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ABSRACT 

The identification of ever-increasing numbers of RNA species has underlined the importance of 

robust characterization of bona fide sites of protein-RNA interaction. UV crosslinking can be 

used to identify precise RNA targets for individual proteins, transcriptome-wide. Here we sought 

to generate reciprocal data, identifying precise sites of RNA-binding proteome-wide. The 

resulting technique, identification of RNA-associated peptides (iRAP), was used to locate 1331 

unique RNA-interaction sites at single amino acid residue resolution in 324 S. cerevisiae 

proteins. Our identified RNA-interaction sites in characterized RNA-protein complex agree well 

with available high-resolution structures. In known RNA-interacting protiens, 317 sites fall into 

known and suspected RNA-interaction domains while only 21 sites fall into other annotated 

sequence features. Strikingly, 993 of the sites identified fall into protein regions that lack any 

recognizable protein domain structure or annotated sequence features. This suggests that, 

despite binding RNA in vivo, many of these proteins will not have defined functions in RNA 

metabolism.  

 

 

Highlights 

Method identifies precise RNA-binding sites across proteome 

1331 sites identified that contact RNA in 324 proteins in S. cerevisiae 

RNA binding takes place predominantly outside known protein domains 
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Introduction 

Interactions between RNA and proteins play key roles in many aspect of cell metabolism. 

However, the identification of protein-RNA interaction sites has long been challenging, 

particularly in living cells. Individual protein-RNA interactions can be characterized, if known, by 

mutagenic and biochemical approaches but this has always been labor intensive. The difficulty 

is compounded by the fact that many interactions do not fall within characterized interaction 

domains, and even apparently well-characterized RNA-binding domains can show multiple 

modes of RNA interaction (Clery, Sinha et al., 2013), making detailed predictions less reliable.  

For large-scale characterization of protein-RNA interactions, a significant advance was the 

development of RNA immunoprecipitation (RIP) with or without formaldehyde crosslinking, 

allowing the identification of RNAs associated with target proteins, although not the site of 

association (Gilbert, Kristjuhan et al., 2004, Gilbert & Svejstrup, 2006, Huang, Johansson et al., 

2005, Hurt, Luo et al., 2004, Motamedi, Verdel et al., 2004, Niranjanakumari, Lasda et al., 

2002). Subsequently, UV crosslinking approaches were developed that allow accurate 

identification of the binding sites for individual proteins on RNA molecules, transcriptome-wide 

(Bley, Qi et al., 2011, Doneanu, Gafken et al., 2004, Granneman, Kudla et al., 2009, 

Granneman, Petfalski et al., 2010, Maly, Rinke et al., 1980, Mital, Albrecht et al., 1993, Rhode, 

Hartmuth et al., 2003, Urlaub, Hartmuth et al., 2000, Van Nostrand, Pratt et al., 2016, 

Wagenmakers, Reinders et al., 1980).  

The reciprocal analyses of proteins that are bound to RNA have been more difficult to develop, 

at least in part because proteomic approaches do not provide the amplification offered by PCR. 

However, recent reports have successfully used UV crosslinking and RNA enrichment to identify 

many or all poly(A)+ RNA binding proteins present in human cells and other systems (Baltz, 

Munschauer et al., 2012, Castello, Fischer et al., 2012, Kwon, Yi et al., 2013). This technique 

was an important advance but, like RIP, identifies the species involved but not the site of 

interaction, and is limited to mature mRNAs. To identify the total RNA-bound proteome, the 

approach of 5-ethynyluridine (EU) labeling of RNAs followed by biotin ligation using the click 

reaction (RICK) was recently developed (Bao, Guo et al., 2018, Huang, Han et al., 2018). In 

addition, MS analyses have been developed to identify the precise amino-acid at the site of 

RNA-protein crosslinking (Kramer, Sachsenberg et al., 2014). 

Here, we sought to develop a ready means for the identification of the peptide, and indeed the 

amino acid that is crosslinked to RNA during UV irradiation in living cells. This is based on the 
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identification of the specific mass difference resulting from the single residual nucleotide that 

remains associated with the peptide following complete hydrolysis of the RNA and partial 

digestion of the protein. Here we report the application of this technique to precisely map the 

RNA-binding sites of hundreds of yeast proteins following crosslinking in actively growing cells, 

validated by using available high-resolution structures for yeast ribosome and individual protein-

RNA complexes, together with genome-wide analysis of RNA targets of the novel RNA-binding 

protein enolase. This approach should be widely applicable for the reliable and accurate 

characterization of the protein-RNA interactome in many systems.  

 

Results 

Development of iRAP protocol 

To identify proteins that directly bind to RNA and their attachment sites to RNA, we first 

covalently attached RNA to its associating proteins by UV crosslinking in actively growing cells. 

Our initial rationale was that RNA purification under stringent washing conditions should retain 

only covalently attached proteins or peptides and thus reveal the identity of those proteins that 

directly contact to RNA. When proteins are then digested by a specific protease such as LysC 

or trypsin, only peptides attached to the RNA and thereby harboring the actual linkage sites, can 

be purified together with RNA. Finally, RNA degradation should leave a single nucleotide 

attached to peptides and these peptides could then be identified by mass spectrometry, a 

process that would also reveal the exact site of nucleotide-modification. In this way, protein 

identity and RNA-attachment point would be revealed simultaneously for all proteins.  

In establishing the purification protocol for RNA-associated peptides, various conditions were 

tested, with the best results being obtained using a CsTFA density gradient. This separation is 

based on the previous observations that RNA is denser than proteins, with RNA-protein 

complexes showing an intermediate density.  

To assess whether the purification of RNA-protein complexes recovered only covalently bound 

conjugates, a SILAC experiment was performed to quantify protein recovery in the presence 

and absence of UV crosslinking. Yeast strains that were auxotrophic for lysine (lys2∆0) were 

grown in the presence of lysine or [13C6]-lysine. We mixed unlabeled, non-crosslinked lysate 

with isotope labeled in vivo crosslinked lysate prior to fractionation. Unexpectedly, even after 

stringent RNA purification (lysis in the presence of urea and/or guanidinium thiocyanate, RNA 
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purification through CsTFA gradient), the majority of identified non-modified peptides showed no 

enrichment in the cross-linked sample (Figure S1A, S1B). This suggests that the identification of 

RNA-bound proteins based solely on co-precipitation with RNA even by help of crosslink 

stabilization and stringent washing may not be a fully reliable indicator of in vivo interactions. 

We therefore focused on identifying the subset of peptides of these proteins that had been 

covalently linked to nucleic acid, since these links can arise only in vivo during the irradiation 

step. Indeed, no RNA-modified peptides were identified in the absence of cross-linking (see 

below). 

To identify RNA-peptide conjugates, we used the final workflow outlined in Fig 1A. Briefly, 2 l 

cultures of actively growing yeast were UV-irradiated at 254 nm as previously described 

(Granneman et al., 2009). Recovered cells were lysed and proteins digested under denaturing 

conditions. RNA was purified from the digestion mixture, taking along any covalently attached 

peptides, purified RNA was hydrolyzed, RNA-modified peptides were separated from 

nucleotides, desalted and analyzed via LC-MS/MS. We named this approach identification of 

RNA associated peptides (iRAP). Detailed variations of the recommended iRAP workflow are 

given in Supplemental Data.  

Identification of RNA-binding sites in proteins 

An initial dataset, generated from poly(A)+-enriched RNA-protein complexes, was searched 

using in-house developed Xi database search platform (ERI, Edinburgh) with an open 

modification search option (xiOMS), to identify any UV-specific modifications. xiOMS identifies 

peptides in a modification-independent manner, allowing a search for unknown and unexpected 

modification masses. This search revealed an abundant unknown UV-specific modification with 

a mass of 324.0374 Da (Fig 1B). None of the peptides carrying this modification were found by 

SILAC in the non-UV-irradiated control. This indicates strongly that 324 Da is a UV-dependent 

modification of peptides. Elemental composition simulation proposed this modification to be 

C9H13N2O9P (324.0359 Da, 4.7 ppm), which corresponds to uridine monophosphate (UMP). 

Interestingly, this was the only nucleotide-derived modification we were able to identify, we 

observed no evidence for peptide cross-links with A or G or C. We also observed a modification 

of 244.0713 Da, consistent with the mass of uridine (244.0695 Da, 7.2 ppm), but this was not 

used for further analysis due to its low occurrence. 

Fig 1C shows an example of an UMP-modified peptide identified in xiOMS, with the exact 

modification site determined by full b- and y- ion ladders. In further support of the identification 
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of the modification as UMP, we also observed the presence of a potential reporter ion at m/z 

227.0668, a mass that fits with the elemental composition of uridine after elimination of H3PO4 

during fragmentation (227.0662 Da, -2.6 ppm) (Fig 1C). Next, we generated sequence logos 

with the modified peptides to determine whether some UMP-modified amino acids are over-

represented (Fig 1D). There was an over-representation of aromatic amino acids phenylalanine 

and tyrosine, together with lysine, leucine, valine, alanine and isoleucine. This is in agreement 

with Phe and Tyr frequently being found as RNA-interacting residues in RRMs (Clery, Blatter et 

al., 2008, Hobor, Pergoli et al., 2011, Teplova, Song et al., 2010, Tsuda, Kuwasako et al., 

2009). As a result, we used these seven amino acids together with previously described 

tryptophan (Bley et al., 2011, Katouzian-Safadi, Laine et al., 1991, Reeve & Hopkins, 1980) to 

define new modifications in the MaxQuant search engine (Cox & Mann, 2008). All of the 

acquired data was subjected to large-scale data analysis using two different search engine 

platforms; either MaxQuant or using an in-house developed, Xi database search platform (ERI, 

Edinburgh) with a target modification search option (xiTMS) (see Methods and Supplemental 

Information). The main difference between these two search platforms was that in MaxQuant 

UMP modification was defined to be specific to the most frequently identified amino acids, 

whereas xiTMS was targeted to UMP modifications with no amino acid specificity, thereby 

making these two approaches complementary to each other.  

Combining all results from xiOMS, xiTMS and MaxQuant searches, we identified 324 unique 

RNA-linked proteins in total, with 1331 unique linkage sites (Table S1 and Table S2, 

respectively). Ribosomal proteins, including mitochondrial ribosomal proteins, comprised about 

20% of RNA-linked proteins and 40% of unique linkage sites, with 68 proteins and 526 linkage 

sites identified (Table S1 and Table S2). For 28 ribosomal proteins it was not possible to 

distinguish between the A and B isoforms, since these are identical for the peptides found to be 

crosslinked to RNA.  

Using PANTHER (Protein ANalysis THrough Evolutionary Relationships), a classification 

system designed to classify proteins (and their genes), (Mi, Muruganujan et al., 2013a, Mi, 

Muruganujan et al., 2013b), 281 out of 324 identified RNA-crosslinked proteins could be 

annotated based on their Protein Class annotation (Fig 1E, Table S1). 149 proteins (53%) were 

classified as ‘nucleic acid binding’, with additional 40 proteins classified either as “transferase” 

or as “hydrolase”.  
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Ribosome as a proof of principle for iRAP 

Ribosomal proteins in which RNA crosslinks were mapped are shown on the yeast 80S 

ribosome structure (Fig 2A). Of the 73 ribosomal proteins in the yeast 80S ribosome structure 

(PDB 3U5B|3U5C|3U5D|3U5E) (Ben-Shem, Garreau de Loubresse et al., 2011), 56 were 

identified as UMP-modified, with a total of 436 linkage sites (Table S3). As an example, Thr20 of 

Rpl2A and its neighboring uridine are indicated in a zoom-in (Fig 2A), demonstrating the close 

proximity of the amino acid and the nucleotide. To test whether this is also true for other 

ribosomal linkage sites, we analyzed the distributions of shortest distances from each amino 

acid to the closest uridine in the yeast 80S ribosome structure (Fig 2D). Fig 2B compares the 

shortest distance between each amino acid and its closest uridine (indicated in magenta) with 

the shortest distance between each RNA-linked amino acid and its closest uridine. RNA-linked 

amino acids in the yeast ribosome were generally closer to uridine residues than all amino 

acids, with the two populations showing highly significantly differences (P value 1.5x10-62) as 

determined by a Kruskal-Wallis test (Kruskal & Wallis, 1952). Note, however, that complete 

coincidence between the observed crosslinks and the crystal structure is not expected, since 

the crosslinking was performed on active, functional ribosomes, whereas inactive ribosomes 

were purified from glucose-starved cells for crystallization (Ben-Shem et al., 2011).  

Mapping of protein-RNA cross-linking sites to protein features 

Next, we analyzed all identified RNA-crosslinked proteins with regard to their UniProtKB 

annotated sequence features. Only sequence features for which at least two independent RNA 

crosslinks were identified were included (Fig. 3A). By far the most abundant sequence feature 

was the RNA-recognition motif (RRM), with RNA crosslinks localized to 37 individual RRM 

domains in 27 proteins. Other sequence features were represented with lower numbers, with 

only Pumilio having RNA linkage sites falling into seven individual features in three proteins. As 

expected, almost all of the annotated sequence features are involved in RNA binding or 

metabolism, with an exception of the “Protein kinase” motif, which was recovered two times.  

Since the RRM domain was the best represented of all annotated sequence features and well 

documented in regard its RNA binding properties (Clery et al., 2008), we assessed the 

distribution of RNA linkage sites within RRM domains. As shown in Fig 3B, identified RNA 

linkage sites fall into three distinct regions of the RRM domains – N-terminus, central region and 

C-terminus. This finding is in very good correlation with an in-solution NMR structure (PDB 

2L41) (Hobor et al., 2011) of an RRM domain from Nab3 in complex with an oligonucleotide 
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UCUU reflecting its consensus binding site (Fig 3C). Two of the linkage sites (displayed in red) 

were identified in Nab3 in this study. We identified the third linkage site (displayed in orange) in 

other RRMs, and positioned it based on sequence alignment.  

The Pumilio RNA-binding domain was also well represented among the RNA-binding peptides, 

and crosslinked residues were in good agreement with predicted contact sites. As an example, 

Figure 4 shows the crystal structure of the Pumilio domain of Puf3; identified RNA-linked amino 

acids are in close proximity to RNA nucleotides. Other known RNA binding domains were also 

well-represented in our data, but the lack of suitable high-resolution structures did not allow us 

to visualize RNA-linkage sites for confirmation.  

Our set of identified RNA-linked proteins contained 33 unique UniProtKB-annotated sequence 

features, of which 21 were assigned as RNA-binding (Table S4). In total, 326 of 767 non-

ribosomal protein linkage sites were mapped to 81 separate UniProtKB-annotated sequence 

features of 63 proteins (Table S2). Of those 326 linkage sites, 306 fall into known RNA binding 

domains in 53 different proteins. Another 204 non-ribosomal protein RNA linkage sites were 

assigned to 85 proteins that had UniProtKB-annotated sequence features but none of these 

linkage sites were mapped to any of those sequence features. Finally, 257 RNA linkage sites 

were assigned to 110 proteins that lacked any UniProtKB-annotated sequence features. We 

also analyzed low complexity regions in the identified proteins using the SEG program (Wootton 

& Federhen, 1996). 81 linkage sites fall into low complexity regions of which 69 are linkage sites 

that we could not map to annotated protein features.  

We conclude that crosslinks identified in known RNA-binding proteins are generally located 

within the expected RNA-binding domains. However, crosslinks in proteins not predicted to bind 

RNA are generally in regions with no annotated structural domains. 

 

Discussion  

Most previous UV-crosslinking studies were carried out with DNA, rather than RNA (for reviews 

see (Meisenheimer & Koch, 1997, Steen & Jensen, 2002, Williams & Konigsberg, 1991)). All 

native nucleobases have absorption range of 250-270 nm, meaning that any nucleic acid can be 

excited and will react with proteins (Meisenheimer & Koch, 1997, Williams & Konigsberg, 1991). 

Reported yields for in vitro protein:nucleic acid crosslinks are around 2-15%, (Steen & Jensen, 

2002, Williams & Konigsberg, 1991), and in yeast cells we saw RNA crosslinking yields of up to 
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around 5%. These levels suggested that it should be possible to recover sufficient material to 

identify exact amino acids within peptides that are UV crosslinked to RNA. However, 

crosslinking reaction mechanisms are not fully understood, making the products hard to predict 

(Shetlar, 1980, Steen & Jensen, 2002). Despite this, we were able to identify UV-specific 

peptide modification with a mass of 324 Da, corresponding to the addition of a uridine 

monophosphate, without any losses of functional groups or atoms. It has been noted previously 

that in the photochemical reactions involving thymidine and tyrosine, the masses of the adducts 

formed were found to be equal to the sum of the masses of individual species (Connor, Falick et 

al., 1998). 

It was unexpected that only crosslinks with uridine were found, since CRAC analysis had 

identified all four other nucleotides as RNA interaction sites (Granneman et al., 2010). The basis 

of this specificity in the MS analysis is unclear, but we note that a similar phenomenon was 

previously reported an MS analysis of nucleotides recovered bound to peptides (Kramer et al., 

2014). In vitro studies determined that the UV crosslinking efficiency of nucleotides can be 

ranked as dT >> dC > rU > rC, dA, dG (Hockensmith, Kubasek et al., 1986, Paradiso & 

Konigsberg, 1982, Williams & Konigsberg, 1991), consistent with our findings. In addition, UV-

induced protein:nucleic acid complexes may differ in their stability to acids, bases, or 

denaturants (Shetlar, 1980). UV-induced protein:nucleic acid complexes are stable to high 

concentrations of salts and denaturants (Williams & Konigsberg, 1991). In contrast, incubation 

in acetic acid/methanol solution, similar to Coomassie fixing solution, disrupted up to 75% of a 

covalent gp32:DNA complex (Hockensmith, Kubasek et al., 1991). It therefore seems likely that 

other nucleotides within RNA do crosslink with proteins but are not abundant or stable enough 

to be detected under the conditions used by us during analysis. This may limit the recovery of 

proteins that specifically interact with RNA binding sites that lack uracil. However, it does not 

appear to be major problem for reciprocal CLIP-related assays. 

Most amino acids can form photo-adducts with oligo-DNA or RNA sequences when single 

amino acids are added to the reaction, with Cys, Lys, Phe, Trp, Tyr, His, Glu and Asp being the 

most reactive amino acids towards DNA (Shetlar, 1980, Shetlar, Carbone et al., 1984, Shetlar, 

Christensen et al., 1984, Shetlar, Home et al., 1984). Based on previous analyses (Bley et al., 

2011, Connor et al., 1998, Doneanu et al., 2004, Maly et al., 1980, Williams & Konigsberg, 

1991, Zwieb & Brimacombe, 1979), aromatic amino acids would also be expected to be among 

the most reactive with intact proteins, and this was found in our analyses. In previous analyses, 

positively charged (Lys, Arg) or polar amino acids (Asn, Cys, Gln, His, Ser, Thr, Tyr, Trp) were 
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largely implicated in interactions with nucleic acids, via either nitrogen bases or phosphate 

group (Ellis, Broom et al., 2007, Lejeune, Delsaux et al., 2005, Treger & Westhof, 2001) 

whereas we saw enrichment for hydrophobic amino acids (Ile, Leu, Val, Ala). As above, the 

restriction of the MASCOT database search to 7 amino acids may have led to the exclusion of a 

number of crosslinked proteins from the final list, which is unlikely to be exhaustive. 

Structures of protein-RNA complexes deposited in the Protein Data Bank have been used 

previously to analyze interactions between amino acids and nucleotides (Ellis et al., 2007, 

Lejeune et al., 2005, Treger & Westhof, 2001). Interestingly, in all three studies it was found that 

Trp and Phe, together with Ala, Val, Ile and Leu were disfavored for interacting with RNA 

whereas these six amino acids were among the over-represented amino acids in our study. One 

can argue that available structures represent only a subset of all interactions and conclusions 

are therefore biased. An alternative explanation could be that whilst hydrophobic amino acids 

are not directly involved in RNA binding in studied structures, they are still in close enough 

proximity to be UV-cross-linked, especially considering that we found evidence for only 

crosslinks with U. Another potentially interesting finding was that RNA and DNA behave 

differently regarding protein interactions – most protein-DNA interactions involve phosphate 

atoms while protein-RNA involve more frequently base edge and ribose atoms (Lejeune et al., 

2005). This knowledge may prove to be useful for future studies on protein-DNA interaction 

sites.  

The majority of ribosomal proteins were identified with RNA crosslinks, including several 

mitochondrial r-proteins. Since the crystal structure of the yeast ribosome is available (Ben-

Shem et al., 2011), distances could be calculated from each RNA-linked amino acid to the 

nearest uracil residue. Consistent with “zero-length” crosslinking being induced by UV, the RNA 

binding sites were generally located in close proximity to uracil residues. Some discrepancies 

were observed, but the ribosomes used for crystallization were extracted from glucose-starved, 

non-growing cells, and may differ in some details from the ribosomes in the actively growing 

cells used here. Moreover, since we did not identify which RNA species was crosslinked to each 

protein, some RNA interactions identified in our ribosomal proteins may be formed with the 

tRNA, mRNA or other RNA species, rather than the rRNA, thereby giving longer distances than 

predicted from the crystal structure data. 

As expected, the non-ribosomal proteins that crosslinked to RNA were strongly enriched for 

known RNA-binding motifs. The most abundant was the well-characterized RRM domain, and 
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the binding sites identified in these domains were in good agreement with the crystal structures 

of RRM-RNA complexes (Clery et al., 2008, Hobor et al., 2011, Teplova et al., 2010, Tsuda et 

al., 2009). Several other known nucleic acid binding motifs were also recovered, including 

Pumilio, KH and WD domains (Neer, Schmidt et al., 1994, Smith, Gaitatzes et al., 1999, 

Spassov & Jurecic, 2003, Valverde, Edwards et al., 2008), and helicase-specific domains 

(Tanner & Linder, 2001). As for RRM domains, RNA-linkage sites identified in Pumilio domains 

were in good agreement with the crystal structure of a Pumilio-RNA complex (Zhu, Stumpf et 

al., 2009). 

Several recent analyses have used mass spectrometry to identify proteins that are recovered in 

association with RNA following UV crosslinking in human and other cells (Baltz et al., 2012, Bao 

et al., 2018, Castello et al., 2012, Huang et al., 2018, Kramer et al., 2014, Kwon et al., 2013). A 

striking finding from these reports and our work is that large numbers of proteins identified lack 

previously known RNA-binding activity or recognizable RNA-binding motifs. The recovery of 

multiple metabolic enzymes led to the hypothesis that cross talk between RNA and intermediary 

metabolism might be prevalent (White, 1976). Consistent with these results, we identified 

several metabolic enzymes including enolase, glyceraldehyde-3-phosphate dehydrogenase and 

phosphoglycerate kinase. Since our analyses detect the protein-nucleic acid conjugate, we can 

exclude the possibility that these proteins had associated with the RNA following lysis, or were 

otherwise non-covalently bound. However, the range and number of proteins identified and the 

prevalence of RNA association with unstructured regions that lack any domain annotation would 

seem to argue against specific, conserved interactions. It currently appears likely that, despite 

binding RNA in vivo, most of these proteins do not have defined functions in RNA metabolism.  

We anticipate that the resources provided here, a protocol to study protein-RNA binding sites at 

global scale and a list of protein-RNA attachment sites in S. cerevisiae, will stimulate systematic 

and detailed studies of the functionally important protein-RNA interface and may shed light on 

the hand-over that is envisaged to have occurred during evolution from RNA- to protein-

dominated metabolism. 
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Experimental Procedures 

Yeast culture 

Saccharomyces cerevisiae strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) was used for 

all experiments except SILAC labeling, for which a derivative of BY4742 was used (MATalpha, 

his3∆1, leu2∆0, lys2∆0, ura3∆0) carrying a LYS2 deletion to block endogenous production of 

lysine. Non-crosslinked samples were grown is SD medium with 2% glucose and complete 

supplement mix minus tryptophan and lysine (MP Biomedicals) with unlabeled lysine. 

Crosslinked samples were grown in the presence of [13C6] lysine. 

UV crosslinking 

Actively growing yeast cultures were crosslinked as described (Granneman et al., 2010). Cells 

were collected by centrifugation, washed once with PBS and pelleted again. The final pellet was 

resuspended in an equal volume of ice-cold PBS and pipetted drop-by-drop into liquid nitrogen 

to snap-freeze cells. Frozen cells were stored at -80˚C.  

Cell lysis 

Cells were lysed using a 6770 Freezer/Mill Cryogenic Mill (SPEX® SamplePrep) using the 

manufacturer’s recommendations. For total RNA extraction, powdered yeast was resuspended 

in 3 volumes of denaturing lysis buffer (7 M urea, 2 M thiourea, 50 mM TRIS/HCl pH 8, 20 mM 

EDTA, 10 mM DTT), RNA was extracted by vortexing at room temperature after which the 

lysate was clarified by centrifugation and either processed immediately or stored at -80 °C.  

For poly(A)+ RNA enrichment, powdered yeast was resuspended in 5 vol lysis buffer (50 mM 

TRIS/HCl (pH 7.5), 20 mM EDTA, 150 mM NaCl, 1 mM DTT), vortexed five times for 1 min at 

room temperature with a 1 min incubation at RT after which lysate was clarified by centrifugation 

and processed immediately.  

Protein digestion 

Reduced cysteines were blocked with 20 mM iodoacetamide for 1-2 h at room temperature in 

darkness. For LysC protein digestion, LysC was added in 1:100 LysC:protein w/w ratio and 

proteins were digested for 16 h at room temperature. Trypsin digestion was performed under 

similar conditions, except when urea was used then its concentration was reduced to less than 

2 M before digestion. 
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RNA purification 

Total RNA was purified using CsTFA (GE Healthcare) density centrifugation. RNA was either 

pelleted through a CsTFA cushion (Zhang, Chen et al., 2003) or separated on a CsTFA step 

gradient (Smale & Sasse, 1992).  

Poly(A)+ RNA was enriched using oligo(dT)-cellulose (GE Healthcare) according to the 

manufacturer’s protocol. RNeasy Mini and Midi columns (QIAGEN) were used according to 

manufacturer’s protocols. 

RNA hydrolysis 

RNA was nuclease-digested as follows: RNA was denatured by heating for 2 min at 100 °C, 

followed by quick cooling on ice. P1 nuclease (Sigma) was added in 1:500 nuclease RNA w/w 

ratio and RNA digested for 2 hours at 50 °C. For snake venom phosphodiesterase (Sigma) 

digestion, TRIS/HCl (pH 8.5) was added to final concentration of 50 mM, phosphodiesterase 

was added (0.002 U per 1 mg of RNA) and digestion completed for 16 hours at 37 °C. 

Peptide clean-up 

Peptides were fractionated on SCX-StageTips as described in (Ishihama, Rappsilber et al., 

2006, Rappsilber, Mann et al., 2007).  

Mixed mode chromatography (Phillips, Williamson et al., 2010) was performed using Promix MP 

250 mm x 2.1 mm id, pore size 300 Å (SIELC, USA) on an Ultimate 3000 HPLC (Dionex,UK) 

and the following chromatographic buffer conditions: buffer A 10 mM ammonium acetate pH 6.3, 

1 M NaCl, buffer B 10 mM ammonium acetate pH 6.3, 80% acetonitrile. Linear gradient elution 

was performed: 20-80% over 22 min, followed by 100% B over 2 min at a flow rate of 0.2 

mL/min. Chromatograms were recorded using UV absorbance at a wavelength of 260 and 280 

nm. Fractions were collected at 1 min time interval and desalted using C18-StageTips 

(Rappsilber, Ishihama et al., 2003, Rappsilber et al., 2007).  

LC-MS/MS analysis 

All samples were analyzed on an LTQ Orbitrap Velos or Q Exactive mass spectrometer 

(Thermo Fisher Scientific), using Ultimate 3000 RSLCnano (Thermo Fisher Scientific) or 

nanoACQUITY (Waters) LC as the front-end. Peptides were loaded onto 75 µm × 300 mm 

fused silica emitters (New Objective), packed in-house with Reprosil-Pur C18-AQ 3 µm particles 
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(Dr Maisch, Germany) as described in (Ishihama, Rappsilber et al., 2002) and separated using 

linear gradient from 2% to 40% of solvent B (solvent A: MilliQ H2O/0.1% formic acid, solvent B: 

80% acetonitrile/0.1% formic acid) with a flow-rate of 200 nL/min. Both LTQ Orbitrap Velos and 

Q Exactive mass spectrometer were operated in data-dependent mode, with dynamic exclusion 

enabled.  

Data analysis 

Peak lists for were generated by MaxQuant 1.4.1.2 (Cox & Mann, 2008). 

An open modification search approach using xiOMS (ERI, Edinburgh) was used to identify any 

unknown modification masses while a targeted modification search using xiTMS (ERI, 

Edinburgh) was used to analyze data with pre-determined modifications masses (corresponding 

to RNA crosslink products) but with no amino acid specificity. Parameters used for searches are 

described in Supplemental Experimental Procedures.  

In addition, data were processed with MaxQuant 1.4.1.2 (Cox & Mann, 2008), with following 

parameters: S. cerevisiae UniProtKB sequence database (downloaded on 09.09.2011); 

protease specificity was Trypsin/P; two missed cleavages were allowed; carbamidomethylation 

was set as a fixed modification; oxidation (M), N-acetylation (protein) and UMP (YFWILVAK) 

were set as variable modifications; all FDR levels were set to 0.01. 

Protein domain analysis, alignment and visualization was done with pepWizRd, a data analysis 

application developed in R using the packages shiny, bio3d, CHNOSZ, RSVGTipsDevice and 

RColorBrewer (Spitzer et al., in preparation). 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository with the dataset identifier PXD011511. 
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Figure legends 

Figure 1. UV irradiation induces protein:RNA crosslinks via uridine. 

A. Workflow used for identifying peptides crosslinked to RNA. Yeast culture was UV-irradiated, 

cells lysed under denaturing conditions and RNA-crosslinked proteins digested with LysC. Total 

RNA (together with RNA-bound peptides) was extracted, RNA was hydrolyzed, peptides were 

cleaned up and analyzed by LC-MS/MS. 

B. UV-irradiation forms a covalent peptide modification that corresponds to uridine. Peptide 

modification masses from xiOMS open modification search are plotted for UV-irradiated (blue) 

and non-irradiated (red) samples. UV-specific modification with a mass of 324.0374 Da 

corresponding to uridine monophosphate is shown. 

C. Annotated fragmentation spectrum of an UMP-modified peptide. Amino acid sequence and 

modification site is shown for an UMP-modified peptide, together with annotated b and y 

fragment ions on the spectrum. Also indicated is a potential reporter ion with a m/z of 227.0668, 

together with its proposed structure. 

D. Sequence logo representation of UMP-modified amino acids in identified peptides. All 

identified peptide:RNA linkage sites with a 324.0374 Da modification in an initial data analysis 

were analyzed for amino acid enrichment using WebLogo 2 tool at weblogo.berkeley.edu.  

E. PANTHER Classification System analysis of RNA-linked proteins according to their 

ProteinClass annotations.  

Figure 2. Yeast ribosome structure supports the protein:RNA crosslinks identified. 

A. Yeast 80S ribosome crystal structure (PDB 3U5B|3U5C|3U5D|3U5E). Ribosomal proteins 

with evidence for RNA crosslinks are shown in red, non-crosslinked proteins are shown in dark 

gray and ribosomal RNA in light gray. In total, 56 RNA-linked ribosomal proteins with more than 

500 RNA linkage sites were identified. In a zoom-in box ribosomal protein RPL2 and part of 25S 

rRNA are shown in gray, with Thr20 residue of RPL2 and its closest uridine highlighted in red. 

C. Distances between identified RNA-linked amino acids to their closest uridine in the yeast 80S 

ribosome are shorter than all theoretical distances. For distance measurements, only amino 

acid side-chain atoms and uracil atoms were considered, and only the shortest distance was 

recorded for each amino acid:uracil pair. The distribution of distances for identified RNA linkage 
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sites is shown in blue, the distribution of distances for all chemically possible linkage sites is 

shown in red. The significance of the difference between the two distributions was determined 

by Kruskal-Wallis test. 

Figure 3. RNA linkage sites identified in proteins are localized to annotated RNA-interacting 

domains. 

A. Protein sequence feature analysis. All identified 324 RNA-linked proteins were analyzed for 

their UniProtKB-annotated protein sequence feature content. Only sequence features with 

evidence for two or more RNA linkage sites are shown, number of unique proteins for each 

sequence feature is shown in brackets. 

B. Histogram of identified RNA linkage sites in RRM domains. All RRM domains with identified 

RNA linkage sites were aligned and linkage sites were counted and plotted on a histogram. 

Three main linkage site regions are indicated.  

C. Crystal structure of Nab3 RRM domain in complex with UCUU (PDB 2L41). Nab3 RRM 

domain is displayed in gray, UCUU in blue and identified RNA-linked amino acids in red. In 

addition, a third potential linkage site is shown in orange, based on RRM domain sequence 

homology; all three linkage sites are numbered as in panel B. 
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