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Abstract 

Background: Evolution of cancer is driven by few somatic mutations that disrupt cellular processes, 

causing abnormal proliferation and tumor development, while most somatic mutations have no impact 

on progression. Distinguishing those mutated genes that drive tumorigenesis in a patient is a primary 

goal in cancer therapy:  Knowledge of these genes and the pathways on which they operate can 

illuminate disease mechanisms and indicate potential therapies and drug targets. Current research 

focuses mainly on cohort-level driver gene identification, but patient-specific driver gene 

identification remains a challenge.  

 

Methods: We developed a new algorithm for patient-specific ranking of driver genes. The algorithm, 

called PRODIGY, analyzes the expression and mutation profiles of the patient along with data on 

known pathways and protein-protein interactions. Prodigy quantifies the impact of each mutated gene 

on every deregulated pathway using the prize collecting Steiner tree model. Mutated genes are ranked 

by their aggregated impact on all deregulated pathways.  

Results: In testing on five TCGA cancer cohorts spanning >2500 patients and comparison to 

validated driver genes, Prodigy outperformed extant methods and ranking based on network centrality 

measures. Our results emphasize the pleiotropic effect of driver genes and show that Prodigy is 

capable of identifying even very rare drivers. Hence, Prodigy can assist oncologists in decisions 

regarding personalized treatment. 

Availability: The Prodigy software is available from the authors upon request. 
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Introduction 

Cancer is an evolutionary process in which normal cells accumulate genomic and epigenomic 

alterations of various kinds including Single Nucleotide Variations (SNVs) and chromosomal 

aberrations. Some of these alterations confer growth and positive selection advantage to the mutated 

cells, giving rise to intensive proliferation and tumors
1
. The alterations can be inherited through germ 

line mutations as in the case of BRCA1 and BRCA2 in breast cancer
2
 or occur somatically

1
. While 

somatic mutations also occur in normal cells, they are neutral or cause apoptosis but do not lead to 

transformation into a cancer cell.  

Driver mutations: Mutational events that grant such advantages to the cell and "drive" it into 

tumorigenesis are called driver mutations (or driver events) and the genes in which these mutations 

take place are called driver genes. In contrast, passenger mutations are acquired extensively during 

cancer progression simply because cancer cells over-proliferate in orders of magnitude as compared to 

normal cells, and random mutations mainly occur during cell division. These mutations do not confer 

any growth advantage
3
.  

The overall number of observed mutations varies among tumor tissues. Kim & Kim
4
  analyzed dozens 

of cancer patient cohorts from TCGA
5
 and found that the average number of somatic mutations can 

reach up to thousands per tumor in some cancer subtypes. There is a very extensive debate regarding 

the number of driver mutations among the observed mutations in each tumor
1,3,6

 but the consensus is 

that this number is very low. Obviously, there are many factors that contribute to the variation in the 

number of drivers, including the progression stage of the tumor
7
, its tissue of origin

8
, environmental 

properties such as smoking
9
  and other factors like age

10
 .Tomasseti et al.

11
 showed that as little as 

three driver mutations suffice to develop lung and colorectal cancer. Nordling
12

 and Armitage
13

 

suggested six or seven as the typical number of drivers. 

It is therefore a challenge to distinguish driver from passenger mutations. The need to do so has high 

priority in cancer research - and in personalized cancer medicine in particular - for several reasons: 1) 

knowledge of the drivers and the mechanisms by which they operate can suggest potential treatments 

and drug targets. 2) Basing cancer treatment on molecular signatures rather than on the disease organ 

offers the opportunity to treat individuals with regimens not yet considered for their specific type of 

cancer. For example, many "basket" clinical trials, in which a specific drug is given to patients with 

diverse cancer types based on specific biomarkers, show that the same drug can have high efficiency 

across different types if the right mutation is detected
14

. 

Driver gene identification in large cohorts: Computational research regarding driver genes first 

focused on distinguishing driver mutations from passengers in a cohort of patients (usually of the 

same tissue of origin): MuSiC
15

 uses the statistical significance of higher than expected rate of 

mutations, along with pathway mutation rate and correlation with clinical features to detect drivers.  

MutSigCV
16

 estimates the background mutation rate of each gene and identifies mutations that 

significantly deviate from that rate. MEMo
17

 tries to find small subnetworks of genes that belong to 

the same pathway and exhibit internal mutual exclusivity patterns. HotNet2
18

 incorporates knowledge 

from protein-protein interaction (PPI) networks to find small subnetworks of frequently mutated 

genes using heat-diffusion process. TieDie
19

 also incorporates PPIs and mRNA expression data to find 

overlapping subnetworks that possess high degree of mutation and expression values using heat-

diffusion. DriverNet
20

 tries to find a parsimonious set of mutated genes that is linked to genes that 

experience deregulation of mRNA expression in a given PPI network. Paradigm-Shift 
21

 utilizes SNV, 

copy number variation (CNV), expression and known pathways to infer gain or loss-of-function of 

mutated genes in single patients. Many more methods for driver gene detection in cohorts are covered 

by Chang et al.
22

 and Tokahim et al.
23

. 

The methods above focus on general driver gene detection, but do not aim to offer personalized means 

of diagnosis or treatment: individual patients may have different compositions of mutated driver genes 

(Supp. Fig. 1). In addition, these methods rely on statistical power obtained by large cohorts and by 
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doing so, they inevitably underestimate the importance of rare drivers that occur in only a handful of 

patients (also known as the "long tail phenomenon"
24

) and are important only for them. Here we 

focused on patient specific driver prioritization. 

Although many driver mutations were experimentally validated
36

, personalized driver prioritization is 

needed for several reasons: 1) Some patients carry mutations in dozens of known drivers (SFig 1), and 

it is essential to understand which are the true drivers for the patient. 2) Some patients do not possess 

mutations in any known driver (SFig 1), so one has to find putative ones de novo. 3) Even if a patient 

has only few mutations in known drivers, and assuming they are all active, we still need to internally 

rank them, since the number of therapies that can be given to an individual at the same time is very 

low due to toxicity and adverse events
25,26

. 

Personalized driver gene profiles: To address the need for personalized driver gene identification 

and prioritization, one must develop methods that can operate on the data of a single patient. Several 

attempts have been made in this direction: DawnRank
27

 uses a variant of Google's PageRank to rank 

an individual's mutated genes profile according to its effect on expression deregulation of downstream 

genes in a large directed PPI network. It ranks the genes by quantifying the impact of each of them on 

the differentially expressed genes (DEGs) using a diffusion process. SCS
28

 tries to find a 

parsimonious set of mutated genes that are linked to downstream DEGs in a large directed PPI 

network. These methods rank putative driver genes for a patient. In contrast, Hitn'DRIVE
29

 outputs a 

set of candidate driver genes without internal ranking. It tries to find a parsimonious set of mutations 

with short expected path lengths to a set of DEGs. The lack of ranking is a drawback from a treatment 

perspective, especially when the number of predicted genes is large.  

 

This study: Here we develop a new algorithm for ranking of driver genes of an individual. The 

algorithm, called PRODIGY (Personalized Ranking Of DrIver Genes analYsis) scores mutations by 

their influence on deregulation of multiple known pathways. Unlike the methods described above, 

Prodigy collects multiple signals from many local views of the same tumor rather than one global 

view. These local views are based on curated pathways and each one reflects a different aspect of the 

deregulation state of the tumor. Thus, the extent to which a given mutation explains multiple pathway 

deregulations serves as a proxy to the likelihood that this mutation is indeed one of the drivers. Our 

algorithm assumes that driver mutations influence the deregulation of other genes in affected 

pathways. In particular the true drivers will have good connectivity to these pathways, and our method 

is designed to score such connections correctly using a variant of the prize collecting Steiner tree 

problem. By aggregating many local views for all mutations of an individual, a global picture can be 

made and the personalized landscape of drivers can be assembled and ranked. 

In testing on five TCGA cancer cohorts spanning >2500 patients and comparison to validated driver 

genes, PRODIGY outperformed extant methods and ranking based on network centrality measures. 

Our results emphasize the pleiotropic effect of driver genes and show that PRODIGY is capable of 

identifying even very rare drivers. Hence, PRODIGY can assist oncologists in decisions regarding 

personalized treatment.  

Caveats: Note that while we occasionally talk about driver mutations, all our analysis is done on the 

gene level and - as in SCS and DawnRank - different mutations in the same gene are not 

distinguished. Since the number of mutations per mutated gene in a patient is usually 1 (Supp. Table 

1) this distinction is less important for personalized ranking than for cohort-level analyses. Also, as 

we shall see, often we identify and rank ten genes or more per patient, so the notion of drivers in this 

study is somewhat more lenient than is common in the literature. However, our results suggest that a 

larger number of predicted drivers actually contribute to the performance. 

Methods 

Given the set of mutated genes and the expression profile of an individual, we wish to rank the 

mutated genes in that individual. Our assumption is that the influence of driver genes is disseminated 
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along pathways and is manifested by DEGs. By aggregating evidence from multiple pathways for a 

mutated gene, we score the extent to which it explains the deregulation of the pathways. This score 

serves as a proxy to the likelihood that the gene is a driver in the patient. Mathematically, we score the 

influence of a mutation on a deregulated pathway using the undirected prize collecting Steiner tree 

(PCST) model. 

The PCST model: In this problem (Figure 1A) the goal is to find in a weighted graph a subtree 

maximizing the sum of the weights of the nodes minus the cost of edges in it. The input is an 

undirected graph                     is a positive weight function on the edges and 

      is a weight function on the nodes. In our context, edge weights are penalties reflecting 

interaction reliability, positive node weights are prizes given to DEGs as they reflect the pathway 

deregulation that we want to capture, while other nodes that can serve as intermediate nodes in the 

tree (Steiner nodes) are assigned non-positive values serving as penalties. Given a node      the 

objective is to find a subtree   of   that contains   and maximizes:  

Score ( ) =                              

In other words, the score of   is the total profit of pre-defined prizes minus the penalties of using 

intermediate edges and nodes. This model was shown to be suitable in different biological problems 

and in particular in scenarios where a mechanistic view is desirable
30,31

. 

Data and reference network: Prodigy uses two types of genomic data for each patient: the list of 

mutated genes, i.e. all genes with SNVs or small insertions/deletions in coding regions, and the profile 

of mRNA expression. mRNA expression profiles from healthy tissue samples are also utilized for 

differential expression analysis. Prodigy also uses two types of undirected interaction networks: 1) a 

global PPI network taken from STRING v10.5
32

. Here we used only physical interactions that were 

validated experimentally and interactions from other curated databases with confidence score > 0.7, so 

that only highly reliable interactions were included. The resulting network had 11,302 nodes and 

273,210 edges. 2) A collection of pathways. Here we used either Reactome
33

, NCI PID
34

 or KEGG
35

. 

Information about the pathway databases is given in STable 2.  

The Prodigy algorithm  

A schematic view of the algorithm is given in Figure 1. The algorithm works as follows: 

Pre-processing Given a patient's mRNA expression profile (as read counts), differential expression 

analysis was done using DeSEQ2
36

 by comparing the profile to a background expression distributions 

from healthy samples of the same tissue of origin. All genes with > 2 log2-fold-change that are 

statistically significant (FDR = 0.05) were identified as DEGs.  

The gene set of each pathway is tested for enrichment in DEGs using the hyper-geometric score, and 

pathways that are significantly enriched (FDR = 0.05) are called deregulated. 

Driver - pathway scores We use a global interaction network             where   is the edge 

confidence score. For a deregulated pathway   we also have its network              . Both 

networks are undirected. The influence score of the mutated gene   on pathway   is calculated as 

follows: 

1. We construct a new network                               that is derived from      and g, as 

follows: The nodes of the network are those of the deregulated pathway, g, and        - their 

distance 1 neighbors in G : 

                   

Its edges are those of the deregulated pathway plus all edges of the global network with both ends 

in     : 

                                        , 
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The cost of the edges from p is 0.1. For the other edges, which originate from the global network 

 , their cost depends on their confidence score in that network, with edges of higher confidence 

costing less. 

           
            

                  
  

 

Edges from the pathway are assigned a constant penalty of 0.1 since pathway databases do not 

provide confidence scores for the interactions, but those pathways are highly curated. In contrast, 

the confidence scores on the edges from the global network are given an upper bound of 0.8 so that 

their cost in      is at least 0.2. The rationale is that we want to steer the algorithm to prefer the 

original pathway edges, while allowing some alterations. 

 

Finally every DEG that belongs to the pathway has a positive (prize) score depending on its fold 

change (FC), and every other node   has a negative (penalty) score depending on its degree in 

     as follows:  

         
                    
                     

  

Note that DEGs in         have negative values. The PCST problem aims to collect as much of the 

prize nodes value while paying least penalty for intermediate edges and nodes. Intermediate nodes 

that have high degree ("hubs") open more connection options and are thus penalized higher 

depending on their degree. The     parameter controls that penalty. 

2. Having constructed       we now seek a tree       that contains g of optimal score. If Score(    ) 

  0 (i.e., no tree with positive score is found), an empty tree with score 0 is output instead.  

 

3. To account for variability in pathway size and the number of DEGs in the pathway, the influence 

score of mutated gene   on pathway   is defined as the fraction of attained score out of the upper 

bound of all positive prizes in the pathway: 

          
           

                     

 

The overall influence score of g is                         where DP is the set of deregulated 

pathways of the patient. 

Pathway filtering We compute driver-pathway influence scores for all mutated genes and all 

deregulated pathways. For the final score we exclude pathways for which more than half of the genes 

had a positive score. These are mainly very large pathways that have high connectivity in the global 

network, and therefore some genes may acquire positive influence scores by chance. 

Gene filtering Genes that acquired positive scores in many pathways have greater chance to represent 

a true effect on the tumor than genes that attained positive scores for only few pathways, possibly due 

to the topology of the network. In some patients, when plotting the distribution of         scores 

across all mutated genes g (after filtering pathways), we observed a bimodal distribution (see SFig. 2). 

Typically, one distribution contains genes with high scores collected from many pathways and the 

other contains genes with low scores collected from a few pathways. We modeled this distribution as 

a mixture of two Gaussians  and computed its maximum likelihood parameters using EM
37

. We then 

excluded all genes that had higher posterior probability to come from the distribution with the lower 

mean (SFig. 2). In case a bimodal distribution was not observed, we did not filter any gene.  

Final ranking After the filtering steps, genes are ranked according to their overall influence scores. 

Comparison to other methods:  
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We compared Prodigy to DawnRank
22

 and SCS
23

. Since both DawnRank and SCS use directed 

graphs, the global PPI network used to test them was taken from the original publication. This 

network contained 11,648 nodes and 211,794 directed edges. To ensure that results are not derived 

primarily from the topology of the network, we also generated personalized rankings using three node 

centrality measures: node degree, closeness and betweenness (see Supp. Methods for definitions). To 

produce rankings based on each measure, we calculated it on each of the networks       and summed 

the results over all the networks for a final ranking. 

Validation: 

In order to validate rankings, we used a curated list of driver genes from the Cancer Gene Census 

(CGC) as gold standard. CGC is part of COSMIC
38

, the largest database of somatic mutations in 

cancer. CGC contains mutations of different forms (gene amplifications, SNVs, translocations etc.) 

that were experimentally validated as driver mutations for different cancer types. Since we only used 

information about SNVs and short indels of each patient, we used as ground truth only genes that 

were classified by CGC as containing a driver SNV or indel (n = 248 out of 567). In this validation, 

we assumed that if a gold-standard gene was mutated in a patient, it is a true driver gene in the 

patient's tumor. We measured the quality of each method by means of precision, recall and F1 with 

respect to the gold standard (see Supp. Methods)  

 

Figure 1: Outline of Prodigy's approach. A) Scoring the influence of the mutated gene g on the pathway p: The 
pathway and genes at distance 1 from it or from the mutated gene g in the global network, along with the 
global edges among them, constitute the network      for analysis (see Methods). This is the network shown 

here. Node prizes (positive values) reflect the extent of differential expression of DEGs in p, and node penalties 

reflect other node’s degrees (calibrated by the exponent ). Edge penalties reflect interaction confidence. The 
goal is to find a maximum weight subtree in the network rooted at the mutated gene g. Its weight is the score 
of the PCST solution. In this example the subtree marked by orange dotted lines is the PCST solution, of score 

9-3. The influence score of the pair (p,g) is the score of the PCST solution, divided by the sum of the values of 
DEGs that belong to p (10.2 here). B) After calculating the influence score for all pairs (p,g), we filter out some 
pathways and genes from the scoring matrix (see Methods). The final output is a ranking of the remaining 
genes by their aggregated score on the remaining pathways.  

Driver-Pathway linkage: 

Prodigy can quantify driver-pathway associations, allowing us to explore novel interactions and even 

cancer subtype-specific ones. Our hypothesis was that if driver gene   often deregulates pathway 

  then they will be observed together more frequently in patients of the cohort, and the deregulation 

state of   will be higher when   is acting as a driver. To test this conjecture, we focused on the ten top 
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ranked genes for each individual and looked for driver-pathway pairs where the number of patients for 

whom the gene was ranked high and the pathway was deregulated was unexpectedly high according 

to the hyper-geometric distribution. For each pair, we then tested if   was more deregulated when   

was classified as driver using t-test (see Supp. Methods and SFig. 4 for more details). 

Results 

Driver gene ranking: We tested six ranking methods on 2569 samples from five cohorts of cancer 

patients from TCGA: COAD, LUAD, BRCA, HNSC and BLCA
39–43

 (212, 487, 969, 502 and 399 

samples, respectively). We used a training set comprised of 10% of the samples from each cohort to 

derive the optimal node degree weighting factor   in terms of F1, and used the chosen parameter to 

calculate personalized rankings for the remaining 90%. Prodigy's results were consistent across 

different   values (SFig. 4) with significant decline in performance for values > 0.2.        was 

chosen for all cohorts.  

Figure 2A shows the average precision, recall and F1 for Prodigy, DawnRank and for the three 

centrality measures using the Reactome pathways (see Methods). The results are reported as average 

values for the entire cohort as a function of the top N ranked genes. If an individual had less than N 

ranked genes, the last value for this patient was duplicated so that all quality measure vectors for all 

patients are of length N. Since SCS reported empty rankings for 720 samples (28%), it is not shown in 

Figure 2A. Performance of all methods on the set of patients for whom SCS produced results (the 

"SCS sub-cohort") is shown in SFig. 6, and performance for different cancer types is shown in 

SFig.7-9. Results for the KEGG and NCI pathway databases for the entire cohort were similar (SFig. 

5). 

 

Figure 2: A. Average precision, recall and F1 across all patients (n=2340) as a function of the number of top 
ranked genes in the personalized profiles. Prodigy's results were derived using the STRING global PPI network 
(see Methods) and Reactome pathways B. Average F1 using the global network from the SCS and DawnRank 
papers, on those patients for whom SCS proposed drivers (n=1804).  

Overall, Prodigy outperformed SCS and DawnRank in terms of F1, precision and recall.  On the NCI 

pathways and for high values of N on KEGG pathways, SCS was better for the SCS sub-cohort. To 

ensure that the improvement in results does not stem from the difference in the underlying networks, 

we also tested Prodigy on the same network used by DawnRank and SCS with two adjustments: (1) 

Since Prodigy works on undirected graphs, we ignored edge directions. (2) Since this network is 

unweighted, we gave weight=0.2 to all edges (and 0.1 to pathway edges as before, see Methods). The 

results (Figure 2B and SFig. 10) clearly show that Prodigy outperforms DawnRank and SCS even on 

their network.   

Remarkably, the centrality measures produced very good predictions, consistently better than 

DawnRank and SCS – but worse than Prodigy. These measures had better recall than Prodigy, 

probably due to the fact that no filtering was done on the centrality measures while Prodigy excluded 

genes not likely to be drivers for an individual. The fact that driver genes are associated with high 

network connectivity was previously discussed
29,44,45

 and we observed it as well: in our global 
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network derived from STRING, known drivers included in the CGC tended to have high degree and 

betweenness (SFig. 8). Our results emphasize the need to account for "hubness" property in methods 

for driver gene ranking. Prodigy accounts for this factor by penalizing Steiner nodes according to their 

degree. Taken together the results clearly demonstrate that Prodigy outperforms mere topology 

measures in capturing true driver genes. 

Discovering rare drivers: One of the advantages of Prodigy is its ability to identify rare drivers, even 

when the gene is mutated in few patients. To demonstrate this ability we looked for mutated genes 

that had frequency < 2% in the cohort and were ranked in the top 10 drivers of individuals. The results 

are summarized in Figure 3. In some cohorts, most of the mutated genes were in fact rare (< 2%, 

STable 3), which is of course reflected in our results. On the other hand, Prodigy prioritized rare 

mutations to lesser extent than their frequency in the population (STable 3).  

Figure 3: Prodigy discovers rare drivers. For each cancer type and for each individual we analyzed the top 10 
genes according to the ranking. For k = 1,…,10 the plot shows the fraction of patients for whom the gene 
ranked k-th belongs to the respective frequency bin (as denoted by its color). N/A: patients for whom Prodigy 
ranked less than k mutations. 

Prodigy was able to detect known rare drivers. For example, for the colon cancer patient TCGA-AD-

6899, Prodigy ranked highly the gene SRC, a known driver in colon cancer. Remarkably, this patient 

was the only one (out of 212) who harbored a mutation in that gene. In HNSC, FES mutation was 

observed in five patients out of 502 (1%), and was highly ranked in two of them. MTOR was mutated 

in nine patients (1.7%) and highly ranked in five. TSC2 was mutated in six patients (1.1%) and highly 

ranked in two. All of these genes are known HNSC-specific drivers according to CGC. In LUAD, 

HIF1A was mutated in two patients and was highly ranked in both. RAD21 was mutated in eight 

(1.6%) and highly ranked in one. ARAF was mutated in five (1%) and highly ranked in one. EED was 

mutated in six and highly ranked in one. These are all known drivers of LUAD. The results show that 

Prodigy is capable of identifying even very rare drivers from the CGC. Taken together, we 

demonstrated Prodigy's ability to detect both rare and frequent drivers. 

Driver gene-pathway linkage: We identified 1299 significant driver-pathway interactions (see 

Suppl. File 1). They include some very well-known interactions between TP53 and sub pathways of 

the cell cycle in all cohorts except COAD and TP53-DNA repair pathways in the BLCA cohort. 

Moreover, the gene A2M was associated with "G alpha (i) signaling events" in the COAD, BRCA and 

BLCA cohorts. The G alpha (i) signaling pathway belongs to the GPCR family of signaling pathways, 

which are strongly linked to cancer
46

. This analysis can provide new insights on the mechanism by 

which the drivers operate and can offer new targets for further research. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 31, 2018. ; https://doi.org/10.1101/456723doi: bioRxiv preprint 

https://github.com/Shamir-Lab/PRO-DG/blob/master/Supplementary%20File%201.xlsx?raw=true
https://doi.org/10.1101/456723


  8   
 

Multi-pathway effect: One of the main assumptions underlying Prodigy is that driver genes affect 

cellular process pathways, and therefore summarized scores from multiple pathways will improve our 

ability to identify them. This is in contrast to previous methods that took a global approach to driver 

gene prioritization based on a single unified picture of the state of the tumor
22,23

. In order to test 

whether multiple sources indeed contribute to the accuracy of prediction, we explored the 

performance as a function of the number k of allowed pathways per mutated gene. For k = 1,…,50, 

we used the top k scoring pathways of each gene for ranking and examined the average area under the 

precision-recall curve (AUPR) for each cohort (see Supp. Methods). Figure 4A shows that for all 

cohorts, AUPR improved with incorporating more pathways and plateaued at 15-30 pathways. 

Since different pathways may partially overlap, we tested the extent of this overlap and its effect on 

performance. We computed the distribution of Jaccard Index between pairs in the top 20 scoring 

pathways of each gene (i.e., the number of genes that belong to both pathways divided by the number 

of genes in their union, Supp. Methods). The results show substantial overlap among the pathways 

that contribute to the rankings (Figure 4B). However, when we filtered out such overlapping 

pathways, assuming they contain the same information and thus unnecessary for accurate prediction, 

performance only moderately degraded (Supp. Methods and Figure 4C). Taken together, we 

demonstrated the usefulness of using multiple pathways in order to rank driver genes, even when 

there are overlaps among them. 

 

Figure 4: Multi-pathway effect: A) Mean AUPR as a function of the number of top scoring pathways per gene 
used to derive the results. B) The distribution of redundancy between the top 20 pathways per patient in the 
COAD cohort (n = 212, see Supp. Methods). C) Removal of pathway redundancy. The plot shows the AUPR for 
predicting driver genes in the COAD cohort when filtering out overlapping pathways among the top scoring 
pathways per gene (Supp. Methods).    is the maximum allowed Jaccard Index between included pathways 
(    implies no filtering).  

Actionable and druggable targets: Prodigy's rankings can aid the oncologist in deciding on a 

patient's therapy, by matching treatment to the predicted driver genes. In order to explore this 

possibility we used two data sources: (1) DGIdb 3.0
47

, which contains drug targets (or druggable 

genes, i.e., genes with directed pharmacotherapy). Here we used only cancer-specific sources from 

DGIdb and identified 1375 genes. (2) TARGET
48

, which lists actionable genes (i.e., genes for which a 

genomic-driven therapy exists). The total number of actionable genes was 60. We explored not only 

the ranked mutated genes themselves but also the pathways that were highly linked (influence score > 

0.8) to at least one gene of the top 10 ranked genes of an individual. The rationale is that these 

pathways are most altered by the driver genes and thus can be targeted in potential treatments. The 

results (Figure 5) indicate that most patients harbor at least one druggable driver (a druggable gene 

that was prioritized as a driver by Prodigy; mean: 3.32, sd: 2.01) but many do not contain any 

actionable drivers (mean: 0.82, sd: 0.87). As expected, the number of target genes increased 

substantially when genes from highly linked pathways were also considered. More importantly, the 

number of patients without any druggable or actionable gene decreased below 10%. The only 

exception was the HNSC cohort, where the number of patients without actionable genes remained 

high (35.8%) even when considering pathways. Hence, Prodigy is able to suggest possible therapeutic 
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targets personally tailored to the patient's driver genes and uses information about the pathways that 

are deemed altered by the drivers in order to expand pharmacotherapy options. 

 

Figure 5: Actionable and druggable genes. The box plots show the distribution of the number of actionable and 
druggable genes (i.e. genes from TARGET

43
 and DGIdb

42
) per patient across the different cohorts. A and C: The 

distribution of the number of druggable and actionable drivers among the 10 top genes ranked by Prodigy. B 
and D: The distribution of the number of druggable and actionable genes among predicted drivers and their 
highly linked pathways. The table describes the number of patients without any druggable/actionable genes in 
the four categories with respect to the cohort. 

Implementation: Prodigy was implemented in R and the software will be publicly available upon 

publication. The PCST code of
49

 was used. Mean runtime was about 5 minutes per patient on a 65 

core, Intel(R) Xeon(R) 2.30GHz, 755GB RAM server.  

Discussion: 

Personalized diagnosis of cancer patients is a precondition for planning treatment. Deciphering the 

altered mechanisms and the mutated genes driving them gives a comprehensive picture of the state of 

the tumor. Although many driver mutations were experimentally validated, there is great potential 

benefit in identifying which genes act as drivers in an individual and prioritizing them: Driver genes 

are diverse even within a cancer subtype, and they may be rare or not match the disease organ.  

Here we provide a novel algorithm called Prodigy for driver gene prioritization in an individual based 

on the patient's tumor mutation and expression profiles. In testing of over 2500 patients from five 

cancer subtypes, Prodigy substantially outperformed prior methods for the task. All methods 

(including ours) use an underlying global interactions network, and we observed that using simple 

centrality measures of that network to prioritize genes gives better results than the prior methods, but 

not ours. In all our analyses, as in prior studies, no experimental patient-specific driver information 

was available, and therefore we used the CGC collection of (global) driver genes as our gold standard. 

A unique feature of Prodigy is the fact that it collects information from many distinct pathways in the 

analysis of a patient. Our results show that driver genes influence many pathways, and that the 

pathways perspective is more powerful than previous approaches that utilized one global network for 

the analysis. While Prodigy ranks the genes without setting a cutoff for driver detection, our analysis 

shows the F1 scores peak around N=5. On the other hand, recall rises for N>5, so by using prior 

knowledge about driver genes and observing the actual influence scores of genes that are ranked 

lower, additional drivers can be pinpointed and used.  
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Our analysis shows that Prodigy can identify even very rare driver genes, and can reveal linkage 

between a driver gene and pathways that are preferentially deregulated when the gene acts as a driver. 

The identified genes typically have multiple drug targets, and thus can suggest treatment decisions. 
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