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Abstract

The allele frequency spectrum (AFS), or site frequency spectrum, is commonly used to

summarize the genomic polymorphism pattern of a sample, which is informative for infer-

ring population history and detecting natural selection. Recently, Chen and Chen (2013)

developed a method for analytically deriving the AFS for populations with temporally

varying size through the coalescence time-scaling function. However, their approach is

only applicable for population history scenarios in which the analytical form of the time-

scaling function is tractable. In this paper, we propose a computational approach to

extend the method to populations with arbitrary complex history by numerically approx-

imating the time-scaling function. We demonstrate the performance of the approach by

constructing the AFS for two population history scenarios: the logistic growth model and

the Gompertz growth model, for which the AFS are unavailable with existing approaches.

Keywords: Allele frequency spectrum, complex demography, population history,

population genetic inference.

1. Introduction

The allele frequency spectrum (AFS, a.k.a. the site frequency spectrum) is a series

of fundamental statistics for summarizing genomic polymorphism. It is defined as the

sampling distribution of allele frequencies of genetic polymorphism in a finite sample

(Chen, 2012). In practice, the AFS can be the number or proportion of SNPs constructed
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by binning them according the counts of derived alleles. For a sample of n sequences

with m identified segregating sites (polymorphic sites), the AFS is written as {(Si), 1 <

i < n}, with
∑n−1

i=1 Si = m, where Si denotes the number of segregating sites in the

sample that has i copies of derived alleles among the n haplotypes. The AFS has been

a main focus in theoretical and methodological studies in the past decades, since it is

informative for the inference of ancient demography of populations (Kimura, 1955). The

theoretical expectation of AFS under a given population history and parameter setting can

be developed using both coalescent theory and diffusion (Fu, 1995; Griffiths and Tavaré,

1998; Sawyer and Hartl, 1992). Methods for ancestral inference based on the AFS are

then developed in a Poisson random field framework by assuming each entry of the AFS

follows a Poisson distribution with the mean equal to the theoretical expectation of AFS

given a population genetic parameter setting (Sawyer and Hartl, 1992; Bustamante et al.,

2001; Fu, 1995; Griffiths and Tavaré, 1998; Wooding et al., 2002; Polanski and Kimmel,

2003; Marth et al., 2004; Williamson et al., 2005; Gutenkunst et al., 2009; Lukić et al.,

2011; Živković and Stephan, 2011; Chen, 2012; Excoffier et al., 2013; Gao and Keinan,

2015; Bhaskar et al., 2015; Liu and Fu, 2015). These methods gain popularity with the

abundance of genomic sequencing data.

Coalescent theory has been applied to developing the AFS in a single population

with time-varying population sizes, including the exponential-growth model (Wooding

and Rogers, 2002; Polanski and Kimmel, 2003) and the n-epoch model, which models

the population size changes using several consecutive periods (epochs) with different con-

stant sizes (Marth et al., 2004). Compared with the AFS developed with diffusion, the

coalescent-based AFS has the advantage of being in analytical form, and the estimation is

fast and accurate for small samples. In contrast, the diffusion approximation has to rely

on numerical methods, such as finite difference approaches, to approximate the solutions

(Williamson et al., 2005; Evans et al., 2007). The coalescent-based AFS is thus very use-

ful in the inference of past demographic history and has been extensively applied to data

analysis (Marth et al., 2003; Keinan et al., 2007; Gravel et al., 2011; Gazave et al., 2014).

One limitation of the coalescent-based AFS methods is that we can only analytically

derive the AFS for some simple population growth models, such as the n-epoch model
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and the exponential-growth model or their combinations (Polanski and Kimmel, 2003;

Marth et al., 2004; Gazave et al., 2014), and generalization to other complex popula-

tion histories is often impracticable (Chen, 2012, 2013; Polanski and Kimmel, 2003). A

second limitation is that for large samples (e.g., haplotype number n > 50), it is hard

to accurately calculate the expected AFS from the formulae. The expected coalescence

times ETi, 1 ≤ i < n are essential for deriving the coalescent-based AFS, which contain

coefficients in the alternating sum of the hypergeometric series and are explosively large,

causing overflow for large sample sizes (Polanski et al., 2003). When the sample size is

large, the AFS and its derived statistics are informative for inferring recent population

history. And thus, calculating the AFS for large samples becomes common in population

genetic inference from genomic data (Coventry et al., 2010; Gazave et al., 2014; Chen

et al., 2015). A high-precision arithmetic library is usually adopted to obtain accurate

numerical values when analyzing larger samples, which requires tedious programming and

intensive computation (Marth et al., 2004). Some alternative solutions were proposed,

specifically for the AFS of a single population, e.g., Polanski and Kimmel (2003) replaced

it with hypergeometric summation to avoid estimating the coefficients with large values.

Their approach can efficiently solve the numerical issue, but it is difficult to generalize

this approach to other scenarios with complex population histories for which the integral

function in the hypergeometric summation is difficult to compute. Most studies have

adopted coalescent simulations to generate a large samples to approximate the AFS un-

der specific demographic histories and applied them to analyzing genomic polymorphism.

However, this approach is computationally very intensive (Hudson, 2002; Coventry et al.,

2010; Nelson et al., 2012; Excoffier et al., 2013; Gazave et al., 2014; Tennessen et al., 2012).

To address the numerical issue in large samples, Chen and Chen (2013) used the large-

sample asymptotic distributions of coalescence times. Griffiths (1984) proved that the co-

alescence times and ancestral lineage numbers asymptotically follow a normal distribution

in a constant population. Chen and Chen (2013) extended their forms to populations with

time-varying sizes by using a time-scaling function scheme (see the “Coalescence times”

section below; Griffiths and Tavaré (1994); Donnelly and Tavaré (1995); Nordborg (2001))

and then used the first-order Taylor expansion approximation to achieve the coalescence
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times (and, further, the AFS). They illustrated the usage of this approach by deriving a

simple-form formula for the AFS in populations under exponential growth, which shows

high accuracy compared with simulated results. Note that the first-order Taylor expan-

sion approximation and time-scaling function approach of Chen and Chen (2013) works

for both large and small size samples. Technically, their approach allows them to derive

AFS in any populations with arbitrary complex demography. However, as we illustrate in

the “Methods” section, for some complex demography, it is difficult to derive the analyt-

ical form of the time-scaling function and/or its inverse function, which are essential in

deriving the coalescent-based AFS. In this paper, we propose a computational approach

to efficiently approximate the analytical formula of the time-scaling function with a fi-

nite sum approximation, and find the set of coalescence times ETi, 1 ≤ i < n, with the

computing time being nearly constant as the sample size increases. It is applicable to

any arbitrary complex history for which the time-scaling function is not tractable. This

greatly extends the application of AFS-based methods in population genetic inference and

other studies, e.g., cancer evolution. We demonstrate the performance of the approach by

obtaining the AFS for two population history scenarios that were difficult to derive using

the existing approaches: the logistic growth model and the Gompertz model.

In the following sections we first review the coalescent theory framework for obtaining

the AFS for a single population. We then summarize the first-order Taylor expansion ap-

proximation method for populations with time-varying size proposed by Chen and Chen

(2013). We illustrate the idea of the computational approach for constructing the AFS

for arbitrary demography, and we further derive the AFS for populations with two demo-

graphic histories to demonstrate its performance.

Modeling framework

For a sample of n lineages (haplotypes), the coalescence time Tk is defined as the time

when k + 1 lineages merge into k lineages, and time is measured backward (from the

present to the past). The intercoalescence time Wk = Tk−1 − Tk is the time during which

there are k lineages. Following Fu (1995), we say that any of the k branches spanning the

intercoalescence time Wk has the branch of size k. We assume an infinitely-many-sites
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model for mutations, and further mutations occur on branches along the gene genealogy

following a Poisson process. The number of mutations occurring at any branch of size

k then follows a Poisson distribution with the mean of µkE(Wk), where µ is the point

mutation rate. During the bifurcation process in which k lineages increase to n lineages at

present, any of these mutations increases the allele account from a single copy to j among

the n lineages with the probability (Feller, 2008; Griffiths and Tavaré, 1998):

pn,k(j) =

(
n−j−1
k−1

)(
n−1
k−1

) . (1)

Summing over mutations that occur on branches with different sizes, we can obtain

the entries for the AFS:

ESj(n) =

n∑
k=2

(
n−j−1
k−2

)(
n−1
k−1

) µ× kE(Wk)

=
(n− j − 1)!(j − 1)!

(n− 1)!
µ

n∑
k=2

k(k − 1)×(
n− k
j − 1

)
E(Wk), 0 < j < n. (2)

Note that EWj is fundamental in the above framework for constructing the AFS. If

we can obtain analytical forms for EWj = ETj−1 − ETj for a population with complex

demography, we can obtain the AFS through Equation 2.

Coalescence times

In a constant-size population, the distribution of coalescence times follows that of the

standard Kingman’s n-coalescent, which are exponential variables with the mean

µm = 2(
1

m
− 1

n
), 1 ≤ m < n, (3)

where µm is the coalescence time in units of haploid population size N . In addition, the

intercoalescence times are mutually independent.

For a population with time-varying size, we denote its population history as N(t), t ∈
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[0,∞). It is not trivial to derive the distribution or the expectation of coalescence times

for a population with time-varying sizes. The joint distribution of coalescence times

(Tm, . . . , Tn−1) for populations with time-varying size is (Griffiths and Tavaré, 1998)

fTm,...,Tn−1(tm, . . . , tn−1) =
n−1∏
k=m

(
k+1
2

)
N0λ(tk)

exp
(
−
(
k+1
2

)
N0

∫ tk

tk−1

1

λ(u)
du
)
. (4)

Polanski et al. (2003) derived the marginal probability density function of coalescence

times fTm by expanding an integral transform of the marginal pdf into partial fractions.

Another way to derive fTm is based on the definition of a pure-death process, in the form

of a function of the ancestral lineage number, P (An(t) = m) (Griffiths, 2006; Chen, 2012).

With the marginal distribution of coalescence times derived, Polanski and Kimmel (2003)

obtained the AFS for a population under exponential growth, which is in complex form,

and requires calculating the hypergeometric series and exponential integral.

Chen and Chen (2013) used the time rescaling approach in the variable-population-

size coalescent model (Griffiths and Tavaré, 1994; Nordborg, 2001; Donnelly and Tavaré,

1995). The coalescence time is rescaled at the rate 1/N(t), denoted as τm:

τm = g(Tm) =

∫ Tm

0

1

N(u)
du. (5)

τm follows the coalescence time distribution in the standard Kingman’s n-coalescent (King-

man, 1982). Chen and Chen (2013) then used a Taylor expansion of Tm = g−1(τm) around

µm to achieve the approximation:

Tm = g−1(µm) + (g−1)
′
(µm)(g(Tm)− µm)

+
(g−1)

′′
(µm)

2
(g(Tm)− µm)2 +O((g(Tm)− µm)3). (6)

Thus

E(Tm) ≈ g−1(µm), (7)

and

V ar(Tm) =
σ2m

(g′(g−1(µm)))2
. (8)

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 29, 2018. ; https://doi.org/10.1101/456335doi: bioRxiv preprint 

https://doi.org/10.1101/456335


In general, for any population history N(t), 0 ≤ t <∞, we can always obtain the time-

scaling function g(t) as in Equation 5, and further obtain ETm = g−1(µm) as above. Chen

and Chen (2013) demonstrate the application of this approach using an exponentially

growing population as an example. ET for the exponential growth model is in a very

simple analytical form:

ETm =
1

γ
ln(2N0γ(1/m− 1/n) + 1), (9)

and the obtained AFS is highly accurate (see Figure 6 of Chen and Chen (2013)).

Since it is not trivial to derive the coalescence times for populations with time-varying

size in existing studies, and simulations are usually required as a replacement for most

studies, Chen and Chen (2013)’s approach provides simple and efficient solution for ob-

taining ETm (Coventry et al., 2010; Nelson et al., 2012; Tennessen et al., 2012; Excoffier

et al., 2013; Gazave et al., 2014). However, for some complex demographies, the analyti-

cal form of the time-scaling function g(t) and its inverse function, which are essential for

deriving ETm, are not tractable. This prohibits the general usage of their approach for

arbitrary population history.

Coalescence times under complex demographic history

In this section, we illustrate how to extend Chen and Chen (2013)’s method to be

applicable to arbitrary population history using a computational approach. As we can

see from the above section, g(t) and g−1(t) are the two essential components for deriving

coalescence times for a given population history N(t) (see Equation 7). Note that to obtain

ETm, we do not need the analytical form for calculating an arbitrary point t. In contrast,

we only need to find a finite number of Tm values that correspond to µm, 1 ≤ m < n and

satisfy

µm = g(Tm). (10)

We thus propose the following two numerical schemes for calculating ETm, applicable to

different situations. The first approach is generally applicable to all cases, including those
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for which we cannot obtain g(t); the second approach is specifically for the case in which

we have an analytical form of g(t) but g−1(t) is not tractable.

Approach 1 (finite sum approximation)

Algorithm: Calculating coalescence times

Input: population history N(t), 0 ≤ t <∞, sample size n.
Initialize: µi = 2( 1

i−1 −
1
n), i = 1, 2, ..., n− 1; t = 0; G = 1

N(0) .

For i = n− 1 : 1
µ = µi;
While G < µ
t = t+ 1;
G = G+ 1

N(t) ;

End
If G− µ < 1

2N(t)

ETi = t;
Else

ETi = t− 1;
End

End
Output: Expected coalescence time ETi, i = 1, 2, ..., n− 1.

Table 1: Procedures for calculating coalescence times using the finite-sum approximation (Approach 1).

For a sample of size n under the population history N(t), t ∈ [0,∞), we can simply

approximate the integral of the time scaling function equation using the discrete finite

summation:

µm = g(Tm) =

∫ Tm

0
1/N(u)du, 1 ≤ m < n.

≈
Tm∑
u=0

1

N(u)
. (11)

Then, for each µm, the corresponding expected coalescence times ETm can be obtained

during the following sequential summation procedures:

Step 1 We have a series of expected coalescence times under the standard n-Kingman’s

coalescent µm = 2( 1
m−1 −

1
n), 1 ≤ m < n. Initialize the procedure from generation 0

(the current generation) with G = 1
N(0) .
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Step 2 Keep increasing the discrete generation time t, and calculate G = G+ 1
N(t) until the

value t satisfies µn−1 ≈
∑t

u=1
1

N(u) . Set Tn−1 = t.

Step 3 Repeat Step 2, and keep increasing t to obtain the rest of the values for ETi, n−2 ≤

i ≤ 1.

Step 4 terminate the process when ET1 is obtained.

After we have {ETm, 1 ≤ m < n}, the AFS can be constructed through Equation 2. The

detailed pseudocode for implementing the algorithm is listed in Table 1.

Approach 2

For some population histories, the analytical form of the time scaling function g(t)

can be achieved, but the inverse function g−1(t) is not tractable. An alternative approach

can be applied to obtain ETm for such cases through the following procedures. For each

Tm, 1 ≤ m < n, we have the non-linear equation,

g(Tm)− µm = 0, 1 ≤ m < n. (12)

The above non-linear equations can be solved using numerically algorithms to obtain Tm.

such as Newton-Raphson (Press et al., 1992). In this paper, we adopt two approaches

implemented in MATLAB. The first one is the fzero function, which implements Dekker’s

algorithm as a combination of bisection, secant, and inverse quadratic interpolation meth-

ods (Brent, 2013). The second is the fminsearch function, which uses the simplex search

method of Lagarias et al. (1998)

This approach usually takes more time than Approach 1, as for each coalescence time

Tm, we need to solve the corresponding equation iteratively. Furthermore, the number

of equations and the computational complexity increase with the sample size, and thus

Approach 2 is more suitable for small samples.

Results

Various population growth models have been proposed to approximate the ancient pop-

ulation history of humans and other species. For example, Gazave et al. (2014) proposed a
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Figure 1: The population growth rate (A) and population size (B) as a function of time, and the allele
frequency spectrum (C) of the logistic growth model for three growth rates: γ = 0.003, 0.006 and 0.015.
The other parameters are: Nk = 10, 000 and T = 5000.
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Figure 2: The population growth rate (A) and population size (B) as a function of time, and the allele
frequency spectrum (C) of the Gompertz model for four parameter settings: γ = 0.01, α = 0.005; γ =
0.01, α = 0.001; γ = 0.05, α = 0.004 and γ = 0.05, α = 0.008. The other parameters are: N0 = 1,
T = 5000.
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Method
Running time (seconds)

Exponential Logistic Gompertz

n=10
analytical calculation 0.000004 0.110637 -

finite sum approximation (approach 1) 0.000084 0.000205 0.000204
fzero (bisection+interpolation) 0.003677 0.004618 -
fminsearch (downhill simplex) 0.019621 0.019983 -

n=50
analytical calculation 0.000005 0.614442 -

finite sum approximation (approach 1) 0.000087 0.000188 0.000208
fzero (bisection+interpolation) 0.034866 0.020172 -
fminsearch (downhill simplex) 0.063361 0.106250 -

n=100
analytical calculation 0.000006 1.265550 -

finite sum approximation (approach 1) 0.000087 0.000194 0.000206
fzero (bisection+interpolation) 0.068639 0.041638 -
fminsearch (downhill simplex) 0.126790 0.214588 -

n=500
analytical calculation 0.000031 7.22106 -

finite sum approximation (approach 1) 0.000145 0.000226 0.000209
fzero (bisection+interpolation) 0.377974 0.231884 -
fminsearch (downhill simplex) 0.737102 1.219030 -

Table 2: Comparison of running times between different methods for three population growth models and
four different sample sizes (10, 50, 100 and 500). For the Gompertz model, only the results of the finite-sum
approximation are available.
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five-scenario model for the European population, including two stages of population bot-

tlenecks and a very recent exponential growth. The simple exponential population growth

model may be the most commonly used model. It assumes a constant growth rate, which

is valid when space and resources are unlimited. The exponential growth model is a good

approximation for the early stage of humans, bacteria, and most populations. In cancer

evolution studies, models with more parameters were developed to describe tumor growth

(Benzekry et al., 2014). These models are complicated by modifying growth rates with

carrying capacity or other factors, e.g., the logistic growth model and Gompertz model.

In this section, we use exponential, logistic and Gompertz growth models to illustrate

the usage of our proposed approach. For the exponential growth model, N(t) = N0e
−rt,

it is straightforward to analytically derive the expected coalescence times ETm (Equation

9). We then compared the running time of the three approaches (including the analytical

approach, the finite-sum approximation, and Approach 2 ) for the model with the two

parameters N0 = 100, 000 and r = 0.003. For Approach 2, we adopted two numerical

methods: the bisection + interpolation method implemented in the MATLAB function

fzero and the downhill simplex method implemented in the MATLAB function fminsearch.

The time was averaged over 1000 repeats running in MATLAB and is recorded in Table

2. The detailed results for the logistic growth and Gompertz model are elaborated below.

Logistic growth

Compared with the exponential growth model, the logistic growth model regulates the

growth rate with a factor (1 − N(t̃)
Nk

), in which Nk is the carrying capacity. It thus has

a sigmoid shape and reaches an equilibrium size of Nk instead of unlimited growth (see

Figure 1(A)). A logistic growth model is consistent with the population dynamics of many

organisms and is widely used in ecological research. Let γ be the maximum population

growth rate (aka, intrinsic growth rate); for a population under logistic growth,

dN(t̃)

dṫ
= γ(

Nk −N(t̃)

Nk
)N(t̃). (13)

Note that in the above equation, time is measured forward (from the past to the present),

and we denote it with t̃ to distinguish it from the backward time in other sections. The
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population size N(t̃) follows a logistic curve,

N(t̃) =
Nk

(1− e−γt̃) +Nke−γt̃
. (14)

After changing the variable of forward time t̃ to backward time t, we have

N(t) =
Nke

γT

eγT + (Nk − 1)eγt
, (15)

and the model includes three free parameters: Nk, γ and T .

Given the population history function N(t), we can derive the time-scaling function

for the logistic growth model,

g(t) =

∫ t

0

1

N(u)
du

=
e−γT (eγt − 1)(Nk − 1) + γNkt

Nkγ
, (16)

and we further obtain its inverse function,

g−1(τ) =
−W

(
e(Nk−1)e−rT

+Nkγτ − γT
)

+Nkrτ +Nk − 1

r
, (17)

where W (·) is the Lambert W function, which is calculated numerically.

According to Chen and Chen (2013), the expected coalescence time ETm = g−1(µm)

can be obtained from Equation 17. We can also calculate it through Approaches 1 and

2 of the previous section. In Figure 1, we present the AFS generated from Equation 17

(“Analytical calculation”) and Approach 1 (“Approach 1”) for Nk = 10, 000, T = 5000 and

three different growth rates γ = 0.003, 0.006 and 0.015. We also obtained the AFS using

Approach 2 and compared the running time for a specific parameter setting (Nk = 10, 000,

T = 5000, and γ = 0.005) for three approaches (Table 2).

Gompertz growth

The Gompertz model is another widely used model to approximate population dynam-

ics. It was originally proposed to explain human mortality (Gompertz, 1825) and is also
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used to describe the population growth of other species, including bacteria, animals, and

plants (Tjørve and Tjørve, 2017). The Gompertz model was found to fit well the growth

of breast cancer and 19 other tumor cell populations (Laird, 1964; Norton et al., 1976;

Norton, 1988). One of its forms is

dN(t̃)

dt̃
= γ(t̃)N(t̃), with

dγ

dt̃
= −αγ(t̃), (18)

where γ0 is the initial growth rate; N0 is the initial population size when it started to

grow; and α can be viewed as the exponentially decaying rate of the growth rate. The

population history N(t̃) is determined by four parameters: N0, γ0, α and T , the duration

since the population growth began. The solution of the above differential equation is

N(t̃) = N0 exp
(γ0
α

(1− e−αt̃)
)
. (19)

It is unfeasible to derive the time-scaling function g(t) and its inverse function g−1(t) for

the Gompertz model. Therefore, we have no analytical calculation or numerical solution

(Approach 2) of the coalescence times for the Gompertz model. In Figure 2 (A) and (B),

we show the growth rates and population size trajectories as a function of time for four

parameter settings: γ0 = 0.01, α = 0.0005; γ0 = 0.01, α = 0.001; γ = 0.05, α = 0.004; and

γ = 0.05, α = 0.008. The corresponding AFS for n = 50 haplotypes is presented in Figure

2 (C)-(F). The running times of Approach 1 for a specific parameter setting (T = 5000,

r = 0.01, α = 0.001 and N0 = 1) and with different sample sizes (10, 50, 100, and 500)

are presented in Table 2.

Computing time

We compared the computing times for Approach 1 (finite-sum approximation), Ap-

proach 2 and the analytical approach. For Approach 2, we used several methods for solving

the non-linear equations, including the bisection+interpolation (implemented in the MAT-

LAB function fzero) and the downhill simplex (implemented in fminsearch) methods. All

the comparisons are in MATLAB. We investigated three population growth models: the

exponential growth, logistic growth and Gompertz growth model. The running times for
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constructing the coalescence times Tm, 1 ≤ m < n, for four sample sizes n = 10, 50, 100

and 500 were recorded. The running time was averaged over 1000 repeats, as listed in

Table 1 (in seconds).

A trend in Table 2 worth noting is that the finite-sum approximation is very fast. The

running time is close to that of the analytical calculation, nearly of the same magnitude,

and much faster than that of numerical approaches (Approach 2). The only outlier is

the logistic model,for which the finite-sum approximation is much faster than the ana-

lytical approach. This is because the analytical form of the g(t) function for the logistic

model consists of the Lambert W function, which is calculated numerically and is time-

consuming.

Second, note that the running time of the finite-sum approximation approach is nearly

constant with increasing sample size n. As we mentioned above, the computational com-

plexity is O(1), and thus, it is insensitive to the sample size. This guarantees the com-

putational efficiency of the approach when the sample size becomes large, enabling its

application to large-sample data analysis.

The numerical approach for solving the g(t) function (Approach 2) also works efficiently

but is more time-consuming than the finite-sum approximation approach for all three

population growth models. Furthermore, the running time increases with the sample size

n, as the number of nonlinear equations to solve increases linearly with n.

Conclusion

The allele frequency spectrum is informative for population genetic inference. Various

AFS-based methods have been developed for inferring population history and detecting

natural selection in the past years. They have gained popularity with the abundance

of genomic sequencing data (e.g., Bustamante et al. (2001); Griffiths and Tavaré (1998);

Polanski and Kimmel (2003); Marth et al. (2004); Nielsen et al. (2005); Williamson et al.

(2005); Gutenkunst et al. (2009), etc.). Compared with the diffusion-based AFS methods

which require approximation of the solutions with numerical approaches, modeling the

AFS using coalescent theory is computationally efficient. Most population genetic infer-

ence methods using the coalescent likelihood require computationally intensive algorithms
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for parameter estimation, such as importance sampling or Markov chain Monte Carlo,

while the coalescent-based AFS methods only depend on the expected coalescence times,

which guarantee the analytical form (Fu, 1995; Griffiths and Tavaré, 1998; Chen, 2012).

The coalescent-based AFS has shortcomings. First, for large samples it is impossible

to obtain accurate calculations due to numerical overflow of large coefficients in the hy-

pergeometric series. Second, it is difficult to derive the coalescent-based AFS for complex

population histories, which limits its application to simple growth models, such as the

exponential growth and n-epoch models. Chen and Chen (2013) showed that for complex

demography, we can obtain the expected coalescence times through a linear Taylor expan-

sion approximation, which involves the time-scaling function g(t) and its inverse function

g−1(t). The analytical equations of coalescence times derived through this approach are

in a simple form and can successfully overcome the numerical issue for large samples.

Furthermore, the time-scaling scheme is technically applicable to arbitrary complex pop-

ulation histories. However, in practice, the analytical forms of the population-scaling

function g(t) and its inverse function are not achievable for many cases, limiting the ap-

plications. For example, in the study of cancer cell growth, various population growth

models in complex form were proposed to describe the dynamics of cancer cells, for which

the analytical form of AFS is difficult to derive. In this paper, we propose a computational

approach, the finite-sum approximation, efficiently solving the problem of Chen and Chen

(2013) when the analytical form of the time-scaling function g(t) and its inverse function

g−1(t) are not derivable.

We apply the computational approach to three widely used models, including the

exponential, logistic and Gompertz growth models to demonstrate its performance. As

shown in the Results section, the finite-sum approximation approach is computationally

very efficient, and the running time is nearly on the magnitude of that of the analytical

approach. Furthermore, the computational time does not increase linearly with the sample

size, ensuring its efficiency for AFS of large sample sizes. This is especially attractive

for the flexibility to tackle a complex population history that is intractable by using

the analytical approach, for example, the Gompertz growth model shown in Table 2.

The computational approach presented in this paper is applicable to arbitrary complex
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population history and significantly enables the application of the coalescent-based AFS

approaches to population genetic inference in the genomic sequencing era.
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