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Abstract 

Alterations in transcription factors are important drivers of tumorigenesis, but non-

invasive assays for assessing transcription factor activity are lacking. Here, we evaluated 

the feasibility of inferring transcription factor binding in solid tumors from their 

nucleosome footprint in circulating cell-free DNA. We developed a novel analysis 

pipeline to determine accessibility of transcription factor binding sites and applied it to 

244 cell-free DNA samples from patients with prostate, breast and colon cancer. We 

observed patient-specific as well as tumor-specific patterns. Specifically, inferred binding 

patterns for the transcription factors AR, HOXB13, and NKX3-1 allowed us to classify 

patients by tumor type, including subtypes of prostate cancer, which has clinical 

implications for the management of patients. Our approach for mapping tumor-specific 

transcription factor binding in vivo based on blood samples makes a key part of the 

noncoding genome amenable for clinical analysis. 

 

Introduction 

Transcription factors (TFs) modulate the expression of their target genes and often play a 

key role in development and differentiation 
1
. In order to bind regulatory DNA, TFs 

generally have to interact with nucleosomes 
2
 and next-generation sequencing-based 

assays have recently provided unprecedented insight into nucleosome occupancy patterns 

at TF binding sites (TFBSs) 
1, 3, 4, 5

. However, although TF activity is frequently disturbed 

in cancer 
1, 6, 7

, there is a lack of non-invasive means from blood to measure TF activity or 

their modulations under therapies.  

Cell-free DNA (cfDNA) from plasma is released after enzymatic digestion from 

apoptotic cells 
8
 and therefore circulates mostly as mono-nucleosomal DNA 

9, 10
. Hence, 

whole-genome sequencing of cfDNA fragments enabled the generation of nucleosome 

maps where dyads, i.e. the midpoint of a canonical nucleosome, of sites with high 

nucleosome preferences resulted in a strong peak of reads whereas dyads of less 

preferentially positioned nucleosomes showed reduced peaks or none at all (Fig. 1a) 
9, 10

. 

Previously, we generated in vivo maps of nucleosome occupancy at transcription start 

sites (TSSs) to infer expressed genes from cells releasing their DNA into the circulation 

10
, while another study used a similar approach to detect TF footprints 

9
.  

As the inference of TF binding from cfDNA has tremendous diagnostic potential in 

cancer and beyond, we developed a new and optimized bioinformatics pipeline, capable 
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of resolving those constituents involved in nucleosome signatures at TFBSs to objectively 

assess and to compare TFBS accessibility in different plasma samples. To validate this 

pipeline for clinical purposes, we produced deep whole-genome sequencing (WGS) data 

from 24 plasma samples from healthy donors and from 15 plasma samples of patients 

with metastasized prostate, colon or breast cancer, where cfDNA also comprises 

circulating tumor DNA (ctDNA) 
11, 12, 13, 14

. Furthermore, we generated shallow WGS 

data for 229 plasma samples from patients with the aforementioned tumor entities (>18.5 

billion mapped plasma sequence reads in total). Importantly, our approach profiles 

individual TFs instead of establishing general tissue-specific patterns using mixtures of 

cfDNA signals resulting from multiple cell types and analyses by Fourier transformation 

as previously suggested 
9
. Hence, our approach offers a more nuanced view of both tissue 

contributions and biological processes and allowed us therefore to identify lineage-

specific TFs suitable for both tissue-of-origin and tumor-of-origin analyses. Furthermore, 

for the first time we show TFBS plasticity in cfDNA from patients with cancer and we 

demonstrate the potential of TFs in classifying prostate cancer subtypes, which has 

relevant clinical implications. 

 

Results 

 

Nucleosome occupancy inferred from cfDNA shows characteristic TF binding footprints 

We started with establishment of nucleosome occupancy maps at TFBSs and tested for 

similarities and differences among healthy individuals and cancer patients. To this end, 

we obtained and analyzed high-coverage cfDNA samples from 24 healthy controls 

(males and females, 12 each) where the vast majority (>90%) of cfDNA is derived from 

apoptosis of white blood cells with minimal contribution from other tissues 
15, 16

 and 11 

plasma samples derived from 7 patients with 3 common tumor entities (Supp. Table 1), 

i.e. four cases with prostate cancer (P40, P147, P148, P190), one colorectal cancer (CRC; 

C2), and two breast cancers (B7 and B13) with ctDNA fractions ranging from 18-78% 

(Supp. Fig. 1; Supp. Table 2). 

We focused our analysis on the 676 TFs contained in the Gene Transcription Regulation 

Database (GTRD; Version 18.01; http://gtrd.biouml.org) 
17

, which provides detailed 

TFBS information based on ChIP-seq data for a variety of tissue samples. We annotated 

these TFs with an up-to-date curated list of 1,639 known or likely human TFs 

(http://humantfs.ccbr.utoronto.ca/; version 1.01) 
1
 (Fig. 1b; Supp. Table 3). Because of 
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the potentially high number of TFBSs per TF, we defined three different stringency 

criteria (Fig. 1b): first, all TFBSs for all tissue samples in the GTRD; second, those 

peaks supported by >50% of the maximum number of samples (subsequently referred to 

as “>50%-TFBSs”; in these two analyses all 676 GTRD TFs were included); third, the 

1,000 TFBSs per TF that were supported by the majority of samples (“1,000-msTFBSs”; 

505 TFs fulfilled this criterion). 

CTCF binding sites, which are known to be surrounded by arrays of strongly positioned 

nucleosomes 
18, 19

, yielded the expected oscillating coverage pattern, which remained 

similar throughout all analyzed samples, regardless whether the cfDNA was derived 

from healthy controls or from patients with cancer (Fig. 1c). This was consistent with 

DNase hypersensitivity assays from the Encyclopedia of DNA Elements (ENCODE) 

database for cell lines GM12878 (B-lymphocyte cell line from a female donor with 

European ancestry), LNCaP (androgen-sensitive human prostate adenocarcinoma cell 

line) and HCT116 (human colon cancer cell line) (Fig. 1c). 

The ctDNA in the plasma from patients with cancer altered the balance between DNA 

from hematopoietic versus epithelial cells compared to the healthy controls, resulting for 

the cancer-derived samples in decreased amplitudes for the lineage-restricted 

hematopoietic TFs purine-rich box1 (PU.1) 
20

, LYL1 (lymphoblastic leukemia 1) 
21

, and 

the lymphocyte lineage-restricted transcription factor SPIB 
22

 and an increased amplitude 

for TF GRHL2, a pioneer TF for epithelial cells 
23

 (Fig. 1d). We confirmed the lineage-

specificity of these TFs with data of publicly available DNase hypersensitivity assays 

(Fig. 1d). As another example for a well-established TF, we analyzed FOXA1, which 

cooperates with nuclear hormone receptors in endocrine-driven tumors of the breast and 

prostate 
24

. Indeed, consistent with DNase hypersensitivity assays, we observed 

preferentially increased accessibility of FOXA1 in the plasma samples of prostate and 

breast cancer patients (Fig. 1e).  

For further confirmation, we also conducted comparisons with ENCODE data, where 

mono-nucleosome-bound DNA fragments were generated by micrococcal nuclease 

(MNase) digestion (Supp. Fig. 2a, Supp. Fig. 3). We performed coverage-independent 

analyses 
25

 (Supp. Fig. 2b; Supp. Info.) and computed the spatial density of cfDNA 

fragments related to the single recognition sequences (Supp. Fig. 2c; Supp. Info.). We 

also generated catalogues of TFBSs which may be affected by co-binding of more than 

one TF for all 676 TFs and the 505 TFs from the 1,000-msTFBSs (Supp. Fig. 2d; Supp. 

Table 4). Furthermore, using purified, high molecular weight DNA as a negative control, 
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we observed only an even coverage over TFBSs (Supp. Fig. 2e). In summary, these 

results showed that the corresponding TFBS coverage profiles closely resembled each 

other, suggesting a high accuracy of our approach and that the obtained patterns for any 

given TF are reproducible throughout all samples.  

 

The “accessibility score” enables accurate inference of TF binding from cfDNA 

The aforementioned results suggested that certain lineage-specific TFs are suitable for 

determining the tissue-of-origin of plasma DNA. However, currently no means of 

assessing the accessibility at their binding sites in cfDNA as proxy for their activity exist. 

To implement such an approach, we first investigated TF-specific nucleosome coverage 

profiles (Supp. Info.), which led us to conduct calculations separately for TFBSs within 

and outside of TSSs (Supp. Fig. 4a), and furthermore, for all GTRD tissues versus the 

>50%-TFBSs (Supp. Fig. 4b). These analyses suggested that average TFBS patterns 

comprise two signals: a TSS-proximal (within 2 kb of TSS, resulting in a “low frequency 

pattern”) and a TSS-distal (>2 kb away from TSS peak, generating a “high-frequency 

pattern”), corresponding to the more evenly spaced peak signal. To suppress effects on 

the coverage not contributed by preferential nucleosome positioning and to remove local 

biases from the nucleosome data, we used Savitzky-Golay filters for detrending 

(Material & Methods) (Fig. 2a). Subsequently, we recorded the data range (maximum 

minus the minimum of the data values, corresponds to the amplitude) of the high-

frequency signals, corrected them by LOESS smoothing as they depend on the number 

of TFBSs (Fig. 2b) (with the exception of the 1,000-msTFBSs), and then used calculated 

ranks (Material & Methods) as a measure for the accessibility of each TFBS. As TF 

binding only opens or “primes” its target enhancers without necessarily activating them 

per se 
23

, we refer to the rank values as “accessibility score”. 

However, we also wanted to test potential alternatives for TF accessibility assessment, 

and to this end we reconstructed an unbiased, detrended signal at a period between 135 

and 235 bp by wavelet analysis and summed up the powers of the signal across the 

2,000bp flanking TFBSs (Fig. 2c-d). To benchmark the performance of Savitzky-Golay 

filtering and wavelet analysis, we used cfRNA data 
26

 and observed significantly reduced 

accessibility for unexpressed TFs (i.e. <0.01 FPKM [Fragments Per Kilobase exon per 

Million reads]) as compared to the accessibility of expressed (i.e. >10 FPKM) TFs 

(>50%-TFBSs; Savitzky-Golay filtering: p=1.75x10
-13

; the sum of powers (wavelet 

analysis): p=0.0004049; 1,000-msTFBSs; Savitzky-Golay filtering: p=1.254x10
-11

; 
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Mann-Whitney-U test each) (Fig. 2e). These differences were also significant when we 

compared the adjusted ranges to mean DNase coverage (>50%-TFBSs; Savitzky-Golay 

filtering: p<2.2x10
-16

; the sum of powers (wavelet analysis): p<2.2x10
-16

; 1,000-

msTFBSs; Savitzky-Golay filtering: p<2.2x10
-16

; Mann-Whitney-U test each) (Fig. 2f). 

As Savitzky-Golay filtering performed slightly better, we favored this approach and then 

defined detection thresholds for TFBS accessibilities deviating from the normal samples 

as ±3 mean of the standard deviation (as a z-score of 3). For assessments based on all or 

>50%-TFBSs, the detection thresholds for our normalized accessibility score were ±253 

and ±88 for the 1,000-msTFBSs, which have a lesser number of analyzable TFs (Supp. 

Fig. 4c, Supp. Table 6, Supp. Table 7). 

Hence, we established robust means to assess TFBS accessibility and we reasoned that 

this should offer novel options to use cfDNA in clinical diagnostics. 

 

Inference of TF binding from cfDNA supports molecular subtyping in prostate cancer 

We next assessed to what extent tissue-specific TFs are suitable for the identification of 

tumor-of-origin and molecular subtyping. To this end, prostate cancer is a particularly 

interesting tumor entity because a frequent (~20%) mechanism in the development of 

treatment-resistance to novel agents targeting the AR pathway, such as abiraterone or 

enzalutamide, is the transdifferentiation of an adenocarcinoma to a treatment-emergent 

small-cell neuroendocrine prostate cancer (t-SCNC) 
27

. This transdifferentiation has 

enormous clinical implication because it requires a change in therapy 
27

 and the 

involvement of several TFs in such a transdifferentiation process has been extensively 

studied 
28, 29, 30

 (Fig. 3a). 

We first screened data for expression of human TFs across tissues and cell types 

provided by 
1
 and the human protein atlas (www.proteinatlas.org) 

31
 and confirmed the 

well-established prostate lineage specificity of TFs AR, HOXB13, and NKX3-1 
32, 33, 34, 

35
, which was also reflected in the DNase hypersensitivity assays of the prostate cancer 

cell line LNCaP (Fig. 3b-d). Accordingly, these TFs displayed increased accessibility at 

their binding sites only in the cfDNA of patients with prostate cancer. Because of the 

extraordinary relevance of AR in prostate cancer, we used not only the AR binding sites 

as defined by the GTRD, but additionally employed those reported by Pomerantz and 

colleagues 
36

, who, by analyzing the AR cistrome, identified 9,179 tumor AR binding 

sites with higher binding intensity in tumors and 2,690 normal AR binding sites with 

high binding intensity in normal samples. Indeed, whereas normal AR binding sites were 
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not accessible in cfDNA of both controls and patients, the tumor AR binding sites 

demonstrated increased accessibility in the plasma samples from patients (Fig. 3d). 

As a further confirmation for the robustness and reproducibility of lineage-specific TFs 

in cfDNA, we reasoned that if we analyze pools of multiple cfDNA samples generated 

by shallow-coverage (<0.2x) 
37

, that those TFs with increased accessibility in the 

majority or all samples, i.e. lineage-specific TFs, should have an increased accessibility 

score, whereas others will be averaged out. To this end, we pooled cfDNA samples 

separately for prostate (n=69), for colon (n=100) and for breast (n=60) cancer cases and 

repeated the analyses. The epithelial TF GRHL2 and the hematopoietic TFs reiterated 

their increased and decreased, respectively, accessibility patterns (Supp. Fig. 5). Within 

the prostate cancer cfDNA pool, the lineage-specific TFs AR, HOXB13, and NKX3-1 

again showed increased accessibilities (Supp. Fig. 5), suggesting that these features are 

universally present in prostate cancer and may be suitable for the identification of tumor-

of-origin from cfDNA. 

For tumor subclassification, we started with an index case, P148, where we had the 

opportunity to analyze two plasma samples (P148_1, P148_3) taken 12 months apart, 

during which the prostate adenocarcinoma transdifferentiated to a t-SCNC (Supp. Table 

1; Supp. Info.) 
38

. These two samples showed significant TFBS accessibility changes 

(Kendall’s Tau: 0.7573, Supp. Table 8), specifically reflected in several TFs. The t-

SCNC is no longer an androgen-dependent stage of prostate cancer 
29

 and, consequently, 

accessibility of AR binding sites was no longer observed in sample P148_3 (Fig. 3e). 

Due to its close cooperation with nuclear hormone receptors 
24

, accessibility to FOXA1 

was correspondingly reduced (Fig. 3e). Furthermore, the change in the cell type identity 

became apparent as observed by the reduced accessibility to the binding sites of the 

prostate-specific lineage TFs HOXB13 and NKX3-1 (Fig. 3e) and the epithelial TF 

GRHL2 (Supp. Fig. 6a). TF changes associated with neuronal development included 

augmented accessibility of GLI-similar 1 (GLIS1) (Supp. Fig. 6b), a TF whose 

expression is dramatically increased under hypoxic conditions 
39

. Hypoxia has been 

discussed to facilitate the development of prostate adenocarcinoma to an androgen-

independent state 
40

 and furthermore to downregulate repressor element-1 (RE-1) 

silencing transcription factor (REST), which induces neuroendocrine reprogramming 
41

 

and we indeed observed a significantly decreased accessibility of REST (Fig. 3e). 

Furthermore, N-MYC is involved in AR signaling suppression and neuroendocrine 

program regulation 
29, 42

, which was mirrored in an increased accessibility (Fig. 3e). 
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These observations suggested that in certain cancer disease stages, TFBSs may have a 

high plasticity affecting pathways. 

In order to test whether prostate cancer subtype classification based on TFBSs from 

cfDNA is possible, we added plasma samples as a proof-of-principle from 4 further t-

SCNCs cases (P170_2, P179_4, P198_5, and P240_1) (Supp. Table 1). For these cases, 

we tested in addition whether our approach is also applicable to cfDNA sequenced with a 

lesser coverage by down-sampling plasma samples P148_1 (819,607,690 reads) and 

P148_3 (768,763,081 reads) to ~50 million reads. The reduction of reads resulted in an 

increase of noise levels, which was dependent on the number of TFBSs but neglectable 

for TFs with more than 1,000 TFBSs (Supp. Fig. 7) so that analyses for the 

aforementioned highly relevant TFs were not affected. We then repeated the analyses for 

the aforementioned 4 samples, each sequenced with ~50 million reads, and observed 

again the decreased accessibilities for TFs AR, FOXA1, HOX-B13, and NKX3-1, or the 

increased accessibility of N-MYC (Fig. 3f). Interestingly, we noted decreased 

accessibility of REST only in two of these four cases (P170_2 and P198_5; Fig. 3f), 

which is consistent with reports that REST downregulation is usually observed in 50% of 

neuroendocrine prostate cancer cases 
29

. Only in these two cases did GLIS1 again have 

an increased accessibility (z-scores: P170_2: 4.3; P198_5: 4.4), suggesting that this 

hypoxia-associated TF may be linked to REST downregulation. 

 

Discussion 

We developed a method and bioinformatics software pipeline for inferring tumor cell-

specific TF binding from cell-free DNA in the blood, with relevance for clinical 

diagnostics and non-invasive tumor classification. While most studies have adopted a 

gene-centric focus when evaluating somatically acquired alterations, we evaluated an 

important part of the noncoding genome, focusing on TFBSs. As many TFs bind 

preferentially within open chromatin and have to therefore interact with nucleosomes 
1, 7

, 

we utilized the largely mono-nucleosomal cfDNA, which allows the mapping of 

nucleosome positions 
9, 10

. A unique feature of our approach is that we generated in vivo 

data on TFBSs from an endogenous physiological process in contrast to in vitro assays, 

which may be affected by technical variations. Our data correlated strongly with DNase I 

hypersensitivity data for cell lines GM12878, LNCaP or HCT116 suggesting the 

reliability of our approach. 
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Compared to a previous publication 
9
, our study has several distinct differences. First, 

Snyder and colleagues generated data only for a few TFs and were more focused on 

general DNase hypersensitive regions. Consequently, they suggested the use of general 

tissue-specific patterns using mixtures of cfDNA signals resulting from multiple cell 

types and analyses by Fourier transformation 
9
. In contrast, we profiled individual TFs 

and thereby established lineage-specific TFs for clinical applications. Second, our 

analysis pipeline with the novel metric, the accessibility score, enables the objective 

comparison of TF binding events in various plasma samples, which paves the way for 

entirely new diagnostic procedures. Third, due to the improved resolution of TFBS 

analyses, we were for the first time able to use cfDNA to show TFBS plasticity during a 

disease course, such as reprogramming to a different cell lineage. Such a dynamic TF 

view instead of a static view obtained from tissue 
7
 is a unique feature of cfDNA 

analyses. Fourth, we demonstrate that our cfDNA TFBS bioinformatics pipeline allows 

subclassification of tumor entities and hence fills an important diagnostic gap in the 

managing of patients with prostate cancer 
27

. Finally, whereas Snyder and colleagues 

required 1.5 billion reads per plasma sample 
9
, which is prohibitive for routine clinical 

use from a cost perspective, we were able to conduct in-depth TF analysis with ~50 

million reads, making our approach amenable for clinical applications. 

Our study has limitations, as our TF nucleosome interaction maps are inevitably 

heterogeneous, comprising signals of all cell types that give rise to cfDNA. Furthermore, 

as in other studies 
9
, we used plasma samples from individuals who appeared to have 

large burdens of ctDNA and therefore we cannot yet provide data on sensitivity.  

Nevertheless, advanced prostate cancer, the main tumor entity analyzed here, is a classic 

example of the intractability and consequent lethality that characterizes metastatic 

carcinomas. Tumor studies lack dynamic models, and, in particular, dynamic profiling of 

clinical samples, for exploring transitions and interplays between pathways. Because of 

the potential of TFs to regulate gene transcription throughout the genome and their often 

exquisitely lineage-specific manner, their detailed non-invasive analyses based on 

cfDNA offer a unique opportunity to improve clinical diagnostics. Our data also provides 

the foundation for further dissection of the non-coding genome through novel means of 

transcription regulation profiling. 
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Methods 

 

Patients 

The study was approved by the Ethics Committee of the Medical University of Graz 

(approval numbers 21-227 ex 09/10 [breast cancer], 21-228 ex 09/10 [prostate cancer], 

21-229 ex 09/10 [colorectal cancer], and 29-272 ex 16/17 [High resolution analysis of 

plasma DNA]), conducted according to the Declaration of Helsinki and written informed 

consent was obtained from all patients and healthy probands, respectively. 

Detailed information on the patients is provided in the Supplementary Information. 

 

Blood sampling and library preparation 

Peripheral blood was collected from patients with metastatic prostate, breast and colon 

cancer at the Department of Oncology and from anonymous healthy donors without 

known chronic or malignant disease at the Department of Hematology at the Medical 

University of Graz. CfDNA was isolated from plasma using the QIAamp Circulating 

Nucleic Acids kit (QIAGEN, Hilden, Germany) in accordance with the manufacturer’s 

protocol. Library preparation for WGS was performed as described previously 
37

.  

 

Sequencing 

Control and high-coverage tumor samples were sequenced on the Illumina NovaSeq S4 

flowcell at 2x150bp by the Biomedical Sequencing Facility at CeMM, Vienna, Austria. 

For the control samples, an average of 435,135,450 (range: 352,904,231-556,303,420) 

paired-end reads were obtained. For the tumor samples (P40_1, P40_2, P147_1, P147_3, 

P148_1, P148_3, C2_6, C2_7), an average of 688,482,253 reads (range: 541,216,395-

870,285,698) were sequenced. Additional samples were sequenced using the Illumina 

NextSeq platform (B7_1, B13_1, P190_3, P170_2, P179_4, P198_5, P240_1; average 

sequencing yield: 195,425,394 reads; range: 115,802,787-379,733,061). 

Low-coverage tumor samples which were used to create single-entity pools were 

sequenced on either the Illumina Next-Seq or MiSeq platform. This resulted in 

382,306,130 reads from 69 prostate cancer samples, 254,490,128 reads from 60 breast 

cancer samples and 604,080,473 reads from 100 colon cancer samples. 
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Characterization of plasma samples 

Some plasma samples, i.e. of patients B7 and B13 
10

 and P40, P147, and P148 
38

 were 

previously analyzed within other studies. From these analyses, we had information 

regarding mutations, specific SCNAs, and tumor content of the plasma samples based on 

the algorithm ichorCNA 
43

. 

P40: Mutations: BRCA1: NM_007294: Q975R; specific SCNAs: TMPRSS2-ERG fusion; 

AR amplification in sample 2; chr12 amplification (containing ARID2, HDAC7); tumor 

content: P40_1: 30%; P40_2: 24%; 

P147: Mutations: BRCA2: T298fs; TP53: F338I; specific SCNAs: RET amplification in 

sample 3; AR amplification; BRAF amplification (7q34); PTEN loss; tumor content: 

P147_1: 52%; P147_3: 73%; 

P148: Mutations: TP53: R213X; specific SCNAs: MYC amplification; PTEN loss; 

FOXP1, RYBP, SHQ1 loss; TMPRSS2-ERG fusion; AR amplification (lost in P148_3); 

tumor content: P148_1: 38%; 148_3: 49% 

C2: specific SCNAs: high level amplification on chromosome 12 (KRAS) in C2_6, not 

visible in C2_7; tumor content: C2_6: 18%; C2_7: 28% 

 

Transcription factor binding site definitions 

Data from the GTRD database were downloaded 

(http://gtrd.biouml.org/downloads/18.01/human_meta_clusters.interval.gz) and 

individual BED files per TF were extracted. The position was recalculated by focusing 

on the reported point where the meta-cluster has the highest ChIP-seq signal. An 

additional BED file was created which only included peaks that are supported by >50% 

of the maximum number of samples (>50%-TFBSs) analyzed for this specific 

transcription factor. All BED files were then converted to hg19 (from original hg38) 

using the liftOver tool provided by UCSC. 

 

Transcription factor binding site overlaps 

In order to check whether binding sites of transcription factors overlap, regions of the 

binding sites from GTRD (of the sites supported by > 50% of the samples) were 

increased by 25, 50 and 100bp, respectively, on either side using bedtools slop. 

Subsequently, the number of overlap was calculated by using bedtools intersect via 

pybedtools for every transcription factor with every other transcription factor. 
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Single-end sequencing data preparation 

In order to enhance the nucleosome signal, reads were trimmed to remove parts of the 

sequencing read that are associated with the linker region. Hence, forward reads were 

trimmed to only contain base 53-113 (this would correspond to the central 60bp of a 

166bp fragment). Reads were then aligned to the human hg19 genome using bwa and 

PCR duplicates were removed using samtools rmdup. Average coverage is calculated by 

bedtools genomecov. 

 

Paired-end sequencing data preparation 

Paired-end reads were aligned to the human hg19 genome using bwa mem and PCR 

duplicates were marked with picard MarkDuplicates 

 

MNase-seq data preparation 

BAM files of MNase-seq experiments of GM12878 were downloaded from the 

ENCODE portal. Reads in BAM files were trimmed directly from the BAM file using 

pysam. In brief, left-most alignment positions in the BAM file were shifted 53bp in the 

respective direction and the sequence length was adjusted to 60bp. The coverage patterns 

were then calculated in the same way as the trimmed cell-free DNA sequencing data. 

 

Coverage patterns at transcription factor binding sites 

For every transcription factor in the GTRD, coverage patterns were calculated. To this 

end, coverage data was extracted for every region using pysam count_coverage in a 

region +/- 1000 bp around the defined binding sites. Coverage data at every site were 

normalized by regional copy number variation and by mean coverage. For every position 

around the TFBS, coverage was averaged and 95% confidence intervals were calculated. 

If >100,000 positions were defined for a transcription factor, 100,000 sites were 

randomly chosen to be analyzed. 

 

Insert sizes around transcription factor binding sites 

To see whether fragment sizes around transcription factor binding sites were biased, 

insert size data from paired-end analyses were used. Every position from -1000 until 

1000bp from the binding site was traversed and (single-end) reads where the central 3 bp 

around the midpoint are located at this position were fetched using pysam. Also, paired-
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end alignments from the same sample were fetched and the insert size information was 

designated to the respective reads. All insert sizes at specific positions relative to the 

TFBS were then summarized and 1000 data points were sampled and plotted for each 

position in the range of -1000 to 1000bp from the TFBS.  

 

Measuring transcription factor binding site size 

In order to measure the size of the transcription factor binding site, the respective 

coverage pattern was smoothed using a third order Savitzky-Golay filter (window-size: 

31). Peaks were identified by searching for data points that were larger than the 

neighboring 20 data points on either side. Peaks were removed if they resided within 

50bp of the center of the supposed binding site. The distance between the closest peaks 

next to the binding site peak was specified as the transcription factor binding site size. 

Since binding site estimates are only reasonable if nucleosome synchronization is 

detectable, we filtered the signals by various criteria: 

 High-frequency signal amplitude > 0.1 

 Mean normalized coverage of the central 100bp < 1 

 Amount of peaks is less than 15 

 Median distance between peaks is >150bp 

 The binding site sets comprises over 500 sites 

228 binding site sets passed these filters and were used for binding site estimation. 

 

Measurement of transcription factor accessibility using Savitzky-Golay filters 

As we hypothesize that two distinct signals make up the coverage pattern, two signals of 

different frequencies were extracted. The lower range frequency data was extracted by a 

Savitzky-Golay filter (3rd order polynomial and window size of 1001). A high-frequency 

signal was extracted by a different Savitzky-Golay filter (3rd order polynomial and 

window size of 51). The high-frequency signal was then normalized by division by the 

results of the low-frequency signal. Subsequently, the data range of the high-frequency 

signal was recorded. Since coverage profiles from transcription factors with few 

described binding sites are inherently noisier, a LOESS smoothing was performed over 

the signal range and the amount of described binding sites. The range values were 

corrected by the smoothed LOESS and ranks of the adjusted range were calculated. 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456681doi: bioRxiv preprint 

https://doi.org/10.1101/456681
http://creativecommons.org/licenses/by/4.0/


14 
 

 

Measurement of transcription factor accessibility using wavelet transformation 

As an additional method to measure accessibility of transcription factors, we applied 

wavelet transformation by using the R-package “WaveletComp”. For every signal, we 

recorded peaks in the power spectrum along the periods between 2 and 512 bp. The 

highest peak in the range between 135 and 235 (185bp +/- 50bp) was used to reconstruct 

a de-noised higher frequency nucleosome signal at that specific period. Moreover, any 

residual baseline was removed using detrending of the original data series. Three 

parameters of the reconstructed signal were analyzed: The maximum amplitude of the 

signal, the sum of the signal powers (amplitudes squared) and the sum of the absolute 

amplitudes along the 2000bp surrounding the transcription factor binding site. 

For comparing tumor to normal samples, mean value and standard deviation for the 

respective parameters were recorded in normal samples for every transcription factor and 

z-scores were calculated by taking the respective parameter in the cancer sample, 

subtracting the mean value of the normal and dividing by the standard deviation. 

 

Comparing tumor and control samples 

In order to compare tumor and control samples, the ranks of the respective transcription 

factors in the adjusted range values were compared. Rank differences were calculated 

between a tumor sample and every control sample and mean rank differences were 

recorded. Moreover, z-scores were calculated for every transcription factor from the 

accessibility ranks, by taking the respective rank, subtracting the mean rank of the 

control samples and dividing by the standard deviation of this transcription factor ranks 

of the control samples. 

 

DNase hypersensitivity data analysis 

BAM_files from DNase hypersensitivity experiments were downloaded from the 

ENCODE database for GM12878, LNCaP and HCT116 cell lines. Binding site regions 

of a transcription factor were increased by 25bp on either side using bedtools slop. 

Coverage at the respective binding sites was extracted using mosdepth and normalized 

by million mapped reads per sample. 
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Analysis of somatic copy-number alterations (SCNAs) 

For control data, paired-end alignments were subsampled using samtools view to only 

include 2% of the initial alignments and converted to FastQ using samtools fastq. For the 

cancer samples, separate low-coverage whole-genome sequencing was performed. 

Plasma-Seq 
37

 was applied to the subsampled FastQ files and the low-coverage data of 

the cancer samples, respectively. In brief, reads were aligned to the human hg19 genome 

and reads were counted within pre-specified bins. The bin size was determined by the 

amount of theoretically mappable positions to account for differences in mappability 

throughout the genome. Read counts were normalized for total amount of reads and GC 

content of bins were corrected for by LOESS smoothing over the GC spectrum. 

Moreover, corrected read counts were normalized by the mean read counts of non-cancer 

controls per bin to control for additional positional variation. 

 

Data and code availability 

Sequencing raw data are available in EBI-EGA under the accession EGAS00001003206. 

Code is available in GitHub at https://github.com/PeterUlz/TranscriptionFactorProfiling. 

 

Supplementary Information 

 

Coverage-independent and spatial cfDNA fragment analyses 

As a coverage independent confirmation of our TFBS signals, we plotted the length of 

each cfDNA fragment as a function of the distance of the fragment midpoint to the 

CTCF binding site 
25

. The resulting heatmap confirmed the signal periodicity consistent 

with the coverage-based oscillating pattern (Supp. Fig. 2b). In addition, in order to more 

closely analyze the landscape of fragments related to the single recognition sequences, 

we computed the spatial density of cfDNA fragments within a 2kb region centered on the 

TFBSs and ranked the sites according to the coverage of the central 40bp. The resulting 

heatmap showed that nucleosome phasing in most sites analyzed is even (Supp. Fig. 2c), 

which is again consistent with the coverage profiles. 

 

TF-specific nucleosome coverage profiles 

To establish the shape of TFBSs, we investigated TF-specific nucleosome coverage 

profiles, as we observed that some TFs showed evenly spaced nucleosome peaks, 
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including their binding sites (e.g. PU.1 and GRHL2 in Fig. 1d), whereas other TFs had 

wider troughs at their binding sites (e.g. CREM in Supp. Fig. 2a), resembling those 

which we have previously described for TSSs 
10

. Altogether, we identified 55 TFBSs 

where the TFBS exceeded 300 bp and from these, 26 had binding sites close to di-

nucleosomal sizes (312-352 bps; Supp. Fig. 4d; Supp. Table 5). For these patterns, we 

found highly significant increases of overlap for both CpG islands (p=4.2x10
-11

; Mann-

Whitney U test) and TSSs (p=8.5x10
-12

; Mann-Whitney U test) for TFBSs with sizes 

>300 bp (Supp. Fig. 4e). 

 

Pairwise comparison of plasma samples 

To address the question whether TF accessibility remains stable over time, we also 

analyzed two samples each from patients P40, P147, and C2). However, with our very 

stringent criteria, i.e. by confining the analyses to 1,000-msTFBSs, we did not observe 

significant differences in these plasma sample pairs (Controls: Median: 0.8404 ±0.0196 

(IQR); P40: 0.8620; P147: 0.8370; C2: 0.8719; each Kendall’s Tau) (Supp. Fig. 8, Supp. 

Table 8). 

Between P147_1 and P147_3, a novel, high-amplitude amplification including the RET 

gene evolved, whereas C2_7 had lost an amplification including KRAS, which we had 

observed in the previous sample C2_6. RET in prostate cancer and KRAS in CRC both 

may affect the PI3K/AKT/mTOR pathway 
44

 (Pek et al. Oncogene 36:4975-4986) and 

we therefore investigated downstream targets such as the TF CREB; however, the 

accessibility was not different from the control plasma samples and furthermore 

remained unchanged. Between P40_1 and P40_2, resistance against androgen 

deprivation therapy (ADT) had evolved, which was reflected in a high-level 

amplification of the AR gene 
45

. However, if AR expanded its repertoire of 

transcriptional targets, it did not become apparent at the aforementioned T-ARBSs and 

N-ARBSs 
36

 (Supp. Fig. 9). Our very conservative approach limiting the analyses to 

1,000-msTFBSs may explain why we may not have observed differences between these 

samples. 
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Figures 

 

 
Figure 1 

Establishment of TF-nucleosome interactions from cfDNA 
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a) Regions with highly organized, i.e. phased, nucleosomes result in an oscillating read 

depth pattern where a peak of reads indicate the positions of dyads, i.e. the midpoint of a 

canonical nucleosome. A less-defined positioning of nucleosomes yields a rather flat 

coverage profile.  

b) TFBS data for 676 TFs were retrieved from the GTRD 
17

 and aligned with a curated 

list of known or likely human TFs 
1
. Three different calculations, each with increased 

stringency, were conducted (for details see text). 

c) The coverage pattern of CTCF is similar across all analyzed cfDNAs, which is 

consistent with DNase hypersensitivity data showing approximately equal accessibility 

in blood (GM12878) and epithelial tissues, i.e. prostate (LNCaP) and colon (HCT116). 

In this panel and in the respective subsequent panels, the profiles calculated from healthy 

controls are shown in gray whereas the patient-derived profiles are displayed in the 

indicated colors. 

d) The hematopoietic lineage-specificity of TFs (PU.1, LYL1, SPIB) was confirmed by 

DNA hypersensitivity assays and their amplitude is reduced in plasma from cancer 

patients compared to healthy controls. In contrast, the amplitudes for the epithelial TF 

GRHL2 increase in cfDNA from patients with cancer.  

e) Accessibility plots and DNase hypersensitivity for TF FOXA1 illustrating the 

preferential amplitude change in patients with hormone-dependent cancers, i.e. prostate 

and breast cancer. 
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Figure 2 

Accessibility score for the characterization of TFBSs 

a) To measure TF accessibility, the observed raw coverage signal (purple in left and 

black in right panel) was split by Savitzky-Golay filtering into a low-frequency signal 

(red) and a high-frequency signal (blue) using different window sizes. The right panel 

illustrates an overlay of these three signals. The high-frequency signal is used as a 

measure for accessibility. 

b) The range of the high-frequency signal (Y-axis) critically depends on the number of 

TFBSs (X-axis), as TFs with few binding sites have more noise due to lesser averaging. 

A LOESS model is fitted (blue) in order to correct for this bias.  

c) Wavelet analysis of GRHL2: Heatmap of periods along the region surrounding the 

TFBSs of GRHL2 (left panel). Color code represents quantiles of the signal power 

distribution. Average power of periods of transcription factor GRHL2 (right panel). 
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d) Detrended original (black) and reconstructed (red) nucleosome coverage profile of 

transcription factor GRHL2 resulting from wavelet analysis. 

e) All tested procedures (left: >50%-TFBSs, Savitzky-Golay filtering; center: the sum of 

powers, wavelet analysis; right: 1,000-msTFBSs, Savitzky-Golay filtering), showed 

increased values as a measure of accessibility for transcription factors that are expressed 

in blood (>10 FPKM), but not in genes that show no or low signs of expression (<0.1 

FPKM).  

f) Transcription factors with a mean DNase hypersensitivity coverage of >2 in GM12878 

DNase data from the ENCODE project have higher adjusted ranges and higher sum of 

powers than factors that have a mean coverage of <1 in all three analyses conducted (left: 

>50%-TFBSs, Savitzky-Golay filtering; center: the sum of powers, wavelet analysis; 

right: 1,000-msTFBSs, Savitzky-Golay filtering). 
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Figure 3 

Prostate lineage-specific TFs, their plasticity and suitability for tumor classification 

a) Prostate adenocarcinomas are AR-dependent and accordingly have frequently 

increased PSA (prostate-specific antigen) levels and normal NSE (neuron-specific 

enolase) values. In contrast, t-SCNC are no longer dependent on AR and usually have 
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low PSA and increased NSE levels. Several TFs involved in the transdifferentiation 

process from an adenocarcinoma to a t-SCNC have been identified and are indicated in 

the arrows. 

b) Accessibility profile of the prostate lineage-specific homeobox TF HOXB13 and the 

respective DNase hypersensitivity assays of prostate cancer cell line LNCaP. In this and 

the subsequent panels, the profiles calculated from healthy controls are shown in gray 

whereas the patient-derived profiles are displayed in the indicated colors. 

c) Accessibility pattern and DNA hypersensitivity assay of NKX3-1, one of the earliest 

genes expressed during prostatic epithelium maturation.  

d) AR accessibility was analyzed for all AR binding sites in the GTRD and in addition 

for AR binding sites with higher binding intensity in tumors (T-ARBSs), and for sites 

with high binding intensity in normal samples (normal AR binding sites, N-ARBSs) 
36

. 

The well-established lineage specificity of AR was confirmed by DNA hypersensitivity 

assays. 

e) Coverage pattern changes during transdifferentiation from an adenocarcinoma to a 

neuroendocrine carcinoma established from two plasma samples from patient P148 for 

hormone-dependent (AR, FOXA1), tissue identity-specific (HOXB13, NKX3-1), and 

neuroendocrine reprogramming (REST, N-MYC) TFs. 

f) Analysis of the same TFs as in a) from 4 plasma samples from patients with 

neuroendocrine prostate cancers. 
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Supplementary Figures 

 
Supplementary Figure 1 

Somatic copy number alterations (SCNAs) in plasma samples from patients with 

cancer 
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SCNAs identified after whole-genome sequencing of 8 plasma samples from four 

patients (C2, P40, P147, P148). 
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Supplementary Figure 2 

TF-nucleosome interaction map for 676 high-confidence TFs with reliable binding 

site information 
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a) TFBS-nucleosome coverage profiles for two representative TFs, CREM and 

GATAD1, established from 24 cfDNA samples from healthy controls, each shown with 

an individual blue line. The MNase-seq coverage patterns from the lymphoblastoid cell 

line GM12878 obtained from ENCODE are illustrated in red. Additional MNase plots 

are illustrated in Supp. Fig. 9. 

b) Heatmap of fragment sizes around CTCF binding sites displayed as a plot of the 

length of each sequencing read (Y-axis) as a function of the distance from the fragment 

midpoint to the center of the site for each annotated feature (X-axis) (details in Supp. 

Info.).  

c) Heatmap of individual CTCF binding sites and surrounding regions. Regions are 

ordered by the coverage within the central 50bp around the TFBS. The spatial density of 

cfDNA fragments within a 1kb region centered on the TFBSs were computed and 

ranked. 

d) Matrices of overlaps between TFBSs (left panel: all 676 GRTD TFs; right panel: 505 

TFs with the 1,000-msTFBSs). Each point represents the percentage of overlaps (within 

50bp) in binding site definitions (complete list of TFs in Supp. Table 3). 

e) TFBS analyses with high molecular weight DNA, which is not mono-nucleosomal 

DNA, yields a uniform, non-oscillating pattern (blue) in contrast to plasma DNA (green). 
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Supplementary Figure 3 

Further TF-nucleosome interaction maps 
Additional comparisons between coverage profiles of cfDNA and MNAse-seq around 

TFBSs. 
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Supplementary Figure 4 

The shape of TFBSs 

a) Coverage profiles for TFs AP-4 and BCL-3 after calculations conducted separately for 

TFBS within and outside of TSSs.  
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b) Analyses of TFBSs for TFs ATF1, CREB, CREM and ATF-3 may result in evenly 

spaced or in TSS-like coverage patterns, dependent on whether all tissues in the GTRD 

or whether, more strictly, only those peaks that are supported by >50% of the maximum 

number of samples (>50%-TFBSs) were included. 

c) Exemplary TF-nucleosome profiles calculated for all and >50%-TFBS (upper panel) 

and for 1,000-msTFBSs (lower panel), illustrating the variable nucleosome patterns of 

different TFs in cfDNA. 

d) Measurements of TFBS widths revealed substantial differences among various 

TFBSs. 

e) Boxplot illustrating the percentage of overlap for CpG islands (left panel) and TSSs 

(right panel). 
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Supplementary Figure 5 

Analyses of pooled shallow-coverage cfDNA 

Accessibility in pooled cfDNA samples from prostate (n=69), colon (n=100) and breast 

(n=60) cancer cases of the epithelial TF GRHL2 and of hematopoietic TFs (PU.1, LYL1, 

and SPIB). 

Accessibility within the prostate cancer cfDNA pool of the lineage-specific TFs AR, 

HOXB13, and NKX3-1. 
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Supplementary Figure 6 

TFs involved in transdifferentiation from an adenocarcinoma to a t-SCNC 

a) GRHL2 accessibility in plasma samples P148_1 and P148_3. 

b) Analysis of GLIS1 in the two plasma samples from patient P148. 
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Supplementary Figure 7 

Down-sampling of plasma samples P148_1 and P148_3 

Plasma samples P148_1 (819,607,690 reads) and P148_3 (768,763,081 reads) were 

down-sampled to ~50 million reads and analyzed for 1,000-msTFBSs (left column) and 

all and >50%-TFBSs (right column). The analysis suggests that preferentially TFs with a 

low number of TFBSs are affected by increased noise. 
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Supplementary Figure 8 

Comparison of TFBS accessibility in serial analysis 

Plots of correlation between serial samples from patients C2, P147, P40, and P148. The 

X-axis represents the first, the Y-axis the second plasma sample. 
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Supplementary Figure 9 

Analyses of AR binding sites for plasma samples from P40 

This patient with prostate cancer received ADT treatment and developed a high-level AR 

amplification between samples P40_1 and P40_2. 
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Supplementary Tables 

 

Supplementary Table 1 

Clinical data on prostate cancer patients P40, P147, P148, P190, P170, P179, P198, and 

P240, on breast cancer patients B7 and B13, and patient C2 with colorectal cancer. 

Some plasma samples, i.e. of patients B7 and B13 
10

 and P40, P147, and P148 
38

 were 

previously analyzed within other studies. 

 

Supplementary Table 2 

Overview of samples and sequencing statistics with accompanying information about 

tumor fractions from ichorCNA. 

 

Supplementary Table 3 

List of TFs from the GTRD used in this study and accompanying information. 

 

Supplementary Table 4 

Pairwise analysis of overlaps within 50bp as a fraction of the first TF for TFs with > 

1000 defined binding sites. 

 

Supplementary Table 5 

List of filtered 228 TFBS sets with information about estimated binding site size and 

details about nucleosome peak calls. 

 

Supplementary Table 6 

Comparison between TF accessibility of tumor samples and control samples by mean 

rank differences between a tumor sample and all control samples and Z-scores for every 

TF for all sites and 50%-sites sets. 

 

Supplementary Table 7 

Comparison between TF accessibility of tumor samples and control samples by mean 

rank differences between a tumor sample and all control samples and Z-scores for every 

TF for the 1,000-msTFBSs sets. 

 

Supplementary Table 8 

Comparison between TF accessibility of paired samples by rank differences. 
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