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Meta-analyses of fMRI studies are vital to establish consistent findings across the literature. 
However, fMRI data are susceptible to signal dropout (i.e. incomplete brain coverage), 
which varies across studies and brain regions. In other words, for some brain regions, only a 
variable subset of the studies included in an fMRI meta-analysis have data present. These 
missing data can mean activations in fMRI meta-analysis are underestimated (type II errors). 
Here we present SPM (MATLAB) code to run a novel method of adjusting random-effects 
models for meta-analytic averaging of a group of studies and mixed-effects models for 
comparison between two groups of studies. In two separate datasets, meta-analytic effect 
sizes and z-scores were larger in the adjusted, compared to the unadjusted analysis. 
Relevantly, these changes were in regions such as the ventromedial prefrontal cortex where 
coverage was lowest. Limitations of the method, including issues of how to threshold the 
adjusted maps are discussed. Code and demonstration data for the adjusted method are 
available at https://doi.org/10.25377/sussex.c.4223411. 
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1. Introduction 

Echo-planar images for functional magnetic resonance imaging (fMRI) are susceptible 
to signal dropout (Ojemann et al., 1997) leaving gaps in activation maps. The level of coverage 
can vary widely between individuals, scanners, and scan protocols. This presents a problem 
of false negatives (type II errors – wrongly concluding no effect exists) for both individual 
studies and for map-based fMRI meta-analyses.  

The problem of missing data from lack of coverage is limited to a subset of regions, 
including ventromedial prefrontal cortex (vmPFC) and temporal lobes, due to factors such as 
nearby air and bone. False negatives are therefore localised to these regions and not 
uniformly distributed throughout the brain. Research on topics and tasks which rely on these 
regions, for example value-based decision-making in vmPFC (Levy and Glimcher, 2012), will 
be disproportionately affected by issues of coverage. In addition, if meta-analyses test for 
convergence, incomplete brain coverages may lead to incorrect p-values, because the test 
assumes that “false foci” are uniformly distributed across the brain (Albajes-Eizagirre and 
Radua, 2018). 

While techniques have been developed to maximise coverage (Weiskopf et al., 2007), 
they are not uniformly successful or universally applied. In this report, we discuss an approach 
to reducing these type II errors in map-based fMRI meta-analyses. 

Using meta-analysis techniques on neuroimaging data is vital to establish consistent 
neural correlates across studies (Müller et al., 2018; Wager et al., 2007, 2009). Several tools 
are available. One technique for meta-analysis is Anisotropic Effect Size Signed Differential 
Mapping software (AES-SDM, Radua et al., 2014) which combines coordinate-based meta-
analysis with unthresholded maps (Radua and Mataix-Cols, 2012) to reduce assumptions of 
the spatial extent of activations. 

Dropout in where signal is present can mean activations in fMRI meta-analysis are 
missed or underestimated. This will be, at least in part, due to voxels where no effect size was 
measured, being attributed the same variance estimates as voxels where effect sizes were 
measured. Here we present code which runs a novel method of adjusting both random and 
mixed-effects models, for meta-analytic averaging across a single group or comparison 
between two groups of studies respectively. The code adjusts each type of variance (within-
study & between-study) in the models used in AES-SDM, which are usually assigned to every 
voxel, so only voxels where data was recorded are included.  
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2. Materials and methods 

2.1. Data selection 

This technique to account for variable coverage was developed as part of an fMRI 
meta-analysis on prosocial behaviour so a detailed description of selection methods is 
provided elsewhere (Cutler and Campbell-Meiklejohn, 2019). Briefly, meta-analyses were 
calculated for each of two groups of decision type, “altruistic” and “strategic”, using random-
effects models and these groups were compared with a mixed-effects model. The altruistic 
group contained 18 maps and 3 coordinates sets (n = 21, 557 participants) while the strategic 
group had 10 maps and 5 coordinates sets (n = 15, 593 participants). Due to different control 
conditions across studies, the adjusted analysis was only run on studies which contrast 
altruistic (n = 12) or strategic (n = 12) with selfish decisions. 

To establish the wider relevance of the method, we conducted a second meta-analysis 
using data which researchers have made available through NeuroVault (Gorgolewski et al., 
2015). It is vital to stress that this is in no way a comprehensive meta-analysis of any tasks and 
it is unlikely that a genuine meta-analysis would group these maps together. These maps were 
simply used as their CC0 license enables sharing as a demonstration set with the code 
(available at https://doi.org/10.25377/sussex.c.4223411). 

Searches on NeuroVault were conducted for “choice” and “deci*” (for decision, decide 
etc.). Maps were selected if they had data from any decision task in the scanner with a 
contrast to no decision or a decision which varied on a parameter, for example complexity. 
This crude selection technique resulted in 18 maps (see Table 1).  

Coverage was investigated by binarising each map, after registration to a common 
template, based on whether there was signal in each voxel and summing these images to 
create coverage maps (Figure 2). Both the dataset on prosocial decisions and the NeuroVault 
dataset on decisions showed decreased coverage around the periphery, particularly in 
vmPFC. 
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 Table 1. Details of the studies with data available from NeuroVault included in the second meta-analysis

First author Year NeuroVault collection name Map used Map 
type 

Sample 
size 

Park 2017 Integration of individual and social information for decision-making in groups of different sizes Brain regions for changing judgments to 
conform to the group’s T 23 

Chang 2011 Great expectations: neural computations underlying the use of social norms in decision-making Offer3_BetweenExpect Z 17 

Bang 2018 Distinct encoding of decision confidence in human medial prefrontal cortex GLM1: Group-level main effect of coherence 
(un-masked) T 32 

Fleming 2018 Neural mediators of changes of mind about perceptual decisions Parametric effect of reported confidence T 22 

Gonzalez Alam 2018 Meaningful inhibition: Exploring the role of meaning and modality in response inhibition Figure 2. Semantic and Perceptual Inhibition 
Overlap Z 27 

Tom 2007 The Neural Basis of Loss Aversion in Decision-Making Under Risk task001_cope03_parametric gain T 16 

Waskom 2016 Adaptive Engagement of Cognitive Control in Context-Dependent Decision Making Context prediction error Z 15 

Op de Macks 2018 Supplement: Neural correlates of adolescent decision-making and outcome processing during 
the Yellow Light Game 

Stop > Go (N=78, 11-17 years-old, 
community sample) T 78 

Suzuki 2015 Neural Mechanisms Underlying Human Consensus Decision-Making Fig.4A (Main + Control) T 20 

Rahnev 2016 Causal evidence for frontal cortex organization for perceptual decision making Stimulus/perceptual judgment epoch T 17 

Li 2017 Reason's Enemy Is Not Emotion: Engagement of Cognitive Control Networks Explains Biases in 
Gain/Loss Framing 

Frame-Consistent>Framing-Inconsistent, 
unthresholded Z 143 

Aridan PreP Neural correlates of effort-based valuation with prospective choices effort_gain_pos Z 40 

Cho 2016 Reward Sensitivity Enhances Ventrolateral Prefrontal Cortex Activation during Free Choice Figure2 Free vs Forced TEPS unthresh Z 33 

Kameda 2016 Rawlsian maximin rule operates as a common cognitive anchor in distributive justice and risky 
decisions 

Activity of the right temporo-parietal 
junction (RTPJ) during decision making. T 30 

van der Laan 2014 Sweet lies: neural, visual, and behavioral measures reveal a lack of self-control conflict during 
food choice in weight-concerned women Choice periods SC vs NSC T 20 

Hunt 2014 Hierarchical competitions subserving multi-attribute choice Integrated value competition Z 19 

Korn 2018 Heuristic and optimal policy computations in the human brain during sequential decision-
making 

GLM2: Participants’ choices (binary 
parametric modulator: foraging versus 
waiting) 

T 28 

Fujiwara 2018 Ventrolateral Prefrontal Cortex Updates Chosen Value According to Choice Set Size spmT 0001 T 18 
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2.2. Combined image and coordinate meta-analysis 

Using maps in fMRI meta-analysis has a number of benefits including enhanced 
sensitivity and detection of consistent but subthreshold effects. When maps are unavailable, 
AES-SDM recreates estimated maps from coordinates and their effect sizes using an 
anisotropic kernel. If obtainable, peaks can be entered in both directions of the contrast. 

Statistics other than T are transformed before all maps, including those recreated 
from coordinates, are aligned to a common template. The software then implements a 
permutation-based analysis. The recommendation is 50 permutations which creates 50 
randomisations with the same number of foci as the map of interest. These preprocessing 
steps result in recreated NIfTI maps of effect sizes and within-study variance for each study. 
These maps are used in the both the original, unadjusted method by the software and the 
adjusted technique described here. Adjusted analysis uses custom scripts in SPM12 
(Statistical Parametric Mapping, http://www.fil.ion. ucl.ac.uk/spm) which are available under 
an MIT license from https://doi.org/10.25377/sussex.c.4223411 and 
github.com/jocutler/adjusting-dropout-fMRI-meta. 

2.3. Random-effects model 

2.3.1. Unadjusted model 

One widespread use of meta-analysis is to calculate mean effect sizes across studies. 
A common method, and the method used in AES-SDM, is a random-effects model. In the 
model, AES-SDM weights each study by the inverse of the total (within-study and between-
study) variance. The between-study variance, τ2, is obtained by the DerSimonian-Laird 
estimator (Dersimonian and Laird, 1986) as: 

𝜏𝜏2 =  max {0, 𝑄𝑄𝑤𝑤 − (𝑘𝑘 − 1)} / [�𝑤𝑤𝑖𝑖 −
𝑖𝑖

 (�𝑤𝑤𝑖𝑖2 / �𝑤𝑤𝑖𝑖)
𝑖𝑖𝑖𝑖

]} 

Where wi is a weighting calculated as the inverse of the ith study’s within-study variance, k is 
the number of studies and Qw is calculated as: 

𝑄𝑄𝑤𝑤 =  �𝑤𝑤𝑖𝑖
𝑖𝑖

(𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑤𝑤)2 

Where yi is the ith study effect size estimate, wi is a weighting calculated as the inverse of the 
ith study’s within-study variance and ȳw is the weighted estimate of the overall effect size 
calculated as: 

𝑦𝑦�𝑤𝑤  =  �𝑤𝑤𝑖𝑖
𝑖𝑖

𝑦𝑦𝑖𝑖  /  �𝑤𝑤𝑖𝑖
𝑖𝑖
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In simplified terms, used in the code: 

 𝜏𝜏2 =  numerator / 𝐶𝐶 

Where: 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  max {0, Q − 𝐷𝐷𝐷𝐷𝐷𝐷} 

With Q calculated as above, degrees of freedom (DoF) the number of studies -1 and: 

𝐶𝐶 = [∑𝐹𝐹𝐹𝐹 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − ( ∑𝐹𝐹𝐹𝐹 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2

∑𝐹𝐹𝐹𝐹 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
)] 

Where FE weightings are the inverse of the studies’ within-study variance. These are referred 
to as fixed-effects (FE) weightings as they are the ones used for a fixed-effects model, which 
just takes into account within-study (not between-study) variance. 

In practice, these equations demonstrate that the between-study variance (τ2) 
depends on the sum of the weightings (wi) which are the inverse of the within-study variance.  

2.3.2. Adjusting random-effects models 

In fMRI meta-analysis, the within-study variance is a single number which is applied as 
the variance across every voxel in the brain within the mask of interest. The effect size for 
that voxel is the transformed effect size created during preprocessing. However, if signal 
dropout has occurred, the effect size is zero. This means that voxels with no recorded signal 
are attributed variance but no effect size. When the FE weightings and effect sizes are each 
summed during calculation of the between-study variance, these voxels are contributing to 
the total variance without contributing an effect size. This could underestimate meta-analytic 
effect size due to inflated variance. 

To account for this, calculations for the meta-analysis can be adjusted so only studies 
where data was recorded contribute weightings to the calculation of τ2. This can be done 
either at the single-voxel level with a spreadsheet (Figure 1) or across the whole brain, voxel-
by-voxel, by masking variance maps with their coverage. The DoF value is also adjusted to be 
the number of studies with data – 1. 

It is important to note that maps recreated from coordinates should not be adjusted 
unless the coverage is known. If the coverage is unknown, effect sizes with values of zero do 
not necessarily imply lack of signal and could meaningfully demonstrate the voxel is too far 
from any peaks to be attributed effect size. Of course, the maps which these coordinates were 
generated from could also suffer from signal dropout but this cannot be confirmed. This is 
another reason to obtain maps wherever possible.  

If the coverage is known, for example if the paper states the cerebellum was not 
analysed, a coverage map reflecting this could be created and entered into the analysis as the 
mask for that study. This was not done for any of the studies in the current analyses. 
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Once τ2 has been calculated as a single number for the between-study variance, it is 
added to the within-study variance for each study to provide total variance. The inverse of 
this total variance provides the random-effects (RE) weightings for each study, by which the 
effect-size estimates are multiplied. 

The issue of variable coverage affects results again at this stage as the overall meta-
analytic effect size (Hedges’ g) is calculated by the sum of the weighted effect sizes divided by 
the RE weightings summed: 

𝑔𝑔 =  �𝑅𝑅𝑅𝑅 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  /  �𝑅𝑅𝑅𝑅 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

The meta-analytic variance map, used to calculate standard error and z-scores, is 
calculated as the inverse of the RE weightings summed: 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  1 / �𝑅𝑅𝑅𝑅 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Again, voxels with no effect-size estimate due to missing data will contribute zero to 
the effect sizes but increase the sum of the RE weightings in both of these calculations. A 
greater value of summed weightings leads to underestimation of g and overestimation of 
variance. 

The same principle can be applied here as with the FE weightings, where studies are 
only included in the weightings sum if they have an effect size present. 
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Figure 1. Demonstration of an adjusted random-effects model on a single voxel for five studies. Shaded rows (studies 1, 3 & 4) are those which 
are still taken into account in the adjusted analysis. “All” refers to the unadjusted analysis with all studies. Study 1 is from coordinates so this is 
included despite having an effect-size estimate of zero as this could be meaningful (see section 2.3.2 for details and exception to this rule). 
Studies 3 and 4 are maps with non-zero effect-size estimates in the voxel of interest, so are included. Studies 2 and 5 are maps with zero 
effect-size estimates, suggesting missing data due to signal dropout, so these are not included in the adjusted analysis. The fixed-effects 
section is purely used to calculate the between-study variance (τ2: tau-sq) with the calculations for this shown in the box “calculating between-
study variance”. Although τ2 increases from 0.20 to 0.29 in the adjusted analysis, likely linked to having less studies, the meta-analytic effect 
size (g) increases substantially from 0.36 to 0.61 as the sum of the RE weightings (which the sum of the weighted effect sizes is divided by) 
decreases from 19.20 to 8.59. An interactive spreadsheet in this format can be downloaded from https://doi.org/10.25377/sussex.c.4223411 
to run this analysis on any voxel for any set of studies.

Study
Effect size 
estimate 

Within 
Var

Map? Within Var
FE Weighting 
(Wt , 1/Var)

Es*FE Wt
Es^2*FE 

Wt
FE Wt^2

RE All Tau-
sq

RE All 
Total Var

RE All Wt
Es*RE All 

Wt
RE Adj 
Tau-sq

RE Adj Total 
Var

RE Adj 
Wt

Es*RE Adj 
Wt

1 0.00 0.05 0 0.05 20.92 0.00 0.00 437.67 0.20 0.25 4.02 0.00 0.29 0.34 2.95 0.00
2 0.00 0.06 1 0.06 16.39 0.00 0.00 268.74 0.20 0.26 3.82 0.00 0.29 0.35 2.84 0.00
3 0.63 0.04 1 0.04 23.81 14.93 9.36 566.89 0.20 0.24 4.12 2.58 0.29 0.33 3.00 1.88
4 1.28 0.09 1 0.09 11.17 14.30 18.30 124.81 0.20 0.29 3.44 4.41 0.29 0.38 2.63 3.37
5 0.00 0.06 1 0.06 16.17 0.00 0.00 261.60 0.20 0.26 3.81 0.00 0.29 0.35 2.84 0.00

Sum: All: 88.47 29.23 27.66 1659.72 All: 19.20 6.99 Adjusted: 8.59 5.25
Sum: Adjusted: 55.90 29.23 27.66 1129.37

N all. 5
N adj. 3 All All Adj All Adj

Q Q 18.01 12.38 Effect size 0.36 0.61

DoF N all. - 1 DoF 4 2 Variance 0.05 0.12
Numerator Numerator 14.01 10.38 Stnd error 0.23 0.34

C C 69.71 35.70 SDM-Z 1.59 1.79

Tau-sq Tau-sq 0.20 0.29

∑(Es2*FEWt) - (∑Es*FEWt)2 / ∑FEWt

max(Q -DoF, 0)

∑FEWt - ∑FEWt2 / ∑FEWt

Numerator / C

Calculating between-study variance
Adj

N adj. - 1

Between-study variance

Fixed effects (FE) Random effects (RE)
Unadjusted (All) Adjusted (Adj)

Random effects statistics
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2.4. Mixed-effects model 

2.4.1. Unadjusted model 

In addition to calculating the mean effect size for a group of studies, meta-analysis can 
calculate the difference between two groups using a mixed-effects model. The calculations 
and method of adjusting are similar to random-effects models, except the DoF equals the 
total number of studies across groups -2, the calculation of Q is: 

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 0 + 𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 1 

And the calculation of C is: 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 0 + 𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 1 

Where Q and C for each group separately are calculated as above. Groups are referred to as 
0 and 1 to match dummy coding in AES-SDM. 

Calculating τ2 follows the same process as above to produce a single number for the 
between-study variance across all the studies in both groups. This is added to the within-study 
variance and the inverse of this total variance provides the study’s mixed-effects (ME) 
weighting.  

The meta-analytic effect size (Hedges’ g) is then calculated with the formula shown 
above for each group of studies separately - the sum of ME weighted effect sizes divided by 
the sum of ME weightings for that group. The meta-analytic variance is also calculated as 
above for each group of studies separately: the inverse of the ME weightings sum for that 
group. 

The Hedges’ g effect-size map for the difference between groups is the calculated by 
subtracting the two separate effect-size maps: 

𝑔𝑔1−0 =  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 1 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 0 

The meta-analytic variance for the difference between groups is calculated by 
summing the two separate variance estimates: 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1−0 =  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 0 +  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 1 

2.4.2. Adjusted model 

As with random-effects models, voxels with zero effect sizes due to dropout are 
attributed within-study variance and so increase the sums of FE and ME weightings. This is 
likely to underestimate average effect sizes. The same adjustments can avoid this problem in 
a mixed-effects model by excluding weightings of voxels where no effect size is present, 
unless the map was recreated from peaks with unknown coverage. This adjustment can again 
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be done for a single voxel or across the whole brain. The DoF becomes the total number of 
studies, across both groups, which contribute weightings – 2. 

2.5. Z-maps and thresholding 

Once the effect-size and variance maps have been adjusted, maps of standard error 
and z-scores can be produced. As the input came from permutations in AES-SDM, z-scores are 
“SDM-Z” because they do not follow a normal distribution. 

Standard error (SE) is the square root of the meta-analytic variance, either for a single 
group or the difference between groups (shown): 

𝑆𝑆𝑆𝑆1−0 =  �𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1−0 

SDM-Z is the effect size (Hedges’ g) divided by the standard error, either for a single 
group or the difference between groups (shown): 

𝑆𝑆𝑆𝑆𝑆𝑆-𝑍𝑍1−0 =  𝑔𝑔1−0 / 𝑆𝑆𝑆𝑆1−0 

Thresholding in AES-SDM uses a voxel-level threshold of p<0.005 which approximates 
p<0.05 corrected and balances specificity and sensitivity (Radua et al., 2012). However, in 
SDM-Z maps from the adjusted method, voxels have differing DoF meaning thresholding is 
not straightforward.  

In the prosocial decisions meta-analysis (Cutler and Campbell-Meiklejohn, 2019), 
maps were thresholded with SDM-Z > 2.3. This was chosen as a common value for 
thresholding, close to the average of the critical SDM-Z values generated in the original, 
unadjusted analyses (with all studies) and AES-SDM analyses run with the 50% of maps with 
the best coverage. Here, we apply the same threshold to the NeuroVault data. We recognise 
this is not a perfect solution but it provides continuity and this analysis is not meaningful, 
regardless of thresholding method, other than for demonstrating the impact of the 
adjustment. 
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3. Results 

In both random and mixed-effects analyses, in both datasets, the adjusted method 
increased effect sizes across the lower vmPFC where coverage was worst (Figure 2). 
Activations based on SDM-Z > 2.3 uncorrected were larger in the adjusted than the 
unadjusted analysis. 

3.1. Prosocial decisions 

In the prosocial decisions data, effect sizes and the size of SDM-Z > 3 activations 
increased in the adjusted analysis for altruistic vs. selfish (Figure 2b iii) and altruistic vs. 
strategic (Figure 2b iv). For altruistic > strategic in posterior vmPFC and strategic > altruistic in 
anterior vmPFC, some activations were shown only in the adjusted analysis. This dissociation 
fits with findings of a posterior to anterior vmPFC axis differentiating altruistic from strategic 
decisions (Cutler and Campbell-Meiklejohn, 2019).  

3.2. Decision-making (NeuroVault data) 

Results from the second dataset from NeuroVault on decision-making further support 
the use of the adjusted method to account for coverage. Again, it is vital to stress that this 
analysis purely provides a second application of the adjustments for signal dropout and 
results are not a comprehensive meta-analysis or a meaningful group. 

Effect sizes across vmPFC increased in the adjusted analysis in both the random-
effects model on all 18 studies’ decision-making condition vs. control (Figure 2b i) and the 
mixed-effects model comparing 2 randomly-allocated groups of 9 studies each (Figure 2b ii). 
Similarly, regions where SDM-Z > 2.3 were larger or only present in the adjusted analysis. 
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Figure 2. Coverage maps and results. (A) Coverage maps showing the number of studies with data in each region, x = 0, n = the number of studies 
available and the maximum possible coverage. (B) Increased effect sizes (Hedges’ g; top rows) and larger regions of SDM-Z > 2.3 (bottom rows) 
in the adjusted analysis accounting for vmPFC signal dropout, compared to the unadjusted analysis with all studies. Decisions (data from 
NeuroVault; n = 18) (i) average (random-effects) and (ii) comparison (mixed-effects). Prosocial decisions (iii) altruistic average (n = 12; random-
effects) (iv) comparison between altruistic and strategic decisions (n = 24; mixed-effects).
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4. Discussion 

This paper presents a novel method of adjusting voxel-based fMRI meta-analysis 
technique AES-SDM (Radua et al., 2014) to account for variable brain coverage between 
studies. Increased effect sizes and larger regions with substantial z-scores were found in the 
adjusted, compared to the unadjusted analysis, using two datasets. 

Our results suggest that regions that suffer from signal dropout, such as vmPFC, can 
show false negatives if coverage is not accounted for. The role of these regions may be 
underestimated or overlooked, preventing a complete understanding of their function. In 
meta-analyses, lack of coverage in some studies may obscure an activation despite high 
consistency in the studies with data in that region. 

The uneven spatial distribution of signal dropout may also increase false positive 
results in the rest of the brain. Specifically, the test for convergence used in current 
coordinate-based meta-analyses assumes a uniform distribution of false positive study peaks 
(Albajes-Eizagirre and Radua, 2018), but this assumptions is incorrect if some brain regions 
have no data in some studies. This additional problem should not happen in the upcoming 
version of SDM, which no longer conducts tests for convergence. 

To overcome these issues, our method adjusts random and mixed-effects meta-
analysis models to only include variance, at each calculation stage, from voxels with study-
level effect-size data. This means the number of contributing studies ranges between one and 
the total number of studies. The voxel degrees of freedom will be the number of contributing 
studies -1 (random-effects model) or -2 (mixed-effects model). For some voxels with only a 
few studies contributing, single studies could dominate and prevent the benefits of meta-
analysis from being realised. In comparisons between two groups, differences between the 
sizes of each group could be driven by coverage. 

Perhaps the biggest challenge from varying degrees of freedom across voxels is 
thresholding the adjusted meta-analytic map. In the prosocial decisions meta-analysis, SDM-
Z > 2.3 was applied to the adjusted and unadjusted analysis as a comparison (Cutler and 
Campbell-Meiklejohn, 2019). Although this is liberal for z-scores which follow a normal 
distribution, SDM-Z scores do not follow a normal distribution (Radua et al., 2012) 2.3 was 
close to the threshold SDM-Z score generated in the unadjusted analysis with all studies and 
the half with the best coverage. Here, we also threshold the second meta-analysis with SDM-
Z > 2.3 for continuity. 

This is not a perfect solution and this adjusted method is perhaps best used alongside 
unadjusted analyses thresholded in a more appropriate way. The usefulness of a simple SDM-
Z threshold may be limited to visual comparisons between unadjusted and adjusted maps. 
Comparing adjusted and unadjusted effect-size maps (Hedges’ g) can also reveal the impact 
of coverage deficits. 
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Evidence for the importance of adjusting calculations is presented using two datasets. 
One is a comprehensive meta-analysis of prosocial decisions. The second group is studies with 
data on NeuroVault for decision tasks. Decision-making was chosen as it activates vmPFC 
(Levy and Glimcher, 2012), a region prone to reduced coverage. This data was purely used as 
the availability enables sharing to demonstrate the code and results are not be meaningful in 
any other way. That the NeuroVault data did not show large vmPFC activations is likely due 
to variety in tasks, which would not be grouped together in a genuine meta-analysis. 

 

5. Conclusion 

Using meta-analysis techniques on fMRI data establishes consistent findings across 
samples, scanning sites and tasks, providing many benefits and overcoming issues with single 
studies. Including statistical maps enhances some of these benefits and methods like AES-
SDM, which combine maps with coordinates, increase the chances of including a study. 
However, fMRI meta-analyses are prone to false negatives if lacking coverage leaves missing 
data in study-level statistical maps. Several key regions, including vmPFC and temporal areas 
suffer from signal dropout, meaning false negatives are unevenly distributed throughout the 
brain.  

To account for and overcome these issues, we present a novel method of adjusting 
calculations for random and mixed-effects models for meta-analytic group averages and 
comparisons respectively. By adjusting models to only include variance for voxels with data 
present in the study’s effect-size map, we demonstrate increased meta-analytic effect sizes 
in regions with the worst coverage. This highlights that failing to account for coverage 
underestimates effect sizes or may miss activations altogether. 
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