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Abstract

Background

Cell identity is governed by gene expression, regulated by Transcription Factor (TF) binding at cis-

regulatory modules. Decoding the relationship TF binding patterns and the regulation of cognate 

target genes is nontrivial, remaining a fundamental limitation in understanding cell decision-making

mechanisms. Identification of TF physical binding that is biologically ‘neutral’ is a current 

challenge. We studied cell identity in the context of Epithelial to Mesenchymal Transition (EMT), a 

cell programme fundamental for normal embryonic development that contributes to tumour 

progression and fibrosis.

Results

We developed the NetNC software for discovery of functionally coherent TF targets. NetNC was 

applied to analyse gene regulation by the EMT TFs Snail, Twist in early embryogenesis and also to 

modENCODE ‘HOT’ regions. Predicted neutral binding accounted for 50% to ≥80% of candidate 

target genes assigned from significant binding peaks. Novel gene functions and network modules 

were identified, including regulation of chromatin organisation and crosstalk with notch signalling. 

Orthologues of predicted TF targets discriminated breast cancer molecular subtypes and NetNC 

analysis predicted new gene functions; for example, evidencing networks that reshape 

Waddington’s landscape during EMT-like phenotype switching. Predicted invasion roles for SNX29,

ATG3, UNK and IRX4 were validated using a tractable cell model.

Conclusions

We found extensive neutral TF binding across the nine datasets examined and showed that NetNC 

performs well in identifying functionally coherent targets. HOT regions had comparatively high 

functional coherence. Our results illuminate conserved molecular networks that regulate epithelial 

remodelling in development and disease, with potential implications for precision medicine. 
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1 Background

Transcriptional regulatory factors (TFs) govern gene expression, which is a crucial determinant of 

phenotype. Therefore, mapping transcriptional regulatory networks is an attractive approach to gain 

understanding of the molecular mechanisms underpinning both normal biology and disease [1–3]. 

TF action is controlled in multiple ways; including protein-protein interactions, DNA sequence 

affinity, 3D chromatin conformation, post-translational modifications and the processes required for

TF delivery to the nucleus [3–5]. The interplay of mechanisms influencing TF specificity across 

different biological contexts encompasses considerable complexity and genome-scale assignment of

TFs to individual genes is challenging [1,5,6]. Indeed, much remains to be learned about the 

regulation of gene expression. For example, the relationship between enhancer sequences and the 

transcriptional activity of cognate promoters is only beginning to be understood [4,5]. Prediction of 

TF occupancy from DNA sequence composition alone has had only limited success, likely because 

protein interactions influence TF binding specificity [5,7].

TF binding sites may be determined experimentally using chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) or microarray (ChIP-chip). These and related methods (e.g. 

ChIP-exo, DamID) have revealed a substantial proportion of statistically significant ‘neutral’ TF 

binding, that has apparently no effect on transcription from the promoters of assigned target genes 

[1,8–10]. Evidence suggests that neutral binding can arise from TF association with euchromatin; 

for example, the binding of randomly-selected TFs and genome-wide transcription levels are 

correlated [11–13]. Genomic regions that bind large numbers of TFs have been termed Highly 

Occupied Target (HOT) regions [14]. HOT regions are enriched for disease SNPs and can function 
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as developmental enhancers [15,16]. However, a considerable proportion of individual TF binding 

events at HOT regions may have little effect on gene expression and association with chromatin 

accessibility suggests non-canonical regulatory function such as sequestration of TFs or in 3D 

genome organisation [17,18] as well as possible technical artefacts [19]. A proportion of apparently 

neutral binding sites may also have more subtle functions; for example in combinatorial context-

specific regulation and in buffering transcriptional noise [2,20].  Furthermore, enhancers may 

control the expression of genes that are sequence-distant but spatially close due to the 3D chromatin

conformation [17,18]. Current approaches to match bound TFs to candidate target genes may miss 

these distant regulatory relationships. Identification of bona fide, functional TF target genes remains

a major obstacle in understanding the regulatory networks that control cell behaviour 

[2,5,10,13,21].

The set of genes regulated by an individual TF typically have overlapping expression 

patterns and coherent biological function [22–24]. Indeed, gene regulatory networks are organised 

in a hierarchical, modular structure and TFs frequently act upon multiple nodes of a given module 

[25,26]. Therefore, we hypothesised that functional TF targets collectively share network properties 

that may differentiate them from neutrally bound sites. Graph theoretic analysis can reveal 

biologically meaningful gene modules, including cross-talk between canonical pathways [27–29] 

and conversely may enable elimination of neutrally bound candidate TF targets derived from 

statistically significant ChIP-seq or ChIP-chip peaks. For this purpose, we have developed a novel 

algorithm (NetNC) for functional TF target discovery and therefore to help illuminate mechanisms 

controlling cell phenotype, for example to inform causality in regulatory network inference [1,6]. 

NetNC analyses the connectivity between candidate TF target genes in the context of a functional 

gene network (FGN), in order to discover biologically coherent TF targets. Network approaches 

afford significant advantages for handling biological complexity, enable genome-scale analysis of 

gene function [30,31], and are not restricted to predefined gene groupings used by standard 
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functional annotation tools (e.g. GSEA, DAVID) [27,32,33]. FGNs seek to comprehensively 

represent gene function and provide a useful framework for analysis of noisy real-world data 

[34,35]. Clustering is frequently applied to a FGN in order to define a fixed network decomposition,

as basis for identification of biological modules [36,37]. Modules with a high proportion of genes 

associated with a given experimental condition, such as drug treatment, may define the network 

response and so illuminate the underlying biology. Predefined, fixed network modules may miss 

important features of the condition-specific set of genes; for example, gene products with 

corresponding nodes in the FGN may be absent from the biological condition(s) analysed. Indeed, it

is typical for any given cell type to express only a subset of the genes encoded in its genome, hence 

clusters derived from analysis of the whole genome network may not accurately capture the 

biological interactions that occur in the context of a particular cell type or environment. 

Additionally, context-specific interactions are a common feature of biological networks, for 

example the varied repertoire of biophysical interactions in different cell types or between cell 

states, such as in the stages of the cell cycle [38]. Therefore, modules are defined dynamically in 

vivo and there is benefit in developing analysis approaches that can discover condition-specific 

communities of interacting genes. The NetNC algorithm satisfies this remit, enabling identification 

of coherent genes and modules according to the context represented by the gene list and a FGN.

We applied NetNC and a novel FGN (DroFN) to predict functional targets for multiple 

datasets that measured the binding of the Snail and Twist TFs, as well for modENCODE HOT 

regions [14]. Snail and Twist have important roles in Epithelial to Mesenchymal Transition (EMT), 

a multi-staged morphogenetic programme fundamental for normal embryonic development that 

contributes to tumour progression and fibrosis [39–42]. Integrative analysis of the predicted 

functional Snail, Twist targets, Notch screens and human breast cancer transcriptomes gave insights 

into both developmental and cancer biology. Predicted functional TF targets from NetNC analysis 

with no previously described role in invasion were validated in vitro.
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2 Results

In the subsections below we first describe a D. melanogaster functional gene network (DroFN) and 

an algorithm developed for functional transcription factor target prediction (NetNC). NetNC 

performed well against other approaches in discrimination of biologically related genes from 

synthetic neutrally bound targets. Using DroFN, NetNC and our synthetic benchmark, we estimated

the proportion of neutral binding for nine Chromatin Immunoprecipitation (ChIP) microarray 

(ChIP-chip) or pyrosequencing (ChIP-seq) datasets, drawn from five different studies 

[9,14,24,43,44]. These nine datasets are referred to as ‘TF_ALL’; please see Methods section 4.3 for

important details about the TF_ALL datasets. NetNC predicted Snail and Twist functional targets in 

early embryogenesis, revealing clusters of regulation for multiple genes in key developmental 

processes, including chromatin remodelling, transcriptional regulation and neural development. 

Predicted functional targets were enriched for Notch signalling modifiers and captured important 

aspects of human breast cancer biology. The DroFN network and NetNC software are made freely 

available as Additional Files associated with this manuscript.

2.1 A comprehensive D. melanogaster functional gene network (DroFN)

We developed a functional gene network (DroFN; 11,432 nodes, 787,825 edges) to provide a 

systems-wide map of D. melanogaster signalling and metabolism (Additional File 1). Evaluation of 

DroFN with time-separated blind test data derived from KEGG (TEST-NET) found good 

performance compared with the DroID [45] and GeneMania [46] networks (Table 1, Supplementary

Figure S1). The DroFN network was more highly connected than DroID, and had 2.6-fold higher 

average degree. GeneMania predicts shared Gene Ontology terms rather than KEGG pathway 

comembership, which may account for some of the performance gap found with GeneMania when 

compared to DroFN and DroID. However GeneMania performance on TEST-NET is similar to 

published values for 'Biological Process' terms [46]. The overlap between DroFN and the 
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Drosophila proteome interaction map (DPiM [47]) was highly significant (FET p<10-308). DroFN 

and DPiM had 999 genes in common and 37.8% (2175/5747) of DroFN edges for these genes were 

also found in DPiM. The False Positive Rate for DroFN (0.047) was close to the prior for functional

interaction estimated from KEGG (0.044); a proportion of these estimated false positives may 

represent bona fide interactions that were not annotated in KEGG. Overall, DroFN provides a useful

genome-scale map of pathway comembership in D. melanogaster.

Table 1. Evaluation of DroFN on Time Separated Blind Test Data (TEST-NET).

Network MCC FPR TPR AUC

DroFN 0.448 0.047 0.475 0.773

DROID 0.383 (max 0.385)  0.0046 0.199 0.598

GeneMania 0.133 (max 0.243) 0.121 0.274 0.582

Table 1. Column headings: Matthews correlation coefficient (MCC), false positive rate (FPR), true 

positive rate (TPR), area under the Receiver Operator Characteristic curve (AUC). DroFN 

performed best on the data examined and had FPR close to the functional interaction prior estimated

from the training data (0.044). Values of AUC for DroFN were significantly better than DROID 

(p=2.13x10-11) or GeneMania (p=3.19x10-22).

2.2 A novel algorithm for discovery of functional transcription factor binding 

(NetNC)

Large numbers of statistically significant TF binding sites appear to be neutral (non-functional) 

[8,10,24]. We developed the NetNC algorithm for genome-scale prediction of functional TF target 

genes (Figure 1). In broad terms, NetNC seeks to discover the biological functions common to a list

of genes, therefore defining groups of genes with common function and revealing biologically 

defining characteristics. This general paradigm has been applied widely, for example in network-

based approaches [27,28,48,49] and in enrichment analysis [32,33,50].
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NetNC builds upon observations that TFs coordinately regulate multiple functionally related

targets [22–24] and has been calibrated for discovery of biologically coherent genes in noisy data. 

The first stage in NetNC calculates hypergeometric mutual clustering (HMC) p-values [51] for each

pair of candidate TF targets (H1) that are connected in the functional gene network (FGN). 

Empirical estimation of positive False Discovery Rate (pFDR) [52] across H1 is enabled by deriving

HMC p-values from resampled genes (H0). Resampling to generate H0 controls for the number of 

candidate TF target genes analysed and the FGN structure. Iterative minimum cut is then computed 

on the pFDR thresholded network with a graph density stopping criterion [53]. Connected 

components of the resulting graph consisting of less that three nodes are discarded. The approach 

described above is edge-centric and is termed ‘Functional Target Identification’ (FTI), seeking to 

distinguish all biologically coherent gene pairs from functionally unrelated targets (e.g. arising from

neutral TF binding). Additionally, NetNC has a node-centric ‘Functional Binding Target’ (FBT) 

mode that employs regularised Gaussian mixture modelling for unsupervised clustering with 

automatic cardinality selection [54]. NetNC-FBT analyses degree-normalised Node Functional 

Coherence Scores (NFCS); examples of NFCS profiles and the fitted mixture models are visualised 

in Supplementary Figure S2. NetNC-FBT is parameter-free and so did not require calibration on 

training data.

The gold-standard data for NetNC development and validation took KEGG pathways to 

represent biologically coherent relationships, combined with ‘Synthetic Neutral Target Genes’ 

(SNTGs) derived by resampling from the DroFN network. A total of 17,600 datasets (Additional 

File 2, Additional File 3) were developed to contain between 5% and 80% SNTGs; therefore, the 

gold-standard data covered a wide range of possible values for the proportion of neutrally bound 

candidate TF target genes. NetNC was robust to variation in the input dataset size and %SNTGs, 

outperforming HC-PIN [37] and MCL [36] on blind test data (Figure 2, Supplementary Table S1). 

Previous work that evaluated nine clustering algorithms, including MCL, found that HC-PIN had 
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strong performance in functional module identification and was robust against false positives [37]; 

therefore we selected HC-PIN for extensive comparison against NetNC. In general, NetNC was 

more stringent, with lower False Positive Rate (FPR) and higher Matthews Correlation Coefficient 

(MCC) than HC-PIN. MCC provides a balanced measure of predictive power across the positive 

(KEGG pathway) and negative (SNTG) classes of genes in the gold standard; therefore MCC is an 

attractive approach for assessment of overall performance. NetNC-FBT typically had lowest FPR 

and performed well on larger datasets. We saw a spread of performance values across resamples 

with identical number of pathways and %SNTG (Figure 2), which arose from expected differences 

between resamples. For example, differences in the network density of the resampled SNTG genes 

may impact upon the power of NetNC to discriminate between SNTGs and KEGG pathway nodes. 

NetNC’s performance advantages were most prominent on blind test data with ≥50% SNTGs 

(Figure 2) and all nine of the TF_ALL datasets were predicted to contain ≥50% neutrally bound 

targets (Figure 3, see subsection 2.3, below). Therefore, given the performance advantage on blind 

test data with ≥50% STNGs (Figure 2), NetNC appears as the method of choice for identification of

functional TF targets from genome-scale binding data.

2.3 Estimating neutral binding for EMT transcription factors and Highly Occupied 

Target (HOT) regions

We predicted functional target genes for the Snail and Twist TFs for developmental stages around 

gastrulation in D. melanogaster. Fly embryos perform rapid nuclear divisions and transcription, 

leading the formation of the syncytial blastoderm at about 2 hours. Nuclear divisions slow during 

cellularisation of the blastoderm after 2 hours and gastrulation occurs around 3 hours [55–57]. 

Using NetNC and DroFN, we analysed Chromatin ImmunoPrecipitation (ChIP) microarray (ChIP-

chip) or sequencing (ChIP-seq) data for overlapping time periods in early embryogenesis produced 

by four different laboratories and also the modENCODE Highly Occupied Target (HOT) regions 
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[9,14,24,43,44]. Nine datasets in total were studied (TF_ALL, Table 2), enabling investigation of 

multiple factors that are commonly applied in discovery of candidate TF targets - including: peak 

intensity threshold; multiple developmental time periods, multiple antibodies, different analytical 

platforms, and using transcribed genes for peak assignment. Further details of the TF_ALL datasets 

are given in Methods subsection 4.3. The proportion of neutrally bound candidate target genes was 

estimated using a novel approach (NetNC-lcFDR) that calculated local FDR (lcFDR) from NetNC 

pFDR values, with calibration against the known SNTG fraction in gold standard data. Local FDR 

estimates the false discovery rate at a specific score value (or range of values) in contrast to global 

FDR which is calculated using all of the values above a score threshold. We note that global pFDR 

was unsuitable for estimating the total fraction of neutral binding. For example, every TF_ALL 

dataset had pFDR=1 at the NetNC score threshold that included all candidate target genes; hence, a 

naïve approach based on global pFDR would always give a global neutral binding estimate of 

100%. Furthermore, lcFDR may capture differences in score profiles that are missed by global 

pFDR, illustrated in Supplementary Figure S3.

NetNC-lcFDR estimates of neutral binding across TF_ALL ranged from 50% to ≥80% 

(Figure 3A, Table 2). Reassuringly, the dataset with the most stringent peak calling (twi_1-

3h_hiConf [9]) had the highest (NetNC-lcFDR) or second highest (NetNC-FTI) predicted 

functional binding proportion. Target genes for regions bound during two consecutive 

developmental time periods (twi_2-6h_intersect [44]) also ranked highly, followed by HOT regions 

(Figure 3A, Table 2). Indeed, twi_2-6h_intersect had a significantly greater percentage of predicted 

functional targets (binomial p<4.0x10-15) with stronger pFDR and lcFDR profiles than either the 

twi_2-4h_intersect or twi_4-6h_intersect datasets from the same study, but where binding was 

during a single time period [44] (Figure 3). Therefore, predicted functional binding was enriched for

regions occupied at >1 time period or by multiple TFs - including HOT regions, which had high 

functional coherence relative to the other datasets examined. Interestingly, a very similar proportion
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of functional targets was predicted by NetNC-lcFDR for binding sites derived from either the union 

or intersection of two Twist antibodies (NetNC-lcFDR=25-30%) from the same study [24], 

although the NetNC-FTI value was higher for input data representing the intersection of antibodies 

(30.5% (116/334) vs 23% (424/1848)). Substantial numbers of candidate target genes in all nine 

TF_ALL datasets passed a global FDR (pFDR) or lcFDR threshold value of 0.05 (Figure 3B, 3D). 

Even datasets with high predicted total neutral binding included candidate targets that met stringent 

NetNC FDR thresholds. For example, despite having a relatively low proportion of predicted total 

functional binding (Figure 3A) the datasets sna_2-3h_union, twi_2-3h_union respectively had the 

highest and second-highest proportion of genes passing lcFDR<0.05 (Figure 3B); these datasets 

were also highly ranked at pFDR<0.05 (Figure 3D).

Table 2. Predicted Functional binding for Snail, Twist and HOT candidate target genes.

Dataset Predicted functional targets

Name Developmental time period(s) Candidate target genes* NetNC-FTI NetNC-lcFDR

twi_1-3h_hiConf 1-3h 664 202 (30%) 45-50%

twi_2-6h_intersect 2-4h and 4-6h 615 241 (39%) 40-45%

twi_2-4h_intersect 2-4h only (not 4-6h) 801 182 (23%) 25-30%

twi_4-6h_intersect 4-6h only (not 2-4h) 818 126 (15%) 25-30%

HOT 0-12h+ 677 174 (26%) 35-40%

twi_2-3h_union 2-3h 1848 424 (23%) 25-30%

sna_2-3h_union 2-3h 1158 226 (20%) 25%

twi_2-4h_Toll10b 2-4h 1238 279 (23%) 30-35%

sna_2-4h_Toll10b 2-4h 1488 211 (14%) ≤20%

*number of candidate targets that mapped to DroFN nodes.    +multiple time periods and 41 different TFs [14].

Table 2. Results for NetNC are given based on 'Functional Target Identification' (NetNC-FTI) and 

mean local FDR (NetNC-lcFDR) calibrated against datasets with a known proportion of resampled 

Synthetic Neutral Target Genes (SNTG) described in Methods section 4.2.3. The above datasets 

correspond to the following developmental stages: 2-4h stages 4-9 (except ‘2-4h_intersect datasets 

which were stages 5-7 [44]); 2-3h stages 4-6; 1-3h stages 2-6; 4-6h stages 8-9 [44]; 0-12h stages 1-

15; gastrulation occurs at stage 6 [57].
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ChIP peak intensity putatively correlates with functional binding, although some weak 

binding sites have been shown to be functional [10,58]. We found a significant correlation between 

genes’ NetNC NFCS values and ChIP peak enrichment scores in 6/8 datasets (q<0.05, HOT regions 

not analysed). The two datasets with no significant correlation (twi_1-3h_hiConf, twi_2-

6h_intersect) were derived from protocols that enrich for functional targets and had the lowest 

predicted neutral binding proportion (Figure 3A). Indeed, the median peak score for twi_2-

6h_intersect was significantly higher than data from the same study that was restricted to a single 

time period (twi_2-4h_intersect, q<5.0x10-56; twi_4-6h_intersect, q<4.8x10-58). Therefore the 

relationship of peak intensity with functional binding in twi_1-3h_hiConf, twi_2-6h_intersect 

appears to have been eliminated by the application of protocols that enriched for functional targets. 

Functional TF targets identified by NetNC were also enriched for human orthologues, defined by 

InParanoid [59]. For example, human orthologues were assigned to 72% (453/628) of the NetNC-

FBT predicted functional target genes for twi_2-3h_union, significantly higher than the value (50%,

616/1220) for the full dataset (p<3x10-28 binomial test). Genome-wide expectation for human-fly 

orthology was 46%, calculated with reference to the fly genome, which was significantly lower than

the value of 72% for the twi_2-3h_union predicted functional targets (p<5x10-40). The enrichment 

for evolutionary conservation of NetNC results aligns with the fundamental developmental 

processes captured by the datasets analysed (i.e. gastrulation, mesoderm development) and is 

consistent with the predicted functional target genes playing roles in these processes.

NetNC-lcFDR estimates of neutral binding agreed well with the Functional Target 

Identification results (NetNC-FTI, Table 2). Indeed, neutral binding estimates from these two 

methods had median difference of only 5.5% and were significantly correlated across TF_ALL, 

despite considerable methodological differences (r=0.85, p=0.008, Supplementary Figure S4). This 

concordance supports the results from both NetNC-FTI and NetNC-lcFDR.
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2.4 Genome-scale functional transcription factor target networks

NetNC results offer a global representation of the mechanisms by which Snail and Twist exert 

tissue-specific regulation in early D. melanogaster embryogenesis (Figure 4, Supplementary Figure 

S5, Additional File 4). NetNC-FTI results for the nine TF_ALL datasets overlapped and clusters 

were manually annotated into biologically similar groups, with reference to Gene Ontology 

enrichment and FlyBase annotations [33,60–62]. Eleven biological groupings were identified in at 

least 4/9 TF_ALL datasets, including developmental regulation (9/9), chromatin organisation (6/9), 

ion transport (6/9), mushroom body development (6/9), phosphatases (6/9), splicing (5/9) and 

regulation of translation (5/9) (Supplementary Table S2). Very few clusters were composed entirely 

from genes identified only in a single dataset, examples included: snoRNAs/nucleolar proteins 

(twi_2-3h_union), transferases (HOT), defense response/immune response (twi_2-4h_Toll10b) and 

chitin metabolism (twi_2-4h_intersect) (Figure 4, Supplementary Figure S5). We investigated the 

robustness of NetNC-FTI to subsampled input using TF_ALL (Supplementary Tables S3, S4). The 

median overlap of genes returned in analysis of an individual complete TF binding dataset for 95%, 

80% and 50% subsamples, averaged across TF_ALL, was respectively 89%, 81%, 75% (respective 

median 95% CI 72%-97.2%, 66%-92%, 58%-97%). The median overlap for network edges with 

node subsampling at 95%, 80%, 50%, across TF_ALL, was 91%, 84% and 77% (median 95% CI 

83-96%, 74-94%, 37-92%). Overall, subsampling had a moderate effect on NetNC predictions and 

greater sensitivity was observed at lower subsampling rates, as expected. Some subsamples taken as

input to NetNC had low overlap with the NetNC-FTI reference output (reference_net) for any given

complete input dataset. Indeed, the reference_net represented between 14% to 39% of the total input

gene list across the nine TF_ALL datasets. Subsamples that excluded a high proportion of the nodes

in reference_net would be expected to result in weaker hypergeometric mutual clustering values for 

the remaining nodes found in reference_net because these nodes would be expected to have 

relatively few common neighbours. Therefore, subsampling of the input gene list is expected to 
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produce NetNC results that have reduced overlap with reference_net; this effect is also a source of 

variation in overlap across subsamples, reflected in the 95% CI values. Also, the probability of 

sampling nodes in reference_net is lower when a smaller fraction of the complete input TF_ALL 

gene list is covered by reference_net, leading to a greater subsampling-associated loss of nodes and 

edges. Consistent with this interpretation, TF_ALL datasets with the highest NetNC-FTI functional 

binding proportion (Table 2) (twi_1-3h_hiConf, twi_2-6h_intersect, HOT) were less sensitive to 

subsampling than datasets with relatively low predicted functional binding such as sna_2-4h_Toll10b 

and twi_4-6h_intersect (Supplementary Tables S3, S4).

The developmental regulation cluster (DRC) encompassed key conserved morphogenetic 

pathways, for example: notch, wnt and fibroblast growth factor (FGF). Notch signalling modifiers 

from public data [63] overlapped significantly with NetNC-FTI results for each TF_ALL dataset (q 

<0.05), including the DRC, chromatin organisation and mediator complex clusters (Figure 4, 

Supplementary Figure S5). Notch was identified as an important control node across TF_ALL 

where it had highest betweenness centrality in the DRC for three datasets and ranked (by 

betweenness) among the top ten DRC genes for 8/9 datasets. The activation of Notch can result in 

diverse, context-specific transcriptional outputs and the mechanisms regulating this pleiotropy are 

not well understood [63–66]. NetNC predicted functional Snail and Twist binding to many 

regulatory genes in the Notch network neighbourhood, therefore providing evidence for novel 

factors controlling the transcriptional consequences of Notch activation in cell fate decisions 

controlled by these TFs. This is consistent with previous demonstration of signalling crosstalk for 

Notch with twist and snail in multiple systems; for example in adult myogenic progenitors [67] and 

hypoxia-induced EMT [68]. Wingless also frequently had high betweenness, ranking within the top 

ten DRC genes in six datasets and was highest ranked in two instances. Thirteen genes were present

in the DRC for at least seven of the TF_ALL datasets (DRC-13, Supplementary Table S5), and 

these genes had established functions in the development of mesodermal derivatives such as 
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muscle, the nervous system and heart [65,67,69–73]. Public in situ hybridisation (ISH) data for the 

DRC-13 genes indicated their earliest expression in (presumptive) mesoderm at: stages 4-6 (wg, en,

twi, N, htl, how), stages 7-8 (rib, pyd, mbc, abd-A) and stages 9-10 (pnt) [74–77]. The remaining 

two DRC-13 genes had no evidence for mesodermal expression (fkh) or no data available (jar). 

However, other studies had shown that fkh is essential for caudal visceral mesoderm development 

[78] and had demonstrated jar expression in the midgut mesoderm [79]. The above data are 

consistent with direct regulation of DRC-13 by Twist and Snail in (presumptive) mesoderm, as 

predicted by NetNC-FTI.

Chromatin organisation clusters included polycomb-group (PcG) and trithorax-group (TrxG)

genes; the most frequently identified were the Polycomb Repressive Complex 1 (PRC1) genes ph-d,

psc [80] and su(var)3-9, a histone methyltransferase that functions in gene silencing [81,82] 

(Supplementary Table S6). Other NetNC-FTI coherent genes with function related to PcG/TrxG 

included: the PRC1 subunit ph-p [80]; corto which physically interacts with PcG and TrxG proteins 

[83,84]; the TrxG-related gene lolal that is required for silencing at polycomb response elements 

[85,86]; taranis which has genetic interactions with TrxG and PcG [87–89]; TrxG genes trithorax, 

moira [90–93]. The gene silencing factor su(var)205 was also returned by NetNC-FTI in four 

TF_ALL datasets [94,95]. Therefore, NetNC found direct regulation by Snail and Twist of a) PRC1 

core components and other gene silencing factors, b) TrxG genes, c) modifiers of PcG, TrxG 

activity.

Brain development clusters were found for six TF_ALL datasets, as well as members of the 

proneural achaete-scute complex and Notch signalling components [96]. Snail regulation of neural 

clusters is consistent with its well characterised roles in repression of ectodermal (neural) genes in 

the prospective mesoderm [97–99]. Additionally, Snail is important for neurogenesis in fly 

development and also in mammals [100,101]. Therefore, binding to these neural functional modules

could reflect potentiation of transcription to enable rapid activation in combination with other 

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 14, 2018. ; https://doi.org/10.1101/455709doi: bioRxiv preprint 

https://doi.org/10.1101/455709
http://creativecommons.org/licenses/by-nc-nd/4.0/


transcription factors as and when required within specific neural developmental trajectories 

[44,102]. The mushroom body is a prominent structure in the fly brain that is important for 

olfactory learning and memory [103]. Twist is typically a transcriptional activator [99] although 

appears to contribute to Snail’s repressive activity [104] and Twist-related protein 1 was shown to 

directly repress Cadherin-1 in breast cancers [105]. Our NetNC results predict novel Twist 

functions, for example in regulation of mushroom body neuroblast proliferation factors such as 

retinal homeobox, slender lobes, and taranis [106–108].

2.5 Breast cancer subtype is characterised by differential expression of orthologous

Snail and Twist functional targets

Genes that participate in EMT have roles in metastasis and drug resistance across multiple cancers 

[39,109,110]. Indeed, the NetNC-FTI Snail and Twist targets included known drivers of tumour 

biology and also predicted novel cancer driver genes (Figure 4, Supplementary Figure S5, 

Supplementary Tables S2, S5, S6). Breast cancer intrinsic molecular subtypes with distinct clinical 

trajectories have been extensively validated and complement clinico-pathological parameters 

[111,112]. These subtypes are known as luminal-A, luminal-B, HER2-overexpressing, normal-like 

and basal-like [111]. All of the NetNC-FTI networks for the nine TF_ALL datasets overlapped with 

known cancer pathways, including significant enrichment for Notch modifiers (q<0.05). We 

hypothesised that orthologous genes from NetNC clusters for Snail and Twist would stratify breast 

cancers by intrinsic molecular subtype. Indeed, aberrant activation of Notch orthologues in breast 

cancers had been demonstrated and was linked with EMT-like signalling, particularly for the basal-

like and claudin-low subtypes [113–117].
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2.5.1 Unsupervised clustering with predicted functional targets recovers breast 

cancer intrinsic subtypes

We identified 57 human orthologues (ORTHO-57) that were NetNC-FTI functional targets in ≥4 

TF_ALL datasets and were also represented within integrated gene expression microarray data for 

2999 breast tumours (BrC_2999) [118]. Unsupervised clustering with ORTHO-57 stratified 

BrC_2999 by intrinsic molecular subtype (Figure 5). Clustering with NetNC results for individual 

Twist and Snail datasets also recovered the intrinsic breast cancer subtypes (Supplementary Figure 

S6). Features within the heatmap were marked according to the dendrogram structure and gene 

expression values (Figure 5). Basal-like tumours were characterised by EN1 and NOTCH1, aligning

with previous work (feature_Bas; Figure 5) [113,114,119]. Interestingly, elevated ETV6 expression 

was also largely restricted to the basal-like subtype. Others had reported ETV6 copy number 

amplifications in 21% of basal-like tumours and identified recurrent gene fusions with ETV6 in 

several cancers [120–123]. The Luminal A subtype (feature_LumA), shared gene expression 

characteristics with luminal B (feature_LumB2 , ERBB3, MYO6) and normal-like (DOCK1, 

ERBB3, MYO6) tumours. High BMPR1B expression was a clear defining feature of the luminal A 

subtype, in agreement with previous results demonstrating oncogenic BMP signalling in luminal 

epithelia [124]. Others had previously shown that the BMP2 ligand may be pleiotropic in breast 

cancers and development, promoting EMT characteristics in some contexts [125–127]. Tumours 

with high relative BMP2 expression were typically basal-like while luminal cancers had low BMP2;

therefore, our data align with BMP2 upregulation as a feature of the EMT programme in basal-like 

cancers. The luminal B subtype had been established to have worse prognosis than luminal A, but 

more favourable prognosis than ESR1 negative cancers [111,128]. Several genes were highly 

expressed in both feature_LumB1 and in ESR1 negative subtypes (feature_ERneg), including ECT2,

SNRPD1, SRSF2 and CBX3; our data suggest that these genes might contribute to worse survival 

outcomes for luminal B relative to luminal A cancers. Indeed, the luminal A as well as normal-like 
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tumour subtypes had low expression of these genes and CBX3, ECT2 had previously been 

correlated with poor prognosis [129,130]. Furthermore, SNRPD1 is a component of core 

splicesomal small nuclear ribonucleoproteins (snRNPs) and SRSF2 is a splicing factor [131]; RNA 

splicing was shown to be a survival factor in siRNA screening across multiple basal-like cancer cell 

lines and was suggested to have potential therapeutic value [132]. Feature_LoExp broadly 

represents genes with low detection rates (indicated by the %P column in Figure 5) and the tumours 

populating feature_LoExp are a mixture of subtypes, but largely from a single study [133]. Notably,

key EMT genes (SNAI2, TWIST1, QKI) had highest relative expression in normal-like tumours 

(feature_NL, Figure 5). Indeed, SNAI2 and TWIST1 were both assigned to the normal-like centroid. 

Feature_NL also included homeobox transcription factors (HOXA9, MEIS2) and a secreted cell 

migration guidance gene (SLIT2) [134–136]. Some genes had high expression in both normal-like 

(feature_NL) and basal-like cancers, including: the QKI RNA-binding protein that regulates 

circRNA formation in EMT [137] and the FZD1 wnt/β-catenin receptor. Indeed, genes in 

feature_Bas and feature_NL clustered together in the gene dendogram, reflecting greater gene 

expression similarity to each other than to genes within features for the other breast cancer subtypes

(Figure 5). Therefore, these data revealed concordance in gene expression between the normal-like 

and basal-like subtypes, including known EMT-related genes.

2.5.2 Integrating NetNC functional target networks and breast cancer transcriptome 

profiling

We visualised basal-like and normal-like gene annotations for orthologues in the NetNC-FTI 

networks, offering a new perspective on the molecular circuits controlling these different subtypes 

(Figure 4, Supplementary Figure S5). We focussed on basal-like and normal-like cancers because 

they accounted for the large majority of genes in the datasets examined and were prominent in 

results from the centroid and heatmap analysis (Figure 5, Supplementary Figure S6). Additionally, 
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EMT had been shown to be important for basal-like breast cancer biology [138,139] and key EMT 

genes were annotated to the normal-like subtype in our analysis. NetNC-FTI clusters that contained 

splicing factors and components of the ribosome were associated with the normal-like subtype in 

results for three datasets (twi_2-4h_intersect, twi-2-6h_intersect, twi_2-3h_union); twi_2-3h_union 

also had communities for the proteosome and proteosome regulatory subunits where a high 

proportion of genes were annotated to the normal-like subtype. Orthologues in the sna_2-4h_Toll10b 

‘RNA degradation and transcriptional regulation’ cluster were annotated to the basal-like subtype 

and never to the normal-like subtype; this cluster included HECA, which had been reported to 

function as both a tumour suppressor [140,141] and an oncogene [142]. HECA was also identified 

in NetNC-FTI analysis of twi_2-4h_intersect and twi_4-6h_intersect; these two datasets had Twist 

binding at different, non-contiguous sites that were both assigned to hdc, the D. melanogaster 

orthologue of HECA. Hdc was a Notch signalling modifier with roles in cell survival [143,144], 

differentiation of imaginal primodia [145], RNA interference [146], Notch signalling [63] and 

tracheal branching morphogenesis - upregulated by the snail gene family member escargot [147]. 

HECA was upregulated in basal-like relative to normal-like tumours (p<3.3x10-23). Taken together, 

these data support participation of HECA in an EMT-like gene expression programme in basal-like 

breast cancers. An ‘ion antiporter and GPCR’ cluster for the sna_2-4h_Toll10b dataset (Figure 4) 

included the Na+/H+ antiporter SLC9A6 that also belonged to the twi_2-4h_Toll10b ‘transmembrane 

transport’ cluster (Supplementary Figure S5). Alterations in pH by Na+/H+ exchangers, particularly 

SLC9A1, had been shown to drive basal-like breast cancer progression and chemoresistance [148–

150]. SLC9A6 was 1.6-fold upregulated in basal-like relative to normal-like tumours (p<8.4x10-71) 

and may drive pH dysregulation as part of an EMT-like programme in basal-like breast cancers. The

sna_2-4h_Toll10b NetNC-FTI clusters were depleted in orthologues annotated to the NL subtype, 

compared with results for Twist. For example, sna_2-4h_Toll10b had 4/18 clusters with two or more 

normal-like orthologous genes, significantly fewer than twi_2-3h_union (12/27, Figure 4 panel A; 
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binomial p<0.01) and twi_ 2-4h_Toll10b (8/17, Supplementary Figure S3; p<0.035). A further 

cluster that was specific to basal-like cancers in the twi_2-3h_union dataset was annotated to 

‘mitochondrial translation’, an emerging area of interest for cancer therapy [151,152]. Orthologues 

annotated to the basal-like subtype were frequently located in NetNC-FTI chromatin organisation 

clusters. For example, the twi_2-3h_union ‘chromatin organisation and transcriptional regulation’ 

cluster had six genes annotated to the basal-like subtype, including three Notch signalling modifiers

(ash1, tara, Bap111) that were respectively orthologous to ASH1L, SERTAD2 and SMARCE1. The 

ASH1L histone methyltransferase was a candidate poor prognosis factor with copy number 

amplifications in basal-like tumours [153]; SERTAD2 was a known bromodomain interacting 

oncogene and E2F1 activator [154,155]; SMARCE1, a core subunit of the SWI/SNF chromatin 

remodelling complex, had been shown to regulate ESR1 function and to potentiate breast cancer 

metastasis [156,157]. Therefore our integrative analysis predicted specific chromatin organisation 

factors downstream of Snail and Twist, identifying orthologous genes that may control Notch output

and basal-like breast cancer progression.

2.6 Novel Twist and Snail functional targets influence invasion in a breast cancer 

model of EMT

Our analysis underlined the functional relevance of novel regulators of EMT and cell invasion, 

including SNX29 (also known as RUNDC2A), ATG3, IRX4 and UNK. Therefore, we investigated 

the functional and instructive role of these genes in an established cell model of invasion by 

overexpressing SNAI1 in MCF7 cells [158]. MCF7 cells are weakly invasive [159], thus the SNAI1-

inducible MCF7 cell line was well suited to study alteration in expression of the selected genes in 

terms of their influence on invasion in conjunction with SNAI1 induction, knockdown or 

independently. This was achieved by the co-transfection of cDNAs of these genes alongside a 

doxycycline-inducible vector (pGoldiLox, [160]) that expressed either SNAI1 cDNA or validated 
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shRNAs against SNAI1 [161]. To test for the instructive role of these genes, we ectopically 

expressed the selected NetNC functional targets in a transwell invasion assay that contained MCF7 

with or without SNAI1 cDNA, SNAI1 shRNAs, mCherry control or scrambled control shRNA 

(Figure 6).

Over-expression of IRX4 significantly increased invasion relative to controls in all 

conditions examined and IRX4 had high relative expression in a subset of basal-like breast cancers 

(Figures 5, 6). IRX4 is a homeobox transcription factor involved in cardiogenesis, marking a 

ventricular-specific progenitor cell [162] and is also associated with prostate cancer risk [163]. 

SNX29 belongs to the sorting nexin protein family that function in endosomal sorting and signalling

[164,165]. SNX29 is poorly characterised and ectopic expression significantly reduced invasion in a 

SNAI1-dependent manner (Figure 6). Since we obtained these results, SNX29 downregulation has 

been associated with metastasis and chemoresistance in ovarian carcinoma [166], consistent with 

SNX29 inhibition of invasion driven by Snail. ATG3 is an E2-like enzyme required for autophagy 

and mitochondrial homeostasis [167,168], we found that ATG3 overexpression significantly 

increased invasion. Consistent with our results, knockdown of ATG3 has been reported to reduce 

invasion in hepatocellular carcinoma [169]. UNK is a RING finger protein homologous to the fly 

unkempt protein which binds mRNA, functions in ubiquitination and was upregulated in cells 

undergoing gastrulation [170]. Others have reported that UNK mRNA binding controls neuronal 

morphology and can induce spindle-like cell shape in fibroblasts [171,172]. We found that UNK 

significantly increased MCF7 cell invasion in a manner that was additive with and independent of 

Snail, supporting a potential role in breast cancer progression. Indeed, UNK was overexpressed in 

cancers relative to controls in the ArrayExpress GeneAtlas [173].
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3 Discussion

Our novel Network Neighbourhood Clustering (NetNC) algorithm and D. melanogaster functional 

gene network (DroFN) were applied to predict functional transcription factor binding targets from 

statistically significant ChIP-seq and ChIP-chip peak assignments during early fly development 

(TF_ALL). Seven of the nine TF_ALL datasets included developmental time periods encompassing

stage four (syncytial blastoderm, 80-130 minutes), cellularisation of the blastoderm (stage five, 130-

170 minutes) and initiation of gastrulation (stage 6, 170-180 minutes) [9,24,43,44,57]. The datasets 

twi_2-4h_intersect, sna_2-4h_intersect, twi_2-4h_Toll10b and sna_2-4h_Toll10b additionally included

initial germ band elongation (stage seven, 180-190 minutes) [43,44,57]; twi_2-4h_Toll10b and 

sna_2-4h_Toll10b may have also included stages eight (190-220 minutes) and nine (220-260 

minutes) [43,57]. Twi_2-4h_intersect and sna_2-4h_intersect were tightly staged between stages 5-7

[44]. Additional to stages four, five and six, twi_1-3h_hiConf may have included the latter part of 

stage two (preblastoderm, 25-65 minutes) and stage three (pole bud formation, 65-80 minutes) [57].

The twi_4-6h_intersect dataset was restricted to stages eight to nine which included germ band 

elongation and segmentation of neuroblasts [44,57]. The above differences in the biological 

material analysed could be an important factor underlying variation between datasets, although 

there was considerable overlap in the functional networks predicted for TF_ALL (Figure 4, 

Supplementary Table S2, Supplementary Figure S5).

NetNC analysis substantiated Snail and Twist function in regulating components of multiple 

core cell processes that govern the global composition of the transcriptome and proteome (Figure 4, 

Supplementary Figure S5). These processes included transcription, chromatin organisation, RNA 

splicing, translation and protein turnover (ubiquitination). We identified a ‘Developmental 

Regulation Cluster’ (DRC) which was the major transcriptional control module identified in all nine

TF_ALL datasets. Notch and also wingless had consistently high betweenness centrality in the 

DRC, which is a measure of a node’s influence within a network [174]. In this context, high 
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betweenness centrality may highlight genes with key roles in determining the global network state, 

and so are important for controlling phenotype. Therefore Notch, wingless were predicted to be key 

control points regulated by Snail, Twist in the mesoderm specification network. Notch signalling 

putatively integrates with multiple canonical pathways [63] including interaction with the Wnt gene

family which have many conserved roles across metazoan development, such as in axis 

specification and mesoderm patterning (reviewed in [175] and [176]). Our results are 

complementary to qualitative dynamic modelling where key control nodes may not necessarily have

high betweenness [177]. Orthologues of both Notch and wingless were previously shown to be 

aberrantly regulated in breast cancers, (for example [113,178], and we found that unsupervised 

clustering using predicted Snail and Twist functional targets stratified five intrinsic breast cancer 

subtypes [111] (Figure 5). While more recent studies have classified greater numbers of breast 

cancer subtypes, for example identifying ten groups [179], the five subtypes employed in our 

analysis had been widely used, extensively validated, exhibited clear differences in prognosis, 

overlapped with subgroups defined using standard clinical markers (ESR1, HER2), and so were 

associated with distinct treatment pathways [111,112]. Analysis of the twi_2-3h_union dataset 

revealed a basal-like specific cluster for ‘mitochondrial translation’ (MT) (Figure 4). Inhibition of 

MT is a therapeutic strategy for AML and mitochondrial metabolism is currently being explored in 

the context of cancer therapy [151,152]. Our results highlight MT as a potentially attractive target in

basal-like breast cancers, aligning with previous work linking MT upregulation with deletion of 

RB1 and p53, which occurs in approximately 20% of triple negative breast cancers [180,181]. 

NetNC analysis provided functional context for many Notch modifiers and proposed mechanisms of

signalling crosstalk by predicting regulation of modifiers by Twist, Snail (Figure 4, Supplementary 

Figure S5, Additional File 4). Clusters where multiple modifiers were identified may represent cell 

meso-scale units that are particularly important for Notch signalling in the context of mesoderm 

development and EMT (Additional File 4). For example, the mediator complex and transcription 
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initiation subcluster for twist_union (Figure 4) had 13 nodes, of which 5 were Notch modifiers 

including orthologues of MED7, MED8, MED31. Our results show regulation of Notch signalling 

by Snail and Twist targeting of Notch transcriptional regulators, trafficking proteins, post-

translational modifiers (e.g. ubiquitinylation) and receptor recycling (non-canonical, ligand-

independent signalling) as well as regulation of pathways that may attenuate or modify the Notch 

signal, consistent with previous studies [63,64]. Taranis, a Notch modifier in the chromatin 

organisation cluster, was orthologous to the SERTAD2 bromodomain interacting oncogene [154] 

which had elevated expression in a basal-like breast cancer cluster that contained NOTCH1 (Figure 

4, Figure 5). Our integrative analysis suggests that SERTAD2 could control the phenotypic 

consequences of NOTCH1 activation in basal-like breast cancers through a chromatin remodelling 

mechanism. Notch signalling modulation has been applied in a clinical setting, for example in 

treatment of Alzheimer’s disease, and is a promising area for cancer therapy [64,182–184]. 

Orthologues of Notch modifiers identified in our analysis provide a pool of candidates that could 

potentially inform development of companion diagnostics or combination therapies for agents 

targeting the notch pathway in basal-like breast cancers. In addition to Notch signalling, taranis also

functions to stabilise the expression of engrailed in regenerating tissue [87]. The engrailed 

orthologue EN1 is a survival factor in basal-like breast cancers [119]; SERTAD2 and EN1 were both

located within the basal-like breast cancer cluster ‘Bas’ (Figure 5). Indeed, EN1 was the clearest 

single basal-like cancer biomarker in the data examined. Therefore, we speculate that SERTAD2 

may cooperate with EN1 in basal-like breast cancers, reflecting conservation of function between 

fly and human; indeed, our results evidence coordinated expression of these two genes as part of a 

gene expression programme controlled by EMT TFs. Regulation of EN1, SERTAD2 within an EMT 

programme could harmonise previous reports of key roles for both neural-specific and EMT TFs in 

basal-like breast cancers [119,138]. The taranis chromatin organisation cluster also contained Notch

modifiers ash1, Bap111, which were respectively orthologous to the ASH1L, SMARCE1 breast 
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cancer poor prognosis factors [153,157]. The notch pathway had been shown to drive EMT-like 

characteristics as well as to mediate hypoxia-induced invasion in multiple cell lines [68]. Previous 

work had also shown that SMARCE1, a SWI/SNF complex member, interacted with Hypoxia 

Inducible Factor 1A (HIF1A) signalling and had significant effects on cell viability upon 

knockdown/ectopic expression alongside disruption of notch family signalling by gamma-secretase 

inhibition [157]. SMARCE1 was recently shown to be important in early-stage cancer invasion 

[185]. Aligning with these studies, our results evidence conserved function for SMARCE1 in 

(partial) EMT signalling in both mesoderm development and breast cancer progression, possibly in 

regulation of SWI/SNF targeting. SWI/SNF had been reported to regulate chromatin switching in 

oral cancer EMT [186]. NetNC results showing predicted regulation of chromatin organisation 

genes by Snail, Twist also included core polycomb group (PcG) and trithorax components, 

suggesting novel crosstalk with epigenetic regulation mechanisms in specifying mesodermal cell 

fates. PcG genes have long been considered to be crucial oncofetal regulators and have become the 

focus of significant cancer drug development efforts [187,188]. Our findings align with previous 

reports that gene silencing in EMT involves PcG, for example at Cdh1, CDKN2A [188–191] and 

support a model where EMT TFs control the expression of their own coregulators; for example, 

Snai1 was shown to recruit polycomb repressive complex 2 members [189]. Overall, these NetNC 

results predicted components of feedback loops where the Snail, Twist EMT transcription factors 

regulate chromatin organisation genes that, in turn, may both reinforce and coordinate downstream 

stages in gene expression programmes for mesoderm development and cancer progression. Stages 

of the EMT programme had been described elsewhere, reviewed in [39]; our results map networks 

that may control the remodelling of Waddington’s landscape - identifying crosstalk between Snail, 

Twist, epigenetic modifiers and regulation of key developmental pathways, including notch [192]. 

We speculate that dynamic interplay between successive cohorts of TFs and chromatin organisation 
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factors could be an attractive mechanism to determine progress through and the ordering of steps in 

(partial) EMTs, consistent with ‘metastable’ intermediate stages [39].

Our work integrates datasets from D. melanogaster and human breast cancers, offering 

insight into the biology of epithelial remodelling in both systems. Indeed, the fly genome is 

relatively small and hence more tractable for network studies, while the availability of data for 

analysis (e.g. ChIP-chip, ChIP-seq, genetic screens) is enhanced by both considerable community 

resources and the relative ease of experimental manipulation [193,194]. The datasets sna_2-

4h_Toll10b, twi_2-4h_Toll10b represent embryos formed entirely from mesodermal lineages [43] and, 

together, had significantly greater proportion of basal-like breast cancer genes than the combined 

sna_2-3h_union, twi_2-3h_union datasets (p<8.0x10-4). This enrichment aligned with previous 

reports showing that basal-like breast cancers have EMT characteristics [138,139]. Indeed the 

NetNC results map mechanistic commonalities between mesoderm development and breast cancers,

including evidence for molecular features of EMT in normal-like (NL) breast cancers. Multiple 

EMT factors, including SNAI2 and TWIST1, had highest expression values in NL cancers and were 

assigned to the NL centroid. Previous work had shown enrichment of non-epithelial genes in the 

normal-like subtype [128]. EMT was known to confer stem-like cell properties [178,195,196] and 

our results were consistent with dedifferentiation or arrested differentiation due to activation of an 

EMT-like programme, forming a stem-like cell subpopulation in NL cancers. For example, SNAI2 

had been linked with a stem-like signature in breast cancer metastasis and was critical for 

maintenance of mammary stem cells [197,198]. NetNC predicted targets for Twist included the 

proteosome, splicing and ribosomal components; orthologous genes for these subnetworks were 

largely assigned to the NL subtype in multiple TF_ALL datasets, suggesting potential regulation of 

these cell systems by TWIST1 in NL cancers. Some EMT genes were highly expressed in both 

basal-like and NL cancers, for example QKI (Figure 5); EMT-like signalling may therefore be a 

common thread connecting these two subtypes despite other important differences, such as hormone
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receptor status [199]. Indeed, the majority of predicted Snail and Twist functional targets had 

orthologues that were assigned to either basal-like or NL cancers, providing further evidence that 

EMT-like signalling is important in both subtypes. We note that cell-compositional effects, 

associated with a previously reported high proportion of stromal tissue in NL tumours [200], could 

explain the observed enrichment of EMT molecular characteristics in this subtype. In addition to 

stromal compositional differences in the NL subtype, as noted above, an EMT signature might 

reflect inhibition of differentiation. Indeed, NL cancers were previously shown to have high 

expression of stem cell markers [128,201–203]. Our results demonstrated that NetNC functional 

targets from fly mesoderm development capture clinically relevant molecular features of breast 

cancers and revealed novel candidate drivers of tumour progression. Roles in control of invasion 

were found for four predicted functional targets (UNK, SNX29, ATG3, IRX4) in ectopic expression 

and shRNA knockdown experiments with a Snail inducible breast cancer cell line. Potential 

artefacts associated with changes in cell growth or proliferation are controlled within the transwell 

assays used, because values reflect the ratio of signal from cells located at either side of the matrigel

barrier. These in vitro confirmatory results both support the novel analysis approach and evidence 

new function for the genes examined.

All nine of the TF_ALL datasets had high predicted NetNC-lcFDR neutral binding 

proportion (PNBP), ranging from 50% to ≥80%. These PNBP values may reflect an upper limit on 

neutral binding because some functional targets could be missed; for example due to errors in 

assigning enhancer binding to target genes and bona fide regulation of genes that have few DroFN 

edges with other candidate ChIP-seq or ChIP-chip targets. While neutral TF binding may arise 

partly from non-specific associations of TFs with euchromatin, alternative explanations include 

dormant binding, possibly reflecting developmental lineage [204] or enhancer priming [205]. 

Additionally, calibration of lcFDR values against synthetic data based on KEGG might influence 

neutral binding estimates, due to potential differences in network properties between TF targets and 
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KEGG pathways; such as clustering coefficient. Candidate target genes that were assigned to peaks 

according to RNA polymerase occupancy [24] had PNBP similar to or lower than datasets where 

RNA polymerase data was not used. Therefore, we found no evidence of benefit in using RNA 

polymerase binding data to guide peak matching. Candidate targets for the twi_2-4h_Toll10b, sna_2-

4h_Toll10b datasets were defined using a relatively generous peak threshold (two-fold enrichment), 

which may explain the high PNBP found for sna_2-4h_Toll10b. Twi_2-4h_Toll10b had similar PNBP 

to the other Twist datasets analysed, although application of a higher peak enrichment threshold 

would likely lead to a lower PNBP value for this dataset. Indeed, twi_2-6h_intersect had the 

strongest peak intensity and lowest PNBP compared with other datasets from the same study 

(twi_2-4h_intersect, twi_4-6h_intersect). Candidate targets for twi_2-6h_intersect were 

continuously bound across two different time periods; the only other member of TF_ALL that 

represented binding at multiple time periods was the HOT dataset, which also had low PNBP. 

Indeed, the only dataset with lower PNBP than either HOT or twi_2-6h_intersect was the Twist 

ChIP-seq ‘high-confidence’ dataset (twi_1-3h_hiConf) where the most stringent peak filtering 

protocols had been applied [9]. Twi_1-3h_hiConf was the only ChIP-seq dataset analysed in this 

study, however this factor alone is unlikely to explain the high proportion of predicted functional 

binding. Indeed, overlap with ChIP-chip results informed classification of the ‘high-confidence’ 

ChIP-seq peaks taken for twi_1-3h_hiConf [9]. We found similar NetNC PNBP values for datasets 

produced by taking either the intersection or the union of two independent Twist antibodies. Hits 

identified by multiple antibodies may be technically more robust due to reduced off-target binding 

[44]. However, taking the union of candidate binding sites could eliminate false negatives arising 

from epitope steric occlusion, for example due to context-specific protein interactions. The 

similarity of PNBP values for either the intersection or the union of Twist antibodies suggests that, 

despite the higher expected technical specificity, the intersection of candidate targets may not enrich

for functional binding sites at the 1% peak-calling FDR threshold applied [24,44]. In general, fewer 
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false negatives implies recovery of numerically more functional TF targets that therefore may 

produce denser clusters in DroFN which, in turn, could facilitate NetNC discovery of functional 

targets. Indeed, datasets representing the union of two antibodies ranked highly in terms of both the 

total number and proportion of genes recovered at lcFDR<0.05 or pFDR<0.05 (Figure 3).

NetNC may be widely useful for discovery of highly connected gene groups across multiple 

different data types. Further possible applications include: identification of differentially expressed 

pathways and macromolecular complexes from functional genomics data; illuminating common 

biology among CRISPR screen hits in order to inform prioritisation of candidates for follow-up 

work [206]; and discovery of functional coherence in chromosome conformation capture data (4-C, 

5-C), for example in enhancer regulatory relationships [207,208]. NetNC may be applied to any 

undirected network; including protein-protein or genetic interactions, telecommunications, climate 

and social networks. Indeed, context-specific effects are important for many disciplines; for 

example a given social event is unlikely to involve everyone in the social network, and regulatory 

changes may only apply to a subset of businesses in an economic model. The multiple 

complementary analysis modes in NetNC provide adaptability to extract value from real-world 

datasets. A parameter-free mode, NetNC-FBT, provides resilience to enable discovery of coherent 

genes with graph properties different to those of the KEGG pathways used in calibration of the 

‘Functional Target Identification’ analysis mode (NetNC-FTI). NetNC-FBT employs unsupervised 

clustering, and analyses the shape of the NFCS score distribution rather than absolute score values. 

Therefore, NetNC-FBT can separate high-scoring arbitrary subgraphs from disconnected or 

sparsely connected nodes in the input data. We note that NetNC-FBT had a low false positive rate 

on blind test data (Figure 2). On the other hand, the NetNC-FTI approach does not assume that the 

input gene list contains a large proportion of low-scoring genes and therefore has clear advantages 

for analysis of datasets largely composed of functionally coherent genes (nodes). Also, NetNC-FTI 

gave the best overall performance for discrimination between biological pathways and Synthetic 
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Neutral Target Genes (SNTGs). The NetNC software distribution includes a conservative, empirical

method for estimation of local False Discovery Rate (lcFDR) from global FDR values, which could 

be useful in a wide range of applications. For example, FDR estimation is fundamental for mass 

spectrometry proteomics [209,210] where target-decoy searching approaches typically utilise a 

single ‘decoy’ search as the basis for fitting a null (H0) score distribution in order to estimate lcFDR 

[209–211]. However, NetNC generates H0 by resampling, which would be equivalent to having 

multiple decoy searches, which therefore enables estimation of local FDR by stepping through 

global FDR values. There might be merit in further investigation of the NetNC local FDR 

estimation strategy in the context of proteomics database searching. Evaluation on blind test data 

alongside leading clustering algorithms (MCL [36], HC-PIN [37]) showed that NetNC performed 

well overall, with particular advantages for analysis of datasets that had substantial (>50%) 

synthetic neutral TF binding. Indeed, the nine TF_ALL datasets examined were predicted to have at

least 50% neutral binding, aligning well with application of NetNC for discovery of functional 

targets in ChIP-chip and ChIP-seq data. TF binding focus networks derived from NetNC may also 

be useful in prioritising components for inclusion within regulatory network modelling. Software 

and datasets are made freely available as Additional Files associated with this publication.

NetNC does not require a priori definition of gene groupings, but instead dynamically 

defines clusters within the subnetwork induced in DroFN by the input gene list. Therefore, NetNC 

is complementary to techniques that employ static, predefined gene groupings such as GSEA [32], 

DAVID [33] and GGEA [50]). For example, NetNC discovered functional groups for poorly 

characterised genes (Figure 4A, bottom right). Additionally, NetNC may be used for dimensionality 

reduction in gene-wise multiple hypothesis testing. One example application could be analysis of a 

gene list defined using a differential expression fold-change threshold, providing a hypothesis-

generating step prior to evaluation of statistical significance performed on individual coherent genes

or on gene clusters. The NetNC output would therefore identify a subset of genes, based on network
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coherence, for input into significance testing. Benjamini-Yekutieli false discovery rate control [212]

would be appropriate due to the expected dependency of expression values from genes within 

NetNC clusters. This approach appears attractive for analysis of high-dimensional data, such as 

transcriptome profiling, where statistical power is diluted by the large number of hypotheses (genes)

tested relative to the small number of biological samples that are typically available for analysis. 

Indeed, established functional genomics data processing workflows involve filtering to reduce 

dimensionality; for example to eliminate genes with expression values indistinguishable from the 

assay ‘background’ [213,214]. NetNC could be deployed as a filter to select coherent genes 

according to the prior knowledge encoded by a functional gene network (FGN); NetNC would 

therefore generate a hypothesis for candidate differentially expressed genes based on the biological 

context represented by the FGN and the assumption that gene expression changes occur coherently, 

forming network communities. Statistical evaluation of this network coherence property, including 

estimation of FDR, is available within NetNC for numerical thresholding. Therefore, NetNC has 

novel applications in distillation of knowledge from high-dimensional data, including single-subject

datasets which is an important emerging area for precision medicine [215]. Application of statistical

and graph theoretic methods for quantitative evaluation of relationships between genes (nodes) in 

NetNC offers an alternative to the classical emphais on individual genes in studying the relationship

between genotype and phenotype [216].

4 Conclusions

We demonstrated a novel approach to functional TF target discovery using the NetNC algorithm, 

which was developed and calibrated to separate the signal for functionally coherent target genes 

from the ‘noise’ of neutral binding in a ChIP-seq or ChIP-chip experiment. NetNC compared well 

to application of standard network community detection approaches in this context. Indeed, all nine 

TF datasets studied had a high level of neutral binding, corresponding closely with the benchmark 
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datasets where NetNC had the greatest performance advantages. Therefore, NetNC appears the 

method of choice for elimination of neutral binding and offers an unbiased, systematic approach to 

help maximise the value of genome-scale TF occupancy data. We investigated current experimental 

strategies designed to enrich for functional TF binding and, reassuringly, found that NetNC 

predicted highest coherence for the most stringent peak filtering approach [9]. TF binding at 

overlapping time points and higher peak intensity were associated with functional coherence. 

However, taking the intersection of binding from multiple antibodies for a single TF did not 

demonstrate clear benefit over taking the union of binding sites in our analysis, possibly due to 

NetNC actively identifying the larger pool of functional TF binding sites within longer candidate 

target gene lists. Our results align with evidence that HOT regions function in gene regulation, 

despite depletion for known TF motifs [15,217,218], and supported the emerging picture of 

widespread combinatorial control involving TF-TF interactions, cooperativity and TF redundancy 

[2,5,7,219,220].

We presented genome-scale maps of genes downstream of Snail and Twist in D. 

melanogaster early development, finding considerable overlap in results across multiple datasets. 

Integration of NetNC networks with Notch screens and the expression of orthologous human breast 

cancer genes provided for deep analysis of the conserved molecular networks that orchestrate 

epithelial remodelling in development and tumour progression. For example, we evidenced 

regulation of major epigenetic regulators that impact upon polycomb, trithorax; and proposed new 

TF functions, such as regulation of mushroom body proliferation factors by Twist. Surprisingly, 

orthologous functional TF targets discriminated between intrinsic breast cancer subtypes. We 

revealed subtype-specific molecular features as well as commonalities between individual subtypes.

For example, subtype-specific features included differential regulation of BMP signalling 

components (BMPR1, BMP2) between luminal and basal-like cancers. We identified upregulation 

of basal-like features in the luminal B but not luminal A cancers that may contribute to the relatively
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worse prognosis of luminal B subtype. The normal-like subtype had a distinctive EMT signature 

and multiple genes were highly expressed in both normal-like and basal-like cancers. Differences 

between the biology of normal-like and basal-like subtypes were captured in clusters of orthologous

genes within the NetNC functional TF binding networks. Cell processes specific to basal-like 

cancers included RNA degradation, transcriptional regulation, ion antiport, mitochondrial 

translation and chromatin organisation; genes in these processes were Notch signalling modifiers 

and may control the consequences of notch activation in basal-like tumours. Therefore, our work 

crystalises information from multiple datasets in order to predict novel molecular characteristics for 

clinically important breast cancer subtypes. Our approach is supported by results validating 

invasion roles for four functional targets predicted from NetNC analysis of candidate Snail and 

Twist targets.

5 Methods

5.1 A Comprehensive D. melanogaster functional gene network (DroFN)

A high-confidence, comprehensive Drosophila melanogaster functional network (DroFN) was 

developed using a previously described inference approach [49]. Functional interaction 

probabilities, corresponding to pathway co-membership, were estimated by logistic regression of 

Bayesian probabilities from STRING v8.0 scores [221] and Gene Ontology (GO) coannotations 

[60], taking KEGG [222] pathways as gold standard.

Gene pair co-annotations were derived from the GO database of March 25th 2010. The GO 

Biological Process (BP) and Cellular Component (CC) branches were read as a directed graph and 

genes added as leaf terms. The deepest term in the GO tree was selected for each gene pair, and BP 

was given precedence over CC. Training data were taken from KEGG v47, comprising 110 

pathways (TRAIN-NET). Bayesian probabilities for STRING and GO coannotation frequencies 

were derived from TRAIN-NET [49]. Selection of negative pairs from TRAIN-NET using the perl 
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rand() function was used to generate training data with equal numbers of positive and negative pairs

(TRAIN-BAL), which was input for logistic regression, to derive a model of gene pair functional 

interaction probability:

p(I |GO, STRING)=
1

1+(e−6.75+1.03 pGO+1.12 pSTRING
)

(1)

Where:

pGO is the Bayesian probability derived from Gene Ontology coannotation frequency 

pSTRING is the Bayesian probability derived from the STRING score frequency

The above model was applied to TRAIN-NET and the resulting score distribution thresholded by 

seeking a value that maximised the F-measure [223] and True Positive Rate (TPR), while also 

minimising the False Positive Rate (FPR). The selected threshold value (p ≥0.779) was applied to 

functional interaction probabilities for all possible gene pairs to generate the high-confidence 

network, DroFN.

For evaluation of the DroFN network, time separated test data (TEST-TS) were taken from 

KEGG v62 on 13/6/12, consisting of 14 pathways that were not in TRAIN-NET. TEST-TS was 

screened against TRAIN-NET, eliminating 34 positive and 218 negative gene pairs to generate the 

blind test dataset TEST-NET (4599 pairs). GeneMania (version of 10th August 2011) [46] and 

DROID (v2011_08) [45] were assessed against TEST-NET.

5.2 Network neighbourhood clustering (NetNC) algorithm

NetNC identifies functionally coherent nodes in a subgraph S of functional gene network G (an 

undirected graph), induced by some set of nodes of interest D; for example, candidate transcription 

factor target genes assigned from analysis of ChIP-seq data. Intuitively, we consider the proportion 

of common neighbours for nodes in S to define coherence; for example, nodes that share neighbours
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have greater coherence than nodes that do not share neighbours. The NetNC workflow is 

summarised in Figure 1 and described in detail below. Two analysis modes are available a) node-

centric (parameter-free) and b) edge-centric, with two parameters. Both modes begin by assigning a 

p-value to each edge (Sij) from Hypergeometric Mutual Clustering (HMC) [51], described in points 

one and two, below.

1. A two times two contingency table is derived for each edge Sij by conditioning on the 

Boolean connectivity of nodes in S to Si and Sj. Nodes Si and Sj are not counted in the 

contingency table.

2. Exact hypergeometric p-values [51] for enrichment of the nodes in S that have edges to the 

nodes Si and Sj are calculated using Fisher's Exact Test from the contingency table. 

Therefore, a distribution of p-values (H1) is generated for all edges Sij.

3. The NetNC edge-centric mode employs positive false discovery rate [52] and an iterative 

minimum cut procedure [53] to derive clusters as follows:

a) Subgraphs with the same number of nodes as S are resampled from G, application of 

steps 1 and 2 to these subgraphs generates an empirical null distribution of 

neighbourhood clustering p-values (H0). This H0 accounts for the effect of the sample 

size and the structure of G on the Sij hypergeometric p-values (pij). Each NetNC run on 

TF_ALL in this study resampled 1000 subgraphs to derive H0.

b) Each edge in S is associated with a positive false discovery rate (q) estimated over pij 

using H1 and H0. The neighbourhood clustering subgraph C is induced by edges where 

the associated q ≤ Q.

c) An iterative minimum cut procedure [53] is applied to C until all components have 

density greater than or equal to a threshold Z. Edge weights in this procedure are taken 

as the negative log p-values from H1 .
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d) As described in section 4.2.3, thresholds Q and Z were chosen to optimise the 

performance of NetNC on the 'Functional Target Identification' task using training data 

taken from KEGG. Connected components with less than three nodes are discarded, in 

line with common definitions of a 'cluster'. Remaining nodes are classified as 

functionally coherent.

4. The node-centric, parameter-free mode proceeds by calculating degree-normalised node 

functional coherence scores (NFCS) from H1, then identifies modes of the NFCS 

distribution using Gaussian Mixture Modelling (GMM) [54]:

a) The node functional coherence score (NFCS) is calculated by summation of Sij p-values 

in H1 (pij) for fixed Si, normalised by the Si  degree value in S (di):

NFCS i=−
1
d i
∑

j

log(pij) (2)

b) GMM is applied to identify structure in the NFCS distribution. Expectation-

maximization fits a mixture of Gaussians to the distribution using independent mean and

standard deviation parameters for each Gaussian [54,224]. Models with 1..9 Gaussians 

are fitted and the final model selected using the Bayesian Information Criterion (BIC).

c) Nodes in high-scoring mode(s) are predicted to be ‘Functionally Bound Targets’ (FBTs) 

and retained. Firstly, any mode at NFCS<0.05 is excluded because this typically 

represents nodes with no edges in S (where NFCS=0). A second step eliminates the 

lowest scoring mode if >1 mode remains. Very rarely a unimodal model is returned, 

which may be due to a large non-Gaussian peak at NFCS=0 confounding model fitting; 

if necessary this is addressed by introducing a tiny Gaussian noise component (SD=0.01)

to the NFCS=0 nodes to produce NFCS_GN0. GMM is performed on NFCS_GN0 and 

nodes eliminated according to the above procedure on the resulting model. This 
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procedure was developed following manual inspection of results on training data from 

KEGG pathways with 'synthetic neutral target genes' (STNGs) as nodes resampled from 

G (TRAIN-CL, described in section 2.2.1).

Therefore, NetNC can be applied to predict functional coherence using either edge-centric or node-

centric analysis modes. The edge-centric mode automatically produces a network, whereas the 

node-centric analysis does not output edges; therefore to generate networks from predicted FBT 

nodes an edge pFDR threshold may be applied, pFDR≤0.1 was selected as the default value. The 

statistical approach to estimate pFDR and local FDR are described in the sections below.

5.2.1 Estimating positive false discovery rate for hypergeometric mutual clustering 

p-values

The following procedure is employed to estimate positive False Discovery Rate (pFDR) [52] in the 

NetNC edge-centric mode. Subgraphs with number of nodes identical to S are resampled from G to 

derive a null distribution of HMC p-values (H0) (section 4.2, above). The resampling approach for 

pFDR calculation in NetNC-FTI controls for the structure of the network G, including degree 

distribution, but does not control for the degree distribution or other network properties of the 

subgraph S induced by the input nodelist (D). In scale free and hierarchical networks, degree 

correlates with clustering coefficient; indeed, this property is typical of biological networks [225]. 

Part of the rationale for NetNC assumes that differences between the properties of G and S (for 

example; degree, clustering coefficient distributions) may enable identification of clusters within S. 

Therefore, it would be undesirable to control for the degree distribution of S during the resampling 

procedure for pFDR calculation because this would also partially control for clustering coefficient. 

Indeed clustering coefficient is a node-centric parameter that has similarity with the edge-centric 

Hypergeometric Clustering Coefficient (HMC) calculation [51] used in the NetNC algorithm to 
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analyse S. Hence, the resampling procedure does not model the degree distribution of S, although 

the degree distribution of G is controlled for. Positive false discovery rate is estimated over the p-

values in H1 (pij) according to Storey [52]:

pFDR=E(
V
R

) , R>0 (3)

Where:

R denotes hypotheses (edges) taken as significant

V are the number of false positive results (type I error)

NetNC steps through threshold values (pα) in pij estimating V using edges in H0 with p≤pα . H0 

represents Y resamples, therefore V is calculated at each step:

V =
H 0

Y
, p≤ pα (4)

The H1 p-value distribution is assumed to include both true positives and false positives (FP); H0 is 

taken to be representative of the FP present in H1. This approach has been successfully applied to 

peptide spectrum matching [226,227]. The value of R is estimated by:

R=∑
p∈H1

{1 pij ≤ pα

0 otherwise
(5)

Additionally, there is a requirement for monotonicity: 

pFDRx+1 ≥ pFDRx , px< px +1 (6)
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Equation (6) represents a conservative procedure to prevent inconsistent scaling of pFDR due to 

sampling effects. For example consider the scaling of pFDR for pFDRx+1 at a pij value with 

additional edges from H1 but where no more resampled edges (i.e. from H0) were observed in the 

interval between px and px+1; before application of equation (6), the value of pFDRx+1 would be 

lower than pFDRx. The approach also requires setting a maximum on estimated pFDR, considering 

that there may be values of pα where R is less than V. We set the maximum to 1, which would 

correspond to a prediction that all edges at pij are FPs. The assumption that H1 includes false 

positives is expected to hold in the context of candidate transcription factor target genes and also 

generally across biomedical data due to the stochastic nature of biological systems [228–230]. We 

note that an alternative method to calculate R using both H1 and H0 would be less conservative than 

the approach presented here.

5.2.2 Estimating local false discovery rate from global false discovery rate

We developed an approach to estimate local false discovery rate (lcFDR) [231], being the 

probability that an object at a threshold (pα) is a false positive (FP). Our approach takes global 

pFDR values as basis for lcFDR estimation. In the context of NetNC analysis using the DroFN 

network, a FP is defined as a gene (node) without a pathway comembership relationship to any 

other nodes in the nodelist D. The most significant pFDR value (pFDRmin) from NetNC was 

determined for each node Si across the edge set Sij. Therefore, pFDRmin is the pFDR value at which 

node Si would be included in a thresholded network. We formulated lcFDR for the nodes with 

pFDRmin meeting a given pα (k) as follows:

lcFDRk=
((n× pFDRk)– ((n – X )×pFDR l))

X
(7)
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Where l denotes the pFDRmin closest to and smaller than k, and where at least one node has 

pFDRmin≡pFDRl. Therefore, our approach can be conceptualised as operating on ordered pFDRmin 

values. n indicates the nodes in D with pFDRmin values meeting threshold k. X represents the number

of nodes at pα≡k. The number of FPs for nodes with pα≡k (FPk) is estimated by subtracting the FP 

for threshold l from the FP at threshold k. Thus, division of FPk by X gives local false discovery rate

bounded by k and l (Supplementary Figure S7). If we define the difference between pFDRk  and 

pFDRl:

pFDRΔ = pFDRk  - pFDRl (8)

Substituting pFDRk for (pFDRl  + pFDRΔ) into equation (7) and then simplifying gives: 

lcFDRk = ((n x pFDRΔ) / X) + pFDRl (9)

Equations (7) and (9) do not apply to the node(s) in D at the smallest possible value of pFDRmin 

because pFDRl would be undefined; instead, the value of lcFDRk is calculated as the (global) 

pFDRmin value. Indeed, global FDR and local FDR are equivalent when H1 consists of objects at a 

single pFDRmin value. Taking the mean lcFDRk across D provided an estimate of neutral binding in 

the studied ChIP-chip, ChIP-seq datasets and was calibrated against mean lcFDR values from 

datasets that had a known proportion of Synthetic Neutral Target Genes (SNTGs). Estimation of the

total proportion of neutral binding in ChIP-chip or ChIP-seq data required lcFDR rather than 

(global) pFDR and, for example, accounts for the shape of the H1 distribution. In the context of 

NetNC analysis of TF_ALL, mean lcFDR may be interpreted as the probability that any candidate 

target gene is neutrally bound in the dataset analysed; therefore providing estimation of the total 

neutral binding proportion. Computer code for calculation of lcFDR is provided within the NetNC 
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distribution (Additional File 5). Estimates of SNTGs by the NetNC-FBT approach were not taken 

forward due to large 95% CI values (Supplementary Figure S8).

5.2.3 NetNC benchmarking and parameter optimisation

Gold standard data for NetNC benchmarking and parameterisation were taken as pathways from 

KEGG (v62, downloaded 13/6/12) [222]. Training data were selected as seven pathways (TRAIN-

CL, 184 genes) and a further eight pathways were selected as a blind test dataset (TEST-CL, 186 

genes) summarised in Supplementary Table S7. For both TRAIN-CL and TEST-CL, pathways were 

selected to be disjoint and to cover a range of different biological functions. However, pathways 

with shared biology were present within each group; for example TRAIN-CL included the pathways

dme04330 'Notch signaling' and dme04914 'Progesterone-mediated oocyte maturation', which are 

related by notch involvement in oogenesis [232,233]. TEST-CL also included the related pathways 

dme04745 'Phototransduction' and dme00600 'Sphingolipid metabolism', for example where 

ceramide kinase regulates photoreceptor homeostasis [234–236].

Gold standard datasets were also developed in order to investigate the effect of dataset size 

and noise on NetNC performance. The inclusion of noise as resampled network nodes into the gold-

standard data was taken to model neutral TF binding [1,8] and matches expectations on data taken 

from biological systems in general [228,230]. Therefore, gold standard datasets were generated by 

combining TRAIN-CL with nodes resampled from the network (G) and combining these with 

TRAIN-CL. The final proportion of resampled nodes (Synthetic Neutral Target Genes, SNTGs) 

ranged from 5% through to 80% in 5% increments. Since we expected variability in the network 

proximity of SNTGs to pathway nodes (S), 100 resampled datasets were generated per %SNTG 

increment. Further gold-standard datasets were generated by taking five subsets of TRAIN-CL, 

from three through seven pathways. Resampling was applied for these datasets as described above 
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to generate node lists representing five pathway sets in TRAIN-CL by sixteen %SNTG levels by l00

repeats (TRAIN_CL_ALL, 8000 node lists; Additional File 2). A similar procedure was applied to 

TEST-CL, taking from three through eight pathways to generate data representing six pathway 

subsets by sixteen noise levels by 100 repeats (TEST-CL_ALL, 9600 node lists, Additional File 3). 

Data based on eight pathways (TEST-CL_8PW, 1600 node lists) were used for calibration of lcFDR

estimates. Preliminary training and testing against the MCL algorithm [36] utilised a single 

subsample for 10%, 25%, 50% and 75% SNTGs (TRAIN-CL-SR, TEST-CL-SR; Additional File 6).

NetNC analysed the TRAIN-CL_ALL datasets in edge-centric mode, across a range of FDR 

(Q) and density (Z) threshold values. Performance was benchmarked on the Functional Target 

Identification (FTI) task which assessed the recovery of biological pathways and exclusion of 

SNTGs. Matthews correlation coefficient (MCC) was computed as a function of NetNC parameters 

(Q, Z). MCC is attractive because it is captures predictive power in both the positive and negative 

classes. FTI was a binary classification task for discrimination of pathway nodes from noise, 

therefore all pathway nodes were taken as as positives and SNTGs were negatives for the FTI MCC

calculation. The FTI approach therefore tests discrimination of pathway nodes from SNTGs, which 

is particularly relevant to identification of functionally coherent candidate TF targets from ChIP-

chip or ChIP-seq peaks.

Parameter selection for NetNC on the FTI task analysed MCC values for the 100 SNTG 

resamples across five pathway subsets by sixteen SNTG levels in TRAIN-CL_ALL over the Q, Z 

values examined, respectively ranging from up to 10-7 to 0.8 and from up to 0.05 to 0.9. Data used 

for optimisation of NetNC parameters (Q, Z) are given in Additional File 7 and contour plots 

showing mean MCC across Q, Z values per %SNTG are provided in Supplementary Figure S9. A 

‘SNTG specified’ parameter set was developed for situations where an estimate of the input data 

noise component is available, for example from the node-centric mode of NetNC. In this 

parameterisation, for each of the sixteen datasets with different proportions of SNTG (5% .. 80%), 
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MCC values were normalized across the five pathway subsets of TRAIN-CL (from three through 

seven pathways), by setting the maximum MCC value to 1 and scaling all other MCC values 

accordingly. The normalised MCC values <0.75 were set to zero and then a mean value was 

calculated for each %SNTG value across five pathway subsets by 100 resamples in TRAIN-

CL_ALL (500 datasets per noise proportion). This approach therefore only included parameter 

values corresponding to MCC performance ≥75% of the maximum across the five TRAIN-CL 

pathway subsets. The high performing regions of these ‘summary’ contour plots sometimes had 

narrow projections or small fragments, which could lead to parameter estimates that do not 

generalise well on unseen data. Therefore, parameter values were selected as the point at the centre 

of the largest circle (in (Q, Z) space) completely contained in a region where the normalised MCC 

value was ≥0.95. This procedure yielded a parameter map: (SNTG Estimate) → (Q, Z), given in 

Supplementary Table S8. NetNC parameters were also determined for analysis without any prior 

belief about the %SNTG in the input data - and therefore generalise across a wide range of %SNTG

and dataset sizes. For this purpose, a contour plot was produced to represent the proportion of 

datasets where NetNC performed better than 75% of the maximum performance across TRAIN-

CL_ALL for the FTI task in the Q, Z parameter space. The maximum circle approach described 

above was applied to the contour plot in order to derive ‘robust’ parameter values (Q, Z), which 

were respectively 0.120, 0.306 (NetNC-FTI).

5.2.4 Performance on blind test data

We compared NetNC against leading methods, HC-PIN [37] and MCL [36] on blind test data 

(Figure 2, Supplementary Table S1). Input, output and performance summary files for HC-PIN on 

TEST-CL are given in Additional File 8. HC-PIN was run on the weighted graphs induced in 

DroFN by TEST-CL with default parameters (lambda = 1.0, threshold size = 3). MCL clusters in 

DroFN significantly enriched for query nodes from TEST-CL-SR were identified by resampling to 
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generate a null distribution [49]. Clusters with q<0.05 were taken as significant. MCL performance 

was optimised for the Functional Target Identification (FTI) task over the TRAIN-CL-SR datasets 

for MCL inflation values from 2 to 5 incrementing by 0.2. The best-performing MCL inflation value

overall was 3.6 (Supplementary Table S9).

5.2.5 Subsampling of transcription factor binding datasets and statistical testing

Robustness of NetNC performance was studied by taking 95%, 80% and 50% resamples from nine 

public transcription factor binding datasets, summarised in section 4.3 and described previously in 

detail [9,14,24,43,44]. A hundred subsamples of each of these datasets were taken at rates of 95%, 

80% and 50%, thereby producing a total of 2700 datasets (TF_SAMPL). NetNC-FTI results across 

TF_SAMPL were used as input for calculation of median and 95% confidence intervals for the edge

and gene overlap per subsampling rate for each transcription factor dataset analysed. The NetNC 

resampling parameter (Y) was set at 100, the default value. The edge overlap was calculated as the 

proportion of edges returned by NetNC-FTI for the subsampled dataset that were also present in 

NetNC-FTI results for the full dataset (i.e. at 100%). Therefore, nine values for median overlap and 

95% CI were produced per subsampling rate for both edge and gene overlap, corresponding to the 

nine transcription factor binding datasets (Supplementary Table S3). The average (median) value of 

these nine median overlap values, and of the 95% CI, was calculated per subsampling rate; these 

average values are quoted in Results section 2.4. 

False discovery rate (FDR) correction of p-values was applied where appropriate and is 

indicated in this manuscript by the commonly used notation ‘q’ Benjamini-Hochberg correction was

applied [237] unless otherwise specified in the text. The pFDR and local FDR values calculated by 

NetNC are described in Methods sections 4.2, 4.2.1 and 4.2.2 (above).
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5.3 Transcription factor binding and Notch modifier datasets

We analysed public Chromatin Immunoprecipitation (ChIP) data for the transcription factors twist 

and snail in early Drosophila melanogaster embryos. These datasets were derived using ChIP 

followed by microarray (ChIP-chip) [24,43,44] and ChIP followed by solexa pyrosequencing 

(ChIP-seq) [9]. Additionally 'highly occupied target' regions, reflecting multiple and complex 

transcription factor occupancy profiles, were obtained from ModEncode [14]. Nine datasets were 

analysed in total (TF_ALL) and are summarised below.

The 'union' datasets (WT embryos 2-3h, mostly late stage four or early stage five) combined 

ChIP-chip peaks significant at 1% FDR for two different antibodies targeted at the same TF and 

these were assigned to the closest transcribed gene according to PolII binding data [24]. 

Additionally, where the closest transcribed gene was absent from the DroFN network then the 

nearest gene was included if it was contained in DroFN. This approach generated the datasets 

sna_2-3h_union (1158 genes) and twi_2-3h_union (1848 genes). The union of peaks derived from 

two separate antibodies maximised sensitivity and may have reduced potential false negatives 

arising from epitope steric occlusion. For the 'Toll10b' datasets, significant peaks with at least two-

fold enrichment for Twist or Snail binding were taken from ChIP-chip data on Toll10b mutant 

embryos (2-4h), which had constitutively activated Toll receptor [43,238]; mapping to DroFN 

generated the datasets twi_2-4h_Toll10b (1238 genes), sna_2-4h_Toll10b (1488 genes). Toll10b embryos

had high expression of Snail and Twist, which drove all cells to mesodermal fate trajectories [43]. 

The two-fold enrichment threshold selected for this study reflects ‘weak’ binding, although was 

expected to include functional TF targets [10]. Therefore the candidate target genes for twi_2-

4h_Toll10b and sna_2-4h_Toll10b were expected to contain a significant proportion of false positives. 

The Highly Occupied Target dataset included 38562 regions, of which 1855 had complexity score 

≥8 and had been mapped to 1648 FlyBase genes according to the nearest transcription start site 

[14]; 677 of these genes were matched to a DroFN node (HOT). The ‘HighConf’ data took Twist 
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ChIP-seq binding peaks in WT embryos (1-3h) that had been reported to be ‘high confidence’ 

assignments; high confidence filtering was based on overlap with ChIP-chip regions, identification 

by two peak-calling algorithms and calibration against peak intensities for known Twist targets, 

corresponding to 832 genes [9]. A total of 664 of these genes were found in DroFN (twi_1-

3h_hiConf) and represented the most stringent approach to peak calling of all the nine TF_ALL 

datasets. The intersection of ChIP-chip binding for two different Twist antibodies in WT embryos 

spanning two time periods (2-4h and 4-6h) identified a total of 1842 target genes [44] of which 

1444 mapped to DroFN (Intersect_ALL). Subsets of Intersect_ALL identified regions bound only at

2-4 hours (twi_2-4h_intersect, 801 genes), or only at 4-6 hours (twi_4-6h_intersect, 818 genes), or 

'continuously bound' regions identified at both 2-4 and 4-6 hours (twi_2-6h_intersect, 615 genes). 

Assigned gene targets may belong to more than one subset of Intersect_ALL because time-restricted

binding was assessed for putative enhancer regions prior to gene mapping; overlap of the 

Intersect_ALL subsets ranged between 30.2% and 55.4%. The Intersect_ALL datasets therefore 

enabled assessment of functional enhancer binding according to occupancy at differing time 

intervals and also to examine the effect of intersecting ChIPs for two different antibodies upon the 

proportion of predicted functional targets recovered. 

The Notch signalling modifiers analysed in this study were selected based on identification 

in at least two of the screens reported in [63].

5.4 Breast cancer transcriptome datasets and molecular subtypes

Primary breast tumour gene expression data were downloaded from NCBI GEO 

(GSE12276, GSE21653, GSE3744, GSE5460, GSE2109, GSE1561, GSE17907, GSE2990, 

GSE7390, GSE11121, GSE16716, GSE2034, GSE1456, GSE6532, GSE3494, GSE68892 (formerly

geral-00143 from caBIG)). All datasets were Affymetrix U133A/plus 2 chips and were summarised 

with Ensembl alternative CDF [239]. RMA normalisation [240] and ComBat batch correction [241] 
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were applied to remove dataset-specific bias as previously described [118,242]. Intrinsic molecular 

subtypes were assigned based upon the highest correlation to Sorlie centroids [111], applied to each 

dataset separately. Centred average linkage clustering was performed using the Cluster and 

TreeView programs [243]. Centroids were calculated for each gene based upon the mean expression

across each of the Sorlie intrinsic subtypes [111]. These expression values were squared to consider 

up and down regulated genes in a single analysis. Orthology to the DroFN network was defined 

using Inparanoid [59]. Differential expression was calculated by t-test comparing normalised 

(unsquared) expression values in normal-like and basal-like tumours with false discovery rate 

correction [237].

5.5 Invasion assays for validation of genes selected from NetNC results

MCF-7 Tet-On cells were purchased from Clontech and maintained as previously described 

[161].To analyse the ability of transfected MCF7 breast cancer cells to degrade and invade 

surrounding extracellular matrix, we performed an invasion assay using the CytoSelect™ 24-Well 

Cell Adhesion Assay kit. This transwell invasion assay allow the cells to invade through a matrigel 

barrier utilising basement membrane-coated inserts according to the manufacturer's protocol. 

Briefly, MCF7 cells transfected with the constructs (Doxycycline-inducible SNAI1 cDNA or SNAI1 

shRNA with or without candidate gene cDNA) were suspended in serum-free medium. SNAI1 

cDNA or SNAI1 shRNA were cloned in our doxycyline-inducible pGoldiLox plasmid (pGoldilox-

Tet-ON for cDNA and pGolidlox-tTS for shRNA expression) using validated shRNAs against 

SNAI1 (NM_005985 at  position 150 of the transcript [161]). pGoldilox has been used previously to

induce and knock down the expression of Ets genes [160]. Following overnight incubation, the cells

were seeded at 3.0×105 cells/well in the upper chamber and incubated with medium containing 

serum with or without doxycyline in the lower chamber for 48 hours. Concurrently, 106 cells were 

treated in the same manner and grown in a six well plate to confirm over-expression and 
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knockdown. mRNA was extracted from these cells and quantitative real-time PCR (RT-qPCR) was 

performed as previously described [244]; please see Additional File 9 for gene primers. The 

transwell invasion assay evaluated the ratio of CyQuant dye signal at 480/520 nm in a plate reader 

of cells from the two wells and therefore controlled for potential proliferation effects associated 

with ectopic expression. We used empty vector (mCherry) and scrambled shRNA as controls and to 

control for the non-specific signal. At least three experimental replicates were performed for each 

reading.

6 List of abbreviations

AML: Acute Myeloid Leukemia

AUC: Area Under the Receiver Operator Characteristic Curve

BIC: Bayesian Information Criterion

BP: Biological Process

CC: Cellular Component

ChIP: Chromatin Immunoprecipitation

ChIP-chip: Chromatin Immunoprecipitation microarray

ChIP-exo:  Chromatin Immunoprecipitation with lambda exonuclease digestion (and sequencing)

ChIP-seq: Chromatin Immunoprecipitation sequencing

CI: Confidence Interval

circRNA: circular RNA

CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats

DamID: DNA Adenine Methyltransferase Identification

DAVID: Database for Annotation Visualisation and Integrated Discovery

DroFN: Drosophila Functional Network

DroID: Drosophila Interactions Database
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DPiM: Drosophila Protein Interaction Map

DRC: Developmental Regulation Cluster

EMT: Epithelial to Mesenchymal Transition

FDR: False Discovery Rate

FGF: Fibroblast Growth Factor

GMM: Gaussian Mixture Modelling

GO: Gene Ontology

GPCR: G-protein Coupled Receptor

pFDR: positive False Discovery Rate

lcFDR: local False Discovery Rate

FGN: Functional Gene Network

FP: False Positive

FPR: False Positive Rate

GGEA: Gene Graph Enrichment Analysis

GSEA: Gene Set Enrichment Analysis

HMC: Hypergeometric Mutual Clustering

HOT: Highly Occupied Target

KEGG: Kyoto Encyclopaedia of Genes and Genomes

MCC: Matthews Correlation Coefficient

MT: Mitochondrial Translation

modENCODE: Model Organism Encyclopedia of DNA Elements

NetNC: Network Neighbourhood Clustering

NetNC-FTI: NetNC Functional Target Identification mode

NetNC-FBT: NetNC Functional Binding Target mode

NetNC-lcFDR: NetNC local False Discovery Rate
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NFCS: Node Functional Coherence Score

NL: Normal-Like

PcG: Polycomb Group

pFDR: Positive False Discovery Rate

PNBP: NetNC Predicted Neutral Binding Proportion

RT-qPCR: quantitative real-time PCR

siRNA: small interfering RNA

shRNA: short hairpin RNA

SNTG: Synthetic Neutral Target Gene

snoRNA: small nucleolar RNA

snRNP: small nuclear ribonucleoprotein

TF: Transcription Factor

TF_ALL: The nine TF binding datasets studied in this work.

TPR: True Positive Rate

TrxG: Trithorax Group

3D: Three dimensional

4-C: Circular chormosome conformation capture

5-C: Chromosome Conformation Capture Carbon Copy

7 Declarations

Data and software availability

Software and key datasets are made freely available as Additional Files associated with this 

publication as follows:

Additional File 1: DroFN network and gold standard datasets for network inference.

Additional File 2: TRAIN_CL_ALL (NetNC training data).
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Additional File 3: TEST_CL_ALL (NetNC test data).

Additional File 4: Cytoscape sessions with NetNC-FTI results for TF_ALL.
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9 Figure legends

Figure 1 Overview of the NetNC algorithm. NetNC input data may be a list of candidate TF target genes 

and a reference network such as a functional gene network (top, left). However, NetNC may be applied to 

analyse any gene list, for example derived from CRISPR-Cas9 screens or differential expression analysis. 

Hypergeometric Mutual Clustering (HMC) p-values are calculated for candidate TF target genes (top, 

middle); the node numbers and colours in the HMC graph correspond directly to those given in the 

contingency table cells. HMC p-values are then employed in either i) a node-centric analysis mode (NetNC-

FBT) with Gaussian Mixture Modelling (right top) or ii) an edge-centric mode (NetNC-FTI) that involves 

empirical estimation of global False Discovery Rate (pFDR, middle) followed by iterative minimum cut with

a graph density stopping criterion (bottom). We also developed an approach to calculate local FDR (lcFDR) 

in order to predict the proportion of neutrally bound candidate target genes for the TF_ALL datasets (left). 

NetNC-FTI takes thresholds for pFDR and graph density from calibration against synthetic data based on 

KEGG pathways. NetNC-FBT is parameter-free and therefore offers flexibility for analysis of datasets with 

network properties that may differ to the synthetic data used for calibration. NetNC can produce pathway-

like clusters and also biologically coherent node lists for which edges may be taken using a standard FDR or 

Family Wise Error Rate (FWER) threshold on the HMC p-values (right).
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Figure 2 Evaluation of NetNC and HC-PIN on blind test data. Performance values reflect discrimination 

of KEGG pathway nodes from Synthetic Neutral Target Genes (STNGs), shown for NetNC-FTI (orange), 

NetNC-FBT (red) and HC-PIN (green). False Positive Rate (FPR, top row) and Matthews Correlation 

Coefficient (MCC, bottom row) values are given. The data shown represents analysis of TEST-CL_ALL, 

which included subsets of three to eight pathways, shown in columns, and sixteen %STNG values were 

analysed (5% to 80%, x-axis). NetNC performed best on the data examined with typically lower FPR and 

higher MCC values. Error bars reflect 95% confidence intervals calculated from quantiles of the SNTG 

resamples (per datapoint: n=100 for NetNC, n=99 for HC-PIN). The NetNC-FBT analysis mode was the 

most stringent and had lowest FPR across the datasets examined - but also had lower MCC, particularly on 

the three or four pathway datasets. In general, MCC for NetNC and HC-PIN rose with increasing SNTG 

percentage, up to around 40%. HC-PIN performance declined at SNTG values >40% wheras NetNC 

performance remained high. At the highest %SNTG, MCC values for NetNC-FTI were around 50% to 67% 

higher than those for HC-PIN. The performance advantage for NetNC was also apparent upon inspection of 

the HC-PIN FPR profiles which rose to around 0.4 at 80% SNTGs; HC-PIN typically had significantly 

higher FPR than NetNC. There was a trend towards worse overall performance for all methods as the 

number of pathways in the dataset (and hence dataset size) increased. Indeed, NetNC-FTI maximal MCC 

values were respectively around 0.7, 0.55 for the three, eight pathway datasets. Performance advantages for 

NetNC were particularly apparent on data with ≥50% SNTGs.
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Figure 3 Neutral transcription factor binding and false discovery rate (FDR) profiles.

Panel A: Estimation of total neutral binding. Black circles show NetNC mean lcFDR values for the TEST-

CL_8PW data, ranging from 5% to 80% SNTGs; error bars represent 95% CI calculated from quantiles of 

the SNTG resamples (n=100 per datapoint). Coloured horizontal lines show mean NetNC-lcFDR values for 

the TF_ALL datasets. Comparison of the known TEST-CL_8PW %SNTG values with estimated total neutral

binding values from mean NetNC-lcFDR showed systematic overestimation of neutral binding. Cross-

referencing mean NetNC-lcFDR values for TF_ALL with those for TEST-CL_8PW gave estimates of neutral

binding between 50% and ≥80% (see panel key).

Panels B (Local FDR profiles), C (Global FDR profiles) and D (Global FDR zoom). Line type and 

colour indicates dataset identity (see key). Candidate target gene index values were normalised from zero to 

one in order to enable comparison across the TF_All datasets. Panel B: Profiles of lcFDR are shown.  

Although sna_2-3h_union and twi_2-3h_union had high mean lcFDR (panel A, above), they also had the 

highest proportion and largest numbers of genes with lcFDR<0.05. Panel C:  Profiles of global FDR (pFDR)

are shown. Profiles of pFDR and lcFDR were similar. For example, sna_2-3h_union and twi_2-3h_union 

both had relatively high proportion of genes passing lcFDR<0.05 and pFDR<0.05. However differences 

were observed, for example twi_2-6h_intersect had the greatest proportion of genes passing pFDR threshold 

values between 0.01 and 0.2, in contrast to equivalent lcFDR values (panel B) where no single dataset 

dominates. pFDR was smoother than lcFDR (panel B) because of the procedure to prevent inconsistent 

lcFDR scaling (equation (6)).

Panel D: pFDR values visualised around commonly applied threshold values, including those selected in 

NetNC parameter optimisation. Interestingly, the high-confidence dataset twi_1-3h_hiConf, which had the 

lowest predicted overall proportion of neutral binding (panel A), also had proportionally very few genes 

passing a threshold of pFDR<0.05.
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Figure 4 NetNC-FTI functional target networks for Snail and Twist. The key (bottom right) indicates 

annotations for human orthology (bold node border) and Notch screen hits (triangular nodes). Many 

orthologues were assigned to either basal-like (BL, red) or normal-like centroids (NL, green); otherwise, 

node colour indicates upregulated gene expression in NL (blue) compared to BL (orange) subtypes (q<0.05) 

or no annotation (grey). Clusters with at least four members are shown; cytoscape sessions with full NetNC-

FTI results are given in Additional File 4. In general, NetNC-FTI clusters formed recognised groupings of 

gene function, including previously characterised protein complexes.

Panel A: twi_2-3h_union. Predicted functional targets cover several areas of fundamental biochemistry 

including splicing, DNA replication, energy metabolism, translation and chromatin organisation. Regulation 

of multiple conserved processes by Twist is consistent with the extensive cell changes required during 

mesoderm development. Clusters annotated predominantly to either NL or BL subtypes include 

mitochondrial translation (BL) and the proteosome (NL). These results predict novel functions for Twist, for 

example in regulation of mushroom body neuroblast proliferation factors.

Panel B: sna_2-4h_Toll10b. Multiple clusters of transcription factors were identified, aligning with previous 

studies that identified Snail as a master transcriptional regulator [39,245,246]. These clusters included the 

achaete-scute complex (bottom right) and polycomb group members (bottom left). Direct targeting of 

achaete-scute by Snail in prospective mesoderm is consistent with repression of neurectodermal fates [97–

99]. Orthologues in the clusters ‘RNA degradation, transcriptional regulation’; ‘axis specification’ and 

‘phosphatases’ were only annotated to the basal-like subtype.

Panel C: twi_2-6h_intersect. A large proportion of predicted functional targets for twi_2-6h_intersect 

belonged to the ‘developmental regulation’ NetNC-FTI cluster; regulatory factors may be enriched in this 

dataset due to the criterion for continuous binding across two developmental time windows. The 

developmental regulation cluster contained mrr, the orthologue of IRX4, which was BL upregulated (orange) 

and was investigated in follow-up experiments (Figure 6).
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Figure 5 Predicted functional transcription factor targets capture human breast cancer biology. The 

heatmap shows results of unsupervised clustering with gene expression data for 2999 primary breast tumours

and 57 orthologues of NetNC-FTI functional targets that were identified in at least four of nine TF_ALL 

datasets (ORTHO-57). Expression values were log2 transformed and mean-centred to give relative values 

across tumours (red=high, white=mean, blue=low). Intrinsic molecular subtype for each tumour is shown by 

the mosaic above the heatmap and below the dendogram, from left to right : luminal A (blue), basal-like 

(red), HER2-overexpressing (purple), luminal B (light blue) and normal-like (green). Source data identifiers 

are given to the right of the subtype mosaic. Features annotated onto the heatmap as black dashed lines 

identified genes upregulated in one or more intrinsic subtype; these features were termed ‘Bas’ (basal-like), 

‘NL’(normal-like), ‘ERneg’ (basal-like and HER2-overexpressing), ‘LumB1’(luminal B), ‘LumB2’(luminal 

B), ‘LumA’ (luminal A) and ‘LoExp’ (low expression). The table to the right of the heatmap indicates 

inclusion (grey) or absence (white) of genes in NetNC-FTI results across the TF_ALL datasets. The column 

‘#D’ gives the number of TF_ALL datasets where the gene was returned by NetNC-FTI and ‘%P’ column 

details the percentage of present calls for gene expression across the 2999 tumours. The LoExp feature 

corresponded overwhelmingly to genes with low %P values and to samples from a single dataset [133]. 

Some genes were annotated to more than one feature and reciprocal patterns of gene expression were found. 

For example, BMPR1B, ERBB3 and MYO6 were strongly upregulated in feature LumA but downregulated in

basal-like and HER2-overexpressing cancers. Unexpectedly, feature NL (normal-like) had high expression of

canonical EMT drivers, including SNAI2, TWIST and QKI. Some of the EMT genes in feature NL were also 

highly expressed in many basal-like tumours, while genes in feature Bas (NOTCH, SERTAD2) were 

upregulated in normal-like tumours.
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Figure 6 Validation of candidate invasion genes in breast cancer cells. The fluorescence CyQuant dye 

signal from invading MCF7 cells is shown (RFU) for the transwell assay. Induction of each of the four genes

examined significantly changed MCF7 invasion when compared to controls (orange) in least one of three 

conditions: a) ectopic expression; b) ectopic expression and SNAI1 induction; c) ectopic expression with 

shRNA knockdown of SNAI1. The orthologous genes studied were: SNX29 (blue), which showed a 

significant reduction in invasion compared with the SNAI1 induction control; UNK (purple) and IRX4 (dark 

red) where invasion was significantly increased all three conditions examined; ATG3 which had significantly

higher invasion at background levels of SNAI1 (without induction or knockdown). All datapoints are n=3. 

Statistical significance in comparisons against the appropriate control experiment is indicated as follows: * 

q<0.05; *** q<5.0x10-4
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