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Carbapenemase-producing bacteria are resistant against almost all commonly used be-
talactam and cephalosporin antibiotics and represent a growing public health crisis.
Carbapenemases reside predominantly in mobile genetic elements and rapidly spread
across genetic backgrounds and species boundaries. Here, we report more than one
hundred finished, high quality genomes of carbapenemase producing enterobacteriaceae,
P. aeruginosa and A. baumannii sequenced with Oxford Nanopore and Illumina tech-
nologies. We developed a number of high-throughput criteria to assess the quality of
fully assembled genomes for which curated references do not exist. Using this diverse
collection of closed genomes and plasmids, we demonstrate rapid movement of carbapen-
emase between genomic neighborhoods, sequence types, and across species boundaries
with distinct patterns for different carbapenemases. Lastly, we present evidence of multi-
ple ancestral recombination events between different Enterobacteriaceae MLSTs. Taken
together, our samples suggest a hierarchical picture of genomic variation produced by
the evolution of carbapenemase producing bacteria that will require new models to ad-
equately understand and track.

The rapid global increase of multidrug-resistant
organisms presents a major global health threat that
will dramatically reduce the efficacy of antibiotics
and thus constrain the number of effective treat-
ments available to patients (Hawken and Snitkin,
2018; Logan and Weinstein, 2017). Routine surg-
ergy or immunosuppression now carries the risk of
untreatable life threating infections.

The global trend is acutely exemplified by the
recent proliferation of microbial resistance to the
carbapenems, a class of β-lactam antibiotics used
for empiric treatement of infections with suspected
multi-drug resistant bacteria and thus is of partic-
ular clinical importance. Carbapenemases, enzymes
which hydrolyze carbapenems, have spread remark-
ably fast (Logan and Weinstein, 2017); the first
Klebsiella pneumoniae carbapenemase (KPC) was
isolated in the United States in 1996 and has since
become the most common carbapenemase (DeLeo
et al., 2014; Holt et al., 2015). A large variety of car-
bapenemases, e.g. NDM, OXA-48, IMP and VIM,
have similarly risen in global frequency over this

time-span due to the increase in usage of carbapen-
ems in health care (Doi and Paterson, 2015; Logan
and Weinstein, 2017; Nordmann et al., 2011).

The spread of carbapenemases is putatively driven
by both clonal expansion of specific strains, as well
as horizontal transfer of mobile genetic elements
within and across species boundaries (van Duin
and Doi, 2017). It is commonly thought that the
global spread of KPC is due to the dissemination
of K. pneumoniae ST258, defined by multi-locus se-
quencing typing (MLST) (Munoz-Price et al., 2013).
However, studies have also found rapid KPC noso-
comial outbreak dynamics originate primarily from
prevalent plasmid and transposon transfer (Shep-
pard et al., 2016). This pattern is not specific to
KPC: the dissemination of OXA, TEM and NDM
is equivalently accelerated in the short-term by
their respective association to specific transposons
that readily mobilize to different plasmid backbones
(Holt et al., 2015). Reconstruction of the evolution-
ary history of the outbreak is further complicated
by an unknown rate of homologous recombination,
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shown to be extensive in the short term history of
Acinetobacter baumannii as well as the ancestral his-
tory of current circulating K. pneumoniae strains
(Chen et al., 2014; Snitkin et al., 2011).

Quantitative characterization of the global epi-
demiology of carbapenemase producers will require
elucidation of the roles of horizontal transfer, clonal
expansion, and homologous recombination in shap-
ing the standing genetic variation in pathogenic bac-
teria (Holt et al., 2015). While next generation se-
quencing has greatly increased our ability to resolve
the short time dynamics of pathogen evolution, stan-
dard technologies fall short in one crucial aspect:
the short reads generated by most sequencing tech-
nologies (e.g. Illumina), generically fail to assem-
ble into complete genomes. Instead, genome assem-
blies are often fragmented into hundreds of contigs
with breakpoints corresponding to repetitive regions
such as mobile elements, a particularly severe lim-
itation for the study of the molecular evolution of
carbapenemase as they are usually associated with
transposons. As a result, standard WGS in typically
uninformative of the overall genomic neighborhood
of each resistance gene and its evolutionary history.

Until recently, the production of fully assembled
genomes required slow, expensive and labor inten-
sive methods (Loman and Pallen, 2015). As a
result, the number of high quality reference car-
bapenemase producing genomes is still small; for
example, as of October 2018 the NCBI pathogen
database only includes 112 assembled genomes (<5
contigs) of K. pneumoniae that contain a KPC β-
lactamase. With the advent of high-throughput
long read sequencing technology (PacBio, Oxford
Nanopore) it has become possible to fully assem-
ble bacterial genomes in a cost-effective, automated
manner (Wick et al., 2017a). Here we report and
analyze the hybrid de-novo assemblies of 110 car-
bapenemase containing isolates of Klebsiella pneu-
moniae, Escherichia coli, Acinetobacter baumannii,
and Pseudomonas aeruginosa isolated at the Univer-
sity Hospital Basel over the course of 8 years. Us-
ing a combination of Oxford Nanopore and Illumina
MiSeq sequence data, we fully assembled 103 of the
clinical isolates.

As traditional assembly metrics, e.g. N50, lack
resolution for assessing the quality of fully assem-
bled genomes, here we present diagnostics to as-
sess both nucleotide and structural accuracy. A me-
dian 99.999% of each assembled genome showed no-
evidence of gross sequencing error or misassembly,

with the remainder likely due to the ambiguous map-
ping of short reads during assembly polishing.

Our large collection of high quality, complete as-
semblies provides a point of entry to comparatively
study the genome evolution of antibiotic resistance
to carbapenems. We show that the genomic contexts
of the globally circulating carbapenemase genes ex-
hibit a nested structure; we find both extensive
inter-strain plasmid sharing as well as small-scale
transpositions of the mobile elements flanking each
carbapenemase between plasmids. Additionally, we
find that a large fraction of the Enterobacteriaceae
genomes are ancestral mosaics. This complex dy-
namics underscores the need for long-read sequenc-
ing in surveillance of resistance determinants in bac-
teria.

MATERIALS AND METHODS

Collection of bacterial isolates

The bacterial isolates originate from the culture
collection of the Division of Clinical Microbiology at
the University Hospital Basel. 110 well character-
ized carbapenem-resistant clinical isolates recovered
from 2010 to 2017 within Basel, Switzerland were
included in this study. A total of 87 enterobacteri-
aceae, 13 P. aeruginosa and 10 A. baumannii. The
study has been approved by the local IRB (EKNZ
Nr 2017-00222).

Strains were either detected in screening from col-
onized patients (Hinić et al., 2017, 2018) or in rou-
tine diagnostics from an infection most often us-
ing VITEK 2 (bioMérieux). All carbapenemase-
producing strains were confirmed by either in house
PCR (Poirel et al., 2011; Woodford et al., 2006),
Xpert-Carba� (GeneXpert, Cepheid) or eazyplex�
superbug CRE (Amplex Biosystems). Both ma-
trix assisted laser desorption ionization-time of flight
(MALDI-TOF) mass spectrometry on a Bruker
microflex system (Bruker Daltonics, Bremen) and
routine antimicrobial susceptibility testing using
VITEK� was used for species identification

DNA extraction

Strains were stored at microbial storage tube Mi-
crobank� (PRO-LAB Diagnostics, US) at -80°C, re-
cultured on Columbia agar with 5% sheep blood
(bioMérieux, France) and incubated at 37°C un-
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TABLE I Sample overview. Species breakdown, collection dates, main sequence types and β-lactamases of the
samples sequenced in this study.

der atmospheric conditions with 5% CO2 for 18-24
hours. A filled inoculation loop of colonies were col-
lected and suspended in 2mL Phosphate-Buffered
Saline (Sigma-Aldrich Chemie GmbH, Switzerland).
This solution was centrifuged for 10 minutes at
13’000 rpm to collect the bacterial pellet.

The DNA extraction was performed from a bacte-
rial pellet using the QIAamp® DNA mini kit (QIA-
GEN) on the QIAcube® robot (QIAGEN) accord-
ing to the manufacturer’s protocol. The bacterial
DNA was eluted in 150µl AE buffer and stored at
-20°C. The DNA concentration was measured using
Qubit® 3.0 fluorometer (Invitrogen, US) with the
Qubit� dsDNA HS assay kit.

Long-read sequencing

Each library was prepared using a custom proto-
col based upon the ONT 1D ligation sequencing kit
(LSK-108) supplemented with the native barcoding
expansion kit (EXP-NBD103). The optional shear-
ing and repair step of the protocol was omitted to ob-
tain longer reads. Since adapter ligations during li-
brary preparation and nanopore sequencing are fore-
most sensitive to the molarity of sequencing library,
we increased the amount of total DNA material used.
Each isolates’ extracted DNA was diluted to 1µg/µL
in 50µL nuclease free water (NFW). 7µL of NEB-
next Ultra II End-repair/dA-tailing buffer and 3µL
of NEBnext Ultra II End-repair/dA-tailing enzyme
mix were added to each sample and incubated at
20oC for 5 min and 65oC for 5 min. 60µL of AM-
Pure XP beads were added to each sample and then
each DNA sample was washed using 70% EtOH and
eluted into 25µL of NFW. 2.5µL of each barcode plus
25µL of Blunt/TA ligase master mix was added to
each sample and incubated at room temperature for
10 minutes. The samples were immediately pooled
together and then washed by adding 250µL of AM-

Pure XP beads to the pooled sample. Following an-
other wash with 70% EtOH, all DNA was eluted into
51 µL. 1µL was used to measure DNA concentration
with a Qubit fluorometer. The final sample was di-
luted to a DNA concentration of 35ng/µL. Adapter
ligation was prepared by adding 20µL BAM, 30µL
Ultra II ligation master mix, and 1µL ligation en-
hancer to the pooled sample. The library was spun
down and incubated at 10 minutes. The remaining
steps followed the LSK-108 kit protocol.

All 110 samples were sequenced over 15 different
runs and averaged∼9 samples/flowcell. 25 samples
had to be re-sequenced due to low coverage resulting
in poor assembly. All resulting fast5 read files were
base-called using ONT’s albacore command line tool
(v2.0.2). Albacore was run using barcode demulti-
plexing with Fastq output. Porechop (v 0.2.3) was
used on the directory output from Albacore and only
reads that both Albacore and porechop agreed upon
were kept and stored in one Fastq file to be used for
subsequent assembly.

The demultiplexed and adapter-trimmed sequenc-
ing reads are available at ENA under bioproject
number PRJEB28660.

Short-read sequencing

The DNA from cultured isolates was extracted us-
ing the EZ1 DNA tissue kit on an EZ1 Advanced
XL robotic system (Qiagen). The extracted DNA
was processed using the Nextera XT library prepa-
ration kit (Illumina). The resulting library was se-
quenced using a MiSeq Illumina platform (accred-
ited with ISO/IEC norm 17025) with 2x300 paired-
end sequencing as previously described (Piso et al.,
2017)

The demultiplexed sequencing reads are available
at ENA under Bioproject number PRJEB28660

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/456897doi: bioRxiv preprint 

https://doi.org/10.1101/456897


Genome assembly, annotation and sequence typing

Each ONT read set was assembled using Canu
(v1.5) (Koren et al., 2017) on a high-performance
computing cluster (sciCORE at the University of
Basel). If an isolate was sequenced multiple times,
all available read sets were given to the assembler.
The corresponding Illumina reads were mapped to
the resultant assembly using bwa-mem for multiple
rounds of polishing with Pilon (v1.22) (Walker et al.,
2014).

Additionally, each assembly was additionally per-
formed using Unicycler (v0.4.2) (Wick et al., 2017b).
Assemblies between Unicycler and Canu were com-
pared using the genome alignment mode of Min-
imap2 (Li, 2018). In general, Canu produced more
contiguous assemblies than Unicycler, most likely
because most the assemblies of the Illumina data
contained many dead ends. This is likely due to
the small insert sizes of our paired-end short read
libraries, see S.I. for more detail. Comparison be-
tween Canu and Unicycler also provided a sanity
check on assembly methods as in general both as-
semblies agreed 99.9% with each other at the nu-
cleotide level. Conversely, Unicycler did assemble a
few small (< 20 kb) plasmids that did not map to
any corresponding plasmid in the Canu assembly, ei-
ther because it was not present in our ONT library
or because Canu excluded these reads. When this
occurred, the Unicycler contig was appended to the
Canu assembly.

All assembled genomes were annotated using
prokka (v1.12) (Seemann, 2014) supplemented with
a protein database of β-lactamases from ResFinder
(Zankari et al., 2012), as well as an HMM to an-
notate insertion sequences from ISEscan (Xie and
Tang, 2017). Additionally all plasmids were typed
using PlasmidFinder (Carattoli et al., 2014). Lastly
each isolate was typed using MLST (Jolley and
Maiden, 2010; Seemann, 2018).

The annotated assemblies are available in
Genbank under accession numbers ERZ777024-
ERZ777123.

Synteny Alignments

Gene synteny in the neighborhood of carbapene-
mase genes was assessed by representing plasmids or
the 100 flanking genes (for chromosomal carbapene-
mase genes) as strings of orthologous gene clusters.
These gene clusters were inferred using PanX (Ding

et al., 2018). PanX first performs an all-to-all align-
ment of proteins using DIAMOND (Buchfink et al.,
2015) and then performs the Markov Cluster Algo-
rithm on the resulting graph of e-values. Paralogous
clusters are delineated by cutting anomalously long
branches in the resulting phylogenetic tree.

Each gene in the original sequences was then
represented by an ID unique to its gene cluster.
All pairs of the coarse-grained sequences were then
aligned using the pairwise local alignment algorithm
of Seqan (Döring et al., 2008) exposed to python via
the Cython interface (available on GitHub). For cir-
cular plasmids, we repeated the alignment for all
possible rotations of the sequence and its reverse
complement.

The resulting matrix of edit distances was clus-
tered into an ultrametric tree, using the UPGMA
algorithm, such that genomic contexts were hier-
archical clusters of synteny/genomic environments
based upon ‘edit’ distance of the strings made of or-
thologous genes.

Core genome trees and homologous recombination
analysis

The core genome for each species of collected
isolates were built using the PanX pipeline us-
ing default parameters(Ding et al., 2018); the core
genome tree was subsequently inferred using Fast-
Tree (v2.1.9)(Price et al., 2010), using the ‘-gtr’ and
‘-gamma’ flags, from the concatenated nucleotide
alignment of all core genes. The resulting branch
lengths of all phylogenetic trees were further refined
using TreeTime (Sagulenko et al., 2018). All tree
distances obtained from this process were used as
a proxy for evolutionary distance in the subsequent
analyses.

The core tree allowed inference of mutational
events; mutations were estimated using message
passing in a maximum joint likelihood framework us-
ing the TreeAnc class of TreeTime (Sagulenko et al.,
2018) Mutations that were observed more than once
within the tree were classified as homoplasies. Both
homoplasic density and total SNP density were ob-
tained by averaging the number of each respective
event over the concatenated core genes in a sliding
window of size 5 kb with a custom Python script.

A hash map was defined - i.e. each orthologous
group obtained from PanX was given a unique in-
teger identifier - this allowed for quick comparison
between the gene content of different isolates. Ad-
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ditionally, the defined hash corresponding to the
core genes were used as markers to identify global
rearrangements between pairs of isolates. Broken
relative ordering of the defined hash was inferred
as a rearrangement event. Specifically, all isolates
were compared to a defined reference, chosen from
the dominant subtype for each species: the internal
numbered isolate 13, 70, 116, and 47 were chosen for
E. coli, K. pneumoniae, P. aeruginosa, and A. bau-
mannii respectively. Continuous deviations of the
gene order, defined relative to the reference, for the
remaining isolates were utilized as a proxy for a sin-
gle rearrangement event.

To supplement the above homoplasy analysis, a
tree scan was performed on each core genome align-
ment. Each alignment was partitioned into approx-
imately 10 kb blocks, taking care to not extent
blocks past rearrangement events as detected above.
The resulting sub-alignments were fed into FastTree
(Price et al., 2010) with the same parameters as used
for the full core genome tree to build local trees.
All local trees were compared to each other using
the Robinson-Foulds metric, implemented using the
Dendropy (v4.2.0) module (Sukumaran and Holder,
2010) The resulting tree distance matrix was clus-
tered using the UPGMA algorithm implemented in
Scipy (v1.0.1) (Oliphant, 2007). Flat clusters were
obtained by looking for clusters greater than 25% of
the maximum RF distance away. All 10 kb blocks
associated with one flat cluster were concatenated
and passed to FastTree to better resolve the tree
corresponding to each partition.

RESULTS

Assembly of complete genomes

Despite the fact that long reads have facilitated
the automation of complete bacterial genomes (Wick
et al., 2017a), genomic assembly still has many po-
tential pitfalls (Schmid et al., 2018). As such, strin-
gent quality metrics are necessary; as the price of
whole genome sequencing continues to decline, the
number of assemblies per project will surpass what
is feasible for manual inspection and validation. Tra-
ditional assembly metrics, e.g. N50 and L50, assess
solely the fragmentation of the final assembly. As
most of long read assemblies of bacterial genomes
readily assemble into circular chromosomes, these
metrics were uninformative for our present purposes.
Instead, we utilized metrics that directly quantify

FIG. 1 Sequencing error rates. Error rates of raw
reads for A) Illumina and B) ONT reads, measured rel-
ative to the final polished assembly, averaged over all
clinical isolates (note the 100-fold difference in the color
scale of panels A & B). Errors in ONT reads are domi-
nated by false indels, while such errors are very rare in
Illumina data.

the accuracy or quality of the assembly relative to
three different sources of potential error: (i) single
base errors in the nucleotide sequence, (ii) small in-
del errors (<15bp), and (iii) errors in the global
structure of the assembly, e.g. collapsed repeats. Im-
portantly, these metrics should quantity accuracy
without reference to the correct sequence which is
unknown a priori.

Substitution errors. Accuracy of individual bases in
the assembled sequence primarily depends on the ac-
curacy of the sequencing technology and the degree
to which these errors are random as opposed to sys-
tematic. Such errors are of particular concern for
genomes assembled from solely noisy long reads (Lo-
man et al., 2015); we estimated the nucleotide error
rate to be ∼ 13.6% from the ONT data of all our
bacterial genomes (see Fig. 1 B), consistent with pre-
viously reported numbers (Rang et al., 2018). Im-
portantly, the majority of the measured errors are
attributed to false insertions or deletions relative
to polished assembly; false nucleotide substitutions
were found to occur only at rates of about 3%. In
contrast, the indel error rate of the Illumina technol-
ogy has been measured to about 10−5 (Zanini et al.,
2017). ONT errors were found to be strongly cor-
related in space and enriched within homopolymeric
stretches of the genome, also reported in (Loman
et al., 2015). The consensus taken over a deep cover-
age of long reads polished away many of these errors,
however, as previously observed (Mikheyev and Tin,
2014), nanopore-exclusive assemblies were found to
have an enriched rate of indel errors that dramati-
cally affected downstream ORF discovery and sub-
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sequent annotation. Thus, at present, the only way
to guarantee accurate assemblies is to perform a hy-
brid assembly using noisy long read for long-range
scaffolding information supplemented with Illumina
data for short read accuracy. We refer the interested
reader to the S.I. for a more in-depth discussion of
sequencing errors measured in the raw reads of both
technologies reads and different assemblies.

In order to quantify substitution errors without
knowing the true sequence, we compared diversity
in the pile-up of Illumina short reads with the ex-
pectation from the known Illumina error profile. For
simplicity, we ignore the existent and comparatively
small context biases of the Illumina platform and as-
sumed a constant Poisson rate of errors. Specifically,
as each final genome assembly was polished under
multiple rounds of Pilon, each base-pair should have
an error rate consistent with Illumina technology,
estimated to be p ∼ .12% from Fig. 1A. If, how-
ever, polishing failed due to ambiguous short read
mapping, collapsed regions within the assembly, or
a region with anomalously high error rate prevent-
ing short read mapping, then some columns within
the pile-up will be more diverse than expected by
the error model. This null hypothesis was quantita-
tively tested by computing the binomial likelihood
of observing ni Illumina reads that differ from the
assembly in alignment columns i, conditional on the
observed coverage ci, on the polished genome assem-
bly.

L[ni|c] =

(
ci
ni

)
pni (1− p)ci−ni (1)

The empirically measured coverage distribution was
used in combination with Bayes’ rule to compute
likelihood for each column i. The likelihoods of all
columns were then binned into a histogram; in ab-
sence of errors in the assembly, the fraction of sites
within each bin should be equal to the likelihood.
In general, we find the expected relationship be-
tween likelihood and fraction of sites over 6 orders
of magnitude, see Fig. 2A; however we do observe
a consistent enrichment of sites at likelihoods lower
than 10−6 in most of our assemblies. Specifically, as
shown in the inset of Fig. 2A, approximately 5 ·10−5

of all pile-up columns have anomalously low likeli-
hoods inconsistent with the sequencing error rate.
These sites were clustered in specific regions of each
genome and tended to fall into repetitive regions
where mapping and thus assembly polishing remains
ambiguous.

Short indels and gene prediction. Many sequencing
technologies, including ONT, PacBio, 454 and Ion-
Torrent, struggle with homopolymeric tracts result-
ing in indel-errors in such regions. Such errors are
not easily corrected by consensus building of many
reads since there are systematic biases, either in se-
quencing or consensus building. It should be ex-
pected that assemblies using only such technologies
will suffer from frequent short indel errors, confound-
ing gene prediction via premature stop codon and
reading frame shifts. Illumina sequencers, in con-
trast, have a per base indel rate below 10−5, see
Fig. 1A, thus polishing a long-read assembly with
short reads is expected to remove most indel errors.

We pursued a quantitative estimate of the effect
of the remaining indels errors on our final genome
assemblies. Specifically, indel errors are known
to dramatically affect downstream automated gene
prediction and annotation steps by artificially pro-
ducing a frame-shifts or premature stop codons
within the protein coding regions. In order to get
a quantitative handle on the occurrence rate of
such errors, we aligned all proteins for each anno-
tated genome to the manually curated SwissPROT
database (The UniProt Consortium, 2017) using DI-
AMOND (Buchfink et al., 2015) and compared the
length of our predicted protein to the top match in
the database. The resulting distribution of ratios is
shown in Fig. 2C. Following (Watson, 2018), this dis-
tribution was used to estimate the fraction of prema-
turely truncated genes within our assemblies. To ac-
complish this, we analyzed the fraction of predicted
genes that differed by more than 10% from the top
match in SwissPROT, shown within the inset of Fig.
2C. We estimate that approximately∼ 2% of genes
within each genome are prematurely shortened, gen-
erally consistent with expected pseudo-gene content
(Liu et al., 2004).

Large scale assembly accuracy. Lastly, global assem-
bly accuracy was quantified by using fluctuations
from the null distribution of ONT read coverage.
Specifically, it has been observed that nanopore uni-
formly samples the sequenced genome and that cov-
erage does not fluctuate widely as it does for Illu-
mina Nextera XT (e.g. with GC content) (Loman
et al., 2015). We confirmed this across the 110 se-
quenced samples from different species, as shown in
Fig. 2C. The figure shows histogram of deviations
from the average coverage for each contig across
all samples, rescaled by the standard deviation ex-
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TABLE II Chromosome and plasmid assembly characterization. A) Table containing information about
assembly completion and number of found plasmids per individual. Interestingly, no plasmids were found in either
the A. baumannii or P. aeruginosa isolates. In contrast, most E. coli and K. pneumoniae isolates contained between 1
and 5 plasmids. B) The length distribution of plasmids found in the sample. We observe two distinct size distributions:
large (∼ 100 kb) and small (∼ 20kb), consistent with prior observations.

pected from perfect Poisson sampling. Global mis-
assemblies and collapsed regions should show up as
outliers in the coverage distribution. For about three
standard deviations, this histogram follows the null
expectation from randomly sampling at constant
density suggesting that most of the assembly has
a one-to-one correspondence to the genome of the
isolate.

However, there is a systematic low-coverage tail
in Fig. 2C where the distribution that deviates from
the expectation. This tail, on average, represents
approximately 5 · 10−5 of the entire genome.

In summary, the most prevalent errors are due
to imperfect polishing and indel-correction, which
fails in regions where short read coverage is anoma-
lously low (for example in very AT rich regions), in
repetitive regions were mapping is ambiguous, and
in regions of where the ‘ONT-only assembly’ has too
many errors for standard mappers. While such re-
gions likely exist in most of our genomes, our anal-
yses here show that these problems are restricted to
a small number of sites. This number is consistent
with that obtained via our short read data. Outside
of roughly 200− 800 nucleotides per genome, our fi-
nal assemblies are internally consistent with the raw
data.

Carbapenemases reside in diverse set of genomic
backgrounds

It is largely thought that short term dissemina-
tion of carbapenemases, and β-lactamases in gen-
eral, is driven by the clonal dissemination of resis-
tant lineages such that transmission chains involve
a single pathogenic lineage (Lu et al., 2018; Munoz-
Price et al., 2013; Pournaras et al., 2009) Impor-

tantly, this has influenced surveillance strategies to
focus on tracking strains via ‘sequence types’ using
techniques such as MLST and pulsed-field gel elec-
trophoresis which are gradually replaced by WGS
and core genome MLST (Hawken and Snitkin, 2018).

However, it is becoming increasingly clear that
carbapenemases undergo rapid horizontal transfer
due to their association to mobile genetic elements.
Most carbapenemases (and resistance genes in gen-
eral) are localized on conjugative plasmids that
can be easily shared amongst bacteria. Addition-
ally, carbapenemases are typically integrated within
transposable elements that allow for rapid mobi-
lization to other regions in the containing genome
(Sheppard et al., 2016). If either the rate of plas-
mid transfer or transposition is comparable to time-
scale on which a clonal lineages spreads, then the
outbreak dynamics is no longer well-documented by
solely tracking sequence types. Rather, one would
need to track the resistance determinant along with
its genomic background (Wang et al., 2018). Hence
determining the ‘correct’ molecular unit of resistance
that researchers should survey is of critical impor-
tance necessitating long-read sequencing.

Even short read WGS is ill-suited for linking resis-
tance genes to their genetic background due to lim-
itations of de-novo assembly of highly-repetitive re-
gions. As shown in Fig. 3, the median contig length
of a resistance gene in an Illumina-only assembly is
roughly equal to the 10th percentile of contig length
obtained by our hybrid assembly. Lastly, reference-
based techniques that utilize short reads are inade-
quate as such analyses assume relatively stable ge-
nomic structure of each plasmid background.

High-quality assemblies allow us to investigate
the relative importance of different mechanisms by
which carbapenem resistance spreads. As shown in
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FIG. 2 Assembly statistics and quality. A) Diversity in the pile-up of Illumina short reads mapped to the
hybrid assembly is consistent with a short read error rate of 0.12%. A perfect fit to the null expectation would
show as a straight line in this plot - the main deviation can be found in the pileup at the left. Around 3 in 105

pile-up columns show significantly higher diversity than expected, exhibited in the enrichment of unlikely sites. Such
columns tend to fall within repetitive regions where mapping and assembly polishing remains ambiguous. B) The
great majority of annotated proteins have a hit of equal length in SwissPROT, suggesting frameshift errors are rare
within our assemblies. Conservatively, assuming no pseudogenization we estimate about .2% of genes are prematurely
truncated. Note that the y-scale is logarithmic, greatly emphasizing the rare truncated proteins. The inset shows
distribution of annotated proteins that are shorter than 90% of their closest SwissPROT hit. C) Long read coverage
follows the expected Poisson distribution over 3 standard deviations. The graph shows z = (c− c̄)/

√
c̄ where c(c̄) are

(average) coverage.

Table. II, 103/110 genomes were fully assembled -
i.e. the largest contig was circular and had a size
compatible with typical genome size of the organ-
ism. For all completed assemblies, the remaining
contigs were assumed to be putative plasmids and
verified against the PlasmidFinder database (Carat-
toli et al., 2014). The distribution of plasmid num-
ber per isolate can be found in table. II, along with
the most frequent incompatibility groups for each
species. The table of all resulting incompatibility
types for each isolate can be found in the S.I.

Evolutionary relationships between present-day
isolates are typically reconstructed by similarity
within alignments of homologous sequences, and
only utilize single nucleotide substitutions and small
indels. In the case of the carbapenemase pandemic,
however, the genetic context evolves by transposi-
tion such that identical gene sequences are found in
very different genomic neighborhoods. The genes
flanking the resistance determinant and their order
is therefore a more sensitive measure of evolutionary
distance.

Given the large number of assembled isolates, we
designed a high-throughput pipeline able to assess
the similarity of carbapenemase genetic contexts.
Instead of aligning the nucleotide sequences directly,

FIG. 3 Length of contigs containing either car-
bapenemase and ESBL genes. Stacked histograms
of the length of contig containing all genes annotated as
a Carbapenemase or ESBL for a short read and hybrid
assembly pipeline, shown in green and orange respec-
tively. All plasmid encoded genes are fragmented into
contigs of roughly 4 genes in the short read assembly,
while fully resolved using ONT. Smoothed densities of
the two distributions are shown in black.

we clustered all protein coding regions on the plas-
mid of each carbapenemase gene (or the flanking 100
genes if it was found integrated in the chromosome)
into orthologous clusters using the PanX pipeline
(Ding et al., 2018). Each plasmid was coarse-grained
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as a string of orthologous clusters, where each de-
fined gene is represented by the unique id of the
corresponding gene cluster. These gene-order se-
quences were aligned pairwise and the resulting edit
distances used to construct ultra-metric trees (see
materials and methods for details). Critically, this
allowed us to quantify the similarity between each
genomic contexts that define long stretches of syn-
teny, independent of whether the gene falls on a plas-
mid or chromosome, in a scalable, computationally
efficient manner.

Most KPC is found on two related plasmids

The tree obtained for all plasmids containing
blaKPC is shown in Fig. 4A. We note that length
of the longest branch from root to a leaf within
the structural tree represents an edit distance of ap-
proximately .9 – this reflects the fact that blaKPC
was universally found within the tn4401 transposon
(Sheppard et al., 2016) for all isolates, and as such
even distinct plasmids could be locally aligned in the
vicinity of the gene of interest.

Roughly two thirds of all observed genomic con-
texts of blaKPC were found to be clustered within
one of two closely ‘related’ plasmid backbones, de-
noted as clades 1 (red) and 2 (blue) in Fig. 4. Both
clades predominately contained MLSTs 258 and 512,
shown respectively in yellow and red in the third
column of meta data to the right of the structure
tree of Fig. 4A. Variation within each clade is pre-
dominately driven by small-scale point insertions of
a few genes throughout the plasmid that result in
gaps within the syntenic alignment. We note this is
likely a combination of two factors - both real ge-
netic presence absence variation between plasmids
as well as issues related to ab initio gene prediction
as discussed in the main section.

However the major structural difference between
both clades is the insertion of an additional transpo-
son carrying blaTEM-1d and blaOXA-9 directly up-
stream of tn4401 in the lower clade (highlighted in
blue). We note that the plasmid associated with the
structural clade 2 was found only within genomes
classified as ST512 while clade 1 (highlighted in
red) was predominately associated with ST258, with
three other types - including ST512 - also found with
the plasmid cluster.

The subtype diversity within a plasmid cluster
suggests frequent plasmid exchange and plasticity,
however the current data is too sparse to produce

a reliable estimation of quantitative rates. Over-
all, clusters defined by the sequence of the KPC
gene itself (the first column of the meta-data ma-
trix in Fig. 4) are mostly inconsistent with clusters
defined based on plasmid structure. The KPC se-
quences does, however, suggest that the ancestral
plasmid of clade 2 resulted from the transposition
of the blaTEM-1d transposon into one of plasmid
variants from clade 1.

The remaining 11 KPC genes sit on 5 very dis-
tinct plasmids with few alignable regions outside
of the tn4401 transposon found universally within
all isolates containing KPC, see Fig. 4. The iso-
late 29 (shown in green) and the two large clades
discussed above, for example, differ greatly in gene
content and structure as shown in Fig. 4B (created
using GenomeRing (Herbig et al., 2012)). Specif-
ically, they are only homologous within the tn4401
transposon (labeled block A in Fig. 4B) and the plas-
mid replication machinery (shown as block I). Ad-
ditionally, the plasmid of isolate 29 also exhibited
two large syntenic regions with structural clades 1
and 2, labeled blocks L and K in Fig. 4B), which
was annotated as a transposon conferring mercuric
resistance and block I, the origin of replication for
each plasmid, in Fig. 4B. We note that isolate 29 has
two duplications of blaKPC upstream of the tn4401
transposon, denoted as block R.

Extensive diversity of genomic backgrounds of NDM

While we found KPC exclusively on plasmids, six
of the 16 NDM genes were found in the chromosome
of K. pneumoniae or E. coli isolates (Fig. 5A). Addi-
tionally, seven NDM genes where found in essentially
unique genomic backgrounds. The remaining 9 iso-
lates fell into one cluster of three and one cluster of
six sequences. The latter contains one NDM gene
that is integrated into the chromosome, while the
remaining five sequences are on plasmids with mod-
erate structural align-ability (edit distance 0.1-0.3).
As was found in KPC, all NDM genes were associ-
ated with a single transposon tn125 which acts as
the root of the dendrogram shown in Fig. 5A. This
suggests a picture of rapid transposition of the NDM
carbapenemase, in accordance with previous studies
that have found a diverse set of NDM-encoding plas-
mids (Johnson and Woodford, 2013)
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FIG. 4 Genomic backgrounds of KPC A) A dendrogram produced from the matrix of all pairwise edit distances
obtained by local alignment of the gene alphabet as shown in the inset. We see 6 main structural clusters of
plasmids from our 31 samples. To the left of the tree is shown a colored representation of meta data to compare
to the dendrogram: genetic clusters (Clu.), if it was found on a plasmid (denoted Pla. where red denotes it was
on plasmid, tan if within chromosome), the sequence type determined by MLST (ST), and the bacterial species
(Sp.) (color code as in Tab. I) are shown left to right. B) A graphical depiction of a multiple genome alignment
of four representative plasmids containing KPC as marked in A. Each color represents an plasmid chosen from the
corresponding colored clade in A. Homologous stretches are denoted as lines occupying the same block, defined within
the Mayday program. Block A corresponds to the Tn4401 transposon that all blaKPC genes were contained within
in our sample. Additionally, block I represents the plasmid replication machinery and origin of transfer.

Rapid mixing of sequence type and genomic background
of OXA-48

Fig. 5B shows the clustering of OXA-48 genes
based on the edit distance obtained by the syntenic
alignment of their flanking sequence. We find a
very different picture relative to NDM; twelve out of
twenty-four OXA-48 genes are part of a large group
of structurally similar plasmids. However surpris-
ingly, this tight cluster at the plasmid level contains
six different sequence types of K. pneumoniae and
one E. coli isolate. Additionally, it closest cousin
clade within the dendrogram was found within the
chromosome of an E. coli isolate, suggesting a par-
tial transposition of the conjugative plasmid. The
remaining OXA-48 genes fall into four groups (at
edit distance 0.5) with one to four sequences each.
Yet, even these small clusters contain multiple se-
quence types and species. This complete discor-
dance of the similarity relationships of the neigh-
borhood of OXA-48 and the similarity between the
core genomes of the carrying strain underscores its

extraordinary mobility. Discussion of ESBL back-
grounds can be found in the SI.

Characterization of the pan-genome

Traditionally, the global spread of bacterial
pathogens is tracked using multi-locus sequences
types, i.e. combinations of alleles of a number of in-
formative core genes. Since such typing lacks res-
olution to track transmission chains of outbreaks,
bacterial typing is rapidly shifting towards WGS via
techniques such as cgMLST(Carleton and Gerner-
Smidt, 2016). The relationship between isolates is
reconstructed via a phylogenetic tree, obtained from
the concatenation of the core genome, that puta-
tively captures the clonal structure of the pathogen.
The degree to which such trees provide an accurate,
comprehensive summary of the evolution of strains
is unclear. While the core genome tree likely pro-
vides an accurate representation of population struc-
ture and history over the time scale of an outbreak,
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FIG. 5 Genomic backgrounds of carbapenemase
genes A) NDM was found in a diverse set of genetic
environments. Outside of the bottom structural clade,
no regions were alignable outside of the NDM trans-
poson. Additionally, we note that the bottom plasmid
was found to be integrated within the genome. B) Con-
versely, OXA-48 has well defined structural clades that
are tightly associated with phylogenetic clusters made
from the gene alignment (first column). Interestingly,
we see no strong association to ST, suggesting rampant
plasmid transfer between individuals.

homologous recombination, horizontal transfer, and
genomic rearrangements will confound tree recon-
struction of diverse strains.

Diversification of gene content and gene order

To assess the prevalence of gene gain/loss events
in the context of our clinic isolates, we constructed
the pan genome for each species using PanX (Ding
et al., 2018). The core genome sizes were found to
be 3180, 3410, 2378, and 4411 genes for E. coli,
K. pneumoniae, A. baumannii, and P. aeruginosa
respectively, roughly 1/3 of all observed genes for
E. coli and K. pneumoniae and 1/2 for A. baumannii
and P. aeruginosa. This mostly reflects the relative
genetic diversity and size of our samples.

We investigated the relationship between pairwise
genetic divergence in core genes and the number
of genes found in one isolate but not the other;
the resulting scatter is shown in Fig. 6A. Interest-
ingly, we find a sublinear relationship between ge-
netic distance and number of genes not shared be-
tween the pair. Differences in gene content accumu-
late very rapidly at small core-genome distances but
slow down at larger distances. At a core-genome
diversity of 10−3, strains typically differ in a few
hundred genes. These relationships are surprisingly

FIG. 6 Gene gain/loss and genome rearrange-
ments A) Number of genes that aren’t shared between
any pair of individuals in our sample scales sublin-
early with the genetic distance of the corresponding core
genome alignment. B) Histogram displaying the size
distribution, in number of core genes, we detected in
each isolate, relative to the most prevalent core gene or-
der found for each species. Observed to be trimodal.
Inset shows an example of a piece of an obtained dot
plot for isolate 116 compared against isolate 122, both
A. baumannii. This particular example was tabulated as
5 events.

consistent between different bacterial species.
As we resolved the structure of each isolate

genome, we also quantified the rearrangements with
respect to the order of core genes for each isolate.
The resulting histogram of the size of detected events
is shown in Fig. 6B. Events were detected via breaks
in the core genome order between isolates, see the
inset of Fig. 6B for an example. In total we found
36 events. All but three events mapped to terminal
branches on the core-genome tree. The remaining
three being shared by two isolates each. This sug-
gests that most rearrangements were recent and are
pruned by purifying selection to maintain gene or-
der. As most events were unique, we observed low
correlation between genetic distance and number of
rearrangements.

Ancestral recombination present in the core genome of
K. pneumoniae and E. coli

Figure 7A,B display the core genome trees ob-
tained for the K. pneumoniae and E. coli isolates
from this study. Each tip is labeled with the as-
sociated MLST designations along with a colored
circular marker. The estimated MLSTs are largely
consistent with the clades defined by the tree. Ad-
ditionally, we see strong correlations between the re-
sistome of each isolate, shown to the right of the core
tree, and its designated ST. However, the correspon-
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dence between resistome and the tree if far from per-
fect and we show below that the core-genome tree is
inconsistent with large fractions of the core-genome
diversity for both K. pneumoniae and E. coli.

To assess the degree to which genetic variation in
the core-genome is compatible with a single verti-
cal history as defined by the core-genome tree, we
first looked for regions of high homoplasic density.
Specifically, the ancestral state of each polymorphic
position of the concatenated core genes was recon-
structed for each internal node of the core-genome
tree, using TreeTime (Sagulenko et al., 2018). The
number of mutations for each polymorphic site that
were parsimoniously inferred on branches of the tree
were then counted. If the evolutionary history at
a given position is consistent with the single core
genome tree, under an infinite sites model we ex-
pect to find each mutation exactly once in the tree;
a reasonable approximation as the median distance
between any two strains is small such that the prob-
ability that a position mutated independently on the
tree is � 1. Thus, if the position underwent recom-
bination and hence has an evolutionary history that
deviates from the consensus tree, this can manifest
as a homoplasy - i.e. a mutation that appears on
multiple branches within the tree. We note by itself,
this is not a necessary and sufficient test for homolo-
gous recombination: an additional plausible hypoth-
esis is simple convergent evolution due to the shared
selection pressure applied on the clinical ecosystem.

Figure 7 shows the density of overall SNPs, along
with the homoplasic density along the core-genome
for K. pneumoniae and E. coli, chosen in the order
previously discussed. In our sample of K. pneumo-
niae genomes, we found a basal fraction of a∼15%
homoplasies relative to overall SNP density within
the majority of the core genome. Additionally, we
find two contiguous regions that have marked ele-
vated rate of homoplasies suggesting either a large
scale ancestral recombination event or a huge recom-
bination hotspot. We note that one of these regions
agrees well previous observations of that ST 258 is a
recombinant mosaic of ST11 and ST42 (Chen et al.,
2014). In our sample of E. coli genomes, we find
homoplasies are significantly more prevalent; we es-
timate∼ 30% of SNPs are inconsistent with the re-
constructed core genome phylogeny, indicative of a
higher homologous recombination rate. The frac-
tion of homoplasies depends, however, on sample
size and diversity such that these numbers are not
directly comparable. Similar to our measurements of

K. pneumoniae, we find three contiguous regions of
high homoplasy density, likely to be ancestral recom-
bination events, however the landscape is markedly
more rugged in comparison.

To corroborate this result, we built local phylo-
genetic trees in 5 kB segments from the concate-
nated core genome in regions of collinearity, taking
care not to extend a block across a rearrangement
event as shown in the inset of Fig. 6, using Fast-
Tree (Price et al., 2010). We performed an all-to-all
comparison of the topology of each tree using the
Robinson-Foulds metric. The resulting distance ma-
trix of all pairwise comparisons was clustered into
the dominant topologies, shown as different colors
within the bar beneath the homoplasic density plot
within Fig. 7 for K. pneumoniae and E. coli. Both
assays are in good agreement with each other; wher-
ever homoplasy density was anomalously high, we
also resolved a substantially different tree relative to
the background.

For clarity, we display the unrooted phylogenetic
trees obtained from the tree largest partitions de-
fined by the above analysis in Fig. 7 for K. pneu-
moniae and E. coli. Branch lengths are shown in
log scale to better resolve intratype structure. The
resulting trees immediately indicate the putative an-
cestral recombination events for each associated core
genome partition. We first discuss the results ob-
tained for K. pneumoniae. Partition two, shown in
blue, represents a∼ 250kB region that differs from
the global tree by two main topological changes:
ST11 and ST437 both root within a subclade of
ST258, and the clade containing ST971 and ST2742
directly attaches just above ST11. To our knowl-
edge, this event has not been described in the lit-
erature. Partition three, shown in green, recapit-
ulates the ancestral recombination event noted in
(Chen et al., 2014); we see ST15 now roots within
ST258. Last we discuss the results obtained for
E. coli. Specifically, partition two for E. coli dif-
fers from the background tree in that the clade con-
taining ST410 and ST1615 now roots with ST846.
Partition three of E. coli shows a transposition be-
tween ST846 and the clade containing ST131 and
ST1193.

Taken together,∼30% and∼50% of the genomes
of our sample of K. pneumoniae and E. coli re-
spectively appears to be inconsistent with the core-
genome consensus tree. However, at the present our
analysis mostly was dominated by the signal of a
handful of recombination events that presumably oc-
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curred before the carbapenemase became frequent.
As such, the trees presented in Fig. 7 exhibit no sig-
nificant intra-ST mixing that would be characteristic
of homologous recombination.

Importantly we note that fraction of homoplasic
SNPs is not well correlated with SNP density, ex-
emplified best within the K. pneumoniae genome
shown in Fig. 7. Transitions in tree topology are
better predicted by sudden increases in homoplasy
density than overall SNP density. Popular tools such
as Gubbins (Croucher et al., 2015) use stretches
of high diversity to identify horizontally transfer
events. This strategy likely works for transfer from
distantly related strains, while common recombi-
nation between similar strains remain undetected.
While the latter has a smaller impact on the recon-
structed phylogeny, it might still mean that the his-
tory of any given locus is poorly approximated by
the consensus tree. More sensitive methods will be
necessary to detect and reconstruct the history of
such loci. Similar analyses for A. baumannii and
P. aeruginosa are presented in the S.I.

DISCUSSION

Acquired antibiotic resistance of bacteria spreads
via a complicated mix of processes involving (i)
the clonal dissemination of pathogens, (ii) trans-
fer of plasmids or homologous recombination, and
(iii) mobilitization of the resistance gene to novel
genomic backgrounds and non-homologous recombi-
nation (Sheppard et al., 2016). The importance of
these processes differ by resistance gene and species,
but little is known about their quantitative relative
importance.

Here, we have used long read sequencing to re-
solve the genomic background of a large number of
carbapenemases genes isolated in the past decade
in the University Hospital Basel. Our study sub-
stantially increases the number of publicly available
high-quality complete genomes of carbapenemase-
producing enterobacteriaceae. Such fully assem-
bled genomes are necessary to develop quantitative
surveillance methods to accurately measure, control,
and ultimately predict the global spread of bacterial
resistance.

A crucial question that arises when studying the
epidemiology of carbapenemase genes is what rele-
vant genomic unit should be tracked. Carbapene-
mase genes themselves lack resolution, while MLST
types don’t track the genes due to frequent gene mo-

bilization and horizontal transfer. Our results sug-
gest that the structure of plasmids or the chromo-
somal neighborhood of carbapenemase genes can be
efficiently used to reconstruct their relationships and
is informative on the relevant time scales. Such in-
ference based on genome structure/syntheny align-
ments can be performed efficiently and could be sup-
plemented by nucleotide information if necessary.

High quality bacterial genomes currently require
hybrid assembly of accurate short sequencing reads
and long-reads (either from ONT or PacBio tech-
nologies) for long range order (Loman and Pallen,
2015). Short-read only assemblies won’t resolve the
genomic context of carbapenemase genes beyond a
few genes due to the repetitive nature of their neigh-
borhoods (compare Fig. 3). Long-read only assem-
blies, by contrast suffer from indel errors. Recent
improvements in long-read sequencing technologies
have made large scale assembly of complete genomes
possible in a cost-effective manner. We routinely
achieved sufficient coverage to assemble 12 genomes
on a single ONT flow cell and future improvements
will surely reduce the price even more. After a
decade during which almost all newly sequenced
bacterial genomes were fragmented short read as-
semblies, we expect the availability and diversity
of fully assembled genome to improve dramatically.
A comprehensive analysis of the complex interplay
of horizontal transfer, genome rearrangements, re-
combination, and sequence evolution by mutation
will require new models and theoretical frameworks.
We need computationally efficient tools to analyze
large, diverse collections of whole genomes and ex-
tract quantitative determinants of the spread of re-
sistance genes and plasmids. This remains an im-
portant challenge for future research.
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FIG. 7 K. pneumoniae and E. coli are mosaics of ancestral recombination events. Core genome tree recon-
struction from the alignment of core genes for K. pneumoniae (top) and E. coli (bottom). Each tip is labeled by its
MLST and is given a corresponding marker for visual reference. Gene presence absence for carbapenemases, ESBLs,
and other beta-lactams are plotted as a binary matrix to the right. Strong association between MLST and resistome.
Density of polymorphic positions, as well as the fraction of such positions that were determined to be homoplasic, were
computed along the core genome coordinate. Contiguous regions of high homoplasic density found for both K. pneu-
moniae and E. coli. This was corroborated by finding clusters of trees build from 5kb blocks with similar topology.
Trees associated with the three most dominant partitions are shown. We note that the regions of anomolously large
homoplasic fractions had a large variance in trees (shown as the tan color) and are likely homologous recombination
hotspots.
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