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Abstract

Chromatin modifications play critical roles in gene regulation and encoding cell phe-

notypic diversity. The molecular mechanism for their establishment and maintenance

is not fully understood due to the complexity of chromatin regulatory pathways. Here

we took a data-driven approach and parameterized an information-theoretic model to

infer mechanism of chromatin domain formation from genome-wide epigenetic modifi-

cation profiles. The energy landscape of this model reveals many important chromatin

domains that span multiple nucleosomes and exhibit distinct combinatorial patterns of

histone modifications, including super (stretch) enhancers, broad H3K4me3 promoter

domains, heterochromatin, etc. Transition path analysis further demonstrates that en-

hancer and promoter domains undergo a sequential maturation process along which the

regulatory elements grow from short but stable nucleosome segments to long and potent

ones that are modified with many activation marks. On the other hand, the formation

of heterochromatin domains is a highly cooperative process, and no intermediate states

were found along the transition path. Interaction energies of the information-theoretic

model further suggest that heterochromatin domains adopt collapsed, globular three-

dimensional conformations that can be stabilized by phase-separated liquid droplets.
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Our results demonstrate the usefulness of statistical mechanical models and molecu-

lar biophysical approaches in interpreting the rich information encoded in epigenomics

data.

Introduction

A remarkable achievement of multicellular organisms is the formation of distinct cell types

from the same copy of DNA sequence. Epigenome, the vast number of post-translational

modifications to histone proteins that package the DNA into nucleosomes, is expected to play

a key role in encoding the cell type diversity.1,2 Histone modifications are cell-type-specific

and are known to significantly impact gene expression by modulating chromatin structure

and recruiting chromatin remodeling complexes.3 The importance of these modifications

has led to the histone code hypothesis,4,5 which states that unique combinations of histone

modifications encode distinctive biological outcomes. We present a statistical mechanical

model parameterized with epigenomics data to systematically identify histone modification

patterns, to quantify their stability against random fluctuations, and to investigate the un-

derlying mechanism for their formation.

Large-scale sequencing studies have provided valuable data on the genome-wide distribu-

tion of epigenetic marks.6 Numerous approaches have been developed to analyze these data

and to extract unique patterns of histone modifications.7–9 Focusing on the correlation be-

tween epigenetic marks within the same nucleosome, these approaches have discovered many

novel chromatin features, also known as chromatin states. However, it is often the case

that epigenetic marks can spread across multiple nucleosomes to form chromatin domains,

such as super (stretch) enhancers,10,11 broad H3K4me3 domains,12 and heterochromatin.13

It is, therefore, crucial to take into account inter-nucleosome correlations to study histone

modification patterns beyond single nucleosomes.14

The functional importance of histone modifications necessitates the presence of robust

mechanisms for their establishment and maintenance.15 Ensuring sustained stability of these
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chemical modifications within a cell cycle and through cell division can be a challenging task,

however. Unlike the DNA sequence, histone modifications are intrinsically dynamic and

face constant perturbations from enzymes that add or remove these marks.16 Furthermore,

roughly half of the histone proteins will be replaced with fresh copies that are arbitrarily

modified as the DNA replicates, and these random additions can dramatically alter the

epigenome of the daughter cells if left uncorrected.17–19 Though significant insights on the

robustness of histone modifications can be gained by studying chromatin regulatory path-

ways,13,20 a complete understanding based on these pathways is lacking since many of the

molecular players that are crucial for epigenome stability and inheritance remain unknown.

We propose an information-theoretic model to identify chromatin domains with distinct

histone modification patterns and infer the mechanism for their formation from epigenomics

data. This model can be derived and parameterized following the maximum-entropy princi-

ple. It rigorously accounts for both intra- and inter-nucleosome correlation between epige-

netic marks, and succeeds in identifying well-known chromatin domains, including promoters,

enhancers, transcribed genes, heterochromatin, etc. Detailed analysis of these domains re-

vealed that promoters and enhancers could be stabilized at a continuous range of genomic

lengths, and more extended domains often grow from shorter ones through a sequential

maturation process. On the other hand, heterochromatin domains exhibit a bistable be-

havior, and the nucleosomes undergo an all or none cooperative transition as they become

methylated without experiencing intermediate states. By correlating the model interaction

energies with contact probability between nucleosomes in the three-dimensional (3D) space,

we found that our model supports condensed, globular heterochromatin conformations that

resemble phase separated liquid droplets.
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Results

Information-theoretic model predicts long-range inter-nucleosome cor-

relations

Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a powerful method

for characterizing the epigenome at high resolution, and has helped to determine genome-

wide profiles of numerous epigenetic marks across hundreds of cell types.6,21 Here, we intro-

duce an information-theoretic approach to analyze these data and investigate the interrela-

tionship of epigenetic marks.

Figure 1: Epigenetic marks exhibit strong intra- and inter-nucleosome correlations. (A)
Illustration of the information-theoretic model for studying chromatin domain formation
(top panel). The model explicitly considers intra- (Jij) and inter-nucleosome (K l

i) coupling
between epigenetic marks, and the values of the coupling strengths are derived from epige-
nomics data (bottom panel). The fundamental unit of this model is a 200-bp-long genomic
segment that includes both the core nucleosome and the linker DNA. A total of 12 epige-
netic marks is used to describe the state of each segment. For simplicity, only two marks
are shown. (B) Pair-wise correlation between epigenetic marks on the same nucleosome. (C)
Self-correlation for epigenetic marks on different nucleosomes as a function of the genomic
separation.

The information-theoretic model describes a chain of N interacting nucleosomes, each

one of which is characterized by a total of 12 epigenetic marks (Fig. 1). These marks are

selected for a comprehensive characterization of the chromatin landscape, and their biological

importance are explained in the supporting information (SI). The model’s potential energy
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The binary variable sni indicates whether the i-th mark is present (= 1) at the n-th nu-

cleosome or not (= 0). The parameters hi, Jij and K l
i measure the overall propensity for

the appearance of the i-th mark, the coupling strength between marks i and j on the same

nucleosome, and the coupling strength between the same mark i separated by l nucleo-

somes, respectively. As shown in the SI, E(s, L) is the most probable model that maximizes

the information entropy while reproducing the experimental mean and pair-wise correlation

of epigenetic marks. Maximum entropy models have been successfully applied to study a

wide variety of problems, including protein structure prediction and genome folding.22–28

A closely related model with only intra-nucleosome correlations has been proposed by Zhou

and Troyanskaya to study chromatin states.9,29 The added inter-nucleosome interactions here

are crucial for studying the spreading of epigenetic marks and the formation of chromatin

domains.

As detailed in the Section: Materials and Methods, parameters in E(s, L) can be derived

using a Boltzmann learning algorithm.30 For efficient computational sampling, we limited the

system size N to 25 nucleosomes and adopted the periodic boundary condition. As shown

in Table S1, the correlation length for most epigenetic marks is significantly less than 25.

In the meantime, the periodic boundary condition ensures that the long-range correlation

between some epigenetic marks that give rise to large, periodic chromatin domains can be

modeled accurately in a finite system.

To probe the effect of inter-nucleosome interactions and identify the minimalist model

with the least parameters that succeeds in capturing the correlation between epigenetic

marks, we studied a series of systems with increasing L. Figs. 2A and 2B present the

results obtained from a model without any inter-nucleosome interactions (L = 0). As in-
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dicated by the blue dots, this model succeeds in reproducing mean mark occupancy and

intra-nucleosome correlations, both of which are provided as experimental constraints. The

relative error, which is defined as the total absolute difference between experimental con-

straints and modeled values normalized by the sum of experimental constraints, is less than

5%. Furthermore, higher-order intra-nucleosome correlations, which are measured by the

population of all the possible combinatorial patterns formed by the 12 epigenetic marks

and are not included as experimental constraints, are accurately predicted as well (Fig. 2A

green). On the other hand, the simulated inter-nucleosome correlations between all pairs of

epigenetic marks separated by less than 13 nucleosomes differ significantly from experimental

values (Fig. 2B).

Figure 2: Parameterization and validation of information-theoretic models with different
inter-nucleosome interaction cutoff length L. (A) Comparison between experimental and
simulated (L = 0) pair-wise (blue) and higher-order intra-nucleosome correlations (green).
(B) Comparison between experimental and simulated (L = 0) inter-nucleosome correlations
for all pairs of epigenetic marks separated by less than 13 nucleosomes. (C) Quantitative
measurements of the performance for models with different L. (D) Comparison between
experimental and simulated (L = 5) inter-nucleosome correlations. The same experimental
data as in part B are used for plots in C and D.

The performance of models that explicitly consider inter-nucleosome coupling are shown
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in Figs. 2C and 2D. We measured the model performance using the quality of the linear

regression between simulated and experimental inter-nucleosome correlations, and the rela-

tive error between the two. As shown in Fig. 2C, the slope and R-squared of the linear fit

improves systematically, and the difference between simulation and experiment continuously

decreases up to L = 5. Explicit results for the L = 5 model are provide in Fig. 2D. Fur-

ther increasing L or introducing inter-nucleosome cross-mark coupling to the energy function

E(s, L) (see Fig. S2) does not improve the model’s performance. We therefore conducted all

following analyses using the model with L = 5.

Information-theoretic energy landscape supports chromatin domain

formation

A central goal for computational analysis of epigenomics data is to systematically charac-

terize combinatorial patterns of histone modifications that are of functional importance and

appear more frequently than random. Previous studies have focused on histone modifications

within the same nucleosome to identify chromatin states.8,29 Here, we investigate whether

distinct patterns also emerge across multiple nucleosomes to form chromatin domains. To-

wards that end, we searched for basins of attractions supported by the energy landscape

of the parameterized information-theoretic model. These energy basins offer representative

arrangements of epigenetic marks that are of high population and are ideal candidates for

chromatin domains. In the following, we will focus our discussion on the top 100 most pop-

ulated chromatin domains identified with the steepest descent algorithm (see SI), since they

cover over 94% of the whole genome.

Fig. 3A illustrates the average epigenetic mark profiles for the top 100 chromatin do-

mains. The most common domain, which we term as the ground state, exhibits no histone

modifications. Heterochromatin domains are identified with signature methylation marks

H3K9me3 or H3K27me3. Chromatin domains with H3K4me1 or H3K4me3 are assigned as

enhancer and promoter, respectively, though they often share additional activation marks
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that include H3K4me2, H3K9ac, H3K27ac, DNase, and H2A.Z. A distinct set of chromatin

domains (promoter/enhancer) with both H3K4me3 and H3K4me1 marks are found as well,

supporting the fundamental similarity between promoters and enhancers.31 Domains marked

with H3K36me3, H3K79me2 and H4K20me1 modifications are transcribed gene regions. We

further label domains that consist of both gene silencing marks (H3K27me3) and activation

marks H3K4me1/2/3 as bivalent, domains marked with transcribed gene marks and regula-

tory marks as intragenic regulator, and domains marked with H3K9me3 and H3K36me3 as

zinc finger protein (ZNF) gene.6

Figure 3: Characterization of chromatin domains predicted by the information-theoretic
model E(s, L = 5). (A) Average epigenetic profiles over modified nucleosomes for the top
100 most populated chromatin domains. The number of modified nucleosomes for each
domain is shown in the bottom panel, and the color bar is shown on the side. (B, C)
Average probability of observing different epigenetic marks as a function of the length of
chromatin stretches with continuous H3K4me1 marks and H3K4m3 marks determined from
ChIP-Seq data.

In addition to their unique histone modification profiles, chromatin domains exhibit dis-

tinct length dependence as well, as shown in the bottom plot of Fig. 3A. The length of

a chromatin domain is defined as the number of nucleosomes with at least one epigenetic

mark. For several heterochromatin and transcribed gene domains, all the 25 nucleosomes
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share the same set of epigenetic modifications. These periodic patterns are consistent with

the formation of large silent or transcribed genomic regions that span tens of kilobase pairs.

Their periodicity, however, also suggests that these chromatin domains have the potential

to spread over the entire genome, and additional mechanisms beyond epigenetic mark in-

teractions, such as boundary elements, must be in play to confine them at specific genomic

regions.32

On the other hand, we find a series of aperiodic promoter and enhancer domains of vary-

ing lengths. We note that extended regulatory domains have indeed been observed previ-

ously,10–12 and are often termed as broad H3K4me3 domains and super (stretch) enhancers.

The increased appearance of additional activation marks in more extended domains (see

Figs. 3B and 3C) may support open chromatin conformations to enhance the transcription

consistency or the overall expression level of their target genes.

As chromatin domains are local energy minima, their histone modification patterns and

length dependence can be understood from the underlying energy landscape. In Fig. 4, we

plot the intra- and inter-nucleosome interaction energies between epigenetic marks. Con-

sistent with the complex promoter and enhancer domain patterns, most of the interaction

energies between activation marks are negative (blue), supporting their co-existence within

the same nucleosome. A notable exception is a strong repulsion between H3K4me1 and

H3K4me3, two mutually exclusive marks for defining enhancers and promoters respectively.6

We emphasize that the intra-nucleosome energies probe direct interactions among epigenetic

marks that correspond better with physical interactions between histone modification en-

zymes. The correlation coefficients presented in Fig. 1, on the other hand, could arise from

a transit effect as a result of indirect couplings.29,33

As shown in the right panel of Fig. 4, all epigenetic modifications exhibit attractive

interactions between the nearest neighbor nucleosomes (K1). This attractive interaction

decays rather quickly for active marks, explaining the small length of promoter and enhancer

domains. On the other hand, the interaction between epigenetic marks for transcribed gene
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regions or heterochromatin persists over an extended range to promote the formation of large

domains.

Figure 4: Intra- (Left) and inter- (Right) nucleosome coupling energies between epigenetic
marks for the information-theoretic model E(s, L = 5).

Mechanism of chromatin domain formation from transition path cal-

culations

As basins of attraction, chromatin domains are inherently stable and able to withstand

transient fluctuations caused by addition and removal enzymes within a cell cycle. Thus, once

established, chromatin domains provide a robust mechanism for regulating gene expression

and maintaining genome stability. However, the molecular mechanism for their de novo

creation as cells differentiate and their reestablishment when cells divide remains elusive.

We here perform kinetic analysis of the information-theoretic model to provide mechanistic

insight into chromatin domain formation.

Towards that end, we first built a kinetic network to explore the dynamical transition

between chromatin domains (see Fig. 5A). Each node in this network corresponds to one of

the top 100 most populated chromatin domains. A connection between two nodes is intro-

duced if direct transitions between them were observed in a long-time enhanced simulation

conducted with the generalized Wang-Landau algorithm.34 Transition rates between chro-

matin domains were further estimated using transition states identified in the simulation
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trajectory with the transition state theory.35 The detailed algorithm for rate calculations is

provided in the Section: Materials and Methods. For simplicity, only transitions with ener-

getic barriers less than 15 kBT are shown in Fig. 5 A. A notable feature of this network is

its apparent modularity, and chromatin domains with similar biological functions naturally

organize into highly connected clusters. The slow transition between clusters highlights the

robustness of the overall organization of the epigenome in a given cell type to ensure stable

gene expression.

Figure 5: Kinetic analysis of the information-theoretic model E(s, L = 5). (A) Illustration
of the kinetic network for chromatin domain transitions. Each node represents a chromatin
domain, and the size of the node is proportional to the domain length. The edge width
indicates the value of the transition rates between the two connecting nodes, with thicker
lines for faster transitions. The color gradient for promoter and enhancer domains is used to
illustrate the densities of activation marks. (B) Energy profile of the most probable transition
path from the ground state to an enhancer domain. The line connecting the minima and
transition states is provided as a guide for the eye. The length and density of activation
marks at each minimum are indicated by the node size and color gradient as in part (A). (C)
The most probable transition path from the ground state to the H3K9me3 heterochromatin.

Assuming Markovian dynamics, the time evolution of this kinetic network can be solved
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analytically to study the transition between any pairs of chromatin domains without per-

forming computationally expensive long timescale simulations.36 We expect the Markovian

assumption to hold well given that the network nodes are local minima where the system will

reside for a significant period to lose memory of the past and achieve dynamical decoupling.

To study the molecular mechanism for the formation of stretch enhancers, we solved the

kinetic network and determined the most probable transition path from the ground state

to an enhancer domain that extends over 6 nucleosomes. Details of the transition path

calculations are provided in the SI. As shown in Figs. 5B and S3, we observe a sequential

transition along which the chromatin becomes more open and more enriched with activation

marks while the length of the domain grows. Such a multi-step, gradual transition indicates

that stretch enhancers may not directly emerge from a genomic region along evolution or as

cells differentiate, but instead will undergo a maturation process. The presence of enhancer

domains with different potency could help cells fine-tune gene expression levels at various

developmental stages. Furthermore, since the backward transition path from the enhancer

domain to the ground state is identical to the forward one, the sequential transition suggests

that stretch enhancers are more stable with respect to perturbations and are less likely to

transition into the ground state and disappear from the chromatin landscape. The increased

stability is in accord with their functional importance. Similar conclusions can be drawn

from the transition path for the formation of a promoter domain (see Fig. S4)

Next, we determined the transition path from the ground state to the periodic heterochro-

matin domain with H3K9me3 marks. As shown in Fig. 5C, we find that heterochromatin

formation is a cooperative process, and there are no intermediate states along the pathway.

To ensure the robustness of this observation, we further determined the transition path us-

ing a path deformation algorithm37 that can search for the entire phase space and is not

limited by the 100 domains included in the kinetic network. As shown in Fig. S5, the new

path shares the same transition barrier and does not exhibit any intermediate state either.

The analysis for the H3K27me3 heterochromatin domain supports similar conclusions (see
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Fig. S6). Cooperativity between nucleosomes will give rise to a bistable system, in which ei-

ther all or none of the nucleosomes will become methylated, a phenomenon that has indeed

been observed in many regulatory networks proposed for heterochromatin formation.38,39

Collective behavior between nucleosomes will significantly enhance the stability of the hete-

rochromatin to ensure a robust inheritance of methylation marks across cell cycles. We will

explore possible molecular mechanisms for such cooperativity in the next section.

Inter-nucleosome interactions support condensed, globular heterochro-

matin conformations

A striking finding from Fig. 4 is the presence of strong, attractive inter-nucleosome interac-

tions. These interactions measure the propensity for a pair of nucleosomes to share the same

epigenetic mark, and can arise if the two nucleosomes are in 3D contact to promote the trans-

fer of corresponding modification enzymes38,40 or enzyme-enzyme interactions39 (see (Fig.

6A). Consistent with this interpretation, all epigenetic marks exhibit a strong K1 interaction

energy as a result of the spatial proximity between the two neighboring-in-sequence nucleo-

somes. Furthermore, the interaction energies typically decay at larger genomic separations as

the nucleosomes become farther apart in space. It is therefore tempting to assume that inter-

nucleosome interaction energies are proportional to the contact probability between pairs of

nucleosomes. Since different polymer configurations exhibit distinct trends in the variation

of contact probabilities as a function of sequence length, studying the scaling behavior of

interaction energies offers the opportunity to derive 3D chromatin domain conformations.

Indeed, we find that interaction energies of the heterochromatin mark H3K9me3 decay slower

than that of the activation mark H3K4me3, consistent with the fact that heterochromatin

domains are more condensed than euchromatin.

Quantitatively inferring scaling exponents from Fig. 4 can be challenging, however, due

to the limited number of inter-nucleosome couplings included. To more accurately determine

the value of interaction energies at large genomic separations, we studied an additional model
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consisting of 201 nucleosomes. We only included the H3K9me3 mark for computational

efficiency, and each nucleosome can either be methylated or free of modifications. Since

H3K9me3 does not co-localize strongly with other epigenetic marks, this single mark model

is expected to provide a good description for heterochromatin formation.

Figure 6: Inferring heterochromatin formation mechanism from inter-nucleosome interac-
tion energy. (A) Illustration of the transfer of histone-modifying enzymes (red) from the
methylated nucleosome (green) to others that are close in 3D space. This enzyme trans-
fer is promoted by diffusion and its rate is impacted by the distance between nucleosomes
that increases at larger sequence separations. (B) Inter-nucleosome interaction energy for
epigenetic mark H3K9me3 as a function of the genomic distance.

The single mark model adopts the same Hamiltonian as in Eq. 1. We included inter-

nucleosome interactions to a much longer range than the multi-mark model, and determined

the parameters again using the Boltzmann learning algorithm. Fig. 6 presents the resulting

interaction energies as a function of nucleosome separation. These energies are robust and

insensitive to the cutoff length L, as well as the parameters used to process and binarize the

raw data (see Fig. S7). We further fitted the interaction energies for L = 35 with a power

law expression E(l) = al↵, and obtained a value for ↵ = �1.61(±0.07). An exponent that
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falls in the range between -2 and -1 has been shown to support a phase transition in the

one-dimensional Ising model,41 giving rise to the bistability seen in Fig. 5C. Assuming that

interaction energies are proportional to the contact probability P (l), an exponent of -1.5

suggests that the heterochromatin conformation is consistent with an equilibrium globule.42

Globular conformations differ significantly from the rigid fibril structures with a diameter of

30 nm, and can be stabilized by phase-separated liquid droplets formed by heterochromatin

protein 1 (HP1).43–47

Discussions

Genome-wide histone modification profiles provide a comprehensive characterization of the

chromatin landscape. Using an information-theoretic model and rigorous statistical me-

chanical tools, we demonstrated that epigenomics data could shed light on the mechanism of

chromatin domain formation as well. In particular, we found that the H3K9me3 heterochro-

matin domain exhibits bistability and forms in a highly cooperative process. Furthermore,

the 3D conformation of heterochromatin is consistent with a globular conformation, but not

the rigid fibril structures. We note that determining chromatin structure at the kilo-base

range is extremely difficult, and the existence of 30 nm chromatin fibers in vivo remains

controversial,48–50 though increasing evidence argues against their presence.51–53 We con-

tribute to resolving this mystery indirectly by studying the role of chromatin conformation

in chromatin domain formation.

Our study supports an essential role of chromatin folding in facilitating the spreading

of epigenetic marks across nucleosomes. Explicit consideration of chromatin conformational

dynamics and its coupling with the chemical reaction dynamics of histone modifications will

be critical for a faithful description of heterochromatin formation that drives simultaneous

transitions in both the conformational and chemical space.
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Methods

Parameterization of the information-theoretic model

We obtained genome-wide histone modification profiles for the IMR90 cell line from the

ROADMAP epigenomics project.6 These data were binarized with a Poisson background

model at a resolution of 200 bp that corresponds to the nucleosome repeat length. From the

binarized data, the mean occupancy for epigenetic mark i ( 1
N

PN
n=1 s

n
i ), the intra-nucleosome

mark correlations ( 1
N

PN
n=1 s

n
i s

n
j ), and the correlation coefficient between marks i and j that

are separated by l nucleosomes ( 1
N�l

PN�l
n=1 s

n
i s

n+l
j ) were calculated, where N is the genome

length.

Using the mean occupancy and mark correlations as experimental constraints, parameters

in the energy function E(s, L) defined in Eq. 1 can be determined with a Boltzmann learning

algorithm.30 This algorithm iteratively updates the parameters using the difference between

the experimental correlation coefficients and simulated ones estimated using replica exchange

Markov chain Monte Carlo sampling.54 The iteration terminates when the relative error

✏ =

P
i|f sim

i �fexp

i |P
i f

exp

i
is less than 5%, where fi include mean epigenetic mark occupancy and

pair-wise correlation coefficients. A detailed description of the parameterization algorithm

is provided in the SI.

Calculation of transition rates between chromatin domains

We used Monte Carlo simulations to probe connections between chromatin domains and to

calculate transition rates. Specifically, for a pair of chromatin domains A and B, we first

selected a large set of paths that originated from A and ended up in B from a trajectory

that has sufficiently traversed the entire energy landscape. From the path ensemble PAB,

the configuration of the transition state connecting A and B is identified with the energy

EAB = min

p2PAB

max

s2p
E(s), (2)
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where E(s) is the energy of configuration s along the transition path p. The energy barrier

is then determined as �EAB = EAB � EA for the transition from A to B, and �EBA =

EAB � EB for the reverse transition. From these barriers, we estimate the transition rates

using the Arrhenius equation rAB =

1
⌧ e

��EAB/kBT , where ⌧ is the timescale for observing

a fluctuation in histone modification. Noting that it’s non-trivial to efficiently sample the

huge phase space. We therefore employed the generalized Wang-Landau algorithm34 to bias

the simulations for enhanced transitions between domains (see SI for more details).
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Supplementary Information for “Learning mechanism of chromatin 
domain formation with big data” 

 
Wen Jun Xie and Bin Zhang 

Departments of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 
Cambridge, MA 02139-4307 

 

1. Calculating experimental constraints from genomic profiles of epigenetic marks 

 For a comprehensive characterization of the chromatin landscape, we analyzed the 
collective behavior of 12 histone marks. These marks include histone H3 lysine 4 
monomethylation/dimethylation/trimethylation (H3K4me1/me2/me3) that are important for 
identifying enhancer and promoter regions; H3 lysine 9 acetylation (H3K9ac) and H3 lysine 27 
acetylation (H3K27ac) that are associated with increased activation of gene promoters and 
enhancers, respectively; H3 lysine 9 trimethylation (H3K9me3) and H3 lysine 27 trimethylation 
(H3K27me3) that are signatures of constitutive heterochromatin and facultative heterochromatin; 
H3 lysine 36 trimethylation (H3K36me3), H3 lysine 79 dimethylation (H3K79me2), and H4 lysine 
20 monomethylation (H4K20me1) that are indicative of transcribed gene regions; DNase I 
hypersensitive sites that probe exposed DNA and open chromatin regions, and an important 
histone variant H2A.Z. 
 

ChIP-Seq and control data of these epigenetic marks were downloaded from the 
ROADMAP epigenomics project (1). We focused our analysis for the IMR90 cell line since its 
data have the highest signal-to-noise ratio percentile. From the raw data, we performed binarization 
and determined the mean and correlation coefficients of epigenetic marks as detailed in the 
Section: Materials and Methods of the main text.  

2. Estimating inter-nucleosome correlation length of epigenetic marks 

To quantitatively probe the strength of inter-nucleosome interactions, we fitted the 
correlation coefficients between epigenetic marks as a function of nucleosome separation (!) with 
the expression " ∗ exp '− )

*
+ + -. The fitting parameter . is used to measure the correlation length 

of epigenetic marks. Fitting results for self-correlation of the same mark are shown in Table S1. 
 
Most of the correlation lengths are smaller than 25 nucleosomes, supporting our use of 

/ = 25 as the system size. For marks with self-correlation lengths longer than 25, they often 
support the formation of large, homogeneous chromatin domains. The effect of these marks will 
therefore be well captured by the periodic boundary condition.  
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3. Deriving information-theoretic models from the maximum entropy principle 

As mentioned in the main text, 3(5, 7)  is the most probable model to reproduce 
experimental constraints. Here we provide a detailed derivation for its expression based on the 
maximum entropy principle.  

 
To start, we define the system of interest as a chain of / nucleosomes, each one of which 

is characterized by 9 epigenetic marks. A configuration, or state, of this system is denoted as 5 =
{[<==,… , <=?],… , [<A= ,… , <A?]}, which can be viewed as a 9 ×/ matrix and <DE  denotes whether 
mark F is present (= 1) at the H-th nucleosome or not (= 0). Next, we seek for a probability 
distribution function of state 5 that maximizes the information entropy  

J = −KL(5)lnL(5)
5

 

while reproducing the mean occupancy of each epigenetic mark F, 
1
/KKL(5)<DE

E5

= 〈<D〉QRS, for	F = 1, … ,9 

and the correlation between two epigenetic marks F	and X separated by ! nucleosomes, 〈<D<Y〉QRS) , 
1
/KKL(5)<DE<YEZ)

E5

= 〈<D<Y〉QRS) , for	! = 0,… , 7,			1 ≤ F ≤ X ≤ 9. 

 
 The solution to this constrained optimization problem can be found by minimizing the 
following Lagrangian 

																		7 = −KL(5)lnL(5)
5

+KK

⎣
⎢
⎢
⎢
⎡
ℎD a〈<D〉QRS −KL(5)<DE

5

b
DE

+ K KcDY)
d

)ef

A

YgD,			hij	)kf
YkD,hij	)ef

a〈<D<Y〉QRS) −KL(5)<DE<YEZ)
5

b	

⎦
⎥
⎥
⎥
⎤
 

where ℎD and cDY)  are Lagrangian multipliers. 
 
 The solution for od

op(5)
= 0 provides the least structured L(5) in the form of a Boltzmann 

distribution 
	L(5) = qrs(5,d)/u, 

where the energy function is defined as 

3(5, 7) =KK(ℎD<DE
D

+KcDYf<DE
YkD

<YE +KKcDY) <DE<YEZ)
d

)e=

A

YgD

),
E

 

and u is the partition function. The unit of energy is kwx.  
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 3 

 
Following the argument above, we can arrive at a series of information theoretic models 

presented in the main text by adjusting the input experimental constraints. For example, if only 
〈<D〉QRS and 〈<D<Y〉QRSf , for 1 ≤ F < X ≤ 9 are provided as constraints, then we arrive at the intra-
nucleosome model, 
 	

3(5, 7) =KK(ℎD<DE
D

+KzDY<DE
YkD

<YE).
E

 

If 7 ×9 additional self-correlation coefficients 〈<D<D〉QRS) , for	F = 1,⋯ ,9, and	! = 1,⋯ , 7 are 
provided as constraints, then we arrive at the inter-nucleosome model with only self-interactions, 

3(5, 7) = KK(ℎD<DE
D

+KzDY<DE
YkD

<YE +KcD)<DE<DEZ)
d

)e=

).
E

 

Finally, if we further introduce cross-mark correlation between neighboring nucleosomes 
〈<D<Y〉QRS= , for	1 ≤ F < X ≤ 9 as constraints, we arrive at the inter-nucleosome model with both 
self- and cross-mark interactions,  

3(5, 7) =KK(ℎD<DE
D

+KzDY<DE
YkD

<YE +
E

KcD)<DE<DEZ) +KcDY=<DE
YkD

<YEZ=)
d

)e=

 

4. Parameterizing information-theoretic models with a Boltzmann learning 
algorithm  

Parameters in the maximum entropy model can be derived using a Boltzmann learning 
algorithm. This algorithm minimizes the cross-entropy 

J∗(~) = lnu(~) −K�Ä
QRSÅÄ

Ä

 

where ~ = ÇℎD, cDY) É is the collection of model parameters, and �QRS = {〈<D〉QRS, 〈<D<Y〉QRS) } is the 
collection of experimental constraints. It is straightforward to demonstrate that at the stationary 
point of J∗(~), the simulated ensemble averages match with experimental constraints.  
 

The minimum of J∗(~)  can be found with the steepest gradient descent method that 
iteratively updates the parameters with the following expression 

ÅÄÑZ= = ÅÄÑ − Ö Ü
áJ∗

áÅÄ
à
~â
, 

where the gradient of J∗ is defined as: 
oä∗

oãå
= o çéè(~)

oãå
− �Ä

QRS=�Äêëí − �Ä
QRS. 

�êëí = Ç〈<D〉êëí, 〈<D<Y〉êëí) É is the collection of simulated ensemble averages for mean mark 
occupancy and correlation coefficients between marks. 
 

To accelerate steepest gradient descent in the relevant direction and dampen oscillations, a 
momentum step was included when updating the parameters (2): 
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ì
ÅÄÑZ= = îÄÑ − Ö Ü

áJ∗

áÅÄ
à
~â

îÄÑZ= = ÅÄÑZ= + ïñÅÄÑZ= − ÅÄÑó.
 

We used a learning rate of Ö = 0.002	 and ï = 0.9. At each iteration ô, we used the Metropolis 
Monte Carlo algorithm to sample the Boltzmann distribution and estimate the ensemble averages 
�Äêëí. We further applied the parallel tempering technique to enhance sampling efficiency. A total 
of thirteen replicas was used with temperatures evenly distributed between 0.8 and 2.0, with each 
replica lasting for 10ö Monte Carlo steps per iteration. The parameters were set as zero at the 
beginning and were updated until the relative error defined as ∑ |�Äêëí − �Ä

QRS|/∑ �Ä
QRS

ÄÄ  is less 
than 5%.  

5. Identifying chromatin domains with the steepest descent algorithm  

To identify robust combinatorial patterns of epigenetic marks and chromatin domains, we 
searched for basins of attractions supported by the information-theoretic model using steepest 
gradient descent optimization. Like other Hopfield-like systems (3)(4), these basins are local 
minima that represent patterns with high probabilities of appearance. Local minima are defined as 
states whose energies are lower than all the neighboring configurations.  The neighborhood of a 
state includes all configurations that differ from the state with only one epigenetic mark. Following 
this definition, the closest local minimum for any configuration can be found by the steepest 
gradient descent algorithm. In this algorithm, we iteratively select out the configuration that has 
the lowest energy in the neighborhood of the lowest energy state from previous iteration until 
convergence.   

 
To identify the set of local minima that most resemble the configurations observed in genome-

wide profiles of epigenetic marks, we first partitioned the genome into unmodified and modified 
regions. The modified regions were identified as stretches of genomic segments that do not contain 
any gaps longer than 25 nucleosomes. Gap regions do not exhibit any epigenetic marks.   The local 
minimum for unmodified regions will always be the ground state. For modified regions, we further 
divided them into configurations with 25 nucleosomes that correspond to the system size of our 
model. For each 25-nucleosome long region, we performed the steepest gradient descent 
optimization to find the corresponding local minimum (i.e., chromatin domain). 

6. Estimating transition barriers using Wang-Landau sampling  

We used the following approach to determine the transition barriers between pairs of 
chromatin domains.  

 
First, we collected an ensemble of transition paths connecting the two domains from a 

simulation trajectory conducted using the Metropolis Monte Carlo algorithm coupled with the 
Wang-Landau algorithm (5). The Wang-Landau algorithm is an enhanced sampling technique that 
aims at producing a random walk over basins of attraction, thus greatly accelerating the transition 
between local minima. It estimates the density of states of the system along the simulation and use 
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it to bias the sampling. In the following, we briefly summarize the key steps of this algorithm when 
applied to a spin glass model. 

 
Suppose that we are interested in the top / most populated minima of the spin glass model. 

By assigning spin configurations to their closest local minimum using the steepest descent 
algorithm outlined in the previous section, the phase space thus can be partitioned into / + 1 
basins ùf, ù=, ùû, … , ù?. ùf includes all the configurations that cannot be assigned to the top / 
minima. To estimate the density of state for each basin, we further partition the energy space ü= <
üû < ⋯ < üd = ∞ into 7 intervals, where ü= is the lower bound of the model Hamiltonian, and is 
set to zero in our case. Therefore, the phase space is now partitioned into (/ + 1) × 7 regions, 
ùD° = {5 ∈ ùD:	3(5) ∈ [ü°, ü°Z=)}, for	F = 0,⋯ ,/	and	§ = 1,⋯7 . The statistical weight 
(density of states), •D°, for each region is set as one initially.  

 
We then update the density of states by performing the following Monte Carlo sampling. 

Starting from a random configuration 5 in the basin region ùD°, we perform a Monte Carlo move 
with a single-spin flip. This move will lead to a new configuration 5′ in the region ùYE. The new 
configuration will be accepted with the following probability 

ß(5 → 5©) = min	{1, q¨'s(5)rsñ5
≠ó+•D°/•YE}, 

where ï is an effective temperature. 
 

Along the simulation, we keep track the history of the simulation trajectory with a 
histogram. Specifically, we will update the number of times a region has been visited ÆYE by 1 if 
the new configuration 5′ is accepted. In the meantime, the corresponding density of states •YE will 
be updated as •YEØ, where Ø is a scaling factor larger than 1. The goal of the Wang-Landau 
sampling is to achieve a flat histogram, indicating a random walk in the energy basins.  

 
The above sampling will be conducted iteratively. For example, if the flatness of the 

histogram becomes acceptable (maximal fluctuation is less than 25%.), Ø will be scaled down to 
∞Ø. The iteration completes when Ø is close to 1.  

 
When applying the Wang-Landau algorithm to the informational theoretic model, we 

limited the sampling to the top 100 chromatin domains that cover more than 94% of the 
nucleosomes. The modification factor Ø of density of states is set as q ≈ 2.71828 at the beginning 
of the sampling. The effective temperature ï  is set as 1/(2kwx)  to accelerate the sampling, 
resulting the Metropolis acceptance ratio of ~15%. The energy range of interest is [0,120 kwx] and 
the energy width is 10	kwx. We stopped the sampling when Ø<1.000001.  

 
Second, from the ensemble of transition paths  ℙµ∂	collected from Wang-Landau sampling, 

the energy for the transition state connecting chromatin domains ∑ and ù is identified as   
3µ∂ = minÄ∈ℙ∏πmax∫∈Ä3(5), 

where 3(5) is the energy of configuration 5. The transition barrier is then obtained as ª3µ∂ =
3µ∂ − 3µ for the transition from ∑ and ù, and ª3∂µ = 3µ∂ − 3∂ for the reverse transition.  
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7. Calculating the most probable path between chromatin domains using the 
transition path theory 

Using the energetic barriers determined from Wang-Landau sampling, we estimated the 
transition rates between chromatin domains with the Arrhenius equation ºµ∂ = Ωeræs∏π/øπ¿ , 
where Ω is the timescale for a fluctuation in histone modification. From the set of transition rates, 
we built the kinetic network shown in Fig. 5A. Under the Markovian assumption, this kinetic 
network fully specifies the long-time dynamics of the system.  

 
To determine the most probable pathway connecting chromatin domains ∑  to ù , we 

applied the transition path theory to the kinetic network using the software PyEMMA (6). 
Transition path theory is a probabilistic framework to analyze the mechanism of reaction or 
transition and provides the reactive rate of state transformation (7). The core concept in transition 
path theory is the committor probability. The committor probability (¡DZ) at domain F is defined as 
the probability that the system reaches domain ù  first before visiting domain ∑ . Thus, the 
committor probability can be solved by the simple relation with the transition probability matrix 

xD∂ = ¡DZ −K xDø¡øZ
ø¬µ

 

The transition probability matrix √ was constructed from the rate matrix ƒ using the expression 
√ = eƒ≈∆. A lag time of Δô = 1 was used.  
   

Among all the transition between two domains, only a fraction is reactive. The effective 
flux of transition between intermediate states F → X contributing to the path ∑ → ù is 

ØDY = »D(1 − ¡DZ)xDY¡YZ, 
where »D is the equilibrium distribution of chromatin domain F that can be determined from the 
relation …√ = …. Then we picked up the most probable transition pathway connecting ∑ and ù as 
the pathway with the greatest flux (ØDY) along it (6).  

8. Calculating the minimum energy barrier path between chromatin domains using 
a path deformation approach  

As an independent validation of the transition paths determined in the main text, we further 
determined the transition barrier and minimum energy path between the ground state and the 
H3K9me3 heterochromatin using a path deformation approach (8)(9). This approach explores the 
entire phase space when searching for the transition state. Therefore, unlike the method presented 
in the main text, it is not restricted by the number of chromatin domains included in the kinetic 
network.  

 
For the convenience of discussion, we define the mark-flipping operator   that turns a 

particular epigenetic mark on or off. Since a continuous path connecting two states ∑ and ù 
consists of a set of configurations that differ only by one mark, it can be described by a product of 
operators, ù =  = û … E∑.  

 
The path deformation algorithm starts with a randomly generated minimum length path, 

for which the number of operators equals to the total number of different mark configurations in 
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the two states. Next, it aims to find the minimum transition barrier connecting the two states by 
iteratively deforming the highest energy configuration along the path. We used two types of moves 
to deform the path. The first one swaps the operator that leads to the highest energy configuration 
with the one leaving it. In the second move, two operators are added before and after the operator 
that leads to the highest energy configuration. These two operators modify the same mark 
randomly selected from the 12 epigenetic marks. They have opposite effects: if one switches a 
mark on, the other will turn it off. Newly deformed paths are only accepted if they lead to a 
decrease of the transition barrier.  
 

We carried out a total of 1000 independent calculations to search for the transition barrier 
between the ground state and the heterochromatin domain. For each calculation, the iteration 
terminates when the total length of the path exceeds 20000 configurations. Remarkably, all these 
paths give rise to the same barrier as the one presented in the main text (Fig. 5C). From the 
transition state, we further constructed the minimum energy path using the steepest gradient 
descent algorithm. As shown in Fig. S5, the path exhibits no intermediate states, supporting a 
cooperative transition for the formation of constitutive heterochromatin. 

9. Evaluating the sensitivity of interaction energy strength with respect to the 
Poisson threshold used in the binarization of experimental data 

Genome wide histone modification profiles were processed with a Poisson background 
model to remove biases that might arise from the DNA sequence (10).  A Poisson threshold of 
0.0001, a typical number used in the widely popular software ChromHMM (11), was used to detect 
significant experimental signals compared to the control data. A variation of the threshold value 
could significantly affect mark occupancy, and the correlation coefficients. Indeed, as shown in 
Fig. S7A, the inter-nucleosome correlation changes significantly as we vary the threshold by a 
factor of two.  

To investigate the sensitivity of the derived interaction energies with respect to the Poisson 
threshold, we reparametrized the simplified heterochromatin domain shown in Fig. 6 of the main 
text using these new correlation coefficients. It is reassuring to see that the inter-nucleosome 
interaction energies with different thresholds are quite close to each other (see Fig. S7B). Fitting 
these interaction energies using a power-law expression 3(!) = "!À provides scaling exponents of 
−1.59 ± 0.06  and −1.45 ± 0.06  for the threshold 0.00005  and 0.0002 , respectively. These 
number are very close to the value −1.61(±0.07) provided in the main text.  
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Table S1. Correlation length of epigenetic marks. See text Section: Estimating inter-
nucleosome correlation length of epigenetic marks for a detailed discussion.  

 
Epigenetic mark Correlation length 

(nucleosome) 
H3K9me3 5.6 
H3K27me3 24.1 
H4K20me1 53.1 
H3K79me2 45.1 
H3K36me3 37.1 
H3K4me1 5.8 
H3K4me2 5.9 
H3K4me3 6.2 
H3K9ac 6.9 

H3K27ac 8.0 
DNase 1.0 
H2A.Z 3.6 
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Fig. S1. Comparison between experimental inter-nucleosome correlations and predictions 
from information-theoretic models œ(5, –) with different L. In making these plots, the same 
experimental data as in Fig. 2B of the main text was used.  
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Fig. S2. Performance of an information theoretic model with explicit coupling between all 
pairs of epigenetic marks on neighboring nucleosomes. (A) Intra-nucleosome interaction (left), 
nearest neighbor interaction (middle), and long-range interaction (right) energies of the model. An 
explicit expression of the model Hamiltonian is provided in the Section: Deriving information-
theoretic models from the maximum entropy principle. The cross-mark interaction energies are 
significantly smaller compared to the self-interaction, and are barely visible in the middle panel. 
(B) Comparison between experimental and simulated inter-nucleosome correlations. The 
experimental data is identical to those shown in Fig. 2B of the main text. The relative error between 
simulated and experimental data is 17.6%. The slope and R-squared of the linear fit are 0.93 and 
0.97, respectively. We therefore conclude that including the cross-mark coupling on the nearest 
neighbor nucleosomes doesn’t improve the model performance significantly. For simplicity, these 
terms were not included in the models presented in the main text.  
 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/456525doi: bioRxiv preprint 

https://doi.org/10.1101/456525
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 
 

Fig. S3. Configurations for intermediate states along the most probable transition path from 
the ground state to an enhancer domain. The same path as in Fig. 5B is shown at the top for 
reference. The rows in each configuration correspond to different epigenetic marks, and the 
columns represent different nucleosomes. A grid is marked with red if the epigenetic mark is turned 
on for that nucleosome.  
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Fig. S4. Configurations for intermediate states along the most probable transition path 
from the ground state to a promoter domain. Similar to the path shown in Fig. 5B of the main 
text, this path exhibits multiple intermediate states as well. 
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Fig. S5. Transition paths from the ground state to the H3K9me3 heterochromatin domain. 
(A) Transition path constructed using the path deformation approach. The states along the 
transition path are shown in dots. Details for this calculation are provided in the Section: 
Calculating the minimum energy barrier path between chromatin domains using a path 
deformation approach. (B) Transition path constructed from the Wang-Landau sampling. This 
figure is the same as Fig. 5C in the main text. 
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Fig. S6. The most probable transition path from the ground state to the H3K27me3 
heterochromatin domain. Similar to the path shown in Fig. 5C of the main text for the 
H3K9me3 heterochromatin, there are no intermediate states along the path, and the transition is a 
cooperative process.  
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Fig. S7. Inter-nucleosome (A) correlation and (B) interaction energies for H3K9me3 as a 
function of the genomic distance derived from data processed with different Poisson 
thresholds. See the text Section: Evaluating the sensitivity of interaction energy strength with 
respect to the Poisson threshold used in the binarization of experimental data for details.  
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