the threshold. In all panels, red vertical dotted lines indicate task switches 

155 and shades indicate 95% confidence intervals.

156 Connections with empirical data

157 As a model of how the brain controls its own processing, we next aimed at connecting 

158 with empirical data and describe testable hypotheses for future empirical work. For reasons 
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159 described in the Methods section we only present data for the backpropagation and RW model 

160 here.

161 Feedback Related Negativity. As described in the Methods section, theta amplitude in 

162 the pMFC gradually decayed during the whole task. However, when a negative prediction error 

163 occurred the pMFC network node received a burst which increased its amplitude again. This can 

164 be clearly observed in the ERP that is plotted in Figure 4A for the backpropagation model and 

165 Figure 4D for the RW model. Here, the bursts occurring from approximately 100 to 300 ms after 

166 feedback results in a strong negative peak around 200 msec, corresponding to the empirical 

167 feedback related negativity (FRN; e.g., 19–24). 

168 Theta power. Additionally, we performed time-frequency decomposition of the signal 

169 produced by the pMFC node. More specifically, we were interested in theta power after feedback. 

170 We computed the contrast of power in the inter-trial interval after error and after correct trials in 

171 the time-frequency domain. Also here, and in accordance with previous empirical work (e.g., 24–

172 26), we clearly observe increasing theta power, starting 200 ms after negative feedback. Again, 

173 this is shown both for the backpropagation (Figure 4B) and RW (Figure 4E) model. 

174 Phase-amplitude coupling. Figure 4C, F illustrate the coupling between the phase of 

175 theta-oscillations in the pMFC and gamma amplitude in the Processing unit. Again consistent 

176 with empirical data (27,28), these plots show a clear increase in phase-amplitude coupling after a 

177 task rule switch. This is mainly caused by the fact that there are many negative prediction errors 

178 in these trials. These prediction errors increase theta power in the pMFC which in turn increases 

179 the number of bursts received by the gamma oscillations in the Processing unit (see Methods). 

180 This combination of events results in an increase of phase-amplitude coupling (PAC).
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181

182 Figure 4. Model predictions for empirical data. Black vertical dashed lines indicate the moment of reward feedback. 

183 Red vertical dotted lines indicate task switches. Shades illustrate 95% confidence intervals.

184 Discussion

185 We described a computationally efficient and biologically plausible framework on how 

186 biological and artificial agents may deal with the stability-plasticity dilemma. We combined two 

187 neurocomputational frameworks, BBS (2–4) and RL (6). BBS flexibly (un)binds (ir)relevant 

188 neural modules and RL autonomously discovers which modules need to be (un)bound. Thus, the 

189 model could flexibly switch between different tasks (plasticity) without catastrophically 

190 forgetting older information (stability). We demonstrated that the model was consistent with 

191 several behavioral and electrophysiological (e.g., EEG/MEG) data.

192 Our model consists of three units. The Processing unit contains a task-processing 

193 network, trained by a classical learning rule (backpropagation, RBM or RW). Anatomically, it 

194 can be localized in several posterior (neo-)cortical processing areas, depending on the task at 

195 hand. Its activity is strongly stimulus-dependent and synaptic strengths change slowly. The RL 

196 unit learns to attach value to specific task modules, based on prediction errors. It is localized most 

197 plausibly in MFC, which (with brainstem and striatum) is generally considered as an RL circuit 

198 (9,29,30). However, computations in this unit are not used for driving task-related actions, but for 

199 driving hierarchically-higher actions, namely to (de)synchronize task modules. This is in line with 
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200 recent considerations of MFC as a meta-learner (31–34). We tentatively call this unit aMFC, given 

201 this region’s prominent anatomical connectivity to autonomous regions (35).

202 The Control unit was adopted from (16). Its first part contains units that point to specific 

203 posterior processing areas, indicating which neurons should be (un)bound. Thus, this area stores 

204 the task demands. We labeled this part LFC, given the prominent role of LFC in this regard  

205 (36,37). Its second part sends random bursts to posterior processing areas to synchronize currently 

206 active areas. Given the prominent anatomical connectivity of pMFC to motor control and several 

207 posterior processing areas (35) we tentatively label this part pMFC. The efficiency of this 

208 controlling process is largely determined by pMFC theta power: More power leads to more and 

209 longer bursts (16). This is consistent with empirical work linking high MFC theta power to 

210 efficient cognitive control (26,27). Power in the model pMFC is modulated by the occurrence of 

211 negative prediction errors. More specifically, when a negative prediction error occurs, the pMFC 

212 node will receive bursts which will increase theta power. In absence of negative prediction errors, 

213 this theta power will slowly decrease across trials. This is consistent with the idea that a constant 

214 high MFC power might be computationally suboptimal and empirically implausible. For instance, 

215 MFC projects to locus coeruleus (LC;(38)); LC firing is thought to be cognitively costly, perhaps 

216 because it leads to waste product in the cortex that needs to be disposed (39).  In sum, in the 

217 Control unit, LFC and pMFC jointly align neural synchronization in modules of the Processing 

218 unit to meet current task demands (40,41). Here, the LFC will indicate which modules should be 

219 (de)synchronized and the pMFC will exert control over the oscillations in the Processing unit by 

220 (de)synchronizing them via random bursts. 

221 Crucially, both Control units use prediction errors, but at a different time scale. The 

222 decision of which modules should be synchronized is based on an evaluation of multiple recent 

223 prediction errors in the Switch neuron of the RL unit (slow time scale). The pMFC on the other 

224 hand will use an evaluation of the last prediction error to evaluate the amount of control that 

225 should be exerted (fast time scale). Hence, when an error occurs, the model will initially exert 
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226 more control on the currently used task module/strategy. If negative prediction errors keep on 

227 occurring after the model increased control, it will switch modules/strategies.

228 Because of its higher plasticity and stability, the full model achieved higher accuracy 

229 than the synaptic models. The full model performed better across all learning rates with 

230 backpropagation or RBM. With RW, both models showed similar performance for slow learning 

231 rates but the synaptic model performed better with fast learning rates. Thus, for simple (linearly 

232 separable) learning problems that can be solved very fast, the need for stability is obviated and 

233 the advantage of synchronization disappears.

234 Experimental predictions
235 Importantly, our model made several predictions for empirical data. First, it predicts 

236 significant changes in the phase coupling between different posterior neo-cortical brain areas after 

237 a task switch. Here, we suggest that desynchronization may be important to disengage from the 

238 current task. Consistently, (42) found that strong desynchronization marked the period from the 

239 moment of disambiguation of ambiguous stimuli to motor responses. Additionally, Parkinson 

240 disease patients, often characterized by extreme cognitive rigidity, show abnormally 

241 synchronized oscillatory activity (43). Second, we explored midfrontal theta-activation in the time 

242 domain by computing the ERP and in time-frequency domain by wavelet convolution. Both 

243 analyses showed an increase of theta-power after an error. This was caused by bursts received 

244 from the RL unit which elicited a negative peak at approximately 200 ms, corresponding to the 

245 FRN (e.g., 19,21,24). Third, we connected the model to research demonstrating theta/gamma 

246 interactions where faster gamma frequencies, which implement bottom-up processes, are 

247 typically embedded in and modulated by slower theta-oscillations, which implement top-down 

248 processes (28,44–46). For this purpose, we considered coupling between pMFC theta phase and 

249 gamma amplitude in the Processing unit. Our model predicts a strong PAC increase in the first 

250 trial(s) after task switch. This reflects the binding by random bursts control process which is 

251 increased after task switches.
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252 Limitations and extensions
253 First, because we mainly focused on the biological plausibility and empirical testability 

254 of the current model we limited the complexity of the model, especially at its hierarchically higher 

255 levels. In its current organization, the model can only determine when a task switch occurred and 

256 then make a binary switch to another task module. Hence, the current version of the model can 

257 only switch between two task sets. Future work will address this problem by adding second level 

258 (contextual) features which allow the LFC to (learn to) infer which of multiple task modules 

259 should be synchronized. One useful application of such second level features would be task set 

260 clustering, which allows to generalize over multiple contexts. Specifically, if a second-level 

261 feature becomes connected to an earlier learned task set, all the task-specific mappings would be 

262 immediately generalized to the novel second-level feature. This is consistent with immediate 

263 generalization seen in humans (47–49). 

264 Second, our model uses both synchronization and desynchronization which leads to full 

265 synaptic gating of task-(ir)relevant modules. It might be suboptimal to always desynchronize all 

266 modules that are not currently task-relevant. As suggested by previous work (50), keeping the 

267 irrelevant modules at random states (partial gating) might be sufficient to eliminate catastrophic 

268 forgetting. 

269 Third, although using negative prediction errors to modulate the control amplitude of the 

270 pMFC might be efficient in the current context, this might not be ideal for more complex 

271 environments. Thus, a future challenge is combining our model with earlier work that described 

272 how a model can (meta-)learn to optimally modulate pMFC activation depending on the 

273 environment’s reward and cost structure (32). 

274 Fourth, the model ignored some aspects of oscillatory dynamics. For instance, our model 

275 only implements neural synchronization with zero phase lag; yet BBS may be more  biologically 

276 plausible, and more efficient, with small inter-areal delays (51). Future work will consider an 

277 additional (meta-) learning mechanism that learns to synchronize nodes with an optimal phase 

278 delay. Additionally, all Processing unit nodes oscillated at the exact same frequency. This 
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279 scenario might be unrealistic in a typically noisy human brain. Nevertheless, modeling work 

280 shows that two oscillators can learn to oscillate at the same frequency via Hebbian Learning (52) 

281 in the coupling weights (parameter C in equations (1) and (2)). Moreover, this problem is 

282 efficiently solved by using a theta-rhythm for delivering the synchronizing bursts, as we 

283 implemented here. Specifically, too low-frequency bursts would cause oscillations with (slightly) 

284 different (gamma-band) frequencies to drift apart again. With bursts given at a theta-frequency 

285 the gamma oscillations have no time to drift apart since the next period of burst occurs before this 

286 can happen. In line with this idea, previous work has demonstrated how the model can deal with 

287 frequency differences of at least around 2% (16). One might wonder then if the burst frequency 

288 could be even higher than theta; however, too high-frequency bursts would result in too noisy 

289 signals in the Processing unit. In this sense, theta frequency might strike an optimal balance for 

290 guiding gamma oscillations.

291 Related work
292 The current work relies heavily on previous modeling work of cognitive control 

293 processes. For instance, in the current model the LFC functions as a holder of task sets which bias 

294 lower-level processing pathways (15,53). It does this in cooperation with the MFC. Here, the 

295 MFC determines which lower-level task module receives control over behavior (29). The MFC 

296 makes this decision based on an RL algorithm (6,9). Hence, the synchronization process in the 

297 current model can also be seen as a reinforcement-driven form of synaptic gating (54,55). In 

298 biological systems, such gating is plausibly modulated by dopamine. Additionally, also the 

299 amount of control/ effort that is exerted in the model is determined by the RL processes in the 

300 MFC(31–33). More specifically, negative prediction errors will determine the amount of control 

301 that is needed by strongly increasing the MFC signal (29). This is consistent with earlier work 

302 proposing a key role of MFC in effort allocation (31,32,56). 

303 In the current model, the MFC thus functions as a hierarchically higher Actor-Critic 

304 structure that uses reinforcement learning to estimate its own proficiency in certain tasks. Based 

305 on its estimate of the value of a module, and the reward that actually accumulates across trials, it 
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306 evaluates whether the current task strategy is suited for the current environment. Based on this 

307 evaluation, it will decide to stay with the current strategy or switch to another. This is in line with 

308 previous modeling work that described the prefrontal cortex as a reinforcement meta-learner 

309 (30,33–35).

310 One problem we addressed in this work was the stability-plasticity dilemma. Previous 

311 work on this dilemma can broadly be divided in two classes of solutions. The first class is based 

312 on the fact that catastrophic forgetting does not occur when two tasks are intermixed. Thus, one 

313 solution is to keep on mixing old and new information (57–60). McClelland et al. (58) suggested 

314 that new information is temporarily retained in hippocampus. During sleep (and other offline 

315 periods), this information is gradually intermixed with old information stored in cortex. This 

316 framework inspired subsequent computational and empirical work on cortical-hippocampal 

317 interactions (61–63).

318 The second class of solutions is based on the protection of old information from being 

319 overwritten. Protection can occur at the level of synapses. For example, (64) combined a slow 

320 and fast learning system, with slow and fast weights reflecting long- and short-time-scale 

321 contingencies, respectively. Another recent idea is to let synapses (meta-)learn their own 

322 importance for a certain task (65,66). Weights that are very important for some task are not 

323 allowed to change. Hence, information encoded in those weights is preserved. Protection can also 

324 be implemented at activation-level. The most straightforward approach to implement such 

325 protection is to orthogonalize input patterns for the two tasks (67,68). A broader solution is gating. 

326 This means that only a selected number of network nodes can be activated. Because weight 

327 change depends on co-activation of relevant neurons (12,69), this approach protects the weights 

328 from changing. For example, Masse et al. (50) propose that in each of several contexts, a 

329 (randomly selected) 80% of nodes is gated out, thus effectively orthogonalizing different 

330 contexts. They showed that synaptic gating allowed a multi-layer network to deal with several 

331 computationally demanding tasks without catastrophic forgetting. However, it was unclear how 

332 their solution could be biologically implemented. Our solution also exploited the principle of 
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333 protection. Future work must develop biologically plausible implementations of the mixing 

334 principle too and investigate to what extent mixing and protection scale up to larger data sets.

335 Summary

336 We provided a computationally efficient and biologically plausible framework on how 

337 neural networks can address the tradeoff between being sufficiently adaptive to novel 

338 information, while retaining valuable earlier regularities (stability-plasticity dilemma). We 

339 demonstrated how this problem can be solved by adding fast BBS and RL on top of a classic slow 

340 synaptic learning network. RL is used to synchronize task-relevant and desynchronize task-

341 irrelevant modules. This allows high plasticity in task-relevant modules while retaining stability 

342 in task-irrelevant modules. Furthermore, we connected the model with empirical findings and 

343 provided predictions for future empirical work. 

344 Methods

345 The models

346 As mentioned before and is shown in Figure 1A, our model consists of three units. First, 

347 the Processing unit includes the task-related neural network, which is trained with a classical 

348 learning rule (backpropagation, Boltzmann, or Rescorla-Wagner). On top of this classical 

349 network, an extra hierarchical layer is added where two other units together constitute an Actor-

350 Critic structure (14). The RL unit, adopted from the RVPM (9), functions as Critic and evaluates 

351 whether the Processing unit is synchronizing the correct task modules. This evaluation is used by 

352 the Control unit (16), which functions as an Actor to drive neural synchronization in the 

353 Processing unit. Thus, the Actor-Critic structure allows the models to implement BBS in an 

354 unsupervised manner. 
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355

356

357 Figure 5. Network node. Illustration of one oscillatory node in the network (see Figure 1C-D), consisting 

358 of a triplet of neurons. 

359 The Processing unit. An important feature of the current model is that all nodes in the 

360 Processing unit consist of triplets of neurons (Figure 5), as in (16). Equations (1)-(5) are taken 

361 from (16), but we reproduce them here for readability. Each triplet (node) contains one classical 

362 rate code neuron (with activation xi) which receives, processes and transmits information; and one 

363 pair of phase code neurons (Ei, Ii) which organizes processing in the rate code neurons. In line 

364 with previous work (16), excitatory neurons are updated by

𝐸𝑖(𝑡 + 𝑑𝑡) = 𝐸𝑖(𝑡) ‒ 𝐶 × 𝐼𝑖(𝑡) ‒ 𝐷 × 𝐽(𝑟 > rmin) × 𝐸𝑖(𝑡) + 𝐵𝑖(𝑡) (1)

365 and inhibitory neurons are updated by

𝐼𝑖(𝑡 + 𝑑𝑡) = 𝐼𝑖(𝑡) + 𝐶 × 𝐸𝑖(𝑡) ‒ 𝐷 × 𝐽(𝑟 > rmin) × 𝐼𝑖(𝑡) (2)

366 The two phase code neurons are thus coupled by a parameter C, causing them to oscillate. The 

367 strength of the coupling (C) determines the frequency of the oscillations, C/(2π) (16,70). Task-

368 relevant modules in the processing unit must be bound together. Previous research has proposed 

369 that such binding is supported by oscillations in the gamma-frequency band (30-70 Hz;  4). We 

370 therefore chose a value for C corresponding to a frequency of ~40 Hz. The variable t refers to 

371 time, and dt refers to a time step of 2 msec. The radius (r = E2+I2) of the oscillations are attracted 

372 towards the value rmin = 1. This is implemented by the term DJ(r>rmin)Ei(t) in equation (1) and 
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373 DJ(r>rmin)Ii(t) in equation (2). Here, J(.) is an indicator function, returning 1 when the radius 

374 is higher than the value of rmin and 0 otherwise. The damping parameter, D = .3, determines the 

375 strength of attraction. The excitatory neurons of the Processing unit additionally receive a burst,

𝐵𝑖(𝑡) = 𝐿𝐹𝐶𝑖 × 𝑝𝑀𝐹𝐶(𝑡) × 𝑈(𝑡) (3)

376 Here, the LFC and pMFC (see Control unit) together determine the burst signal, Bi(t), that is 

377 received by the excitatory phase code (E) neurons. The variable U(t) is a standardized-Gaussian 

378 variable.

379 The rate code neuron is updated by 

𝑑𝑥𝑖(𝑡) =‒ 𝑥𝑖(𝑡) + 𝑓(𝑛𝑒𝑡𝑖 ‒ 𝑏𝑖𝑎𝑠) × 𝐺(𝐸𝑖(𝑡)) (4)

380 The term -xi(t) will cause fast decay of activation in absence of input. According to this equation, 

381 the activation of the rate code neuron at every time step is a function of the net input (neti) for that 

382 neuron multiplied by a function of the excitatory phase code neuron (16),

𝐺(𝐸𝑖(𝑡)) =
1

1 + 𝑒( ‒ 5 × (𝐸𝑖(𝑡) ‒ .6)) (5)

383 For the multi-layer networks, the rate code neurons have a sigmoid activation function f(neti-bias) 

384 =  . Additionally, these rate code neurons receive a bias = 5 to set activation to 
1

1 + e
‒ (𝑛𝑒𝑡𝑖 ‒ bias)

385 (approximately) zero in absence of input. In the RW network, the rate code neurons have no bias 

386 and follow a linear activation function; f(neti - bias)=neti. 

387 Additionally, all weights (W) in the Processing unit are subject to learning. Here, 

388 learning is done according to one of the three classic learning rules; backpropagation, RBM or 

389 RW (10,11,13). A new learning step was executed at the end of every trial. Because activation in 

390 the rate code neurons is modulated by G(Ei), the activation patterns xi also oscillate. For 

391 simplicity, we use their maximum activation across one trial as input for the learning rules, 

392 Xi=max(xi). Importantly, the standard formulation of the Rescorla-Wagner rule does not combine 

393 well with the full model because, in this combination also non-active units would be able learn. 

394 To remedy this, a small adjustment was made to the learning rule (13) for the full model. 
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395 Specifically, we added one term to the classic rule in order to only make co-activated neurons 

396 eligible for learning, resulting in

∆𝑊𝑖𝑜 = (𝑇𝑎𝑟𝑔𝑒𝑡 ‒ 𝑋𝑜) × 𝑋𝑖 × 𝑋𝑜 (6)

397 Importantly, this adjustment of the learning rule also results in some costs. First, plasticity 

398 decreases because the added term (XO) represents the activation of the output unit, which is 

399 typically lower than 1 and hence slows down learning. Second, there is a problem at higher 

400 learning rates where weights converge to zero and become unable to learn (see dip in Figure 2G). 

401 Because the synaptic model obtains no advantage of this adjusted learning rule and we aimed to 

402 give the classic model the best chances for competing with the full model, we only used the 

403 adjusted learning rule (equation (6)) for the full model.

404 For the backpropagation and RW networks, a trial ended after 500 time steps (1 sec). 

405 Here, the first 250 time steps (500 msec) were simulated as an inter-trial interval in which the 

406 Rate code neurons (x) did not receive input. In the next 250 time steps, input was presented to the 

407 networks. The RBM network also started a trial with 250 time steps without stimulation of the 

408 Rate code neurons. After this inter-trial interval the network employs iterations of bidirectional 

409 information flow to estimate the necessary synaptic change (11). We used 5 iterations. Every 

410 iteration step (2 in one iteration; one step for each direction of information flow) lasted for 250 

411 time steps. The RBM algorithm also employs stochastic binarization of activation levels at each 

412 iteration step. Also here, we used the maximum activation over all time steps (Xi) to extract a 

413 binary input for that neuron in the next iteration step. 
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414 As mentioned in the main text, we compare our new (full) models to models that only 

415 use synaptic learning (synaptic models). Thus, those synaptic models only have a Processing unit. 

416 Here, all used equations and parameters are the same as described above, except for the synaptic 

417 RW model where we use the classic learning rule instead of the one described in equation (6). 

418 The only difference is that they do not have phase code neurons and by consequence, G(Ei(t)) = 

419 1 in equation (5).

420 The RL unit. As RL unit, we implemented the Reward Value Prediction Model (RVPM; 

421 Silvetti et al., 2011). Here, there is one expected reward neuron, V, which holds an estimation of 

422 the reward the model will receive given the task module it used. This estimation is made by 

𝑉 = 𝒁𝑇 × (𝑳𝑭𝑪 + 1)/2 (7)

423 In this equation, Z is a (column) vector representing the synaptic connections from LFC neurons 

424 to the V neuron as presented in Figure 1C, D. This vector holds information about the value of 

425 specific task modules. Superscript T indicates that we transposed the Z vector. The LFC-term is 

426 a vector of LFC values representing which task module drove network behavior on the current 

427 trial. These values are normalized, controlling for the fact that LFC neurons can take on negative 

428 values. Hence, V will represent the expected value of the task module that is synchronized by the 

429 LFC represented in the Z vector. These weights are updated by the RVPM learning rule (9), which 

430 is a reinforcement-modulated Hebbian learning rule from the broader class of RL algorithms. All 

431 neurons in the RL unit, are rate code neurons which have no time index because they only take 

432 one value per trial.

433 Two prediction error neurons in the RL unit compare the estimated reward (V) with the 

434 actual received reward. This leads to a negative prediction error  - > 0 if the reward is smaller 

435 than predicted,  + > 0 if the reward is larger than predicted, and      - = + = 0 if the prediction 

436 matches the actual reward (see  Silvetti et al. (2011) for more details). The current model 

437 accumulates this prediction error signal over several trials to evaluate whether the task rule has 

438 changed or not. More specifically, a Switch neuron (S) computes a weighted sum of negative 
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439 prediction errors to determine whether the network is currently using the correct task module. 

440 When there is a rapid succession of negative prediction errors, this probably means the task rule 

441 has changed. Hence, the network should switch to another strategy. Consequently, activation in 

442 the Switch neuron follows

𝑆𝑛 + 1 = 𝜎 × 𝑆𝑛 + (1 ‒ 𝜎) × 𝛿 ‒
𝑛 (8)

443 Here, the value of  is set to .8 for the multi-layer models and .5 for the RW model. When 

444 activation in this neuron reaches a threshold of .5, it signals the need for a switch to the Control 

445 unit (see also equation (12)) and resets its own activation to zero. In the equation, n refers to the 

446 trial number.

447 The Control unit. As in previous work (16), the Control unit consists of two parts, 

448 corresponding to posterior medial (pMFC) and lateral (LFC) parts of the primate prefrontal 

449 cortex. 

450 The modelled pMFC represents one node (Figure 5) consisting of one phase code pair 

451 (EpMFC, IpMFC) and a rate code neuron (pMFC). The phase code neurons obey the same updating 

452 rules as given by equation (1) and (2). In the pMFC, which executes top-down control, the value 

453 of C is such that oscillations are at a 5Hz (theta-) frequency, in line with suggestions of previous 

454 empirical work (26,27). Since a constant high MFC power is computationally suboptimal and 

455 empirically implausible (39), the radius of the pMFC was attracted towards a small radius, 

456 rmin=.05. The damping parameter was set to D = .03, in order to let the amplitude of the pMFC 

457 oscillations decay slowly over trials. The burst signal of the pMFC was determined by the 

458 negative prediction error signal of the previous trial,

𝐵𝑝𝑀𝐹𝐶(𝑛,𝑡) = 𝛿 ‒
𝑛 ∗ 𝐵𝑒(𝑒

‒ (𝑡 ‒ 100)2

2 × 12.52
) (9)

459 Here, the burst signal at one time point in one trial is determined by the size of the negative 

460 prediction error at the previous trial and a Bernoulli process Be(p(t)) which is one with probability 

461 P(t). The probability P(t) corresponds to a Gaussian distribution over time that has its peak at 100 

462 time steps and a standard deviation of 12.5 time steps, representing a delay of communication 
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463 between the pMFC and the RL unit. Hence, when the previous trial elicited a negative prediction 

464 error, bursts are sent to the excitatory neuron of the pMFC. Consequently, these bursts have the 

465 size of the negative prediction error and are most likely to occur at 100 time steps (200 ms) after 

466 feedback. This burst signal will increase the amplitude of the pMFC phase code neurons when a 

467 negative prediction occurs, after which it will again slowly decay towards rmin. 

468 In line with the previous study (16), activation in the rate code neuron of the pMFC 

469 follows

𝑝𝑀𝐹𝐶(𝑡) = 𝐵𝑒(𝑝) (10)

470 Again, this equation represents a Bernoulli process Be(p) which is 1 with probability p. The 

471 probability

𝑝 =
1

1 + 𝑒( ‒ 10 × (𝐸𝑝𝑀𝐹𝐶(𝑡) ‒ 1)) (11)

472 is a sigmoid function which has its greatest value when the EpMFC(t) is near its top and its amplitude 

473 is sufficiently strong. Hence, every time the oscillation of the EpMFC-neuron reaches its top, the 

474 probability of a burst becomes high. Thus, bursts are phase-locked to the theta oscillation, 

475 implying that the pMFC determines the ‘when’ of the bursts (see (16) for more details). 

476 In general, the model implements a “win stay, lose shift” strategy, shifting attention in 

477 LFC when reward appears less than expected. As shown in Figure 1C, D, the LFC consists of 

478 three rate code neurons that each have a pointer to one (or two) of the different modules in the 

479 Processing unit. One of these LFC neurons is connected to the visible layers (input and output) 

480 for the multi-layer networks and the input layer for the RW network and has a constant value of 

481 1. Each of the other two LFC neurons are connected to one of the two modules in the hidden, or 

482 in the case of the RW network, the output layer. For these neurons, at trial n = 1 a random choice 

483 is made where one neuron is set to 1 and the other to -1. In trials n > 1, they obey

𝐿𝐹𝐶(𝑛 + 1) = 𝐿𝐹𝐶𝑛 × ( ‒ 1)𝐽(𝑆 >  .5) (12)
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484 Hence, the network always synchronizes one task module with the in- and output layers and 

485 desynchronizes the other task module. When the Switch neuron, S, reaches the threshold, 

486 indicator function J(.) will return 1 instead of 0. This will change the sign in both LFC neurons 

487 connected to the task modules and therefore synchronize the previously desynchronized module 

488 and vice versa. This can easily be scaled up to more modules and more task rules by letting the 

489 model make a random choice or including context-specific input. 

490 The task

491 We test our model on a reversal learning task (71,72). We divide the task in three equally 

492 long parts. In the first two parts, the model should learn two different new task rules (rule 1 and 

493 rule 2 in parts 1 and 2, respectively). In the third part, the model has to switch back to following 

494 rule 1. 

495 In the context of the multi-layer networks, we chose a Stroop-like task consisting of 

496 2400 trials in total. Stimuli contain three crucial features. They are words (“red” or “blue”) printed 

497 in a certain color (red or blue) and style (bold or italic). There are two response options. The task 

498 is to respond to the word when it is printed in bold and to the color when it is printed in italic. 

499 During rule 1 they should respond with R1 for red and R2 for blue. This is reversed for rule 2. 

500 All stimuli are presented equally often in random order. 

501 For the RW network, which cannot handle such complex task rules, we use simple S-R 

502 associations as task rules. According to rule 1, R1 leads to reward after presentation of S1 and R2 

503 leads to reward after presentation of S2. For rule 2 these associations are reversed, linking R1 

504 with S2 and R2 with S1. Here, the task is divided in three parts of 80 trials each, making a total 

505 of 240 trials. Again, in each part, each possible stimulus is presented equally often in random 

506 order.

507 Simulations

508 To test the generality of our findings, we varied the synaptic learning rate. This parameter 

509 was varied from 0 to 1 in 11 steps of .1. For each value, we performed 10 replications of the 
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510 simulation. In every simulation, the strength of synaptic connections at trial 1 was a random 

511 number drawn from the uniform distribution, multiplied by the bias value (and 1 for the RW based 

512 model). 

513 The effects of other model parameters were already demonstrated in previous work 

514 (9,16),  but we again validated that the model shows qualitatively similar patterns when we varied 

515 some of the parameters. This was true when we changed the frequency C/2 of oscillations in the 

516 Processing unit to 30 Hz; attracted the pMFC amplitude to a value rmin=.5; used a Switch threshold 

517 of .45 or .55 in equation (12); or varied the learning rate in the RL unit. 

518 Statistical analyses

519 For the purpose of comparison, we divided the trials of the task for every model into 60 

520 bins. For the RW based model, bin size equals 4 trials; for the multi-layer models, bin size equals 

521 40 trials. We evaluate the performance of our model on several levels. First, we evaluate overall 

522 task accuracy. Second, we evaluate plasticity. For this purpose, we explore the performance of 

523 the model right after the switch from task rule 1 to task rule 2; we compute the mean accuracy on 

524 the first 5 bins after the switch. Third, we evaluate stability. In particular, we explore the 

525 interference of learning task rule 2 in between two periods of performing on task rule 1. For this 

526 purpose, we compare the accuracy right after (5 bins) the second switch and right before the first 

527 switch (5 bins). If the model saved what it has learned about task rule 1, this difference should be 

528 zero. If the model displays catastrophic forgetting it would have a negative stability score.

529 Importantly, we also connect with empirical data and describe testable hypotheses for 

530 future empirical work. Because the multiple iterations performed by the RBM algorithm render 

531 it more complex to extract the oscillatory data, and because this algorithm is less biologically 

532 plausible, we focused these analyses on the backpropagation and RW model. As a measure of 

533 phase synchronization between excitatory neurons in the Processing unit, we compute the 

534 correlation at phase lag zero. A correlation of 1 indicates complete synchronization and -1 
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535 indicates complete desynchronization. Phase-amplitude coupling (PAC) is computed as the 

536 debiased phase-amplitude coupling measure (dPAC; 25) in each trial. Here,

𝑑𝑃𝐴𝐶 = |
1
ℎ

ℎ

∑
𝑡 = 1

𝑎𝑡 × (𝑒𝑖𝜑𝑡 ‒ 𝛷 ‒ )| (13)

537 in which 

𝛷 ‒ =
1
ℎ

ℎ

∑
𝑡 = 1

𝑒𝑖𝜑𝑡 (14)

538 In these equations, t represents one time step in a trial, h is the number of time steps in a trial, a 

539 is the amplitude,  is the phase of a signal, and i2 = -1. In the current paper, we are interested in 

540 the coupling between the phase of the theta oscillation in the pMFC node of the Control unit and 

541 the gamma amplitude in the Processing unit. Phase was extracted by taking the analytical phase 

542 after a Hilbert transform. The gamma amplitude was derived as the mean of the excitatory phase 

543 code activation of all nodes in the Processing unit by 

𝑎𝑡 =
1
𝐼

𝐼

∑
𝑖 = 1

|𝐸𝑖𝑡| (15)

544 with I being the number of nodes in the Processing unit, t referring to time and Ei being the 

545 respective excitatory phase code neuron. 

546 For all measures, we represent the mean value over Nrep = 10 replications and error bars 

547 or shades show the confidence interval computed by mean 2(SD/ ). √𝑁𝑟𝑒𝑝

548 Additionally, we evaluated the pMFC theta activation. First, in order to illustrate the 

549 bursts described in equation (10), we computed the ERP during the intertrial interval after error 

550 trials. Second, we evaluated power in the time frequency domain. Time–frequency signal 

551 decomposition was performed by convolving the signal (e.g., for an E neuron) by complex Morlet 

552 wavelets, , where i2 =-1, t is time, f is frequency, ranging from 1 to 10 in 10 linearly 𝑒𝑖2𝜋𝑓𝑡𝑒 ‒ 𝑡2/(2𝜎2)

553 spaced steps, and σ=4/(2f) is the “width” of the wavelet.  Power at time step t was then computed 

554 as the squared magnitude of the complex signal at time t and frequency f. We averaged this power 
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555 over all simulations and all replications of our simulations. This power was evaluated by taking 

556 the contrast between the inter-trial intervals following correct (1) and error (0) reward feedback. 

557 Data and software availability

558 Matlab codes that were used for both the model simulations and data analysis are available on 

559 GitHub (https://github.com/CogComNeuroSci/PieterV_public). We will also provide adapted 

560 versions of this code for use with Python. 
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