1	
2	An infant mouse model of influenza virus transmission demonstrates the role of
3	virus-specific shedding, humoral immunity, and sialidase expression by
4	colonizing Streptococcus pneumoniae.
5	
6	Mila Brum Ortigoza, ^a Simone Blaser, ^b M. Ammar Zafar, ^{c,*} Alexandria Hammond, ^c Jeffrey
7	N. Weiser, ^{c,#}
8	
9	^a Department of Medicine, Division of Infectious Diseases, New York University School
10	of Medicine, New York, New York, USA
11	^b New York University School of Medicine, New York, New York, USA
12	^c Department of Microbiology, New York University School of Medicine, New York, New
13	York, USA
14	
15	Running Title: Infant mouse model of influenza virus transmission
16	
17	# Address correspondence to Jeffrey N. Weiser, jeffrey.weiser@nyulangone.org
18	* Present address: Department of Microbiology and Immunology, Wake Forrest School
19	of Medicine, Winston-Salem, NC
20	
21	
22	
23	Word count: Abstract (368), Text (4692)

2

24 ABSTRACT

25

The pandemic potential of influenza A viruses (IAV) depends on the infectivity of 26 27 the host, transmissibility of the virus, and susceptibility of the recipient. While virus traits supporting IAV transmission have been studied in detail using ferret and guinea pig 28 models, there is limited understanding of host traits determining transmissibility and 29 susceptibility because current animal models of transmission are not sufficiently 30 tractable. Although mice remain the primary model to study IAV immunity and 31 pathogenesis, the efficiency of IAV transmission in adult mice has been inconsistent. 32 Here we describe an infant mouse model which support efficient transmission of IAV. 33 We demonstrate that transmission in this model requires young age, close contact, 34 shedding of virus particles from the upper respiratory tract (URT) of infected pups, the 35 use of a transmissible virus strain, and a susceptible recipient. We characterize 36 shedding as a marker of infectiousness that predicts the efficiency of transmission 37 among different influenza virus strains. We also demonstrate that transmissibility and 38 susceptibility to IAV can be inhibited by humoral immunity via maternal-infant transfer of 39 IAV-specific immunoglobulins, and modifications to the URT milieu, via sialidase activity 40 of colonizing Streptococcus pneumoniae (Spn). Due to its simplicity and efficiency, this 41 model can be used to dissect the host's contribution to IAV transmission and explore 42 43 new methods to limit contagion.

IMPORTANCE

46	This study provides insight into the role of the virus strain, age, immunity, and
47	URT flora on IAV shedding and transmission efficiency. Using the infant mouse model,
48	we found that: (a) differences in viral shedding of various IAV strains is dependent on
49	specific hemagglutinin (HA) and/or neuraminidase (NA) proteins; (b) host age plays a
50	key role in the efficiency of IAV transmission; (c) levels of IAV-specific immunoglobulins
51	are necessary to limit infectiousness, transmission, and susceptibility to IAV; and (d)
52	expression of sialidases by colonizing Spn antagonize transmission by limiting the
53	acquisition of IAV in recipient hosts. Our findings highlight the need for strategies that
54	limit IAV shedding, and the importance of understanding the function of the URT
55	bacterial composition in IAV transmission. This work reinforces the significance of a
56	tractable animal model to study both viral and host traits affecting IAV contagion, and its
57	potential for optimizing vaccines and therapeutics that target disease spread.

4

58 **INTRODUCTION**

59

Influenza virus infections continue to cause 140,000-700,000 hospitalizations and 60 12,000-56,000 deaths in the United States annually (1). For the 2017-2018 season 61 alone, more than 900,000 people were hospitalized and 80,000 people died from 62 influenza (2). Despite the availability of vaccines which have been efficacious at 63 preventing hospitalizations, morbidity, and mortality, evidence that the inactivated 64 influenza virus (IIV) vaccine blocks virus acquisition, shedding, or transmission has 65 been limited in animal models (3-7). In addition, the low vaccination coverage (in the 66 population) and low vaccine effectiveness (due to viral antigenic drift) likely contributes 67 to the limited effects of the IIV vaccine (8, 9). Likewise, available therapeutics, primarily 68 neuraminidase inhibitors (NI), have been shown to be effective at reducing the duration 69 of illness if treatment is initiated within 24 hours of symptom onset (10-13). However, NI 70 71 treatment of index cases alone shows limited effectiveness reducing viral shedding or transmission, possibly due to its short therapeutic window (10, 11, 14, 15). These 72 limitations of our current options to prevent disease spread highlight a critical aspect of 73 74 the IAV ecology that needs further study: contagion.

While IAV transmission has been studied in human, ferret, and guinea pig models, there is a general lack of understanding about the host influence on viral transmission, because none of these models are easily manipulated. Hence, scientific progress to date has emphasized viral genetics, viral tropism, and environmental impacts on transmission (16-19). While these factors contribute to knowledge about IAV

contagion, host characteristics that could affect transmissibility, including the highly
variable composition of the URT flora, remain largely unexplored.

82	This knowledge gap could be addressed with the use of mice, whose practical
83	features (small, inexpensive, inbred), expansive reagent repertoire, and availability of
84	genetically-modified hosts allows for studies of extraordinary intricacy providing a
85	significant research advantage. Since the 1930s, the mouse model has been essential
86	in understanding IAV immunity and pathogenesis, and early studies described its
87	usefulness in evaluating IAV transmission (20, 21). However, the use of mice for
88	studying IAV transmission has been largely disregarded due to marked differences
89	among studies and low transmission rates (22-24). Nevertheless, recent reports have
90	revived the potential of the murine species as an IAV transmission model (23-28).
91	Therefore, in this study, we sought to reevaluate the mouse as a tool to study the
92	biology of IAV contagion, particularly the contribution of host factors.

93 **RESULTS**

94

95 Infant mice support efficient influenza virus transmission.

Given the remarkable capacity of infant mice to support IAV transmission among 96 littermates (25), we sought to validate and optimize the infant mouse as a potential new 97 model to study IAV transmission. Restricted URT infection of infant C57BL/6J pups in a 98 litter (index) was performed with low volume intranasal (IN) inoculum (3µl) using IAV 99 strain A/X-31 (H3N2) (24, 29). Intralitter transmission was assessed in littermates 100 101 (contact/recipient) by measuring virus from retrograde tracheal lavages at 4-5 days post-infection (p.i.) (Fig.1A). A/X-31 virus was selected to model transmission because 102 of its intermediate virulence in mice (30) and ability to replicate in the URT to high titers 103 104 with natural progression to the lungs, simulating key features of the infectious course in humans. Furthermore, the 50% mouse infectious dose (MID_{50}) in this model is 4-5 105 plaque forming units (PFU), suggesting high susceptibility to A/X-31 infection. 106 107 Transmission efficiency was observed to be 100% when index and contact pups were housed together at the time of IAV inoculation (Fig.1B). Transmission declined the 108 longer the index and recipient pups were housed apart prior to being in direct contact. 109 and was completely eliminated when housed together after 72 hours of separation 110 (Fig.1C and Fig. S1). This observation suggested that in this model, transmission from 111 112 index to recipient is most effective within the first 72-hour period of contact.

113 To determine the window of viral acquisition in recipient mice, an 8-day IAV 114 transmission experiment was performed (Fig. 1D). The observed growth of IAV in the 115 URT of recipient pups suggested that *de novo* virus acquisition occurred between 2-3

days after contact with the index. Hence, the infectious window for the index pupscorresponded with the timing of IAV acquisition in contact pups.

Given that pups gain weight as they grow, morbidity in this model was assessed by observing a decrease in weight gain during the infectious period. Mild morbidity of pups was observed in both the index and contact groups, with complete recovery from IAV infection by 10 days p.i. (Fig. 1E).

122

123 Direct contact between pups is required for influenza virus transmission.

Because infant mice need their mother for survival during the first 21 days of life, 124 they cannot be separately housed, therefore this model cannot differentiate between 125 airborne versus droplet routes of transmission. To distinguish between direct and 126 127 indirect contact routes of transmission, the mother and housing contents were evaluated as potential fomites. This was done by daily switching the mothers or the cages with 128 bedding between infected and uninfected litters, respectively (Fig. S2A-B). Inefficient or 129 130 no transmission was observed, suggesting that direct (close) contact between pups is the main mode of transmission. Occasionally during a transmission experiment, the 131 132 mother in the cage became infected with IAV from close contact with her infected pups (Fig. S2C). Although the acquisition of IAV in the mother was a rare event, we did not 133 observe a decline in transmission in contact pups when the mother did not become 134 135 infected, despite the mother being capable of transmitting IAV to her pups if she were to be inoculated with IAV as the index case (Fig. 2D). 136

137

138 Role of shedding of influenza virus from the upper respiratory tract.

8

139 To determine the correlates of transmission, an assay was developed to quantify infectious virus expelled from the nasal secretions of pups. This assay allowed us to 140 follow the journey of particle exit from index pups to acquisition by contact pups over the 141 142 course of the transmission period. Index pups in a litter were infected with A/X-31 and cohoused with uninfected littermates for 10 days. The nares of each mouse was gently 143 dipped in viral media daily, and virus titers were assessed for each sample (Fig. 3A). 144 We observed that index pups, like in humans (31), began shedding virus from day 1 p.i., 145 whereas recipient pups, who acquired IAV infection between day 2-3 (Fig. 1D), began 146 shedding virus from day 4 post contact (Fig. 3B). This pattern of virus transit suggested 147 that the timing of peak shedding from the index (days 1-3) corresponded with the timing 148 of transmission to recipient pups (days 2-4) (Fig. S3) further confirming that a key 149 150 determinant of IAV transmission in this model is shedding of virus from the secretions of index pups. Notably, detectable shedding in the contacts lagged transmission (higher 151 transmission rate compared to number of contacts shedding virus), because of the 152 153 period of viral replication required prior to the detection of shed virus (Fig. S3). 154 Transmission efficiency of influenza viruses in mice is virus and age-dependent. 155

Virus strain has been shown to be important in the efficiency of transmission in adult mice (20, 23, 26, 32). We thus tested the capacity of infant mice to support transmission of other IAV subtypes and an influenza B virus (IBV) (Table 1). Transmission among pups was greater for influenza A/H3N2 viruses and IBV, but lower for A/H1N1 viruses. Notably, A/X-31 was more efficiently transmitted compared to its

161	parent A/PR/8/1934 virus, suggesting that either the HA and/or NA proteins are
162	responsible for efficient shedding and transmission of IAV in infant mice.
163	Surprisingly, the mean viral URT titers in index pups did not correlate with IAV
164	transmission ($r=0.315$), indicating that virus replication in the URT alone was insufficient
165	to mediate effective transmission. To determine the cause of the differences in
166	transmission efficiencies observed among virus strains, the shedding for each virus was
167	analyzed. We observed that virus shed from index pups correlated with IAV
168	transmission (r=0.8663), further supporting virus shedding as the main determinant of
169	IAV transmission efficiency in infant mice (Fig. S4A-B).
170	Given the effectiveness of the infant mouse in supporting transmission of IAV, we
171	evaluated the disparities of transmission efficiency previously reported in adult mice (20-
172	23, 26). Mice infected with A/X-31 at different ages were housed with uninfected age-
173	matched contacts, and transmission efficiency was assessed at 5 days p.i. (Table 2).
174	We observed that 100% transmission was sustained in mice up to 7-days of age.
175	Weaned and active adult mice (>28 days of age) failed to sustain efficient transmission
176	altogether. Furthermore, mouse age correlated with transmission rate among contact
177	mice (r=-0.8346) (Fig. S4C), confirming that in the murine model, the requirement for
178	young age is necessary to support efficient IAV transmission. Although the transmission
179	experiments in this study were done with an IAV inoculum of 250 PFU, and increasing
180	the inoculum size to 10^3 - 10^5 PFU correlated with increasing IAV titers in the URT tract
181	of index mice (r=0.9264), inoculum size was not associated with more efficient
182	transmission among adult mice (r=-0.2582) (Fig. S4D).
183	

10

184 Humoral immunity from prior influenza virus infection limits shedding and

185 transmission.

To further validate the relationship of viral shedding and transmission, we 186 187 evaluated the role of IAV-specific immunity in this model. Because pups are infected at a young age and lack a fully functional adaptive immune response, it was necessary to 188 provide IAV immunity via the mother (from prior IAV infection), who would then transfer 189 immunoglobulins to her pups either pre-natally via trans-placental passage or post-190 natally via breastfeeding. Pups from immune mothers who were subjected to an 191 intralitter IAV transmission experiment shed significantly fewer virus over the first 5 days 192 of infection compared to pups from non-immune mothers (Fig. 3A left). Reduced 193 shedding was associated with decreased transmission (20%) among immune litters 194 195 (p<0.0001) (Fig. 3A below graph). To determine if the passage of anti-IAV immunoglobulins occurred pre-natally or post-natally, mothers were switched shortly 196 197 after delivery such that an immune mother raised pups from a non-immune mother or 198 vice-versa. These cross-foster experiments demonstrated that maternal passage of immunoglobulins either pre-natally or post-natally decreased IAV shedding amongst all 199 200 pups, and that transmission to contact pups was more efficiently blocked when maternal 201 antibodies were passed post-natally via breastfeeding (p < 0.01) (Fig. 3A right). IAVspecific serum IgG was detected in immune mothers and pups born or cared by 202 203 immune mothers, with the transfer of IgG via breastfeeding yielding higher titer of 204 antibodies in these pups (Fig. 3B). IAV-specific serum IgA was detected in previouslyinfected mothers but unlike IgG was not passed to their pups in significant amounts 205 206 (Fig. S4).

11

207

229

Streptococcus pneumoniae colonization of the upper respiratory tract decreases 208 influenza virus acquisition via bacterial sialidase activity. 209

210 There is increasing evidence of the important role of the host's gut microbiome on IAV-specific immunity in the respiratory tract (33, 34). Yet, there is only one study 211 evaluating the role of the URT microbiota in IAV infection (35) and no studies on its 212 effect on transmission. This is surprising given that the nasopharynx, a non-sterile 213 214 environment extensively colonized by a diverse bacterial flora, is the first location encountered by IAV. Since Spn carriage is highest in children (36, 37), Spn colonization 215 often precedes IAV infection in childhood (38, 39). Given that infant mice support 216 efficient Spn colonization in the URT (25, 40), we investigated the impact of Spn 217 218 colonization on IAV transmission. All pups in a litter were colonized with Spn prior to IAV 219 infection of index pups to control for the efficient pup-to-pup transmission of Spn in the setting of IAV infection (25). IAV shedding was collected daily for each pup prior to 220 221 evaluating for IAV transmission in contact littermates at 4 days p.i (Fig. 4A). We observed that the Spn colonized contact mice acquired IAV at a decreased rate (32%) 222 as compared to uncolonized mice (100%) (p<0.0001) (Fig. 5B below graph), which 223 224 corresponded to lower viral shedding among colonized contacts (Fig. 5B left). Since index Spn colonized and uncolonized mice infected with IAV (via inoculation) shed IAV 225 226 at similar levels, this suggested an antagonistic effect of Spn colonization on IAV transmission through decreased acquisition by contact mice (Fig. 5B left). 227 Previous studies showed that sialidases expressed by colonizing Spn depletes 228 host sialic acid (SA) from the epithelial surface of the murine URT, allowing Spn to

230	utilize free SA for its nutritional requirements (41). Given that IAV requires SA for
231	efficient attachment, we evaluated the role of Spn sialidases on IAV acquisition. We
232	generated a double mutant lacking two common Spn sialidases: NanA and NanB
233	(Spn <i>nanA⁻nanB⁻</i>), and tested its ability to alter IAV transmission in our system. These
234	bacterial sialidases preferentially cleave 2,3-, 2,6-, and 2,8- or only 2,3-linked SA,
235	respectively (42). We found that by colonizing mice with the SpnnanA ⁻ nanB ⁻ mutant, we
236	completely restored the efficiency of IAV transmission from 32% to 100% (p <0.0001)
237	(Fig. 5B middle). We then tested the single sialidase mutants (SpnnanA- and SpnnanB-)
238	and found that the presence of NanA (via SpnnanB- colonization) was sufficient to limit
239	IAV acquisition by contacts by 50% (p <0.001). Notably, there was no correlation
240	between the colonization density of the bacterial mutants and their effect on shedding or
241	transmission.
242	To determine the role of sialidases in general in IAV acquisition, infant index and
243	contact mice were treated IN twice daily with Vibrio cholerae neuraminidase (VCNA),
244	which cleaves both 2,3- and 2,6-linked sialic acids (43). We found that, like Spn NanA,
245	VCNA treatment was sufficient to decrease IAV acquisition (71.4%) and inhibit shedding
246	by the contacts (Fig. 5B right). Together, these observations suggest that sialidase
247	activity from colonizing bacteria has the capacity to inhibit IAV acquisition in the URT,

specifically via its cleavage of 2,3- and 2,6-linked SA.

249 **DISCUSSION**

250

The inability to study in detail the host's role in IAV transmission has been a major drawback of the ferret and guinea pig animal models, and has limited our current understanding of IAV contagion (16-19). Herein we established an efficient and tractable infant mouse IAV transmission model with the goal of utilizing the extensive resources of mouse biology, to explore the role that host factors, immune pathways, and the URT flora play in IAV transmission.

Our study corroborated previous findings that infant mice support efficient and 257 consistent IAV transmission (20, 25), and document an age-dependent effect on the 258 efficiency of transmission, highlighting inefficient transmission in adult mice. This 259 260 suggests an inherent quality of younger mice (i.e. less mobility allowing closer contact. suckling, presence/absence of a host factor, microbiota composition, immunodefficient 261 or developmental status) which facilitates the shedding and transmissibility of IAV. In 262 263 humans, young age correlates with increased IAV nasopharyngeal shedding (44) and longer duration of shedding (45), increasing the potential for transmission in this age 264 group. Although it has been shown in the study of Edenborough (23) that 56-day old 265 adult mice support the transmission of A/X-31 and A/Udorn/307/72 (H3N2) viruses at 266 100% efficiency in BALB/c mice, we were unable to observe comparable efficiency in 267 268 transmission using our A/X-31 virus in C57BL/6J mice older than 28-days of age. The work of Lowen (22) also failed to observe IAV transmission in adult BALB/c mice, further 269 supporting an inconsistent transmission phenotype observed in adult mice which has 270 271 limited its utilization as an IAV transmission model. Notably, we are the first to

demonstrate that infant mice support efficient IBV transmission, which contrasts with the
 inefficient IBV transmission previously reported in adult mice (32).

Although not evaluated in this study, the difference in mouse strains could also 274 275 affect the irregular success of IAV transmission in adult mice. One mouse strain, C57BL/6J, has been tested in infant mice and demonstrated 100% transmission 276 efficiency in two independent studies (present study and (25)). In contrast, several 277 mouse strains have been tested for IAV transmission among adult mice, with variable 278 279 efficiencies among studies (0 to 100%) despite using the similar virus strains. They include BALB/c (22, 23, 26, 28), C57BL/6J (present study), Mx1-competent C57BL/6J 280 (24), Swiss Webster (20, 26, 46), New Colony Swiss (47), Manor Farms (MF-1) (32), 281 DBA/2J (26), and Kunming (27). We learned from these studies that, host traits (mouse 282 283 age, strain, microbiota composition) all contribute to the infectivity and susceptibility of the murine species to IAV, and the host's contribution to transmission should be 284 explored further using an efficient and tractable model of human disease. 285

286 Several studies have demonstrated that virus strain is an important determinant of IAV transmission in mice (20, 23, 32, 46, 48). Like more recent studies (23, 48), we 287 highlighted the increased efficiency of transmission of A/H3N2 over A/H1N1 viruses. In 288 addition, A/H2N2 viruses (not tested here) have also shown to have increased 289 transmission efficiency in mice over A/H1N1 viruses (32, 46). Although we have not 290 291 evaluated specific viral moieties that confer a transmissible phenotype, the viral HA has been demonstrated to play a role in transmission in mice (23). In addition, we postulate 292 that the activity of some NA in combination with specific HA favors viral release from the 293 294 nasal epithelium which allows viral shedding and transmission in mice. Thus together,

our data highlights that both host and viral-specific features are important to consider to
 understand the requirements for IAV transmissibility.

We demonstrated that free virus particles present in secretions of mice, and not 297 298 replicating virus in the URT, correlated with IAV transmission efficiency. A similar observation was also reported by Schulman (32), Edenborough (23), and Carrat (31) 299 demonstrating that transmissibility was associated with greater shedding of virus in 300 index mice, higher viral titers in the saliva of index mice, and shedding of virus from 301 infected humans, respectively. These studies supported our conclusion that viruses 302 which replicate in the URT without having the ability to exit the host (via shedding) 303 cannot be transmitted efficiently. Additionally, studies by Milton (44) suggested that URT 304 symptoms was associated with nasopharyngeal shedding in humans, and that coughing 305 306 was not necessary for the spread of infectious virus. This helps explains how mice, which lack the cough reflex, can still produce and shed infectious virions. This 307 emphasizes an important future role of the infant mouse IAV transmission model as a 308 309 tool to study viral shedding as a surrogate marker of IAV contagion.

Two host traits have been identified in this study that influence IAV transmission: 310 IAV-specific immunoglobulin and the URT microbiota. The passive transfer of maternal 311 312 immunity is transferred via the placenta pre-natally in an IgG-dependent manner (49, 50), or via breastmilk post-natally mediated by several factors: immunoglobulins, 313 leukocytes, and antimicrobial/anti-inflammatory factors (51-53). Our data recapitulates 314 the value of maternal-infant transfer of IAV-specific IgG as a correlate of infant 315 immunity, by demonstrating a significant inhibitory effect on viral shedding and 316 317 transmission of infant mice after experimental (inoculation) and natural infection (via

318 transmission). Our experiments also demonstrate that IAV-specific serum IgG is predominantly transferred via breastfeeding in mice, as previously reported (53, 54). 319 The concept of maternal serum IgG passage via breastmilk in mice has not often been 320 321 recognized, even though it has been shown to occur (53, 55-57). IgG can be synthesized locally in the mammary gland, transferred across the mammary gland 322 epithelium, and subsequently transported from the infant gut to the circulation via 323 neonatal Fc receptors (FcRn) expressed in the proximal intestine (58-60). Although this 324 325 mechanism of maternal IgG acquisition by infants has not yet been correlated in humans, presence of FcRn in the human intestine has been confirmed (61, 62). Our 326 study does not address the contribution of secretory IgA, which is known to be the most 327 abundant immunoglobulin in breastmilk. Yet, our data suggest that adequate amounts 328 329 of IAV-specific IgG, which is known to wane within 8 weeks of birth in infants (63), maybe necessary to maintain anti-IAV immunity in the URT and limit IAV transmission 330 in infants, given that at this young age, infants don't have a fully functional adaptive 331 332 immune response.

In addition to humoral immunity, our study identified an inhibitory role for the 333 common URT colonizer, Spn, at the step of viral acquisition during transmission of IAV. 334 This phenomenon has never been previously observed, although there has been some 335 evidence suggesting that the preceding colonization of Spn reduces IAV infection (25, 336 337 64). Notably, the study by McCullers (64) showed that preceding colonization with Spn protected mice from mortality after IAV challenge, whereas the reverse process: prior 338 infection with IAV with subsequent challenge with Spn yielded the opposite effect. This 339 340 implied that the timing of pathogen encounter mattered, and the composition of the host

341 microbiota may serve a "prophylactic-like" protective effect. Although no studies have evaluated the role of the respiratory microbiota on IAV transmission, we hypothesize 342 that the differences between the transmissibility of different IAV strains and 343 susceptibility of different populations (infants vs adults) to IAV may be due to a 344 combined effect of the virus's ability to release from SA and exit the host via shedding, 345 and the susceptibility to viral acquisition by contact hosts based on the composition of 346 their URT microbiota. Our work provides proof-of-principle and highlights the 347 amenability of the infant mouse model as a tool to understand the complex dynamics of 348 virus and host, and their combined effect in IAV transmission. 349

Lastly, we demonstrate the role of Spn sialidases, NanA and NanB, in 350 antagonizing the acquisition and shedding of IAV by contact mice. We hypothesize that 351 352 bacteria-driven de-sialylation of the host's URT glycoproteins for use as nutrient (41), may deplete SA residues necessary for IAV adhesion and infection, thus limiting virus 353 susceptibility, and hence acquisition. Notably, the antagonistic effect of bacterial 354 355 sialidases on IAV shedding of the index group is not statistically different from uncolonized controls. This is analogous to the clinical effects of NI, whereby oseltamivir 356 treatment of index cases alone has not been shown to reduce viral shedding (10, 11). 357 Only when treatment of both index and naïve contacts were partaken (as in post-358 exposure prophylaxis), has the effects of NI been effective at preventing acquisition of 359 360 infection among the contact group (12, 13). Because SA is the primary recognition moiety for many viral respiratory pathogens, the concept of utilizing bacterial sialidases 361 as a broad antiviral agent is currently being explored in humans, although its effect on 362 363 transmission has not yet been evaluated (65-72).

364 While the advantages of using murine models are evident, these can also be drawbacks. Humans are genetically diverse, live in complex environments, and have 365 been exposed to a myriad of pathogens, all of which can affect transmissibility and 366 367 susceptibility to IAV, therefore findings generated in animal models of human disease should always be cautiously interpreted. Nevertheless, studying the complexities of IAV 368 transmission biology in a tractable animal model such as infant mice, will allow intricate 369 370 and sophisticated investigations, which will further our understanding of IAV contagion 371 that may translate into better vaccines and therapeutics.

372 MATERIALS AND METHODS

374	Mice. C57BL/6J mice (Jackson Laboratories, ME) were maintained and bred in a
375	conventional animal facility. Pups were housed with their mother for the duration of all
376	experiments. Animal studies were conducted in accordance with the Guide for the Care
377	and Use of Laboratory Animals (73), and approved by the Institutional Animal Care and
378	Use Committee of NYU Langone Health (Assurance Number A3317-01). All procedures
379	were in compliance with Biosafety in Microbiological and Biomedical Laboratories.
380	
381	Cells and viruses. Madin-Darby canine kidney (MDCK) cells were cultured in
382	Dulbecco's modified Eagle's medium with 10% fetal bovine serum and 1% penicillin-
383	streptomycin (Gibco).
384	Viruses: A/X-31 (H3N2) [HA/NA genes from A/Aichi/2/1968 and internal genes from
385	A/Puerto Rico/8/1934], a gift from Jan Erikson (U. Penn), whose sequence has been
386	deposited in GenBank (XXXXXX). The following reagents were obtained through BEI
387	Resources (NIAID, NIH): A/X-47 (H3N2) [HA/NA genes from A/Victoria/3/1975 and
388	internal genes from A/Puerto Rico/8/1934] [NR-3663], A/Hong Kong/1/1968-2 MA 21-2
389	(H3N2) [NR-28634], A/Puerto Rico/8/1934 (H1N1) V-301-011-000 [NR-3169],
390	A/WSN/1933 (H1N1) [NR-2555], A/Brisbane/59/2007 (H1N1) [NR-12282],
391	A/California/4/2009 (H1N1) [NR-13659], B/Lee/1940 V-302-001-000 [NR-3178]. IAV and
392	IBV were propagated in 8-10-day old embryonated chicken eggs (Charles River, CT) for
393	2 days at 37°C and 33°C, respectively. All viruses were tittered by standard plaque
394	assay in MDCK cells in the presence of TPCK (tolylsulfonyl phenylalanyl chloromethyl

ketone)-treated trypsin (Thermo Scientific) (74). Purified virus for ELISA was prepared by harvesting allantoic fluid from eggs containing virus followed by centrifugation $(3,000 \times g, 30 \text{min}, 4^{\circ}\text{C})$ to remove debris. Viruses were pelleted through a 30% sucrose cushion (30% sucrose in NTE buffer [100mM NaCl+10mM Tris-HCl+1mM EDTA], pH 7.4) by ultracentrifugation (83,000×*g*, 2hrs), resuspended in phosphate-buffered saline (PBS), and stored at -80°C.

401

Virus infection, shedding, and transmission. Pups in a litter (4-7 days of age) were 402 infected (index) with a 3µl sterile PBS inoculum without general anesthesia (to avoid 403 direct lung inoculation) by IN instillation of 250 PFU of IAV (unless otherwise specified), 404 and returned to the litter at the time of inoculation for the duration of the experiment. 405 Shedding of virus was collected by dipping the nares of each mouse in viral media 406 (PBS+0.3% BSA) daily, and samples evaluated via plague assay. Intralitter 407 transmission was assessed in littermates (contact) at 4-5 days p.i. (day 10-14 of life). 408 409 Pups and mother were euthanized by CO_2 asphyxiation followed by cardiac puncture, the URT was subjected to a retrograde lavage (flushing 300µl PBS from the trachea and 410 collecting through the nares), and samples were used to quantify virus (via plaque 411 assay or qRT-PCR) or Spn density (described below). Ratio of index to contact pups 412 ranged from 1:3-1:4. 413 414 Where indicated, pups were IN treated twice daily with 90 µU (3µl inoculum) of Vibrio cholerae neuraminidase (VCNA, Sigma-Aldrich). 415 416 The MID₅₀ was calculated by the Reed and Müench method (75).

418 Induction of maternal IAV immunity. Adult female mice were infected IN with 250 PFU of A/X-31 in a 6µl inoculum without anesthesia. Mice were left to recover from 419 infection for 7 days prior to breeding. Litters of immune mothers were used in 420 421 experiments. 422 Bacteria strain construction and culture. A streptomycin-resistant derivative of 423 capsule type-4 isolate TIGR4 (**P2406**) was used in this study and cultured on tryptic-soy 424 (TS)-agar-streptomycin (200µg/ml) plates (40). The nanA- knockout strain (P2508) was 425 constructed by transforming P2406 with genomic DNA from strain P2082 (76) 426 (MasterPure DNA purification kit, Illumina), and selection on TS-agar-chloramphenicol 427 (2.5µg/ml) plates. The nanB- knockout strain (P2511) was constructed by amplifying the 428 Janus cassette (77) from genomic DNA of strain P2408 (78), with flanking upstream and 429 downstream regions to the nanB gene added via isothermal assembly. Strain P2406 430 was transformed with the PCR product, and the transformants selected on TS-agar-431 432 kanamycin (125µg/ml) plates. The nanA-nanB- double knockout strain (P2545) was constructed by transforming P2511 with genomic DNA from strain P2508, and 433 transformants selected on TS-agar-chloramphenicol plates. 434 Spn strains were grown statically in TS broth (BD, NJ) at 37°C to an optical density 435 (OD) 620nm of 1.0. For quantitation, serial dilutions (1:10) of the inoculum or URT 436 437 lavages were plated on TS-agar-antibiotic selection plates with 100µl catalase (30,000 U/ml, Worthington Biochemical) and incubated overnight (37°C, 5% CO₂). Bacteria were 438 stored in 20% glycerol at -80°C. Colonization of pups was carried out by IN instillation 439 of 10³ CFU in 3µl of PBS, 1 or 3 days prior to IAV infection. 440

442	qRT-PCR. Following a retrograde URT lavage with 300µl RLT lysis buffer, RNA was
443	isolated (RNeasy Kit, Qiagen), cDNA was generated (High-Capacity RT kit, Applied
444	Biosystems), and used for quantitative PCR (SYBR Green PCR Master Mix, Applied
445	Biosystems). Results were analyzed using the $2^{-\Delta\Delta CT}$ method (79) by comparison to
446	GAPDH transcription. Values represent the fold change over uninfected.
447	
448	ELISA. Immulon 4 HBX plates (Thermo Scientific) were coated with 5µg/ml purified A/X-
449	31 in coating buffer (0.015M Na ₂ CO ₃ +0.035M NaHCO ₃ , 50 μ I/well), and incubated
450	overnight, 4°C. After three washes with PBS-T (PBS+0.1% Tween 20, 100μ l/well),
451	plates were incubated with blocking solution (BS) (PBS-T+0.5% milk powder+3% goat
452	serum [ThermoFisher], 1hr, 20°C). BS was discarded, mice sera were diluted to a
453	starting concentration of 1:100, then serially diluted 1:2 in BS (100μ I/well), and
454	incubated (2hr, 20°C). Three washes with PBS-T was done prior to adding secondary
455	antibody (horseradish peroxidase [HRP]-labeled anti-mouse IgG [whole Ab], GE
456	Healthcare or alkaline phosphatase [AP]-labeled anti-mouse IgA [α chain], Sigma)
457	diluted in BS (1:3000, 50 μ l/well). After incubation (1hr, 20°C) and three washes with
458	PBS-T, plates were developed for 10min using 100µl/well SigmaFast OPD (o-
459	phenylenediamine dihydrochloride [Sigma] and stopped with 3M HCl (50 μ l/well) or
460	developed for 1-18hr using pNPP (p-nitrophenyl phosphate) [KPL];). Plates were read at
461	OD490nm for the OPD substrate or 405nm for the AP substrate. The endpoint titers
462	were determined by calculating the dilution at which the absorbance is equal to 0.1. The
463	geometric mean titers (GMT) were calculated from the reciprocal of the endpoint titers.
464	

- 465 **Statistical analysis.** GraphPad Prism 7 software was used for all statistical analyses.
- 466 Unless otherwise noted, data were analyzed using the Mann-Whitney U test to compare
- two groups, and the Kruskal-Wallis test with Dunn's post-analysis for multiple group
- 468 comparisons.

- 470 **Data Availability.** The authors confirm that data will be made publicly available upon
- 471 publication upon request, without restriction.

24

473 ACKNOWLEDGMENTS

474

We thank Elodie Guedin (NYU) for the sequencing of A/X-31. MBO was supported by the NYU Division of Infectious Diseases, Department of Medicine Silverman Scholarship, and Physician Scientist Training Program Award; SB was supported by the NYU School of Medicine and National Institute of Diabetes & Digestive & Kidney Diseases fellowship. This project was supported by grants from the U.S. Public Health Service to JNW (Al038446 and Al105168).

481 **REFERENCES**

482

- 1. Rolfes MA FI, Garg S, Flannery B, Brammer L, Singleton JA, et al. 2016.
- 484 Estimated Influenza Illnesses, Medical Visits, Hospitalizations, and Deaths
- 485 Averted by Vaccination in the United States.
- 486 <u>https://www.cdc.gov/flu/about/disease/2015-16.htm</u>. Accessed 9/2018.
- 487 2. CDC. 9/27/2018. National Press Conference Kicks Off 2018-2019 Flu
- 488 Vaccination Campaign. <u>https://www.cdc.gov/flu/spotlights/press-conference-</u>
- 489 <u>2018-19.htm#ref1</u>. Accessed 9/2018.
- 490 3. Flannery B, Reynolds SB, Blanton L, Santibanez TA, O'Halloran A, Lu PJ, Chen
- J, Foppa IM, Gargiullo P, Bresee J, Singleton JA, Fry AM. 2017. Influenza
- 492 Vaccine Effectiveness Against Pediatric Deaths: 2010-2014. Pediatrics 139.
- 493 4. Arriola C, Garg S, Anderson EJ, Ryan PA, George A, Zansky SM, Bennett N,
- 494 Reingold A, Bargsten M, Miller L, Yousey-Hindes K, Tatham L, Bohm SR,
- Lynfield R, Thomas A, Lindegren ML, Schaffner W, Fry AM, Chaves SS. 2017.
- 496 Influenza Vaccination Modifies Disease Severity Among Community-dwelling
- 497 Adults Hospitalized With Influenza. Clin Infect Dis 65:1289-1297.
- 498 5. CDC. 9/19/2014. Selected Publications on Influenza Vaccine Effectiveness, *on*499 Centers for Disease Control and Prevention.
- 500 <u>https://www.cdc.gov/flu/about/ga/publications.htm</u>. Accessed 9/2018.
- 501 6. Lowen AC, Steel J, Mubareka S, Carnero E, Garcia-Sastre A, Palese P. 2009.
- 502 Blocking interhost transmission of influenza virus by vaccination in the guinea pig

503 model. J Virol 83:2803-18.

504	7.	Houser KV, Pearce MB, Katz JM, Tumpey TM. 2013. Impact of prior seasonal
505		H3N2 influenza vaccination or infection on protection and transmission of
506		emerging variants of influenza A(H3N2)v virus in ferrets. J Virol 87:13480-9.
507	8.	CDC. 9/27/2018. 2017-18 Flu Season.

- 508 <u>https://www.cdc.gov/flu/fluvaxview/1718season.htm</u>. Accessed 10/2018.
- 509 9. CDC. 9/25/2018. Seasonal Influenza Vaccine Effectiveness, 2004-2018.
- 510 <u>https://www.cdc.gov/flu/professionals/vaccination/effectiveness-studies.htm</u>.
 511 Accessed 10/2018.
- 10. Cheung DH, Tsang TK, Fang VJ, Xu J, Chan KH, Ip DK, Peiris JS, Leung GM,
- 513 Cowling BJ. 2015. Association of Oseltamivir Treatment With Virus Shedding,
- 514 Illness, and Household Transmission of Influenza Viruses. J Infect Dis 212:391-6.
- 11. Ng S, Cowling BJ, Fang VJ, Chan KH, Ip DK, Cheng CK, Uyeki TM, Houck PM,
- 516 Malik Peiris JS, Leung GM. 2010. Effects of oseltamivir treatment on duration of
- 517 clinical illness and viral shedding and household transmission of influenza virus.
- 518 Clin Infect Dis 50:707-14.
- 12. Hayden FG, Belshe R, Villanueva C, Lanno R, Hughes C, Small I, Dutkowski R,
- 520 Ward P, Carr J. 2004. Management of influenza in households: a prospective,
- randomized comparison of oseltamivir treatment with or without postexposure
 prophylaxis. J Infect Dis 189:440-9.
- 13. Welliver R, Monto AS, Carewicz O, Schatteman E, Hassman M, Hedrick J,
- Jackson HC, Huson L, Ward P, Oxford JS, Oseltamivir Post Exposure
- 525 Prophylaxis Investigator G. 2001. Effectiveness of oseltamivir in preventing
- 526 influenza in household contacts: a randomized controlled trial. JAMA 285:748-54.

- 14. Halloran ME, Hayden FG, Yang Y, Longini IM, Jr., Monto AS. 2007. Antiviral
- ⁵²⁸ effects on influenza viral transmission and pathogenicity: observations from
- 529 household-based trials. Am J Epidemiol 165:212-21.
- 15. Hayward A. 2010. Does treatment with oseltamivir prevent transmission of
- 531 influenza to household contacts? Clin Infect Dis 50:715-6.
- 16. Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell
- 533 EM, Bestebroer TM, Burke DF, Smith DJ, Rimmelzwaan GF, Osterhaus AD,
- 534 Fouchier RA. 2012. Airborne transmission of influenza A/H5N1 virus between
- 535 ferrets. Science 336:1534-41.
- 17. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson
- 537 A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y,
- 538 Maher EA, Neumann G, Kawaoka Y. 2012. Experimental adaptation of an
- influenza H5 HA confers respiratory droplet transmission to a reassortant H5
- 540 HA/H1N1 virus in ferrets. Nature 486:420-8.
- 18. Schrauwen EJ, Fouchier RA. 2014. Host adaptation and transmission of
- 542 influenza A viruses in mammals. Emerg Microbes Infect 3:e9.
- 19. Lowen AC, Mubareka S, Steel J, Palese P. 2007. Influenza virus transmission is
 dependent on relative humidity and temperature. PLoS Pathog 3:1470-6.
- Eaton MD. 1940. Transmission of Epidemic Influenza Virus in Mice by Contact. J
 Bacteriol 39:229-41.
- Schulman JL, Kilbourne ED. 1962. Airborne transmission of influenza virus
 infection in mice. Nature 195:1129-30.

549	22.	Lowen AC, Mubareka S, Tumpey TM, Garcia-Sastre A, Palese P. 2006. The
550		guinea pig as a transmission model for human influenza viruses. Proc Natl Acad
551		Sci U S A 103:9988-92.
552	23.	Edenborough KM, Gilbertson BP, Brown LE. 2012. A mouse model for the study
553		of contact-dependent transmission of influenza A virus and the factors that
554		govern transmissibility. J Virol 86:12544-51.
555	24.	Klinkhammer J, Schnepf D, Ye L, Schwaderlapp M, Gad HH, Hartmann R,
556		Garcin D, Mahlakoiv T, Staeheli P. 2018. IFN-lambda prevents influenza virus
557		spread from the upper airways to the lungs and limits virus transmission. Elife 7.
558	25.	Diavatopoulos DA, Short KR, Price JT, Wilksch JJ, Brown LE, Briles DE,
559		Strugnell RA, Wijburg OL. 2010. Influenza A virus facilitates Streptococcus
560		pneumoniae transmission and disease. FASEB J 24:1789-98.
561	26.	Price GE, Lo CY, Misplon JA, Epstein SL. 2014. Mucosal immunization with a
562		candidate universal influenza vaccine reduces virus transmission in a mouse
563		model. J Virol 88:6019-30.
564	27.	Wu R, Sui Z, Liu Z, Liang W, Yang K, Xiong Z, Xu D. 2010. Transmission of
565		avian H9N2 influenza viruses in a murine model. Vet Microbiol 142:211-6.
566	28.	Rigoni M, Toffan A, Viale E, Mancin M, Cilloni F, Bertoli E, Salomoni A, Marciano
567		S, Milani A, Zecchin B, Capua I, Cattoli G. 2010. The mouse model is suitable for
568		the study of viral factors governing transmission and pathogenesis of highly
569		pathogenic avian influenza (HPAI) viruses in mammals. Vet Res 41:66.

570	29.	Ivinson K, Deli	/annis G, McNabb L	, Grollo L, (Gilbertson B,	Jackson D,	Brown LE.
-----	-----	-----------------	--------------------	---------------	---------------	------------	-----------

- 571 2017. Salivary Blockade Protects the Lower Respiratory Tract of Mice from
- 572 Lethal Influenza Virus Infection. J Virol 91.
- 30. Bouvier NM, Lowen AC. 2010. Animal Models for Influenza Virus Pathogenesis
- and Transmission. Viruses 2:1530-1563.
- 575 31. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, Valleron
- 576 AJ. 2008. Time lines of infection and disease in human influenza: a review of 577 volunteer challenge studies. Am J Epidemiol 167:775-85.
- 578 32. Schulman JL. 1967. Experimental transmission of influenza virus infection in
- 579 mice. IV. Relationship of transmissibility of different strains of virus and recovery
- of airborne virus in the environment of infector mice. J Exp Med 125:479-88.
- 33. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A.
- 2011. Microbiota regulates immune defense against respiratory tract influenza A
 virus infection. Proc Natl Acad Sci U S A 108:5354-9.
- 34. Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K,
- 585 Hickman HD, McCulloch JA, Badger JH, Ajami NJ, Trinchieri G, Pardo-Manuel
- de Villena F, Yewdell JW, Rehermann B. 2017. Wild Mouse Gut Microbiota
- 587 Promotes Host Fitness and Improves Disease Resistance. Cell 171:1015-1028
 588 e13.
- 589 35. Lee KH, Gordon A, Shedden K, Kuan G, Ng S, Balmaseda A, Foxman B. 2018.
- 590 The respiratory microbiome and susceptibility to influenza virus infection. bioRxiv 591 doi:10.1101/372649.

592	36.	Bogaert D,	van Belkum	A, Sluijter M	, Luijendijk A, d	e Groot R, Rumke HC,
-----	-----	------------	------------	---------------	-------------------	----------------------

- 593 Verbrugh HA, Hermans PW. 2004. Colonisation by Streptococcus pneumoniae
- and Staphylococcus aureus in healthy children. Lancet 363:1871-2.
- 37. Adler H, Ferreira DM, Gordon SB, Rylance J. 2017. Pneumococcal Capsular
- 596 Polysaccharide Immunity in the Elderly. Clin Vaccine Immunol 24.
- 38. Takano M, Ozaki K, Nitahara Y, Higuchi W, Takano T, Nishiyama A, Yamamoto
- T. 2009. Streptococcus pneumoniae and Haemophilus influenzae at the initial
 stage of influenza. Pediatr Int 51:687-95.
- 39. Short KR, Habets MN, Hermans PW, Diavatopoulos DA. 2012. Interactions
- between Streptococcus pneumoniae and influenza virus: a mutually beneficial
 relationship? Future Microbiol 7:609-24.
- 40. Zafar MA, Kono M, Wang Y, Zangari T, Weiser JN. 2016. Infant Mouse Model for
- the Study of Shedding and Transmission during Streptococcus pneumoniae
 Monoinfection. Infect Immun 84:2714-22.
- Siegel SJ, Roche AM, Weiser JN. 2014. Influenza promotes pneumococcal
 growth during coinfection by providing host sialylated substrates as a nutrient
- source. Cell Host Microbe 16:55-67.
- 42. Xu G, Kiefel MJ, Wilson JC, Andrew PW, Oggioni MR, Taylor GL. 2011. Three
 Streptococcus pneumoniae sialidases: three different products. J Am Chem Soc
 133:1718-21.
- 43. Moustafa I, Connaris H, Taylor M, Zaitsev V, Wilson JC, Kiefel MJ, von Itzstein
- 613 M, Taylor G. 2004. Sialic acid recognition by Vibrio cholerae neuraminidase. J
- 614 Biol Chem 279:40819-26.

615	44.	Yan J, Grantham M, Pantelic J, Bueno de Mesquita PJ, Albert B, Liu F, Ehrman
616		S, Milton DK, Consortium E. 2018. Infectious virus in exhaled breath of
617		symptomatic seasonal influenza cases from a college community. Proc Natl Acad
618		Sci U S A 115:1081-1086.
619	45.	Ng S, Lopez R, Kuan G, Gresh L, Balmaseda A, Harris E, Gordon A. 2016. The
620		Timeline of Influenza Virus Shedding in Children and Adults in a Household
621		Transmission Study of Influenza in Managua, Nicaragua. Pediatr Infect Dis J
622		35:583-6.
623	46.	Schulman JL, Kilbourne ED. 1963. Experimental Transmission of Influenza Virus
624		Infection in Mice. I. The Period of Transmissibility. J Exp Med 118:257-66.
625	47.	Schulman JL, Kilbourne ED. 1963. Experimental Transmission of Influenza Virus
626		Infection in Mice. Ii. Some Factors Affecting the Incidence of Transmitted
627		Infection. J Exp Med 118:267-75.
628	48.	Short KR, Reading PC, Wang N, Diavatopoulos DA, Wijburg OL. 2012.
629		Increased nasopharyngeal bacterial titers and local inflammation facilitate
630		transmission of Streptococcus pneumoniae. MBio 3.
631	49.	Puck JM, Glezen WP, Frank AL, Six HR. 1980. Protection of infants from
632		infection with influenza A virus by transplacentally acquired antibody. J Infect Dis
633		142:844-9.
634	50.	Reuman PD, Ayoub EM, Small PA. 1987. Effect of passive maternal antibody on
635		influenza illness in children: a prospective study of influenza A in mother-infant
636		pairs. Pediatr Infect Dis J 6:398-403.

637	51.	Goldman AS. 1993. The immune system of human milk: antimicrobial,
638		antiinflammatory and immunomodulating properties. Pediatr Infect Dis J 12:664-
639		71.
640	52.	Slade HB, Schwartz SA. 1987. Mucosal immunity: the immunology of breast milk.
641		J Allergy Clin Immunol 80:348-58.
642	53.	Reuman PD, Paganini CM, Ayoub EM, Small PA, Jr. 1983. Maternal-infant
643		transfer of influenza-specific immunity in the mouse. J Immunol 130:932-6.
644	54.	Brambell FW. 1969. The transmission of immune globulins from the mother to
645		the foetal and newborn young. Proc Nutr Soc 28:35-41.
646	55.	Macchiaverni P, Arslanian C, Frazao JB, Palmeira P, Russo M, Verhasselt V,
647		Condino-Neto A. 2011. Mother to child transfer of IgG and IgA antibodies against
648		Dermatophagoides pteronyssinus. Scand J Immunol 74:619-27.
649	56.	Palmeira P, Costa-Carvalho BT, Arslanian C, Pontes GN, Nagao AT, Carneiro-
650		Sampaio MM. 2009. Transfer of antibodies across the placenta and in breast milk
651		from mothers on intravenous immunoglobulin. Pediatr Allergy Immunol 20:528-
652		35.
653	57.	Van de Perre P. 2003. Transfer of antibody via mother's milk. Vaccine 21:3374-6.
654	58.	Cianga P, Medesan C, Richardson JA, Ghetie V, Ward ES. 1999. Identification
655		and function of neonatal Fc receptor in mammary gland of lactating mice. Eur J
656		Immunol 29:2515-23.
657	59.	Roopenian DC, Akilesh S. 2007. FcRn: the neonatal Fc receptor comes of age.
658		Nat Rev Immunol 7:715-25.

33

659	60.	Mackenzie N. 1984. Fc receptor-mediated transport of immunoglobulin across
660		the intestinal epithelium of the neonatal rodent. Immunol Today 5:364-6.
661	61.	Israel EJ, Taylor S, Wu Z, Mizoguchi E, Blumberg RS, Bhan A, Simister NE.
662		1997. Expression of the neonatal Fc receptor, FcRn, on human intestinal
663		epithelial cells. Immunology 92:69-74.
664	62.	Story CM, Mikulska JE, Simister NE. 1994. A major histocompatibility complex
665		class I-like Fc receptor cloned from human placenta: possible role in transfer of
666		immunoglobulin G from mother to fetus. J Exp Med 180:2377-81.
667	63.	Nunes MC, Cutland CL, Jones S, Hugo A, Madimabe R, Simoes EA, Weinberg
668		A, Madhi SA, Maternal Flu Trial T. 2016. Duration of Infant Protection Against
669		Influenza Illness Conferred by Maternal Immunization: Secondary Analysis of a
670		Randomized Clinical Trial. JAMA Pediatr 170:840-7.
671	64.	McCullers JA, Rehg JE. 2002. Lethal synergism between influenza virus and
672		Streptococcus pneumoniae: characterization of a mouse model and the role of
673		platelet-activating factor receptor. J Infect Dis 186:341-50.
674	65.	Bergelson LD, Bukrinskaya AG, Prokazova NV, Shaposhnikova GI, Kocharov
675		SL, Shevchenko VP, Kornilaeva GV, Fomina-Ageeva EV. 1982. Role of
676		gangliosides in reception of influenza virus. Eur J Biochem 128:467-74.
677	66.	Griffin JA, Basak S, Compans RW. 1983. Effects of hexose starvation and the
678		role of sialic acid in influenza virus release. Virology 125:324-34.
679	67.	Air GM, Laver WG. 1995. Red cells bound to influenza virus N9 neuraminidase
680		are not released by the N9 neuraminidase activity. Virology 211:278-84.

34

681	68.	Thompson CI, Barclay WS, Zambon MC, Pickles RJ. 2006. Infection of human
682		airway epithelium by human and avian strains of influenza a virus. J Virol
683		80:8060-8.
684	69.	Malakhov MP, Aschenbrenner LM, Smee DF, Wandersee MK, Sidwell RW,
685		Gubareva LV, Mishin VP, Hayden FG, Kim DH, Ing A, Campbell ER, Yu M, Fang
686		F. 2006. Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza
687		virus infection. Antimicrob Agents Chemother 50:1470-9.
688	70.	Nicholls JM, Moss RB, Haslam SM. 2013. The use of sialidase therapy for
689		respiratory viral infections. Antiviral Res 98:401-9.
690	71.	Triana-Baltzer GB, Gubareva LV, Nicholls JM, Pearce MB, Mishin VP, Belser JA,
691		Chen LM, Chan RW, Chan MC, Hedlund M, Larson JL, Moss RB, Katz JM,
692		Tumpey TM, Fang F. 2009. Novel pandemic influenza A(H1N1) viruses are
693		potently inhibited by DAS181, a sialidase fusion protein. PLoS One 4:e7788.
694	72.	Salvatore M, Satlin MJ, Jacobs SE, Jenkins SG, Schuetz AN, Moss RB, Van
695		Besien K, Shore T, Soave R. 2016. DAS181 for Treatment of Parainfluenza Virus
696		Infections in Hematopoietic Stem Cell Transplant Recipients at a Single Center.
697		Biol Blood Marrow Transplant 22:965-70.
698	73.	U.S. Department of Health and Human Services NIoH. 2015. Public Health
699		Service Policy on Humane Care and Use of Laboratory Animals.
700	74.	Baer A, Kehn-Hall K. 2014. Viral concentration determination through plaque
701		assays: using traditional and novel overlay systems. J Vis Exp

702 doi:10.3791/52065:e52065.

703	75.	Reed LJ, Muench H. 1938. A SIMPLE METHOD OF ESTIMATING FIFTY PER
704		CENT ENDPOINTS12. American Journal of Epidemiology 27:493-497.
705	76.	Dalia AB, Standish AJ, Weiser JN. 2010. Three surface exoglycosidases from
706		Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to
707		opsonophagocytic killing by human neutrophils. Infect Immun 78:2108-16.
708	77.	Sung CK, Li H, Claverys JP, Morrison DA. 2001. An rpsL cassette, janus, for
709		gene replacement through negative selection in Streptococcus pneumoniae. Appl
710		Environ Microbiol 67:5190-6.
711	78.	Lemon JK, Weiser JN. 2015. Degradation products of the extracellular pathogen
712		Streptococcus pneumoniae access the cytosol via its pore-forming toxin. MBio 6.
713	79.	Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using
714		real-time quantitative PCR and the 2(-Delta Delta $C(T)$) Method. Methods
715		25:402-8.

36

717 FIGURE LEGENDS

718

719 Figure 1. Transmission of IAV in infant mice.

720 (A) Schematic and timeline of experimental design. Index and contact pups were 721 arbitrarily assigned, maintained in the same cage, and cared for by the same mother. At day 0 (4-7 days of age), pups were infected IN with 250 PFU of A/X-31 (index), and 722 cohoused with uninfected littermates (contact) for 4-5 days prior to evaluating for 723 724 transmission. (B) Transmission of IAV to contact pups was evaluated via gRT-PCR (left panel) or plague assay (right panel) from retrograde URT lavages after sacrifice. 725 URT titers are represented by a box plot extending from the minimum to maximum 726 values for each data set. Each symbol represent the titer measured from a single pup 727 728 with median values indicated by a line within the box. Index and contact pups are shown 729 in black and red symbols, respectively. (C) Window of transmission was evaluated by 730 separating index and contact pups for a defined period prior to contact. After infection of 731 index pups, uninfected contact pups were housed apart (in a separate cage) for 0 and 72 hours prior to cohousing with infected index for 5 days. Transmission to contact pups 732 was evaluated via plaque assay from retrograde URT lavages. URT titers are 733 734 represented by a box plot as described above. (D) Timecourse of A/X-31 transmission. Pups in a litter were subjected to an A/X-31 transmission experiment (described above) 735 736 and transmission to contact pups was evaluated via gRT-PCR from retrograde URT lavages at indicated day post contact. Mean URT titers ± standard deviation (SD) are 737 represented. (E) Morbidity of A/X-31 infection in index and contact pups over the course 738 739 of 20 days. Pups in a litter were subjected to an A/X-31 transmission experiment

740	(described above) and weight of each pup was measured daily. Percent of initial weight
741	\pm SD is represented (uninfected group n=9, index group n=3-4, contact group n=4-5).
742	Differences among group means were analyzed using the Student's <i>t</i> test.
743	All panels represent at least two independent experiments. * p<0.05, ** p<0.01,
744	IAV=Influenza A virus, URT=upper respiratory tract, NP=nucleoprotein, PFU=plaque
745	forming unit, LOD=Limit of detection.
746	
747	Figure 2. Shedding of IAV.
748	(A) Image of infant mouse shedding procedure and schematic timeline of experimental
749	design. At day 0 (4-7 days of age), pups were infected IN with 250 PFU of A/X-31
750	(index), and cohoused with uninfected littermates (contact) for 10 days. Shedding of IAV
751	was collected by dipping the nares of each mouse in viral media daily. (B) Shedding
752	samples from each day were evaluated individually via plaque assay. Each symbol
753	represents the shedding titer measured from a single mouse at the specified day. Index
754	and contact pups are shown in black and red symbols, respectively. Mean values are
755	connected by a line. IAV=Influenza A virus, PFU=plaque forming unit, LOD=Limit of
756	detection.

757

Figure 3. Maternal-infant transfer of IAV-specific immunity limits IAV shedding and transmission.

(A) Adult females were infected IN with 250 PFU of A/X-31 and were left to recover from
 infection prior to breeding. Soon after birth, pups born from previously infected
 (immune) mothers or those born from non-immune mothers were either left with their

763 biological mother or exchanged with a foster mother of opposite immune status. Pups paired with their biological or foster mothers were left to acclimate until 4-5 days of life. 764 prior to being subjected to an IAV transmission experiment. Schematic for each 765 766 experimental condition is shown. Pups in a litter were infected IN with 250 PFU of A/X-31 (index), and cohoused with uninfected littermates (contact) for 5 days. Shedding of 767 IAV was collected by gently dipping the nares of each mouse in viral media daily. 768 Shedding samples from each day were evaluated individually via plaque assay for each 769 770 pup. Shedding titers shown represent pooled values for days 1-5 for index pups and days 4-5 for contact pups, representing days of maximum shedding for each group (as 771 772 per Fig. 2). Each symbol represent the shedding titer measured from a single mouse for a specific day. Index and contact pups are shown in black and red symbols, 773 774 respectively. Median values are indicated. At the end of 5 days, pups and mothers were 775 sacrificed, and transmission to contact pups was evaluated via plaque assay from 776 retrograde URT lavages. Percentage of transmission among contact pups is displayed 777 below the graph. (B) Serum from mother and pups were obtained at the time of sacrifice. Samples from individual mice were evaluated for IAV-specific IgG by ELISA. 778 IgG geometric mean titers (GMT) are represented by a box plot extending from the 25th 779 780 to 75th percentile for each data set. Whiskers for each box encompasses the minimum to maximum values. Median values are indicated by a line within the box. 781 782 All panels represent at least two independent experiments. Differences in transmission were analyzed using the Fisher's exact test. * p<0.05, ** p<0.01, *** p<0.001, **** 783 *p*<0.0001, PFU=plaque forming unit, LOD=Limit of detection, GMT=Geometric mean 784 785 titer.

39

786

Figure 4. Streptococcus pneumoniae sialidases limit acquisition of IAV via transmission.

789 (A) Schematic timeline of experimental design. At day -1 or -3 (3-4 days of age), all pups in a litter were colonized IN with either wild-type Spn; mutant Spn lacking NanA, 790 NanB, or both; or treated IN with Vibrio cholerae neuraminidase (VCNA) twice daily. At 791 day 0, pups were infected IN with 250 PFU of A/X-31 (index), and cohoused with 792 793 uninfected littermates (contact) for 4 days. Shedding of IAV was collected by dipping the nares of each mouse in viral media daily. Transmission to contact pups was evaluated 794 795 at day 4. (B) Shedding samples from each day were evaluated individually via plague assay for each pup. Shedding titers shown represent pooled values for days 1-4 for 796 797 index pups and days 3-4 for contact pups. Each symbol represent the shedding titer 798 measured from a single mouse for a specific day with median values indicated. Index 799 and contact pups are shown in black and red symbols, respectively. At the end of 4 800 days, pups were sacrificed, and transmission to contacts was evaluated via plaque assay from retrograde URT lavages. Percentage of transmission among contact pups is 801 displayed below the graph. Density of colonizing Spn was measured in URT lavage 802 samples of each pup. Each blue symbol represents the median Spn density ± 803 interguartile range for each group. Differences in transmission were analyzed using the 804 Fisher's exact test. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, PFU=plague 805 forming unit, CFU=colony forming unit, LOD=Limit of detection. 806 807

808 Figure S1. Window of IAV transmission.

809	As Figure 1C, the window of transmission was evaluated by separating index and
810	contact pups for a defined period prior to contact. After infection of index pups,
811	uninfected contact pups were housed apart (in a separate cage) for additional
812	timepoints, including 24, 48, and 72 hours prior to cohousing with infected index for 5
813	days. Transmission to contact pups was evaluated via plaque assay from retrograde
814	URT lavages. URT titers are represented by a box plot extending from the minimum to
815	maximum values for each data set. Each symbol represent the titer measured from a
816	single pup with median values indicated by a line within the box. Index and contact pups
817	are shown in black and red symbols, respectively. URT=upper respiratory tract.
818	
819	Figure S2. Mode of transmission is via direct pup-to-pup contact.
820	Upper panels represent schematic for each experimental condition. The mother or cage
821	contents were evaluated as possible sources of transmission (fomites). (A) All infants in
822	one litter (4-7 days of age) were infected IN with 250 PFU of A/X-31 (index) while the
823	second litter in a separate cage were left uninfected (contact). The mothers from the
824	infected and uninfected cage were exchanged daily without disturbing the pups or cage
825	contents. After 5 days, transmission to contact litter was evaluated via plaque assay
826	from retrograde URT lavages. (B) Index pups in a litter were infected and kept
827	separated from an uninfected contact litter as described above. Cages and cage
828	contents (bedding) from infected and uninfected litters were exchanged daily. After 5
829	days, transmission to contact litter was evaluated via plaque assay from retrograde URT
830	lavages. (C) Index pups are infected IN with 250 PFU of A/X-31, and cohoused with
831	uninfected littermates (contact) for 5 days prior to evaluating for transmission.

832	Transmission to pups and mother were evaluated via plaque assay from retrograde
833	URT lavages. (D) Mother was infected IN with 250 PFU of A/X-31 and placed back with
834	her uninfected litter. After 5 days, transmission to pups was evaluated via plaque assay
835	from retrograde URT lavages.
836	URT titers are represented by a box plot extending from the minimum to maximum
837	values for each data set. Each symbol represent the titer measured from a single pup
838	with median values indicated by a line within the box. Index and contact pups are shown
839	in black and red symbols, respectively. IAV=Influenza A virus, URT=upper respiratory
840	tract, PFU=plaque forming unit, LOD=Limit of detection.
841	
842	Figure S3. Timing of IAV shedding corresponds to timing of transmission.
843	Overlay of shedding data (Fig. 2) (black and red symbols) with transmission data (Fig.
844	1D). Percent transmission was calculated for each day from raw data in Fig. 1D, and is
845	indicated by blue symbols connected by a blue line. Area under the curve corresponds
846	to the proportion of contact pups that have likely acquired IAV infection. IAV=Influenza A
847	virus, PFU=plaque forming unit, LOD=Limit of detection.
848	
849	Figure S4. Correlation analyses of influenza virus transmission.
850	(A) Mean URT titers (black) and mean shedding titers (green) from index pups were
851	compared to transmission efficiency in contact pups. (B) Index pup shedding titers were
852	compared among various influenza virus strains. Median values are indicated.
853	Threshold of transmission is displayed with dashed line, and was calculated using best-
854	fit linear regression line equation in (A) when transmission X=33.3%. This represents

855	the minimum level of shedding likely to result in transmission of 1 out of 3 contact pups.
856	Each symbol represent the shedding titer measured from a single pup. Shedding titers
857	shown represent at least 2 independent experiments. Transmissible virus and non-
858	transmissible viruses are shown in green and gray symbols, respectively. (C) Age of
859	mice (orange) was compared to transmission efficiency in contact mice. (D) Mean URT
860	titers from index adult mice of 35 days of age (black) and transmission efficiency in
861	contact adult mice of 35 days of age (blue) were compared to index mice inoculum virus
862	titer.
863	Pearson correlation (r) was calculated for each data set. Best fit linear regression
864	curves were fitted on data sets with adequate correlation and goodness of fit (R^2) was
865	calculated. Significance of r and R^2 were calculated automatically by Graphpad Prism 7
866	software, * <i>p</i> <0.05.
867	
868	Figure S5. Serum IgA levels does not correspond to inhibition of shedding.
869	As per Fig. 3, serum from mother and pups were obtained at the time of sacrifice.
870	Samples from individual mice were evaluated for IAV-specific IgA by ELISA. Assay
871	controls include serum-deficient PBS samples (Neg) and normal mouse serum (N

872 Serum). IgA geometric mean titers (GMT) are represented by a box plot extending from

the 25th to 75th percentile for each data set. Whiskers for each box encompasses the

874 minimum to maximum values. Median values are indicated by a line within the box. All

panels represent at least two independent experiments. PFU=plaque forming unit,

LOD=Limit of detection, GMT=Geometric mean titer.

43

		Index ^a		Con	tact ^b	
Virus	No. Infected ^c	URT Titers ^d	Shedding Titers ^e	No. Infected ^c	URT Titers ^d	Transmission ^f
A/H3N2						
A/X-31 ^g	8/8	3.04±1.32	2.20±1.02	15/15	4.10±1.05	100
A/Hong Kong/1/1968	4/4	4.85±0.40	2.62±0.67	8/8	5.64±0.35	100
A/X-47 ^h	3/3	3.99±0.25	2.13±0.74	2/9	2.58±2.31	22.2
A/H1N1						
A/Puerto Rico/8/1934	4/4	2.85±0.56	N/A ⁱ	2/13	2.51±0.44	15.4
A/WSN/1933	6/6	4.18±0.63	1.43±0.64	1/10	N/A ⁱ	10
A/Brisbane/59/2007	5/5	2.50±1.74	1.63±0.75	1/12	N/A ⁱ	8.3
A/California/4/2009	5/5	3.77±0.32	1.26±0.42	0/12	N/A ⁱ	0
В						
B/Lee/1940	5/5	4.44±0.93	2.58±1.31	12/15	3.62±1.67	80

877 TABLE 1. Transmissibility of influenza viruses in infant mice

878

^a Index pups were infected IN with 250 PFU of virus.

^b Uninfected contact pups were housed together with infected index pups at the time of

inoculation for the duration of the experiment (4-8 days).

^c Sum of index or contact pups assayed in at least 2 independent experiments.

^d URT titers, expressed as the mean log₁₀ PFU/mL±STD, were assessed via plaque

assay at time of sacrifice from retrograde tracheal lavages for each pup.

^e Shedding titers, expressed as the mean log₁₀ PFU/mL±STD, were assessed via

plaque assay from daily shedding samples collected for each pup.

^f Percentage of contact pups containing detectable virus in the URT. A/H3N2 viruses

were assayed after 4 days. A/PR/8, A/WSN, and B/Lee viruses were assayed after 4

- and 8 days. A/Brisbane and A/California were assayed after 8 days.
- ^g HA/NA from A/Aichi/2/1968 (H3N2) + genes from A/Puerto Rico/8/1934 (H1N1)
- ^h HA/NA from A/Victoria/3/1975 (H3N2) + genes from A/Puerto Rico/8/1934 (H1N1)
- ⁱ Data not applicable for any value representing less than 2 pups

44

893 **TABLE 2**

	Index ^a		Cont	tact ^b		
Mice Age $^{\circ}$	No. Infected ^d	URT Titers ^e	No. Infected ^d	URT Titers ^e	Transmission ^f	
4	3/3	4.17±0.77	4/4	4.66±0.50	100	
7	7/7	4.40±1.23	11/11	3.94±1.04	100	
14	9/9	3.12±0.95	11/17	3.41±1.00	64.7	
21	4/4	3.21±0.78	6/9	2.82±0.78	66.7	
Weaned ^g						
28	3/3	3.80±0.86	0/6	N/A ^h	0	
35	5/5	3.15±0.52	0/8	N/A ^h	0	
56	6/6	2.50±0.71	1/9	N/A ^h	11.1	

894

^a Index mice were infected IN with 250 PFU of virus.

^b Uninfected age-matched contact mice were housed together with infected index mice

at the time of inoculation for the duration of the experiment (5 days).

^c Age of mice expressed in days after birth.

^d Sum of index or contact mice assayed in at least 2 independent experiments.

^e URT titers, expressed as the mean log₁₀ PFU/mL±STD, were assessed via plaque

⁹⁰¹ assay at time of sacrifice from retrograde tracheal lavages for each mice.

^f Percentage of contact mice containing detectable virus in URT after 5 days of contact.

⁹ Mice weaned from breastfeeding and separated from the mother.

⁹⁰⁴ ^h Data not applicable for any value representing less than 2 pups

